JP2003116870A - Ultrasonic hand piece and ultrasonic horn used for this - Google Patents
Ultrasonic hand piece and ultrasonic horn used for thisInfo
- Publication number
- JP2003116870A JP2003116870A JP2002307872A JP2002307872A JP2003116870A JP 2003116870 A JP2003116870 A JP 2003116870A JP 2002307872 A JP2002307872 A JP 2002307872A JP 2002307872 A JP2002307872 A JP 2002307872A JP 2003116870 A JP2003116870 A JP 2003116870A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- bone
- main body
- horn
- hook
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320073—Working tips with special features, e.g. extending parts probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320072—Working tips with special features, e.g. extending parts
- A61B2017/320074—Working tips with special features, e.g. extending parts blade
- A61B2017/320075—Working tips with special features, e.g. extending parts blade single edge blade, e.g. for cutting
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本願発明は、生体手術におけ
る骨の切削に用いる超音波ハンドピ−スとこれに使用す
る超音波ホ−ンに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic handpiece used for cutting bones in biological surgery and an ultrasonic horn used for the same.
【0002】[0002]
【従来の技術】医療関係では、従来より外科分野におけ
る各種手術具の一つとして超音波ハンドピ−スが多く使
用されている。図9は、このような超音波ハンドピ−ス
のうち、特に骨の切削に用いられる超音波ハンドピ−ス
Aを示す図である。図において、1は、磁歪タイプ、電
歪タイプ等の振動子を具え所定周波数の超音波を出力す
る超音波振動機構を収納する外筒部、2は外筒部の一端
開口部に嵌挿されて前記超音波振動機構から伝達される
振動によりその先端部で骨等の硬組織3を切削するホ−
ン、1aはイリゲ−ション液、切削片等を吸引するため
のチュ−ブの継ぎ手、1bは振動による先端部の発熱、
骨の切削時に発生する摩擦熱を冷却するイリゲ−ション
液を注入するためのチュ−ブの継ぎ手、1cは高周波電
気エネルギを前記超音波振動機構に送給するためのケ−
ブルである。超音波振動機構から伝達される振動により
ホ−ン2はその軸方向に所定の周波数で振動し、骨等の
硬組織3に当接する先端で所要箇所の切削を行う。2. Description of the Related Art In the medical field, ultrasonic handpieces have been widely used as one of various surgical instruments in the field of surgery. FIG. 9 is a view showing an ultrasonic hand piece A used particularly for cutting bone among such ultrasonic hand pieces. In the figure, reference numeral 1 is an outer cylinder portion that houses an ultrasonic vibration mechanism that includes a magnetostrictive type or electrostrictive type vibrator and outputs an ultrasonic wave of a predetermined frequency, and 2 is fitted and inserted into one end opening of the outer cylinder portion. By cutting the hard tissue 3 such as bone at its tip by the vibration transmitted from the ultrasonic vibration mechanism.
1a is a tube joint for sucking the irrigation liquid, cutting pieces, etc., 1b is heat generated at the tip portion due to vibration,
A tube joint 1c for injecting an irrigation liquid that cools frictional heat generated at the time of cutting a bone, and 1c is a case for supplying high-frequency electric energy to the ultrasonic vibration mechanism.
Bull. Due to the vibration transmitted from the ultrasonic vibration mechanism, the horn 2 vibrates at a predetermined frequency in the axial direction, and the tip is brought into contact with the hard tissue 3 such as bone to cut a required portion.
【0003】図10は、前記超音波ハンドピ−スAのホ
−ンによる骨等の硬組織の切削動作を示す図である。
ホ−ン2の先端にはフック状のメス部2aが形成されて
いて、術者は矢符Cに示す視野方向から超音波ハンドピ
−スAを操作して、ホ−ン2を矢符B方向に移動させつ
つ、矢符A方向に往復動するメス部2a先端で骨等の硬
組織3の所要部位の切削を実行するが、この切削の機序
を分析すると、図11に示すようにメス部2a先端から
の振動を伝達して先端に対向する骨等の硬組織HのP部
を微細に破砕し、次いで微細に破砕された部分をメス部
2a先端で掻き取り動作を順次なすことにより切削がな
されている。FIG. 10 is a diagram showing a cutting operation of a hard tissue such as a bone by the horn of the ultrasonic hand piece A.
