Nothing Special   »   [go: up one dir, main page]

JP2003129180A - Pearlitic rail superior in toughness and ductility, and manufacturing method therefor - Google Patents

Pearlitic rail superior in toughness and ductility, and manufacturing method therefor

Info

Publication number
JP2003129180A
JP2003129180A JP2001322219A JP2001322219A JP2003129180A JP 2003129180 A JP2003129180 A JP 2003129180A JP 2001322219 A JP2001322219 A JP 2001322219A JP 2001322219 A JP2001322219 A JP 2001322219A JP 2003129180 A JP2003129180 A JP 2003129180A
Authority
JP
Japan
Prior art keywords
rail
ductility
pearlite
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001322219A
Other languages
Japanese (ja)
Inventor
Kenichi Karimine
健一 狩峰
Koichi Uchino
耕一 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001322219A priority Critical patent/JP2003129180A/en
Publication of JP2003129180A publication Critical patent/JP2003129180A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pearlitic rail with high toughness and high ductility. SOLUTION: The pearlitic rail superior in toughness and ductility has a steel composition including, by mass%, 0.6-1.2% C, 0.1-1.2% Si, 0.1-1.5% Mn, 0.005-0.070% V, 0.005-0.025% N, 0.0005-0.0100% Ti, and 0.015% or less P, and one or more of 0.1-1.0% Cr, 0.01-0.50% Mo, 0.1-2.0% Ni, 0.004-0.05% Nb, 0.1-2.0% Cu, 0.0001-0.0015% B, 0.0004-0.0100% Mg, 0.002-0.020% S, and 0.002-0.050% Al, as needed, has substantially a pearlitic structure in at least a top part of the rail, and has 2-100 per 1 mm<2> of (Ti,V)N particles with diameters of 0.1-5.0 μm, in an arbitrary cross section of the top part of the rail. The method for manufacturing the pearlitic rail superior in toughness and ductility is characterized by making a staying time of the steel material in a furnace to be 60 minutes or shorter, when re-heating and rolling the above steel slab, in the furnace which can heat the steel material to 1,200 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レール鋼のパーラ
イトブロックサイズを微細化して靭性および延性の向上
を図った高強度レールおよびその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength rail in which pearlite block size of rail steel is miniaturized to improve toughness and ductility, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】鉄道輸送は輸送効率向上のための重積載
化、輸送迅速化のための高速化が進められており、レー
ルの特性に対する要求が厳しくなっている。重積載化は
急曲線区間におけるレール頭部の磨耗を促進し、レール
のGC(ゲージコーナー)内部の応力集中部からの疲労
損傷を増加させることから、レール寿命が短くなってき
ている。この重荷重鉄道でのレール短寿命化を改善する
ために、耐磨耗性、耐内部疲労損傷性の優れた高強度レ
ール鋼の技術開発が活発に行われてきた。その結果、曲
線区間ではこの高強度レールが広く普及しつつある。
2. Description of the Related Art Rail transportation is under heavy load to improve transportation efficiency and speeding up to speed up transportation, and requirements for rail characteristics are becoming strict. The heavy load promotes wear of the rail head in a sharp curve section and increases fatigue damage from a stress concentration part inside the GC (gauge corner) of the rail, so that the rail life is becoming shorter. In order to improve the shortening of rail life in heavy-duty railway, technological development of high-strength rail steel with excellent wear resistance and internal fatigue damage resistance has been actively conducted. As a result, this high-strength rail is becoming widespread in curved sections.

【0003】一方、寒冷地の鉄道では冬季にレールクラ
ック発生によるレール取替が集中しており、レール材の
靭性改善がレール寿命の延伸に必要な課題になってい
る。また頭部の内部疲労損傷性の改善には、レール材の
靭性および延性を向上させることが重要である。レール
鋼に対する衝撃値規格としては、ロシアΓoct 規格にお
いて、試験温度20℃における2mmUノッチ試験値とし
て25J/cm2 以上という例があり、以下のような方法に
よる靭性および延性改善が図られている。 (1)普通圧延後、一旦室温まで冷却したレールを低温
度で再加熱した後、加速冷却する方法。 (2)制御圧延によりオーステナイト粒を微細化した
後、レール頭部を加速冷却する方法。 (3)制御圧延した後、パーライト変態前で低温度に再
加熱し、その後加速冷却する方法。
On the other hand, rail replacement in the cold regions is concentrated due to the occurrence of rail cracks in winter, and improvement of the toughness of the rail material has become an issue necessary for extending the rail life. Further, to improve the internal fatigue damage of the head, it is important to improve the toughness and ductility of the rail material. As an impact value standard for rail steel, there is an example in which a 2 mm U notch test value at a test temperature of 20 ° C. is 25 J / cm 2 or more in the Russian Γoct standard, and the toughness and ductility are improved by the following methods. (1) A method in which after normal rolling, the rail once cooled to room temperature is reheated at a low temperature and then accelerated cooling is performed. (2) A method of accelerating and cooling the rail head after refining austenite grains by controlled rolling. (3) A method in which after controlled rolling, it is reheated to a low temperature before pearlite transformation and then accelerated cooling is performed.

【0004】[0004]

【発明が解決しようとする課題】上記(1)の方法で
は、例えば特開昭55−125321号公報に記載され
ているように、通常の加熱温度よりも低い850℃以下
の低温度に再加熱し、オーステナイト粒を細粒化するこ
とによって大幅に靭性および延性を改善しようとするも
のである。しかし、低温度で加熱し、かつレール頭部内
部まで加熱を深めようとすると、投入熱量を下げて長時
間加熱する必要があり、この加熱処理により生産性を阻
害し製造コストを高める難点がある。
In the above method (1), as described in, for example, JP-A-55-125321, reheating to a low temperature of 850 ° C. or lower, which is lower than the normal heating temperature, is carried out. However, the fineness of the austenite grains is intended to significantly improve the toughness and ductility. However, if heating at a low temperature and trying to deepen the heating to the inside of the rail head, it is necessary to lower the amount of heat input and heat for a long time, and this heat treatment hinders productivity and raises the manufacturing cost. .

【0005】また上記(2)の方法は、例えば特開昭5
2−138427号公報および特開昭52−13842
8号公報に記載されているように、制御圧延によるオー
ステナイト粒の細粒化で靭性・延性の向上を図ろうとす
るものである。しかし、大きな圧下力等が必要という圧
延機の能力、あるいはレールの断面形状や長手方向の寸
法精度が容易に得られないという形状制御性の観点から
も問題を含んでいる。
The method (2) is described in, for example, Japanese Patent Laid-Open No.
JP-A-2-138427 and JP-A-52-13842.
As described in Japanese Patent Publication No. 8, the fine graining of austenite grains by controlled rolling is intended to improve toughness and ductility. However, there are problems from the viewpoint of the ability of the rolling mill that requires a large rolling force, or the shape controllability that the rail cross-sectional shape and dimensional accuracy in the longitudinal direction cannot be easily obtained.

