JP2003127155A - Method for degassing friction material in thermoforming process - Google Patents
Method for degassing friction material in thermoforming processInfo
- Publication number
- JP2003127155A JP2003127155A JP2001326416A JP2001326416A JP2003127155A JP 2003127155 A JP2003127155 A JP 2003127155A JP 2001326416 A JP2001326416 A JP 2001326416A JP 2001326416 A JP2001326416 A JP 2001326416A JP 2003127155 A JP2003127155 A JP 2003127155A
- Authority
- JP
- Japan
- Prior art keywords
- die
- friction material
- degassing
- mold
- thermoforming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Braking Arrangements (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、摩擦材を製造する
際の熱成形過程のガス抜き方法に関するものであり、特
に産業機械、鉄道車両、荷物車両、乗用車などに用いら
れる摩擦材の熱成形過程のガス抜き方法に関するもので
あり、より具体的には前記の用途に使用されるブレーキ
パッド、ブレーキライニング、クラッチフェーシング等
の熱成形過程のガス抜き方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing method in a thermoforming process for manufacturing a friction material, and more particularly to a thermoforming of a friction material used for industrial machines, railway vehicles, luggage vehicles, passenger cars and the like. The present invention relates to a degassing method in a process, and more specifically, to a degassing method in a thermoforming process such as a brake pad, a brake lining, and a clutch facing used for the above applications.
【0002】[0002]
【従来の技術】従来、自動車、鉄道車両、産業機械等の
主としてブレーキなどに用いられる摩擦材は、その配合
成分としては、一般に各種充填材、補強のための各種繊
維、研摩材、黒鉛、金属粉等の摩擦調整材と共に、これ
らの材料を結合するための結合材として各種樹脂が配合
されている。従来知られている摩擦材の製造方法の1例
であるディスクブレーキ用ブレーキパッドの製造工程に
おいては、板金プレスにより所定の形状に成形され、脱
脂処理及びプライマー処理が施され、そして接着剤が塗
布されたプレッシャープレートと、耐熱性有機繊維や無
機繊維、金属繊維等の繊維基材と、無機・有機充填材、
摩擦調整材及び結合材(フェノール樹脂等の熱硬化性樹
脂等)等の粉末原料とを配合し、攪拌により十分に均質
化した原材料を常温にて所定の圧力で成形(予備成形)
して作製した予備成形体とを、熱成形工程において所定
の温度及び圧力で熱成形して両部材を一体に固着し、ア
フタキュアを行い、最終的に仕上げ処理を施す工程から
なる。2. Description of the Related Art Conventionally, friction materials mainly used for brakes of automobiles, railway vehicles, industrial machines, etc., generally include various fillers, various fibers for reinforcement, abrasives, graphite, metal Various resins are blended with a friction adjusting material such as powder as a binding material for binding these materials. In the manufacturing process of a brake pad for a disc brake, which is one example of a conventionally known method for manufacturing a friction material, it is molded into a predetermined shape by a sheet metal press, subjected to degreasing treatment and primer treatment, and then coated with an adhesive. Pressure plate, heat-resistant organic fiber, inorganic fiber, fiber base material such as metal fiber, inorganic / organic filler,
Mixing powder materials such as friction modifiers and binders (thermosetting resins such as phenolic resins), and thoroughly homogenizing the raw materials by stirring and molding at room temperature at a predetermined pressure (preforming)
In the thermoforming step, the preformed body produced in this way is thermoformed at a predetermined temperature and pressure so that both members are integrally fixed, aftercured, and finally finished.
【0003】ところで、上記熱成形工程においては、図
8に示すように、上記プレッシャープレート(P/P)
1と摩擦材原料の予備成形体2とを、金属製の中型3、
押え型である上型4及び加圧型である下型(パンチ)5
の上、中及び下型で成形される空間に挿入充填し、前記
材料予備成形体2をP/P1と共に上型4と下型5で加
圧するものであるが、この際同時に上型4及び下型5に
設けた熱板7により加熱して、P/P1と合わせて予備
成形体2を加熱するように構成されている。なお、図8
では、P/P1が予備成形体2の上に配置されている
が、装置の形式によっては予備成形体2がP/P1の上
に配置される場合もあるし、また下型が押え型で、上型
が加圧型とする場合もある。In the thermoforming process, as shown in FIG. 8, the pressure plate (P / P) is used.
1 and the preform 2 of the friction material raw material, the metal middle mold 3,
Upper die 4 which is a pressing die and lower die (punch) 5 which is a pressure die
The above-mentioned material preform 2 is pressed by the upper die 4 and the lower die 5 together with the P / P 1 at the same time. The heating plate 7 provided on the lower die 5 is used to heat the preform 2 together with P / P1. Note that FIG.
In the above, P / P1 is arranged on the preform 2, but depending on the type of the apparatus, the preform 2 may be arranged on the P / P1, and the lower mold is a presser mold. The upper mold may be a pressure mold.