A hook-shaped female portion 2a is formed at the tip of the horn 2, and the operator operates the ultrasonic handpiece A from the view direction indicated by the arrow C to move the horn 2 to the arrow B. While moving in the direction, the cutting of the required portion of the hard tissue 3 such as bone is performed by the tip of the female portion 2a that reciprocates in the direction of arrow A. When the mechanism of this cutting is analyzed, as shown in FIG. Vibration is transmitted from the tip of the female portion 2a to finely crush the P portion of the hard tissue H such as bone facing the distal end, and then the finely crushed portion is sequentially scraped by the distal end of the female portion 2a. Has been cut by.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、メス部
2aの先端は200μm のストロ−クで、通常25,0
00サイクル/秒で微細に振動しており、このため先端
の速度は最大で50Km/hに達する。したがって、尖
鋭に形成された先端の当接部分において応力が集中し、
メス部2aの先端は内部に深く侵入してしまうケ−スが
頻発する。このように先端が組織内部に深く食い込む
と、前記矢符B方向に削る際に、一度に大きな量を削る
ことになり、大きな超音波振動エネルギ−を要するばか
りか、術者によるメス部の操作にも大きな力を必要とす
る。 また、メス部先端が骨に深く刺さりやすいことか
ら、切削量を微妙に制御することが難かしいという不都
合も生じてくる。さらに、上記の従来技術にあっては、
メス部がホ−ン本体に対して直角に突出形成されている
から、図8に示すように、操作時におけるホ−ンと骨H
表面との位置関係はほぼ平行とならざるを得ず、術者は
前記矢符C方向に示される極めて狭い視野での操作を余
儀なくされていた。さらに、上記の従来技術にあって
は、骨などの硬組織を切削する場合は、切削部位にイリ
ゲーション液等を放水して切削する骨と振動しているホ
ーンとの間で発生する摩擦熱を冷却するようにしてい
る。 しかしながら、切削箇所が凹部、特に深凹部のよ
うな場合、送水されたイリゲーション液等が凹部に溜ま
り、水分のたまっている部位にメス部が触れると振動に
より水分が霧化するため、術者の視界が妨げられるとい
う不都合があった。 また、骨の切削とその周りにでき
た腫瘍の破砕吸引を交互に実行する場合、従来は骨切削
用のハンドピ−スと腫瘍破砕吸引用のハンドピ−スとを
用意してこれらを使い分ける必要があった。However, the tip of the female portion 2a has a stroke of 200 .mu.m and is usually 25,0.
It vibrates minutely at 00 cycles / second, and the speed of the tip reaches 50 km / h at the maximum. Therefore, stress concentrates at the abutting portion of the sharp tip,
The tip of the female portion 2a frequently has a case deeply penetrating inside. If the tip bites deeply into the tissue as described above, a large amount is cut at one time when cutting in the direction of the arrow B, and not only a large amount of ultrasonic vibration energy is required, but also the operation of the scalpel part by the operator. It also requires great power. In addition, since the tip of the knife portion is likely to be deeply pierced into the bone, it is difficult to finely control the cutting amount. Furthermore, in the above conventional technology,
Since the female part is formed so as to project at a right angle to the horn body, as shown in FIG.
The positional relationship with the surface was inevitably parallel, and the operator was forced to operate in the extremely narrow visual field shown in the direction of the arrow C. Further, in the above-mentioned conventional technique, when cutting hard tissue such as bone, the frictional heat generated between the oscillating horn and the bone to be cut by spraying an irrigation liquid or the like on the cutting site is used. I try to cool. However, if the cutting location is a recess, especially a deep recess, the irrigation liquid that has been sent will accumulate in the recess, and if the scalpel touches the area where water is accumulated, the water will be atomized due to vibration, so There was an inconvenience that it was disturbed. Further, when alternately performing bone cutting and crushing suction of a tumor formed around it, conventionally it is necessary to prepare a hand piece for bone cutting and a hand piece for crushing tumor and to use them separately. there were.
【0005】[0005]
【課題を解決するための手段】本願発明は、所定周波数
の縦超音波振動、ねじれ超音波振動、または縦、ねじれ
の両者により合成された超音波振動を出力する超音波振
動機構と、この超音波振動機構を収納する外筒部と、外
筒部の一端に取り付けられて前記超音波振動機構から伝
達される振動により骨等の硬組織を切削するホ−ンと、
を具えた超音波ハンドピ−スにおいて、前記ホ−ンは本
体部と、この本体部の先端に形成され骨等の硬組織を切
削するメス部とからなり、該メス部の端部には、骨等の
硬組織の対象部位に対する応力集中を排して過大な穿刺
を防止するとともに振動を伝達して微細破砕層を形成す
るため少なくとも1以上の面部からなる作業部と、この
作業部により微細に破砕された骨組織を掻き取るための
エッジ部とを形成するとともに、前記ホーン本体部には
縦貫通する吸引路を設け、その一端はメス部近傍に形成
された1以上の開口部に連結され、他端は吸引機構に連
結することにより、上記従来の課題を解決しようとする
ものである。SUMMARY OF THE INVENTION The present invention provides an ultrasonic vibration mechanism for outputting longitudinal ultrasonic vibration of a predetermined frequency, torsional ultrasonic vibration, or ultrasonic vibration combined by both longitudinal and torsional vibrations, and an ultrasonic vibration mechanism of this ultrasonic vibration mechanism. An outer cylinder portion that houses the sonic vibration mechanism, and a horn that is attached to one end of the outer cylinder portion and that cuts hard tissue such as bone by vibration transmitted from the ultrasonic vibration mechanism,
In an ultrasonic handpiece equipped with the horn, the horn comprises a main body portion and a female portion formed at the tip of the main body portion for cutting hard tissue such as bone, and at the end portion of the female portion, A work part composed of at least one surface part for eliminating stress concentration on a target site of hard tissue such as bone to prevent excessive puncture and transmitting vibration to form a fine crush layer, and a fine work piece by this work part. An edge portion for scraping the crushed bone tissue is formed on the horn body, and a suction passage vertically passing through the horn body portion is provided, and one end thereof is connected to one or more openings formed in the vicinity of the female portion. The other end is to be connected to a suction mechanism to solve the above conventional problems.