【0006】さらに上記(3)の方法は、例えば特公平
4−4371号公報に記載されているように、800℃
以下で5%以上の圧延を実施した後、再度750〜90
0℃に加熱することによりオーステナイト粒を微細に
し、靭性および延性を改善しようとするものである。し
かし、この方法は圧延後に低温再加熱のための加熱炉を
必要とするため、作業性、生産性、製造コスト等の問題
がある。
Further, the method (3) described above is, for example, as described in Japanese Patent Publication No. 4-4371, 800 ° C.
After rolling 5% or more below, again 750-90
By heating to 0 ° C., the austenite grains are made fine and the toughness and ductility are improved. However, since this method requires a heating furnace for low-temperature reheating after rolling, there are problems such as workability, productivity, and manufacturing cost.

【0007】またレール鋼の靭性を改善する方法とし
て、例えば特開平8−104946号公報および特開平
8−109438号公報に記載されているように、脱酸
元素としてMgを添加し、0.1〜10μmのMnSの
個数が1mm2 あたり600〜12000個存在する靭性
・延性が優れたパーライト系レールや、特開平6−27
9850号公報、特開平7−150235号公報、特開
平8−104947号公報に見られるようにV炭窒化
物、Ti炭窒化物から変態を起こさせて、組織微細化し
たパーライト系レールがあり、これらの方法により靭性
および延性に優れたレールの製造が可能となった。しか
し、重荷重鉄道ではなお一層の重積載化および高速化が
検討されており、さらに靭性および延性の特性を改善す
ることが要求されてきている。
As a method for improving the toughness of rail steel, Mg is added as a deoxidizing element to 0.1 as described in, for example, JP-A-8-104946 and JP-A-8-109438. A pearlite rail having excellent toughness and ductility, in which the number of MnS having a particle size of 10 μm is 600 to 12000 per 1 mm 2, and JP-A-6-27
There is a pearlite-based rail whose structure is refined by causing transformation from V carbonitride and Ti carbonitride, as seen in Japanese Patent Publication No. 9850, Japanese Unexamined Patent Publication No. 7-150235, and Japanese Unexamined Patent Publication No. 8-104947. These methods have enabled rails with excellent toughness and ductility to be manufactured. However, in heavy-duty railways, further heavy loading and higher speed are being studied, and further improvement in toughness and ductility characteristics has been demanded.

【0008】[0008]

【課題を解決するための手段】パーライト鋼が破壊する
際、結晶粒界は亀裂伝播の抵抗となるため、亀裂は結晶
粒単位で屈曲して進む。このため結晶粒が細かいほど、
破壊に要するエネルギーが大きくなり、衝撃値が増加す
る。炭素鋼がオーステナイトからパーライト変態する際
に、変態は主にオーステナイト粒界から開始する。この
時にオーステナイト中にフェライトと結晶格子整合性の
高い析出物があれば、それが変態核となって変態が起こ
りやすくなる。その結果、多くのパーライトモジュール
が成長し、変態完了後のパーライト組織は細かくなる。
When the pearlite steel breaks, the grain boundaries serve as resistance to crack propagation, so that the crack bends and progresses on a grain-by-grain basis. Therefore, the finer the crystal grains,
The energy required for destruction increases and the impact value increases. When carbon steel undergoes austenite to pearlite transformation, the transformation mainly starts from austenite grain boundaries. At this time, if there is a precipitate in the austenite having a high crystal lattice matching with the ferrite, it becomes a transformation nucleus and the transformation easily occurs. As a result, many pearlite modules grow and the pearlite structure after transformation is fine.

【0009】レール鋼材にTi,V,Nが含まれている
と、鋼中に(Ti,V)Nが析出する。(Ti,V)N
中のTiとVの比率は0〜1まで変化し、(Tix,V
1−x)N、x=0〜1の形式で表現される。x=1で
あるTiN,x=0であるVNの結晶構造は類似してお
り、いずれもフェライト鉄との結晶格子の整合性が高
い。その結果(Ti,V)Nを核として多数のパーライ
ト・モジュールが成長し、微細なパーライトが形成す
る。
When the rail steel material contains Ti, V, N, (Ti, V) N is precipitated in the steel. (Ti, V) N
The ratio of Ti and V in the inside changes from 0 to 1, and (Tix, V
1-x) N, x = 0 to 1 The crystal structures of TiN with x = 1 and VN with x = 0 are similar, and both have high matching of crystal lattice with ferrite iron. As a result, a large number of pearlite modules grow with (Ti, V) N as the nucleus, and fine pearlite is formed.

【0010】一方、析出物が鋼中に存在するとき、その
サイズ、材質によっては荷重負荷時に析出物が破壊起点
となる場合がある。パーライト組織微細化のためにT
i,V,N添加が有効ではあるが、析出する(Ti,
V)Nは硬く、変形しにくい。このため(Ti,V)N
のサイズが大きくなると、隣接する鋼材に応力集中を引
き起こし、衝撃特性、延性値をむしろ劣下させる。
On the other hand, when precipitates are present in steel, depending on the size and material of the steel, the precipitates may become fracture starting points when a load is applied. T for finer pearlite structure
Addition of i, V, and N is effective, but precipitation (Ti,
V) N is hard and difficult to deform. Therefore, (Ti, V) N
If the size of the steel becomes large, stress concentration will occur in the adjacent steel materials, and the impact properties and ductility values will rather deteriorate.