【0004】[0004]
【発明が解決しようとする課題】この摩擦材原料の予備
成形体2の熱成形過程では、摩擦材原料中の有機結合材
(熱硬化性樹脂)の熱硬化反応に伴い、ガスが発生す
る。そして、この発生したガスが熱成形された摩擦材内
部に閉じ込められると、プレス圧の除圧時に摩擦材内部
に閉じこめられた高いガス圧を有する発生ガスが一気に
開放され、ヒビやフクレを生じる原因となる。しかしな
がら、従来の図8に示す熱成形型では、特に熱伝導率に
配慮することなく、同質の材料で作製されているため、
中型3や下型5から熱が伝わりやすく、その結果、中型
3に接する摩擦材のP/P1に接する面と下型5に接す
る摩擦面とが速く硬化してしまうために、ガスが摩擦材
内部に閉じ込められ、上記のヒビ14やフクレを生じる
という問題点があった。In the thermoforming process of the preform 2 of the friction material raw material, gas is generated along with the thermosetting reaction of the organic binder (thermosetting resin) in the friction material raw material. Then, when the generated gas is confined inside the thermoformed friction material, the generated gas with a high gas pressure trapped inside the friction material is released at a dash during depressurization of the press pressure, causing cracks and blisters. Becomes However, in the conventional thermoforming die shown in FIG. 8, since it is made of the same material without paying particular attention to the thermal conductivity,
Heat is easily transferred from the middle mold 3 and the lower mold 5, and as a result, the surface of the friction material in contact with the middle mold 3 that contacts P / P1 and the friction surface that contacts the lower mold 5 are rapidly hardened, so that the gas is used as a friction material. There is a problem that it is trapped inside and causes the cracks 14 and blisters described above.
【0005】成形不良を防ぐには、内部に溜まるガスを
抜かなければならない。また、成形時間を短縮するには
高温で成形し、有機結合材の硬化反応を促進するのがよ
い。しかしながら、ガスが集中発生するため、成形不良
が多くなってしまう。上記問題を解決するために、これ
までもいくつかのガス抜き方法が提案されている。例え
ば、上型もしくは下型に多数の針を設けたものや、プレ
ッシャープレートに設けた貫通孔を経て摩擦材の厚さに
近い深さまで突起を突入させてガス抜き孔を形成する方
法が提案されている。しかしながら、これらの方法は、
ガスの溜まる部分から直接的にガス抜きする方法ではな
く、効果は不十分であった。In order to prevent defective molding, the gas accumulated inside must be discharged. Further, in order to shorten the molding time, it is preferable to mold at a high temperature to accelerate the curing reaction of the organic binder. However, since the gas is concentratedly generated, there are many defective moldings. In order to solve the above-mentioned problem, several degassing methods have been proposed so far. For example, a method in which a large number of needles are provided in the upper mold or the lower mold, or a method of forming a gas vent hole by penetrating a protrusion to a depth close to the thickness of the friction material through a through hole provided in the pressure plate is proposed. ing. However, these methods
The method was not a method of degassing directly from the portion where the gas was collected, and the effect was insufficient.
【0006】本発明は、このような従来の課題に鑑みて
なされたものであり、ヒビやフクレなどの成形不良の発
生を防止するガス抜き方法、及び品質の優れた摩擦材を
高温・短時間で得る摩擦材の熱成形方法を提供すること
を課題とする。The present invention has been made in view of the above-mentioned conventional problems, and a method of degassing for preventing the occurrence of molding defects such as cracks and blisters, and a friction material excellent in quality at high temperature for a short time. An object of the present invention is to provide a thermoforming method for a friction material obtained in 1.
【0007】[0007]
【課題を解決するための手段】本発明者らは、ヒビやフ
クレなどの成形不良を生じない熱成形用型及び成形方法
について種々検討を重ね、摩擦材の熱成形過程におけ
る、摩擦材原料中の結合材である熱硬化性樹脂の硬化反
応等により発生するガスの、ガス抜きが円滑に行われな
いことが、ヒビやフクレの主な発生原因であることを知
見した。そして、本発明者らは、上記の知見に基づいて
本発明を完成するに至った。[Means for Solving the Problems] The inventors of the present invention have made various studies on a thermoforming mold and a molding method that do not cause molding defects such as cracks and blisters, and have found that in the friction material raw material during the thermoforming process of the friction material. It was found that the gas generated by the curing reaction of the thermosetting resin, which is the binder, is not smoothly degassed, which is the main cause of cracks and blisters. Then, the present inventors have completed the present invention based on the above findings.