【0011】本発明は寒冷地において要求される良好な
衝撃特性、延性を得るための条件を提供するものであ
り、その要旨は以下のとおりである。 (1)質量%で、 C :0.6〜1.2%、 Si:0.1〜1.2%、 Mn:0.1〜1.5%、 V :0.005〜0.070%、 N :0.005〜0.025%、Ti:0.0005〜0.010%、 P :0.015%以下 を含有し、少なくともレール頭部が実質パーライト組織
であり、かつレール頭部の任意断面において、直径0.
1〜5.0μmの(Ti,V)Nが1mm2 中に2〜10
0個存在することを特徴とする靭性および延性に優れた
パーライト系レール。 (2)さらに必要に応じて、質量%で、 Cr:0.1〜1.0%、 Mo:0.01〜0.50%、 Ni:0.1〜2.0%、 Nb:0.004〜0.05%、 Cu:0.1〜2.0%、 B :0.0001〜0.0015%、 Mg:0.0004〜0.0100%、 S :0.002〜0.020%、Al:0.002〜0.050% の1種または2種以上を含有することを特徴とする靭性
および延性に優れたパーライト系レール。 (3)上記(1)または(2)に記載の鋼片を再加熱し
て圧延する際に、鋼材が1200℃以上となる加熱炉内
で、在炉時間を60分間以下とすることを特徴とする靭
性および延性に優れたパーライト系レールの製造方法。 (4)また、上記の鋼片を熱間圧延でレールに形成した
後、熱延まま、あるいは熱延後の加熱によってオーステ
ナイト域温度とし、前記レールの冷却において、少なく
とも頭部を700〜500℃間を1〜5℃/secで加速冷
却することを特徴とする靭性および延性に優れたパーラ
イト系レールの製造方法。
The present invention provides conditions for obtaining good impact characteristics and ductility required in cold regions, the gist of which is as follows. (1) Mass%, C: 0.6 to 1.2%, Si: 0.1 to 1.2%, Mn: 0.1 to 1.5%, V: 0.005 to 0.070% , N: 0.005-0.025%, Ti: 0.0005-0.010%, P: 0.015% or less, at least the rail head has a substantially pearlite structure, and The diameter is 0.
1 to 5.0 μm (Ti, V) N is 2 to 10 in 1 mm 2.
Perlite rail with excellent toughness and ductility, characterized by the presence of zero rails. (2) Further, if necessary, in mass%, Cr: 0.1 to 1.0%, Mo: 0.01 to 0.50%, Ni: 0.1 to 2.0%, Nb: 0. 004 to 0.05%, Cu: 0.1 to 2.0%, B: 0.0001 to 0.0015%, Mg: 0.0004 to 0.0100%, S: 0.002 to 0.020%. , Al: 0.002 to 0.050% of one kind or two kinds or more, and a pearlite rail excellent in toughness and ductility. (3) When the steel slab according to (1) or (2) above is reheated and rolled, the in-furnace time is set to 60 minutes or less in a heating furnace in which the steel material is 1200 ° C. or higher. A method for producing a pearlite rail having excellent toughness and ductility. (4) Further, after the above steel slab is formed into a rail by hot rolling, it is brought to an austenite temperature by as-hot-rolling or by heating after hot-rolling, and at least 700 to 500 ° C. is applied to the head during cooling of the rail. A method for producing a pearlite rail having excellent toughness and ductility, characterized by accelerating cooling at an interval of 1 to 5 ° C / sec.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施形態について
説明する。レール鋼は一般に、精錬−鋳造−冷却−再加
熱−熱間圧延−冷却−の工程で製造される。まず転炉、
電気炉などで精錬、成分調整された溶鋼が連続鋳造など
の方法により凝固される。鋳造された鋳片,鋼塊は熱間
圧延される際に1200℃以上に再加熱される。高温に
加熱された鋼材は複数の圧延機を通り、徐々にレール形
状に成形され、900〜1100℃でレール形状に仕上
げられる。圧延完了後、温度が共析点以下に下がるとパ
ーライト変態が起こる。パーライト変態は一般にオース
テナイト結晶粒界で開始し、成長する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. Rail steel is generally manufactured by the steps of refining-casting-cooling-reheating-hot rolling-cooling. First, the converter
Molten steel, refined and adjusted in composition in an electric furnace, is solidified by a method such as continuous casting. The cast slab and steel ingot are reheated to 1200 ° C. or higher during hot rolling. The steel material heated to a high temperature passes through a plurality of rolling mills, is gradually formed into a rail shape, and is finished into a rail shape at 900 to 1100 ° C. After the rolling is completed, when the temperature falls below the eutectoid point, pearlite transformation occurs. The pearlite transformation generally initiates and grows at austenite grain boundaries.

【0013】レール鋼材にTi,V,Nが含まれている
と、鋳造後、温度低下に伴い(Ti,V)Nが析出す
る。この(Ti,V)Nは圧延前に1200℃以上に再
加熱されると、一部は母材中に溶解するが、圧延中もし
くは圧延後の温度低下に伴い、改めて窒化物として析出
する。(Ti,V)N中のTiとVの比率は0〜1まで
変化し、(Tix,V1−x)N、x=0〜1の形式で
表現される。x=1であるTiN、x=0であるVNの
結晶構造は酷似しており、いずれもフェライト鉄との結
晶格子の整合性が良い。このため鋼中に単独に、もしく
はMnSなどの析出物上に析出した(Ti,V)N核と
なってフェライト変態が起きやすくなる。
When the rail steel material contains Ti, V, N, (Ti, V) N precipitates as the temperature decreases after casting. When this (Ti, V) N is reheated to 1200 ° C. or higher before rolling, part of it is dissolved in the base material, but it precipitates again as a nitride as the temperature decreases during or after rolling. The ratio of Ti and V in (Ti, V) N varies from 0 to 1, and is expressed in the form of (Tix, V1-x) N, x = 0 to 1. The crystal structures of TiN with x = 1 and VN with x = 0 are very similar, and both have good crystal lattice matching with ferritic iron. Therefore, ferrite transformation easily occurs in steel alone or as (Ti, V) N nuclei precipitated on precipitates such as MnS.

【0014】(Ti,V)Nを核としてフェライト変態
が起きると、即座に隣接するオーステナイト中にセメン
タイトが析出し、パーライト変態に移行する。その結果
(Ti,V)Nを核とする多数の異なる結晶方位を持つ
パーライト・モジュールが成長し、微細なパーライトが
形成され、優れた靭性および延性を有するレール鋼を得
ることができる。このような微細なパーライト組織は、
車輪からの衝撃的な負荷の加わりやすいレールの頭部に
少なくとも形成されている必要がある。
When the ferrite transformation occurs with (Ti, V) N as the nucleus, cementite is immediately precipitated in the adjacent austenite, and the transition to the pearlite transformation occurs. As a result, a pearlite module having a large number of different crystal orientations centered on (Ti, V) N grows, fine pearlite is formed, and a rail steel having excellent toughness and ductility can be obtained. Such a fine pearlite structure is
It must be formed at least on the head of the rail that is prone to shock loads from the wheels.

【0015】以下に、(Ti,V)Nの断面内個数頻度
を規定した理由を述べる。変態核として有効な(Ti,
V)Nサイズは現段階では明確ではないが、現代の走査
型電顕SEMなどの市販解析機器により同定できるサイ
ズは0.1μm程度までであり、本発明での(Ti,
V)Nの個数規定を行うサイズの下限は0.1μmとし
た。一方、5μm超になると荷重負荷時に破壊起点にな
りやすく、好ましくない。従って、(Ti,V)Nの個
数規定を行うサイズの上限は5μmとした。
The reason for defining the number frequency of (Ti, V) N in the cross section will be described below. Effective as a transformation nucleus (Ti,
V) The N size is not clear at this stage, but the size that can be identified by a commercial analyzer such as a modern scanning electron microscope SEM is up to about 0.1 μm.
V) The lower limit of the size for defining the number of N is 0.1 μm. On the other hand, if it exceeds 5 μm, it tends to become a fracture starting point when a load is applied, which is not preferable. Therefore, the upper limit of the size for defining the number of (Ti, V) N is set to 5 μm.

【0016】0.1〜5μmの(Ti,V)Nの個数頻
度はレール頭部の任意断面において、2個/mm2 未満で
は組織微細化が得られず、100個/mm2 を超えると5
μm超の粗大(Ti,V)Nの個数も増え、延靭性をむ
しろ劣化させるため好ましくない。粗大な(Ti,V)
Nの生成を防止するためには、熱間圧延に先立つ再加熱
中に、鋼中に溶かし込む溶体化が望ましい。しかし(T
i,V)Nは一旦析出すると、溶解度が小さいため完全
に溶体化することは難しい。
If the frequency of (Ti, V) N in the range of 0.1 to 5 μm is less than 2 / mm 2 in an arbitrary cross section of the rail head, finer structure cannot be obtained, and if it exceeds 100 / mm 2. 5
The number of coarse (Ti, V) N exceeding μm also increases, and ductility is rather deteriorated, which is not preferable. Coarse (Ti, V)
In order to prevent the generation of N, it is desirable to carry out solution treatment by dissolving it in steel during reheating prior to hot rolling. But (T
Once i, V) N precipitates, it has a low solubility and it is difficult to form a complete solution.