【0008】すなわち、本発明は、下記の構成により前
記の課題を解決した。
(1)押え型、中型及び加圧型からなる摩擦材の熱成形
用金型を用いて摩擦材原料の予備成形体を熱成形する摩
擦材の製造方法において、押え型と加圧型に温度差を設
け、熱成形時に予備成形体が最後に硬化する部分を押え
型か加圧型のいずれか一方に寄せるとともに、この最終
硬化部に対応する押え型または加圧型に前記最終硬化部
に突入し、かつ型の外部に通じるガス抜き路を持つ突起
を設けることによって前記最終硬化部からガス抜きでき
るようにしたことを特徴とする摩擦材の熱成形過程のガ
ス抜き方法。
(2)前記加圧型を押え型よりも高温として摩擦材原料
の予備成形体の最終硬化部を押え型側に寄せるととも
に、押え型に前記突起を形成してプレッシャープレート
のあり孔部を貫通して予備成形体の最終硬化部に突入さ
せるガス抜き孔を形成したことを特徴とする前記(1)
記載の成形過程のガス抜き方法。
(3)前記突起を摩擦材よりも熱伝導率が小さい材料で
作製したことを特徴とする前記(1)又は(2)記載の
熱成形過程のガス抜き方法。That is, the present invention has solved the above problems by the following constitution. (1) In a method of manufacturing a friction material in which a preform of a friction material raw material is thermoformed using a friction material thermoforming die including a pressing die, a medium die, and a pressure die, a temperature difference is generated between the pressing die and the pressure die. Provided, the pre-molded body at the time of thermoforming the final curing portion is brought closer to one of the pressing mold or the pressing mold, and the pressing mold or the pressing mold corresponding to this final curing part is rushed into the final curing part, and A degassing method in a thermoforming process of a friction material, characterized in that a degassing passage communicating with the outside of the mold is provided to allow degassing from the final hardened part. (2) The pressure die is heated to a temperature higher than that of the press die to bring the final cured portion of the preform of the friction material raw material to the press die side, and the protrusion is formed on the press die to penetrate the hole in the pressure plate. (1) is characterized in that a gas vent hole is formed so as to penetrate into the final cured portion of the preform.
The degassing method of the described molding process. (3) The degassing method in the thermoforming process according to (1) or (2), wherein the protrusion is made of a material having a thermal conductivity smaller than that of the friction material.
【0009】(4)前記押え型を加圧型よりも高温にす
るとともに、中型の一部を該中型の残りの部分よりも低
熱伝導率の素材で作製し、これにより予備成形体の最終
硬化部を、加熱型側でかつ中型の低熱伝導率の素材側に
寄せ、加圧型に前記最終硬化部に突入するガス抜き孔を
有する突起を設けてガス抜き路を形成したことを特徴と
する前記(1)〜(3)のいずれか1項記載の熱成形過
程のガス抜き方法。
(5)前記中型の一部を多孔質の素材で作製したことを
特徴とする前記(4)記載の熱成形過程のガス抜き方
法。
(6)前記突起を繊維強化プラスチックで作製したこと
を特徴とする前記(1)〜(5)のいずれか1項記載の
熱成形過程のガス抜き方法。(4) The pressing die is heated to a temperature higher than that of the pressing die, and a part of the middle die is made of a material having a lower thermal conductivity than the rest of the middle die, whereby the final cured part of the preform is obtained. Is closer to the material side of the heating die and the medium-sized material having low thermal conductivity, and the pressure die is provided with a projection having a gas vent hole that projects into the final curing portion, to form a gas vent passage. The degassing method in the thermoforming process according to any one of 1) to (3). (5) The degassing method in the thermoforming process according to (4), wherein a part of the middle die is made of a porous material. (6) The degassing method in the thermoforming process according to any one of (1) to (5), wherein the protrusion is made of fiber reinforced plastic.
【0010】すなわち、本発明の骨子は、熱成形される
予備成形体の最終硬化部の位置を制御してガスを集める
手段と、最終硬化部に集めたガスを抜く手段の両手段を
併せ持つ熱成形金型を用いて摩擦材の予備成形体を熱成
形することにある。That is, the skeleton of the present invention is a thermostat having both a means for collecting the gas by controlling the position of the final hardening portion of the preformed body to be thermoformed and a means for removing the gas collected in the final hardening portion. It is to thermoform a preform of the friction material using a forming die.
【0011】通常の熱成形過程では、摩擦材の温度分布
は図8に示すように外周が高く、内部が低い。通常、摩
擦材はプレッシャープレート(P/P)とよばれる鉄板
と一体に成形される。P/Pは成形型からの熱を吸収
し、摩擦材への熱伝導を遅らせる。そのため、最も低温
の部分は摩擦材の中心からやや上型側寄りになってい
る。最も低温の部分は、有機結合材が最後に硬化するた
めに空隙が多い。従って、ガスは「有機結合材が最後に
硬化する部分」(以下、「最終硬化部」という)に移動
して集まる。この状態でプレス圧力が除圧されるとガス
が膨張し、ヒビやフクレが発生する。通常の熱成形では
図8に示すような温度分布となるため、ヒビは摩擦材の
厚さ約2/3の部分に発生する。In the normal thermoforming process, the temperature distribution of the friction material is high at the outer periphery and low at the inner portion as shown in FIG. Usually, the friction material is integrally formed with an iron plate called a pressure plate (P / P). P / P absorbs heat from the mold and delays heat conduction to the friction material. Therefore, the lowest temperature part is slightly closer to the upper mold side from the center of the friction material. The coldest parts are voided because the organic binder is the last to cure. Therefore, the gas moves and collects in the “part where the organic binder is finally cured” (hereinafter, referred to as “final curing part”). When the press pressure is released in this state, the gas expands and cracks and blisters occur. In normal thermoforming, the temperature distribution is as shown in FIG. 8, so cracks occur in a portion of the friction material having a thickness of about ⅔.
【0012】すなわち、本発明は上記のヒビ発生防止手
段として以下に記す2つの手段を用いる。
1)最終硬化部の位置を制御してガスを集める手段。
2)最終硬化部に集めたガスを外部に抜く手段。That is, the present invention uses the following two means as the crack preventing means. 1) A means for collecting the gas by controlling the position of the final curing part. 2) A means for releasing the gas collected in the final curing section to the outside.
【0013】[0013]
【発明の実施の形態】本発明の摩擦材の熱成形過程のガ
ス抜き方法を、図面を参照して詳細に説明する。なお、
図8で示した構成要素と同一機能を有する構成要素は、
同一符号を用いて示す。以下に、上記した2手段のそれ
ぞれの手段について詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION A degassing method in the thermoforming process of a friction material according to the present invention will be described in detail with reference to the drawings. In addition,
A component having the same function as the component shown in FIG.
It shows using the same code. Each of the above-mentioned two means will be described in detail below.
【0014】1)最終硬化部の位置を制御してガスを集
める手段
成形型から摩擦材に与える熱量に差をつけて、ガスを集
めたい場所を最も低温にする。以下に具体的な例を挙
げ、図面により説明する。例−1:最終硬化部を押え型
(上型)4に寄せるには、加圧型(下型)5から熱量を
多く与えればよい(図1の場合)。
・下型5温度を上型4温度よりも高くする。
・下型5材質に上型4材質よりも熱伝導率の大きい材質
を用いる。
・上型4材質に下型5材質よりも熱伝導率の小さい材質
を用いる。
・上型材質に多孔質材料を用いて熱伝導を小さくする。
(下型側に寄せるには、上記とは逆にする)1) Means for Collecting Gas by Controlling Position of Final Hardening Section The amount of heat given from the mold to the friction material is made different so that the place where the gas is to be collected has the lowest temperature. A specific example will be given below and described with reference to the drawings. Example-1: In order to bring the final cured portion to the pressing die (upper die) 4, a large amount of heat may be applied from the pressure die (lower die) 5 (in the case of FIG. 1).・ The temperature of the lower die 5 is set higher than the temperature of the upper die 4. -Use a material having a higher thermal conductivity than the upper mold 4 material for the lower mold 5 material. -Use a material having a lower thermal conductivity than the material of the lower die 5 for the material of the upper die 4. -Use a porous material for the upper mold material to reduce heat conduction. (To move to the lower mold side, reverse the above)
【0015】例−2 最終硬化部を加圧型(下型)5側
の片側側面に寄せるには、下型5側に寄せる方法(例1
の逆の場合参照)に併せて以下の方法をとればよい(図
2参照)。
・ガスを集める側の反対側面(中型)に熱伝導率の大き
い材質を用いる。
・ガスを集める側の側面(中型)に熱伝導率の小さい材
質を用いる。
・ガスを集める側に多孔質材料を用いて熱伝導率を小さ
くする。Example-2 In order to bring the final cured portion to one side surface on the pressure die (lower die) 5 side, a method of bringing it to the lower die 5 side (Example 1)
(See the reverse case of step 1) and the following method (see FIG. 2). -Use a material with high thermal conductivity on the side opposite to the side that collects gas (medium size). -Use a material with low thermal conductivity for the side (medium size) on the gas collection side. -Use a porous material on the gas collecting side to reduce the thermal conductivity.
【0016】2)最終硬化部からガスを抜く手段(図3
及び4参照)
押え型(上型)4または加圧型(下型)5にガス抜き用
突起(以下、突起とする)8(図3(a)または(b)
参照)を設け、最終硬化部6からガスを抜く。突起8に
は、ガス抜き孔9やガス抜き溝10を設けてガスが抜け
るようにする。摩擦材2にスリットを設ける場合は、ス
リットに相当する部分の下型5に凸部12を設けてガス
を抜く(図4参照)。この場合、熱成形とともにスリッ
トが形成されるため、後工程を省略できる。2) Means for venting gas from the final curing part (see FIG. 3)
And 4) The pressing die (upper die) 4 or the pressurizing die (lower die) 5 is provided with a degassing projection (hereinafter referred to as a projection) 8 (FIG. 3 (a) or (b)).
(Refer to FIG. 3), and degas the final curing part 6. The projection 8 is provided with a gas vent hole 9 and a gas vent groove 10 to allow gas to escape. When the friction material 2 is provided with a slit, the convex portion 12 is provided on the lower mold 5 corresponding to the slit to release the gas (see FIG. 4). In this case, since the slit is formed together with the thermoforming, the post-process can be omitted.
【0017】ここで、摩擦材2中心に最終硬化部6を制
御すると、突起8や凸部12が長くなってしまう。突起
8や凸部12の長さを短くするには、最終硬化部6を寄
せる側に突起8や凸部12を設けるのがよい。
例えば、(図5及び6参照)
例−1:最終硬化部6を上型4側に寄せる場合は突起8
を上型4に設ける(図5参照)。
例−2:最終硬化部6を下型5側の片側側面に寄せる場
合、寄せた側の下型5に突起8を設ける(図6参照)。Here, if the final hardened portion 6 is controlled centering on the friction material 2, the projections 8 and the convex portions 12 become long. In order to shorten the length of the projection 8 or the convex portion 12, it is preferable to provide the projection 8 or the convex portion 12 on the side closer to the final cured portion 6. For example (see FIGS. 5 and 6) Example-1: Protrusion 8 when the final cured portion 6 is brought closer to the upper mold 4 side.