【0017】(Ti,V)Nのように完全な溶体化が困
難な場合、高温加熱時にオストワルド成長により、むし
ろ粒が成長し、荷重負荷時に破壊起点になりやすくな
る。(Ti,V)Nの加熱中の成長を抑制するために
は、1200℃以上の加熱炉内で、在炉時間を60分間
以内に制限することが必要である。材料の温度管理は加
熱炉内に設置されている定置式材料温度計、もしくは炉
内監視窓から放射温度計によって材料温度を測定して行
う。
When it is difficult to form a complete solution such as (Ti, V) N, grains are rather grown due to Ostwald's growth during heating at a high temperature, and the starting point of fracture tends to occur when a load is applied. In order to suppress the growth of (Ti, V) N during heating, it is necessary to limit the in-furnace time within 60 minutes in a heating furnace at 1200 ° C. or higher. The material temperature is controlled by measuring the material temperature with a stationary material thermometer installed in the heating furnace or with a radiation thermometer from the furnace monitoring window.

【0018】一方、重荷重鉄道、高速鉄道の急曲線部で
は、レール鋼は過酷な負荷と摩擦にさらされるため、高
強度・高硬度が要求される。このような使用環境に供す
るレール鋼材には、圧延終了後のオーステナイト域温度
から直接、あるいは再加熱によりオーステナイト域温度
とした後、パーライト変態温度域である700〜500
℃間を加速冷却することが望ましい。加速冷却を行うと
オーステナイトがより低い温度まで過冷され、パーライ
ト変態温度が低下する。このように過冷度が高まると、
パーライト中のフェライト−セメンタイト層間隔が減少
して強度が増大するとともに、変態核の生成速度が増加
するためパーライト組織を微細にする効果を得ることが
できる。その結果、強度上昇に加えて靭性を向上させる
ことができる。ただし、加速冷却時の冷却速度が1℃/s
ec未満のときは必要強度を得ることができず、5℃/sec
を超える場合はマルテンサイトが生成するため好ましく
ない。
On the other hand, in the steeply curved portion of heavy-duty railways and high-speed railways, rail steel is exposed to severe loads and friction, and therefore high strength and high hardness are required. For the rail steel material to be used in such a use environment, the pearlite transformation temperature range is 700 to 500, which is the pearlite transformation temperature range, either directly from the austenite range temperature after completion of rolling or after reheating to the austenite range temperature.
Accelerated cooling between ℃ is desirable. Accelerated cooling subcools the austenite to a lower temperature, lowering the pearlite transformation temperature. When the degree of subcooling increases in this way,
Since the ferrite-cementite layer spacing in pearlite is reduced to increase the strength and the rate at which transformation nuclei are generated is increased, the effect of refining the pearlite structure can be obtained. As a result, the toughness can be improved in addition to the increase in strength. However, the cooling rate during accelerated cooling is 1 ℃ / s
When it is less than ec, the required strength cannot be obtained and it is 5 ℃ / sec.
If it exceeds, martensite is generated, which is not preferable.

【0019】次に、レール鋼の成分を限定した理由につ
いて述べる。以下、%は質量%を意味する。 C:Cは延性,靭性を低下させるが、レールの使用安全
性に極めて重要な強度・耐摩耗性能を決める基本的な元
素である。Cが0.6%未満では必要とする高強度のパ
ーライト組織を得がたい。また、1.2%を超えると初
析セメンタイトを生成し、靭性・延性を著しく低下させ
るため好ましくない。
Next, the reasons for limiting the components of the rail steel will be described. Hereinafter,% means mass%. C: C reduces ductility and toughness, but is a basic element that determines strength and wear resistance, which are extremely important for rail safety. If C is less than 0.6%, it is difficult to obtain the required high-strength pearlite structure. Further, if it exceeds 1.2%, proeutectoid cementite is formed, and the toughness and ductility are remarkably lowered, which is not preferable.

【0020】Si:Siは溶鋼の脱酸材として必要で、
レール鋼の精錬には欠かすことができない。また、Si
はパーライト組織中のフェライト相への固溶強化による
高強度化に加え、若干の靭性および延性改善効果があ
る。しかし、0.1%未満ではその効果は少なく、1.
2%を超えると脆化をもたらし、溶接接合性も低下する
ため好ましくない。
Si: Si is necessary as a deoxidizing material for molten steel,
Indispensable for refining rail steel. Also, Si
Has the effect of improving the strength by solid solution strengthening in the ferrite phase in the pearlite structure and improving the toughness and ductility to some extent. However, if less than 0.1%, the effect is small.
If it exceeds 2%, embrittlement is caused, and weldability is also deteriorated, which is not preferable.

【0021】Mn:Mnは変態温度を低下させ、焼入れ
性を高めることによって高強度化に寄与する元素であ
る。また鋼中のSと結合してMnSを析出して、Sを無
害化するためにも欠かすことができない。析出したMn
Sは(Ti,V)Nの析出サイトとなり、これもパーラ
イト変態核となる。Mnが0.1%未満ではこれらの効
果が得られず、1.5%を超えると偏析部にマルテンサ
イト組織を生成させ易くするため好ましくない。
Mn: Mn is an element that contributes to higher strength by lowering the transformation temperature and enhancing hardenability. It is also essential to render Sn harmless by precipitating MnS in combination with S in steel. Precipitated Mn
S becomes a precipitation site of (Ti, V) N, which also becomes a pearlite transformation nucleus. If Mn is less than 0.1%, these effects cannot be obtained, and if it exceeds 1.5%, martensite structure is likely to be generated in the segregated portion, which is not preferable.

【0022】V:Vはパーライト変態核となる(Ti,
V)Nを形成するために欠かすことができない元素であ
る。Vが0.005%未満では(Ti,V)Nの析出量
が少なく、延靭性の改善効果は小さい。一方Vが0.0
7%を超えると、パーライト変態完了以降に析出するV
Cが増加し、延靭性がむしろ損なわれるため好ましくな
い。またV,Nの質量含有率の比、V/N値は以下の理
由により低いことが望ましい。 V析出物をパーライト変態核として利用するために
は、変態点より高温で析出するVの窒化物を利用する必
要がある。 Nが十分にないと変態点以下でV炭化物の析出量が
増加し、強度上昇とともに延靭性の低下を引き起こす。
V: V becomes a pearlite transformation nucleus (Ti,
V) An element that is indispensable for forming N. When V is less than 0.005%, the precipitation amount of (Ti, V) N is small, and the effect of improving ductility is small. On the other hand, V is 0.0
If it exceeds 7%, V that precipitates after completion of pearlite transformation
C is increased and ductility is rather deteriorated, which is not preferable. Moreover, it is desirable that the ratio of the mass contents of V and N and the V / N value are low for the following reasons. In order to use the V precipitate as a pearlite transformation nucleus, it is necessary to use the V nitride that precipitates at a temperature higher than the transformation point. If N is not sufficient, the precipitation amount of V carbides increases below the transformation point, causing an increase in strength and a decrease in ductility.

【0023】N:Nは(Ti,V)Nを析出するために
必要な元素であり、そのためには0.005%以上が必
要である。またNが0.025%を超えると連続鋳造時
に鋳片内部に微小な割れが生じやすくなるため、0.0
25%以下に制限する必要がある。
N: N is an element necessary for precipitating (Ti, V) N, and for this purpose, 0.005% or more is necessary. If N exceeds 0.025%, fine cracks are likely to occur inside the slab during continuous casting, so 0.0
It is necessary to limit it to 25% or less.

【0024】Ti:Tiはパーライト変態核となる(T
i,V)Nの析出に不可欠な元素である。Tiが0.0
005%未満ではその効果が得られず、0.01%を超
えると粗大な(Ti,V)Nが生成して延靭性が低下す
るため好ましくない。
Ti: Ti serves as a pearlite transformation nucleus (T
i, V) It is an essential element for the precipitation of N. Ti is 0.0
If it is less than 005%, the effect cannot be obtained, and if it exceeds 0.01%, coarse (Ti, V) N is generated and the ductility is deteriorated, which is not preferable.

【0025】P:Pは鋼中の不可避元素で、パーライト
組織中のフェライト相を脆化させる。このため、延靭性
が重視される寒冷地向けレールでは、Pが0.015%
以下であることが望ましい。
P: P is an unavoidable element in steel and embrittles the ferrite phase in the pearlite structure. Therefore, P is 0.015% in rails for cold regions where ductility is important.
The following is desirable.

【0026】さらに本発明においては、上記成分の他に
必要に応じて1種または2種以上のCr,Mo,Ni,
Nb,Cu,B,Mg,S,Alの添加によって、フェ
ライト地の靭性改善、レール圧延素材の加熱時における
オーステナイト粒の、あるいは圧延時のオーステナイト
粒の細粒化によって高靭性を得ることができる。また、
冷却過程における加速冷却によって、より高強度と同時
に高靭性を得ることができる。これらの化学成分を限定
した理由を以下に説明する。
Further, in the present invention, in addition to the above components, one or more of Cr, Mo, Ni, and
By adding Nb, Cu, B, Mg, S, and Al, high toughness can be obtained by improving the toughness of the ferrite base material, austenite grains at the time of heating the rail rolling material, or by making the austenite grains fine during rolling. . Also,
Accelerated cooling in the cooling process makes it possible to obtain higher strength and higher toughness at the same time. The reason for limiting these chemical components will be described below.

【0027】Cr:Crはパーライト変態温度を低下さ
せることによって高強度化に寄与するとともに、溶接継
ぎ手部軟化防止の観点で0.1%以上の含有が有効であ
る。一方、1.0%を超えて含有すると、強制冷却時に
元素偏析部のみでなく、過冷却傾向の強いレールの肩部
にベイナイトやマルテンサイトが生成し、靭性の低下を
もたらすため好ましくない。
Cr: Cr contributes to strengthening by lowering the pearlite transformation temperature, and it is effective to contain 0.1% or more from the viewpoint of preventing softening of the welded joint. On the other hand, if the content exceeds 1.0%, bainite and martensite are generated not only in the element segregation portion but also in the shoulder portion of the rail having a strong tendency to be supercooled during forced cooling, which is not preferable.

【0028】Mo:Moはパーライトの変態速度を抑制
し、変態温度を下げて、高強度化に寄与するとともに、
パーライト組織を微細化することから靭性向上に有効な
元素である。しかし、0.01%未満では上記の効果は
少なく、また、0.50%を超える含有量ではパーライ
ト変態速度が低下し過ぎ、パーライト組織中にベイナイ
トやマルテンサイトを生成させ靭性低下をもたらすため
好ましくない。
Mo: Mo suppresses the transformation rate of pearlite, lowers the transformation temperature, contributes to high strength, and
It is an element effective in improving toughness because it refines the pearlite structure. However, if it is less than 0.01%, the above effect is small, and if it exceeds 0.50%, the pearlite transformation rate is too low, and bainite or martensite is generated in the pearlite structure, resulting in a decrease in toughness. Absent.

【0029】Ni:Niはフェライト中に固溶し、フェ
ライトの靭性を向上させるのに有効な元素である。ただ
し、Niが0.1%未満の場合にはその効果が弱く、ま
た2.0%を超えて含有してもその効果が飽和する。
Ni: Ni is a solid solution in ferrite and is an effective element for improving the toughness of ferrite. However, when the Ni content is less than 0.1%, the effect is weak, and when the Ni content exceeds 2.0%, the effect is saturated.

【0030】Nb:Nbは熱間圧延時にNb炭窒化物が
オーステナイト粒成長を抑制し、細粒化に寄与する。こ
の効果を得るためには、Nbは0.004%以上必要で
あるが、0.05%を超えると粗大なNb炭窒化物の生
成によって靭性が低下するため好ましくない。
Nb: Nb suppresses austenite grain growth by Nb carbonitride during hot rolling and contributes to grain refinement. To obtain this effect, Nb needs to be 0.004% or more, but if it exceeds 0.05%, the toughness decreases due to the formation of coarse Nb carbonitride, which is not preferable.

【0031】Cu:CuはNiと同様にフェライト中に
固溶し、フェライトの靭性を向上させるのに有効な元素
である。ただし、Cuが0.1%未満の場合にはその効
果が弱く、また2.0%を超えて含有してもその効果は
飽和する。
Cu: Cu, like Ni, is a solid solution in ferrite and is an effective element for improving the toughness of ferrite. However, when Cu is less than 0.1%, its effect is weak, and even when it is contained over 2.0%, its effect is saturated.

【0032】B:Bは微量添加においてもオーステナイ
ト粒界に偏析し、変態を遅らせることにより焼入れ性を
著しく改善する元素である。この効果を得るためには、
Bは0.0001%以上必要であり、0.0015%を
超えると鉄の炭ホウ化物が生成し、靭性が著しく低下す
るため好ましくない。
B: B is an element which segregates at the austenite grain boundaries even when added in a small amount and delays the transformation to remarkably improve the hardenability. To get this effect,
B is required to be 0.0001% or more, and if it exceeds 0.0015%, an iron carbon boride is generated, and the toughness is significantly reduced, which is not preferable.