Is provided on the upper mold 4 (see FIG. 5). Example-2: When the final cured portion 6 is brought close to one side surface on the side of the lower mold 5, a protrusion 8 is provided on the lower mold 5 on the closer side (see FIG. 6).
【0018】ここで、突起8や凸部12の熱伝導率は、
摩擦材2と同等かそれ以下にしなければならない。なぜ
ならば、突起8や凸部12の熱伝導率が摩擦材2の熱伝
導率より高いと、突起8や凸部12周辺の有機結合材か
ら先に硬化する。突起8や凸部12周辺が緻密になりガ
ス抜きが妨げられる。突起8や凸部12の熱伝導率を摩
擦材2と同等かそれ以下にすると、突起8や凸部12周
辺の有機結合材の硬化が最後に起きる。すると、熱成形
過程で突起8周辺に空隙が確保でき、ガスを抜けやすく
できる。摩擦材2の熱伝導率を以下に記す。摩擦材2の
種類によって突起8の熱伝導率を調整する。
ノンアスベストス:1〜3W/mK
セミメタリック:6〜18W/mKHere, the thermal conductivity of the protrusions 8 and the protrusions 12 is
It must be equal to or less than the friction material 2. This is because when the thermal conductivity of the protrusions 8 and the protrusions 12 is higher than that of the friction material 2, the organic binder around the protrusions 8 and the protrusions 12 is cured first. The surroundings of the projections 8 and the convex portions 12 become dense and prevent gas venting. When the thermal conductivity of the protrusions 8 and the protrusions 12 is made equal to or less than that of the friction material 2, the organic binder around the protrusions 8 and the protrusions 12 is cured last. Then, a void can be secured around the protrusion 8 during the thermoforming process, and the gas can be easily released. The thermal conductivity of the friction material 2 is described below. The thermal conductivity of the protrusion 8 is adjusted depending on the type of the friction material 2. Non-asbestos: 1-3 W / mK Semi-metallic: 6-18 W / mK
【0019】[0019]
【実施例】以下に本発明の実施例を図面に基づいて説明
する。ただし、本発明はこの実施例のみに限定されるも
のではない。Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to this embodiment.
【0020】実施例1〜2、比較例1〜10
図7に示すように押え型(上型)に突起を設けてガスを
抜く構造の熱成形用型を作製した。(a)は、押え型の
平面図を示し、(b)は熱成形用型全体の縦断面図を示
す。この実施例の突起は、下記の材料からなる繊維強化
プラスチック(FRP)で作製した。
プラスチック:ポリイミド樹脂。
強化繊維:カーボンファイバー。
フィラー:硫酸バリウム、炭酸カルシウム、マグネシ
ア。
プラスチックに配合するフィラーや強化繊維の種類・量
を変えて熱伝導率の異なる突起を作製した。熱伝導率が
1W/mKの突起を実施例1に、5W/mKの突起を実
施例2に用いた。比較例1は、突起をセミメタリック摩
擦材(熱伝導率12W/mK)よりも熱伝導率の大きい
SUS304(熱伝導率:15W/mK)で作製した。
比較例2は突起のない従来の成形型を使用した。第1表
に示す割合で摩擦材原料を配合・攪拌して摩擦材攪拌物
を得た。Examples 1 and 2, Comparative Examples 1 to 10 As shown in FIG. 7, thermoforming dies having a structure in which a pressing die (upper die) was provided with protrusions to release gas were produced. (A) shows the top view of a pressing die, (b) shows the longitudinal cross-sectional view of the whole thermoforming die. The protrusions of this example were made of fiber reinforced plastic (FRP) made of the following materials. Plastic: Polyimide resin. Reinforcing fiber: Carbon fiber. Filler: barium sulfate, calcium carbonate, magnesia. Protrusions with different thermal conductivity were produced by changing the type and amount of filler and reinforcing fiber mixed in the plastic. A protrusion having a thermal conductivity of 1 W / mK was used in Example 1 and a protrusion having a thermal conductivity of 5 W / mK was used in Example 2. In Comparative Example 1, the protrusion was made of SUS304 (heat conductivity: 15 W / mK) having a higher heat conductivity than the semi-metallic friction material (heat conductivity 12 W / mK).
In Comparative Example 2, a conventional mold having no protrusion was used. Friction material raw materials were mixed and stirred in the proportions shown in Table 1 to obtain a friction material agitated product.
【0021】[0021]
【表1】 [Table 1]
【0022】摩擦材攪拌物を予備成形型に投入し、常温
で40MPaで加圧成形して縦100×横40×厚さ2
0mmの予備成形体を作製した。次に予備成形体を熱成
形型に投入して熱成形を行った。成形条件を以下に記す
3条件設定した。これらの成形条件と実施例1〜2及び
比較例1〜10との関係を併せて記載する。なお、
(1)及び(2)の比較例3〜10では、(3)の場合
と同様に突起の有無、突起の材質を変えて試験した。
(カッコ内はセミメタリック配合の成形時間)
(1)従来の成形条件:上型温度155℃、下型温度1
55℃、成形時間420秒(410秒)・・・・・比較
例7〜10
(2)高温・短時間の成形条件:上型温度175℃、下
型温度175℃、成形時間90秒(75秒)・・・比較
例3〜6
(3)高温・短時間の成形条件:上型温度175℃、下
型温度205℃、成形時間90秒(75秒)・・・実施
例1〜2、比較例1〜2
*(3)の条件は、最終硬化部の位置を上型側に制御す
るため、下型温度を上型温度よりも30℃高くした。The friction material agitated material is put into a preforming mold, and pressure-molded at a room temperature of 40 MPa to obtain 100 length × 40 width × thickness 2
A 0 mm preform was prepared. Next, the preform was put into a thermoforming die to perform thermoforming. The molding conditions were set as the following three conditions. The relationship between these molding conditions and Examples 1 and 2 and Comparative Examples 1 to 10 will be described together. In addition,
In Comparative Examples 3 to 10 of (1) and (2), the presence / absence of protrusions and the material of the protrusions were changed as in the case of (3).
(Figures in parentheses are molding time for semi-metallic compound) (1) Conventional molding conditions: upper mold temperature 155 ° C, lower mold temperature 1
55 ° C, molding time 420 seconds (410 seconds) ... Comparative Examples 7 to 10 (2) High temperature / short time molding conditions: upper mold temperature 175 ° C, lower mold temperature 175 ° C, molding time 90 seconds (75 Second) Comparative Examples 3 to 6 (3) High temperature / short time molding conditions: upper mold temperature 175 ° C., lower mold temperature 205 ° C., molding time 90 seconds (75 seconds) ・ ・ ・ Examples 1 and 2, In the conditions of Comparative Examples 1 to 2 * (3), the lower mold temperature was set to be 30 ° C. higher than the upper mold temperature in order to control the position of the final cured portion to the upper mold side.
【0023】熱成形終了後に外観検査と打音検査を行
い、成形不良率を比較した。検査結果を第2表に示す。After the thermoforming was completed, an appearance inspection and a tapping sound inspection were conducted to compare the defective molding rates. The test results are shown in Table 2.
【0024】[0024]
【表2】 [Table 2]
【0025】[0025]
【表3】 [Table 3]
【0026】高温・短時間成形では、突起を設けた成形
型の成形不良率が小さかった。なかでも突起の熱伝導率
が摩擦材よりも小さい場合には、成形不良率が小さかっ
た。さらに、加圧型(下型)温度を押え型(上型)温度
よりも30℃高くして最終硬化部の位置を制御すると、
成形不良を完全に防ぐことができた。本発明により、成
形時間を大幅に短縮して歩留り良く成形することが可能
になった。In high-temperature, short-time molding, the molding defect rate of the molding die provided with the protrusion was small. Especially, when the thermal conductivity of the protrusions was smaller than that of the friction material, the defective molding rate was small. Furthermore, when the temperature of the pressurizing mold (lower mold) is raised by 30 ° C. higher than the temperature of the pressing mold (upper mold) to control the position of the final curing part,
It was possible to completely prevent molding defects. According to the present invention, it becomes possible to significantly shorten the molding time and mold with a high yield.
【0027】[0027]
【発明の効果】本発明によれば、押え型と加圧型に温度
差を設けるなどの手段を講じた熱成形用型を使用して、
最終硬化部の位置を制御してそこへガスを集め、この最
終硬化部に集めたガスを抜くことができるようになっ
た。その結果、熱成形過程で発生する成形不良を防止し
て、製品の歩留りを向上できるとともに、高温・短時間
での成形が可能になり、製造コストを低減できた。According to the present invention, a thermoforming die is used which is provided with means such as providing a temperature difference between the pressing die and the pressure die.
It has become possible to control the position of the final hardened part and collect gas there, and to release the gas collected in this final hardened part. As a result, it is possible to prevent molding defects that occur during the thermoforming process, improve the product yield, and perform molding at high temperature and in a short time, thus reducing manufacturing costs.
【図1】本発明における最終硬化部を押え型側に寄せる
成形用型の断面説明図である。FIG. 1 is an explanatory cross-sectional view of a molding die that brings a final cured portion closer to a holding die side in the present invention.
【図2】(a)は、本発明における最終硬化部を加圧型
側の片側側面に寄せる成形用型の縦断面説明図であり、
(b)は、(a)の成形型の線X−X横断面説明図であ
る。FIG. 2 (a) is a vertical cross-sectional explanatory view of a molding die in which the final cured portion of the present invention is brought closer to one side surface on the pressure die side,
(B) is line XX cross section explanatory drawing of the shaping | molding die of (a).
【図3】本発明におけるガス抜き用突起の側面及び平面
説明図で、(a)はガス抜き孔を有する突起の説明図、
(b)はガス抜き溝を有する突起の説明図である。FIG. 3 is a side view and a plan view of a gas venting projection according to the present invention, in which (a) is an illustration of a projection having a gas venting hole;
(B) is explanatory drawing of the protrusion which has a gas vent groove.
【図4】本発明における摩擦材にスリットを設ける場合
のガス抜き用突部付き加圧型の説明図であり、(a)は
加圧型の平面図であり、(b)は加圧型の側面図であ
る。4A and 4B are explanatory views of a pressure die with a protrusion for degassing when a slit is provided in the friction material according to the present invention, FIG. 4A is a plan view of the pressure die, and FIG. 4B is a side view of the pressure die. Is.