【0033】Mg:MgはMg酸化物、Mg−Al酸化
物、Mg硫化物を析出し、さらにこれらを核としてMn
S、(Ti,V)Nの析出核となる。これらの介在物は
パーライト変態核生成の促進によりパーライト変態後の
パーライトブロックを微細にする。しかし、Mgが0.
0004%未満ではパーライトブロックサイズ微細化が
ほとんど得られず、0.01%を超えると粗大な介在物
が生成し、靭性が著しく低下するため好ましくない。
Mg: Mg precipitates Mg oxide, Mg-Al oxide, and Mg sulfide, and further uses these as nuclei for Mn.
It becomes a precipitation nucleus of S and (Ti, V) N. These inclusions make the pearlite block after pearlite transformation finer by promoting the generation of pearlite transformation nuclei. However, when Mg is 0.
If it is less than 0004%, the pearlite block size is hardly refined, and if it exceeds 0.01%, coarse inclusions are formed, and the toughness is remarkably lowered, which is not preferable.

【0034】S:Sは鋼中の不可避不純物であるが、M
gS,MnSを生成し、(Ti,V)Nの析出サイトと
なる。これらの介在物はオーステナイト粒の圧延後の粒
成長の抑制と、粒内変態の促進効果によりパーライト変
態後のパーライトブロックサイズを微細化させる。しか
し、Sが0.002%未満では十分な数のMgS,Mn
Sを得ることができず、また0.02%を超えると粗大
なMnSが生成し始め、靭性および延性を低下させるた
め好ましくない。
S: S is an unavoidable impurity in steel, but M
It forms gS and MnS and becomes a (Ti, V) N precipitation site. These inclusions suppress the grain growth of austenite grains after rolling and promote the intragranular transformation to reduce the pearlite block size after the pearlite transformation. However, if S is less than 0.002%, a sufficient number of MgS, Mn
S cannot be obtained, and if it exceeds 0.02%, coarse MnS starts to be generated, and toughness and ductility are deteriorated, which is not preferable.

【0035】Al:Al2 3 やAl−Mg複合酸化物
は、MnSの析出核となる。また、AlNはオーステナ
イト粒の成長を抑制する効果があり、パーライト組織の
微細化に寄与する。ただしAlが0.002%未満では
この効果は弱く、0.05%を超えると酸化物が粗大化
し、重荷重鉄道で使用された際に内部疲労起点となる危
険性がある。
Al: Al 2 O 3 and Al-Mg composite oxide serve as MnS precipitation nuclei. Further, AlN has an effect of suppressing the growth of austenite grains and contributes to the refinement of the pearlite structure. However, when Al is less than 0.002%, this effect is weak, and when it exceeds 0.05%, the oxide becomes coarse and there is a risk of becoming an internal fatigue starting point when used in heavy-duty railway.

【0036】[0036]

【実施例】(Ti,V)Nを利用してパーライト組織を
微細化する本発明の実施例、およびV,N,Ti量を変
化させた比較例により、さらに詳細に説明する。表1は
その化学組成を質量%で示したものである。符号A1,
B1,C1,D1に示す比較例の組成は、実施例A,
B,C,Dとそれぞれ類似である。上記成分の鋼材から
熱間圧延によりレールを製造した。表中に、素材再加熱
の際の1200℃以上の在炉時間を示す。材料温度の測
定は加熱炉に設置された定置式温度計と、加熱炉炉壁に
設けられた監視窓からの放射温度計による温度測定を併
用して行った。
EXAMPLES The present invention will be described in more detail with reference to examples of the present invention in which (Ti, V) N is used to refine the pearlite structure and comparative examples in which the amounts of V, N and Ti are changed. Table 1 shows its chemical composition in mass%. Code A1,
The compositions of the comparative examples shown in B1, C1, and D1 are the same as those of Example A,
It is similar to B, C, and D, respectively. A rail was manufactured by hot rolling from the steel material having the above components. In the table, the in-furnace time of 1200 ° C. or higher when reheating the material is shown. The material temperature was measured by using a stationary thermometer installed in the heating furnace and a temperature measurement using a radiation thermometer from a monitoring window provided on the furnace wall.

【0037】比較例A2の鋼材成分は実施例Aと同じで
あるが、再加熱の際の1200℃以上となる温度域での
在炉時間が60分間を超えた例である。また表中にレー
ル成型後のレール頭部の頭頂面下5mmにおけるレール長
手方向、縦断面での(Ti,V)Nの個数測定結果を記
載した。個数測定は試料を鏡面研磨し、分析装置付き走
査型電顕で、倍率5000倍で1×1mmの範囲で測定し
た。
The steel material composition of Comparative Example A2 is the same as that of Example A, but the in-furnace time in the temperature range of 1200 ° C. or higher during reheating exceeds 60 minutes. Further, in the table, the measurement results of the number of (Ti, V) N in the rail longitudinal direction and the longitudinal section at 5 mm below the crown surface of the rail head after the rail molding are shown. The number of samples was measured by mirror-polishing the sample and using a scanning electron microscope equipped with an analyzer at a magnification of 5000 times in the range of 1 × 1 mm.

【0038】表2は、各レールについて引張強度TS=
約1300MPaを狙って、圧延後のオーステナイト温
度域から700℃〜500℃間の冷却速度を1〜5℃/s
の範囲で冷却した場合、および圧延後、大気中で放冷し
た場合の、試験温度20℃での2mmUノッチシャルピー
衝撃値、丸棒引張試験値を示す。シャルピー試験片は、
レール頭頂面下3mmの位置を試験片上面とし、レール幅
方向に3列、長手方向に4列採取し、ノッチ位置は頭頂
面側とした。ノッチ深さは2mmであるので、ノッチ底の
位置はレール頭頂面下5mmに相当する。表2には12本
の衝撃試験値の平均値を記載した。引張試験はレール頭
部ゲージコーナー表面から内部方向10mm位置を試験片
の円心とする、平行部直径6mm、平行部長さ30mmのJ
IS4号サブサイズ試験片で行った。
Table 2 shows the tensile strength TS = for each rail.
Aiming at about 1300 MPa, the cooling rate between 700 ° C and 500 ° C from the austenite temperature range after rolling is 1 to 5 ° C / s.
2 mm U-notch Charpy impact value and round bar tensile test value at a test temperature of 20 ° C. when cooled in the range of 1, and after cooling in the air after rolling. Charpy test piece
The position 3 mm below the top surface of the rail was taken as the top surface of the test piece, 3 rows were taken in the rail width direction and 4 rows were taken in the longitudinal direction, and the notch position was made on the top surface side. Since the notch depth is 2 mm, the position of the notch bottom corresponds to 5 mm below the rail top surface. Table 2 shows the average of 12 impact test values. In the tensile test, the center of the rail head gauge corner is set to 10 mm inward from the center of the test piece.
The test was performed with IS4 subsize test pieces.

【0039】表2に示すように、C量の増加に伴い、衝
撃値、伸びは低下する傾向にあるが、V,N,Ti量が
適正な本発明鋼は、(Ti,V)Nを核としてパーライ
ト変態が進んだ結果、微細なパーライト組織が得られ、
良好な衝撃値、伸び値が得られた。また、本発明例A,
B、C,Dは熱処理により、Γoct 規格である25J/
cm2 を超える良好な衝撃値が得られた。
As shown in Table 2, the impact value and the elongation tend to decrease as the amount of C increases, but the steels of the present invention in which the amounts of V, N and Ti are appropriate are (Ti, V) N. As a result of pearlite transformation progressing as a nucleus, a fine pearlite structure is obtained,
Good impact and elongation values were obtained. Further, the present invention example A,
B, C, and D are heat treated, and are Γoct standard 25J /
Good impact values over cm 2 were obtained.