【図5】本発明における最終硬化部を押え型側に寄せる
成形用型の断面説明図である。FIG. 5 is an explanatory cross-sectional view of a molding die that brings the final cured portion closer to the holding die side in the present invention.
【図6】本発明における最終硬化部を加圧型の片側側面
に寄せる成形用型の断面説明図である。FIG. 6 is a cross-sectional explanatory view of a molding die in which the final cured portion of the present invention is brought close to one side surface of the pressure die.
【図7】本発明の実施例に使用した成形用型を示すもの
で、(a)は平面図であり、(b)は断面説明図であ
る。FIG. 7 shows a molding die used in an example of the present invention, in which (a) is a plan view and (b) is a cross-sectional explanatory view.
【図8】従来の熱成形過程の摩擦材温度分布を説明する
成形用型の断面図である。FIG. 8 is a sectional view of a molding die for explaining a friction material temperature distribution in a conventional thermoforming process.
1 プレッシャープレート(P/P) 2 摩擦材原料の予備成形体 3 中型 3A 中型(熱伝導率小、多孔質) 3B 中型(熱伝導率大) 4 押え型(上型) 5 加圧型(下型) 6 最終硬化部(最低温部分) 7 熱板 8 突起 9 ガス抜き孔 10 ガス抜き溝 11 ガス抜き路 12 突部 13 あり孔 14 ヒビ 1 Pressure plate (P / P) 2 Preform of friction material 3 medium 3A Medium size (low thermal conductivity, porous) 3B Medium size (high thermal conductivity) 4 Presser type (upper type) 5 Pressurized type (lower type) 6 Final curing part (lowest temperature part) 7 hot plate 8 protrusions 9 Venting hole 10 Venting groove 11 Venting path 12 Projection 13 Dore hole 14 Crack
───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下 聡 埼玉県羽生市東5丁目4番71号 株式会社 曙ブレーキ中央技術研究所内 (72)発明者 栗原 生 埼玉県羽生市東5丁目4番71号 株式会社 曙ブレーキ中央技術研究所内 Fターム(参考) 3J058 BA61 FA01 FA11 FA21 FA35 GA63 GA65 GA92 GA93 4F202 AA37 AH81 AJ04 AJ10 AJ12 CA09 CB01 CK42 CP01 CP02 CP04 4F204 AA36 AA40 AB11 AB16 AB18 AB25 AE08 AH17 AJ04 AJ10 AJ12 FA01 FB01 FF01 FN01 FN12 FN16 FQ15 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Satoshi Kusaka Saitama Prefecture Hanyu City East 5-4-71 Co., Ltd. Akebono Brake Central Technology Research Institute (72) Inventor Kurihara Saitama Prefecture Hanyu City East 5-4-71 Co., Ltd. Akebono Brake Central Technology Research Institute F term (reference) 3J058 BA61 FA01 FA11 FA21 FA35 GA63 GA65 GA92 GA93 4F202 AA37 AH81 AJ04 AJ10 AJ12 CA09 CB01 CK42 CP01 CP02 CP04 4F204 AA36 AA40 AB11 AB16 AB18 AB25 AE08 AH17 AJ04 AJ10 AJ12 FA01 FB01 FF01 FN01 FN12 FN16 FQ15
Claims (6)
の熱成形用金型を用いて摩擦材原料の予備成形体を熱成
形する摩擦材の製造方法において、押え型と加圧型に温
度差を設け、熱成形時に予備成形体が最後に硬化する部
分を押え型か加圧型のいずれか一方に寄せるとともに、
この最終硬化部に対応する押え型または加圧型に前記最
終硬化部に突入し、かつ型の外部に通じるガス抜き路を
持つ突起を設けることによって前記最終硬化部からガス
抜きできるようにしたことを特徴とする摩擦材の熱成形
過程のガス抜き方法。1. A method for producing a friction material in which a preform of a friction material raw material is thermoformed using a die for thermoforming a friction material, which comprises a holding die, a medium die and a pressure die, and a temperature is applied to the holding die and the pressure die. A difference is provided, and the part where the preform is finally cured during thermoforming is brought closer to either the pressing mold or the pressing mold,
It is possible to vent gas from the final curing section by providing a pressing die or a pressurizing die corresponding to the final curing section with a projection having a gas vent passage leading to the outside of the die. A method of degassing during the thermoforming process of a friction material.
擦材原料の予備成形体の最終硬化部を押え型側に寄せる
とともに、押え型に前記突起を形成してプレッシャープ
レートのあり孔部を貫通して予備成形体の最終硬化部に
突入させるガス抜き孔を形成したことを特徴とする請求
項1記載の摩擦材の熱成形過程のガス抜き方法。2. The pressure die is set to a temperature higher than that of the pressing die to bring the final cured portion of the preform of the friction material raw material toward the pressing die side, and the projection is formed on the pressing die to form the hole portion of the pressure plate. The degassing method in the thermoforming process of the friction material according to claim 1, wherein a degassing hole is formed so as to penetrate therethrough and to enter the final cured portion of the preformed body.
い材料で作製したことを特徴とする請求項1又は請求項
2記載の摩擦材の熱成形過程のガス抜き方法。3. The degassing method in the thermoforming process of the friction material according to claim 1, wherein the protrusion is made of a material having a thermal conductivity smaller than that of the friction material.
ともに、中型の一部を該中型の残りの部分よりも低熱伝
導率の素材で作製し、これにより予備成形体の最終硬化
部を、加圧型側でかつ中型の低熱伝導率の素材側に寄
せ、加圧型に前記最終硬化部に突入するガス抜き孔を有
する突起を設けてガス抜き路を形成したことを特徴とす
る請求項1〜3のいずれか1項記載の摩擦材の熱成形過
程のガス抜き方法。4. The pressing die is heated to a temperature higher than that of the pressing die, and a part of the middle die is made of a material having a lower thermal conductivity than the rest of the middle die, whereby a final cured portion of the preform is formed. 2. The degassing path is formed by providing a protrusion having a degassing hole that projects toward the final hardening portion on the pressurizing die side and toward the material side having a low thermal conductivity of the medium die. 4. A degassing method in the thermoforming process of the friction material according to claim 3.
たことを特徴とする請求項4記載の摩擦材の熱成形過程
のガス抜き方法。5. The degassing method in the thermoforming process of the friction material according to claim 4, wherein a part of the middle die is made of a porous material.
したことを特徴とする請求項1〜5のいずれか1項記載
の摩擦材の熱成形過程のガス抜き方法。6. The degassing method in the thermoforming process of the friction material according to claim 1, wherein the protrusion is made of fiber reinforced plastic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001326416A JP2003127155A (en) | 2001-10-24 | 2001-10-24 | Method for degassing friction material in thermoforming process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001326416A JP2003127155A (en) | 2001-10-24 | 2001-10-24 | Method for degassing friction material in thermoforming process |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003127155A true JP2003127155A (en) | 2003-05-08 |
Family
ID=19142802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001326416A Pending JP2003127155A (en) | 2001-10-24 | 2001-10-24 | Method for degassing friction material in thermoforming process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003127155A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056959A (en) * | 2005-08-23 | 2007-03-08 | Nisshinbo Ind Inc | Method for producing friction member |
JP2007071320A (en) * | 2005-09-08 | 2007-03-22 | Nisshinbo Ind Inc | Frictional member manufacturing method |
JP2009126003A (en) * | 2007-11-21 | 2009-06-11 | Bridgestone Corp | Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support |
JP2010249154A (en) * | 2009-04-10 | 2010-11-04 | Bridgestone Corp | Manufacturing method of base isolation plug for base isolation device and manufacturing device of the same |
WO2011078269A1 (en) | 2009-12-22 | 2011-06-30 | 曙ブレーキ工業株式会社 | Friction material and method for producing friction material |
-
2001
- 2001-10-24 JP JP2001326416A patent/JP2003127155A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007056959A (en) * | 2005-08-23 | 2007-03-08 | Nisshinbo Ind Inc | Method for producing friction member |
JP2007071320A (en) * | 2005-09-08 | 2007-03-22 | Nisshinbo Ind Inc | Frictional member manufacturing method |
JP2009126003A (en) * | 2007-11-21 | 2009-06-11 | Bridgestone Corp | Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support |
JP2010249154A (en) * | 2009-04-10 | 2010-11-04 | Bridgestone Corp | Manufacturing method of base isolation plug for base isolation device and manufacturing device of the same |
WO2011078269A1 (en) | 2009-12-22 | 2011-06-30 | 曙ブレーキ工業株式会社 | Friction material and method for producing friction material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003127155A (en) | Method for degassing friction material in thermoforming process | |
KR100776485B1 (en) | Manufacturing method for friction material | |
US20060131774A1 (en) | Method and device for the production of brake linings or clutch linings made of pressing materials that are bonded by means of a bonding agent | |
JP2005212485A (en) | Air-permeable mold for manufacturing composite material and molding method | |
JP2003145568A (en) | Degassing method in process for thermoforming friction material | |
US3505446A (en) | Friction elements | |
JP2007056959A (en) | Method for producing friction member | |
JP2003127161A (en) | Mold for thermoforming of friction material and method for molding friction material | |
JP2003211474A (en) | Mold for thermally molding friction material and method for manufacturing friction material using mold | |
JP2003025356A (en) | Thermoforming mold and method for manufacturing friction material | |
JP2904244B2 (en) | Method of manufacturing friction pad for disc brake | |
CN102472329A (en) | Method for producing a friction lining | |
JP5154485B2 (en) | Method for producing sintered alloy brake | |
JP5393435B2 (en) | Disc brake pad | |
JP3224324B2 (en) | Thermoforming method and thermoforming mold for friction material | |
JPH11322960A (en) | Friction material | |
JP4685526B2 (en) | Friction material thermoforming method and thermoforming mold | |
JP2003145565A (en) | Method for producing friction material | |
JP2003001659A (en) | Friction material manufacturing method and thermoforming mold therefor | |
JP3391120B2 (en) | Manufacturing method of disc brake pad | |
JP3141598B2 (en) | Method of manufacturing friction pad for disc brake | |
JPH08174649A (en) | Manufacture of vehicular glass fiver product | |
JPS5891935A (en) | Manufacture of brake plastic material | |
JPH11254473A (en) | Manufacture of frictional material | |
KR100809803B1 (en) | Manufacturing method of friction material |