【0040】一方、比較例A1〜D1,A2は、本発明
例A〜Dに比較して衝撃値、伸び値が顕著に低下した。
その理由は次の通りである。比較例A1は、Vが添加さ
れていないため(Ti,V)Nが生成しなかった。比較
例B1は、Nが少ないため(Ti,V)Nの生成量が少
なかった。比較例C1は、組織は微細になったものの、
Tiが高すぎるため(Ti,V)Nが過剰に生成し、そ
の内の粗大なものが破壊起点となったことと、Pが高い
ことが影響して延靭性が低下した。比較例D1はVが高
すぎる例で、組織は微細化したにもかかわらず、変態完
了以後にVCが多量に析出し、析出強化の悪影響により
延靭性が劣化した。比較例A2は高温での在炉時間が長
くなったため、(Ti,V)Nが成長、粗大化したため
荷重が負荷された時に、それが破壊起点となり延靭性が
劣化した。
On the other hand, in Comparative Examples A1 to D1 and A2, the impact value and the elongation value were remarkably lowered as compared with Examples A to D of the present invention.
The reason is as follows. In Comparative Example A1, since V was not added, (Ti, V) N was not generated. In Comparative Example B1, since the amount of N was small, the amount of (Ti, V) N produced was small. Comparative Example C1 has a finer structure,
Since Ti was too high, (Ti, V) N was excessively generated, and a coarse one of them was a fracture starting point, and the fact that P was high affected ductility. Comparative Example D1 was an example in which V was too high, and although the structure was refined, a large amount of VC was precipitated after the completion of transformation, and the ductility was deteriorated due to the adverse effect of precipitation strengthening. In Comparative Example A2, since the in-furnace time at high temperature was long, (Ti, V) N grew and coarsened, and when a load was applied, it became a fracture starting point and deteriorated in ductility.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【発明の効果】本発明により、適正なサイズ、個数の
(Ti,V)Nを析出させることにより、変態後のパー
ライト組織が微細になり、かつ粗大な(Ti,V)Nが
生じて破壊起点となることを防止し、高い延靭性のパー
ライト系レールを得ることができる。
According to the present invention, by precipitating an appropriate size and number of (Ti, V) N, the pearlite structure after transformation becomes fine and coarse (Ti, V) N is generated to cause destruction. It is possible to prevent the starting point and obtain a pearlitic rail with high ductility.

フロントページの続き Fターム(参考) 4K042 AA04 BA02 CA02 CA05 CA06 CA08 CA09 CA10 CA12 CA13 DA06 DE01 Continued front page    F-term (reference) 4K042 AA04 BA02 CA02 CA05 CA06                       CA08 CA09 CA10 CA12 CA13                       DA06 DE01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.6〜1.2%、 Si:0.1〜1.2%、 Mn:0.1〜1.5%、 V :0.005〜0.070%、 N :0.005〜0.025%、 Ti:0.0005〜0.010%、 P :0.015%以下を含有し、少なくともレール頭
部が実質パーライト組織であり、かつレール頭部の任意
断面において、直径0.1〜5.0μmの(Ti,V)
Nが1mm2 中に2〜100個存在することを特徴とする
靭性および延性に優れたパーライト系レール。
1. By mass%, C: 0.6 to 1.2%, Si: 0.1 to 1.2%, Mn: 0.1 to 1.5%, V: 0.005 to 0. 070%, N: 0.005-0.025%, Ti: 0.0005-0.010%, P: 0.015% or less, at least the rail head has a substantially pearlite structure, and the rail head (Ti, V) with a diameter of 0.1-5.0 μm in any cross section
A pearlite rail with excellent toughness and ductility, characterized by the presence of 2 to 100 N in 1 mm 2 .
【請求項2】 鋼成分として、質量%でさらに、 Cr:0.1〜1.0%、 Mo:0.01〜0.50%、 Ni:0.1〜2.0%、 Nb:0.004〜0.05%、 Cu:0.1〜2.0%、 B :0.0001〜0.0015%、 Mg:0.0004〜0.0100%、 S :0.002〜0.020%、 Al:0.002〜0.050%の1種または2種以上
を含有することを特徴とする請求項1記載の靭性および
延性に優れたパーライト系レール。
2. As a steel component, in mass%, Cr: 0.1 to 1.0%, Mo: 0.01 to 0.50%, Ni: 0.1 to 2.0%, Nb: 0. 0.004 to 0.05%, Cu: 0.1 to 2.0%, B: 0.0001 to 0.0015%, Mg: 0.0004 to 0.0100%, S: 0.002 to 0.020. %, Al: 0.002 to 0.050% of one kind or two or more kinds thereof are contained, and the pearlite rail having excellent toughness and ductility according to claim 1.
【請求項3】 請求項1または2に記載の鋼片を再加熱
して圧延する際に、鋼材が1200℃以上となる加熱炉
内で、在炉時間を60分間以下とすることを特徴とする
靭性および延性に優れたパーライト系レールの製造方
法。
3. When the steel slab according to claim 1 or 2 is reheated and rolled, the in-furnace time is set to 60 minutes or less in a heating furnace where the steel material reaches 1200 ° C. or higher. A method for manufacturing a pearlite rail having excellent toughness and ductility.
【請求項4】 高強度パーライト系レールの製造方法で
あって、請求項1または2に記載の鋼片を、再加熱して
熱間圧延によりレールに形成した後、熱延まま、あるい
は熱延後の加熱によってオーステナイト域温度とし、前
記レールの冷却において、少なくとも頭部を700〜5
00℃間を1〜5℃/secで加速冷却することを特徴とす
る靭性および延性に優れたパーライト系レールの製造方
法。
4. A method for producing a high-strength pearlite rail, which comprises reheating the steel slab according to claim 1 or 2 to form a rail by hot rolling, and then hot rolling or hot rolling. After heating to an austenite temperature range, at least 700 to 5 parts of the head are cooled when the rail is cooled.
A method for producing a pearlite rail having excellent toughness and ductility, which comprises accelerating cooling at a temperature of 00 ° C at 1 to 5 ° C / sec.
【請求項5】 高強度パーライト系レールの製造方法で
あって、請求項3に記載の鋼片を熱間圧延によりレール
に形成した後、熱延まま、あるいは熱延後の加熱によっ
てオーステナイト域温度とし、前記レールの冷却におい
て、少なくとも頭部を700〜500℃間を1〜5℃/s
ecで加速冷却することを特徴とする靭性および延性に優
れたパーライト系レールの製造方法。
5. A method for producing a high-strength pearlite rail, wherein the steel slab according to claim 3 is formed into a rail by hot rolling, and then the austenite temperature is maintained by hot rolling or by heating after hot rolling. In cooling the rail, at least the head is 700 to 500 ° C and the temperature is 1 to 5 ° C / s.
A method for manufacturing a pearlite rail having excellent toughness and ductility, which is characterized by accelerated cooling with ec.
JP2001322219A 2001-10-19 2001-10-19 Pearlitic rail superior in toughness and ductility, and manufacturing method therefor Withdrawn JP2003129180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001322219A JP2003129180A (en) 2001-10-19 2001-10-19 Pearlitic rail superior in toughness and ductility, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001322219A JP2003129180A (en) 2001-10-19 2001-10-19 Pearlitic rail superior in toughness and ductility, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003129180A true JP2003129180A (en) 2003-05-08

Family

ID=19139299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001322219A Withdrawn JP2003129180A (en) 2001-10-19 2001-10-19 Pearlitic rail superior in toughness and ductility, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003129180A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001500A (en) * 2008-06-18 2010-01-07 Nippon Steel Corp Pearlite-base high-carbon steel rail excellent in ductility
WO2010150448A1 (en) * 2009-06-26 2010-12-29 新日本製鐵株式会社 Pearlite–based high-carbon steel rail having excellent ductility and process for production thereof
US20110253268A1 (en) * 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
EP2641988A1 (en) * 2010-11-18 2013-09-25 Nippon Steel & Sumitomo Metal Corporation Steel for wheel
CN104907123A (en) * 2015-05-29 2015-09-16 芜湖银海机械制造有限公司 Lining of conical crusher and casting process of lining
CN104907124A (en) * 2015-05-29 2015-09-16 芜湖银海机械制造有限公司 Tapered lining of conical crusher and casting process of tapered lining
CN104928601A (en) * 2015-05-27 2015-09-23 芜湖银海机械制造有限公司 High-manganese-steel bush for crusher and manufacturing method thereof
WO2016117689A1 (en) * 2015-01-23 2016-07-28 新日鐵住金株式会社 Rail
CN113621881A (en) * 2021-08-09 2021-11-09 攀钢集团攀枝花钢铁研究院有限公司 Method for improving low-temperature toughness of medium-carbon steel rail welded joint
US20220042128A1 (en) * 2018-12-20 2022-02-10 Arcelormittal Method of making a tee rail having a high strength base

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001500A (en) * 2008-06-18 2010-01-07 Nippon Steel Corp Pearlite-base high-carbon steel rail excellent in ductility
US8469284B2 (en) 2009-02-18 2013-06-25 Nippon Steel & Sumitomo Metal Corporation Pearlitic rail with excellent wear resistance and toughness
WO2010150448A1 (en) * 2009-06-26 2010-12-29 新日本製鐵株式会社 Pearlite–based high-carbon steel rail having excellent ductility and process for production thereof
JP4635115B1 (en) * 2009-06-26 2011-02-23 新日本製鐵株式会社 PERLITE HIGH CARBON STEEL RAIL HAVING EXCELLENT DUCTIVITY AND PROCESS FOR PRODUCING THE
KR101368514B1 (en) 2009-06-26 2014-02-28 신닛테츠스미킨 카부시키카이샤 Pearlite-based high-carbon steel rail having excellent ductility and process for production thereof
US8747576B2 (en) 2009-06-26 2014-06-10 Nippon Steel & Sumitomo Metal Corporation Pearlite-based high carbon steel rail having excellent ductility and process for production thereof
EP2447383B1 (en) 2009-06-26 2018-12-19 Nippon Steel & Sumitomo Metal Corporation Pearlite based high-carbon steel rail having excellent ductility and process for production thereof
US9157131B2 (en) * 2010-04-16 2015-10-13 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
US20110253268A1 (en) * 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
EP2641988A1 (en) * 2010-11-18 2013-09-25 Nippon Steel & Sumitomo Metal Corporation Steel for wheel
EP2641988A4 (en) * 2010-11-18 2014-09-03 Nippon Steel & Sumitomo Metal Corp Steel for wheel
CN107208217A (en) * 2015-01-23 2017-09-26 新日铁住金株式会社 Rail
WO2016117689A1 (en) * 2015-01-23 2016-07-28 新日鐵住金株式会社 Rail
JPWO2016117689A1 (en) * 2015-01-23 2017-05-25 新日鐵住金株式会社 rail
CN107208217B (en) * 2015-01-23 2019-01-01 新日铁住金株式会社 rail
US10494704B2 (en) 2015-01-23 2019-12-03 Nippon Steel Corporation Rail
CN104928601A (en) * 2015-05-27 2015-09-23 芜湖银海机械制造有限公司 High-manganese-steel bush for crusher and manufacturing method thereof
CN104907124A (en) * 2015-05-29 2015-09-16 芜湖银海机械制造有限公司 Tapered lining of conical crusher and casting process of tapered lining
CN104907123A (en) * 2015-05-29 2015-09-16 芜湖银海机械制造有限公司 Lining of conical crusher and casting process of lining
US20220042128A1 (en) * 2018-12-20 2022-02-10 Arcelormittal Method of making a tee rail having a high strength base
CN113621881A (en) * 2021-08-09 2021-11-09 攀钢集团攀枝花钢铁研究院有限公司 Method for improving low-temperature toughness of medium-carbon steel rail welded joint

Similar Documents

Publication Publication Date Title
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
US9023158B2 (en) Steel material superior in high temperature characteristics and toughness and method of production of same
JP6872616B2 (en) Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods
JP6451874B2 (en) High strength seamless steel pipe for oil well and method for producing the same
KR101999027B1 (en) Steel for pressure vessel having excellent resistance to hydrogen induced cracking and method of manufacturing the same
EP2143814A1 (en) Steel material having excellent high-temperature strength and toughness, and method for production thereof
JP2023506822A (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and method for producing the same
JP2003129180A (en) Pearlitic rail superior in toughness and ductility, and manufacturing method therefor
JP3764710B2 (en) Method for producing pearlitic rail with excellent toughness and ductility
JP3267772B2 (en) Manufacturing method of high strength, high ductility, high toughness rail
JP4571759B2 (en) Perlite rail and manufacturing method thereof
JP4220830B2 (en) Perlite rail excellent in toughness and ductility and manufacturing method thereof
JPH06279928A (en) High strength rail excellent in toughness and ductility and its production
JP4123597B2 (en) Manufacturing method of steel with excellent strength and toughness
JP2001003140A (en) High strength pearlitic rail excellent in toughness and ductility and its production
JP2003105499A (en) Pearlitic rail having excellent toughness and ductility, and production method therefor
JPH06136441A (en) Production of high strength and low yield ratio bar steel for reinforcing bar
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
JPH06279927A (en) High strength rail excellent in ductility and toughness and its production
KR20220089409A (en) Steel plate having excellent low temperature impact toughness of heat affeected zone and manufacturing mehtod for the same
JP3368557B2 (en) High strength rail with excellent ductility and toughness and its manufacturing method
KR100431848B1 (en) Method for manufacturing high carbon wire rod containing high silicon without low temperature structure
JP4331874B2 (en) Perlite rail and manufacturing method thereof
JP2000328190A (en) High strength pearlitic rail excellent in toughness and ductility and its production
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104