【0006】上記構成において、前記メス部は、本体部
の先端において本体部側壁から突出するように鈎状に形
成することがある。In the above structure, the female portion may be formed in a hook shape so as to project from the side wall of the main body portion at the tip of the main body portion.
【0007】また、上記構成において、本体部に対する
鈎状メス部の開度は、鈎状メス部の内側面と本体部側壁
とのなす角が直角より大で2直角より小となる範囲に設
定して被切削部と本体部との間に術者の視野空間を確保
できるようにすることがある。Further, in the above structure, the opening degree of the hook-shaped knife portion with respect to the main body portion is set within a range in which the angle formed by the inner side surface of the hook-shaped knife portion and the side wall of the main body portion is larger than a right angle and smaller than two right angles. In some cases, the operator's visual field space can be secured between the part to be cut and the main body.
【0008】さらに、上記超音波ハンドピ−スにおい
て、鈎状メス部先端の作業部には骨等の硬組織との接触
において滑動を防止するための係合部を形成することが
ある。Further, in the above ultrasonic handpiece, an engaging portion may be formed on the working portion at the tip of the hook-shaped female portion to prevent sliding when contacting hard tissue such as bone.
【0009】また、上記において、鈎状メス部の断面に
おける外郭部は曲線形状、すなわち、鈎状メス部は例え
ばその断面においてほぼ円弧状となし、本体部とメス部
との間に切削された骨組織の誘出部を形成し、切削動作
を容易になすることがある。Further, in the above description, the outer peripheral portion in the cross section of the hook-shaped knife portion has a curved shape, that is, the hook-shaped knife portion has, for example, a substantially arc shape in the cross section, and is cut between the main body portion and the knife portion. It may form a guide for bone tissue to facilitate the cutting operation.
【0010】さらに、上記いずれかの超音波ハンドピ−
スにおいて、吸引路の一端はメス部近傍に形成された1
以上の開口部に連結され、他端はスイッチ機構を介して
吸引機構および送水機構に連結され、前記スイッチ機構
の操作により吸引又は送水のいずれかを選択的にできる
ように構成することがある。Further, any one of the above-mentioned ultrasonic handpieces
1), one end of the suction passage is formed near the female portion.
In some cases, the other end is connected to the opening and the other end is connected to the suction mechanism and the water supply mechanism via the switch mechanism so that either suction or water supply can be selectively performed by operating the switch mechanism.
【0011】本願発明は、また、超音波振動源から伝達
される振動により、骨等の硬組織の切削をなすための超
音波ホ−ンを、本体部と、この本体部の先端に形成され
骨等の硬組織を切削するメス部とからなり、該メス部の
端部には、骨等の硬組織の対象部位に対する応力集中を
排して過大な穿刺を防止するとともに振動を伝達して微
細破砕層を形成するため少なくとも1以上の面部からな
る作業部と、この作業部により微細に破砕された骨組織
を掻き取るためのエッジ部と、前記ホーン本体部には縦
貫通する吸引路とを設け、前記吸引路の一端はメス部近
傍に形成された1以上の開口部に連結される構成となす
ことにより上記従来の課題を解決しようとするものであ
る。According to the present invention, an ultrasonic horn for cutting hard tissue such as bone by the vibration transmitted from the ultrasonic vibration source is formed on the main body and the tip of the main body. It consists of a scalpel that cuts hard tissue such as bone, and the end of the scalpel eliminates stress concentration on the target site of hard tissue such as bone to prevent excessive puncture and transmit vibration. A working portion including at least one surface portion for forming a finely crushed layer, an edge portion for scraping off bone tissue finely crushed by the working portion, and a suction passage extending vertically through the horn body. In order to solve the above-mentioned conventional problems, a structure is provided in which one end of the suction passage is connected to one or more openings formed in the vicinity of the female portion.
【0012】前記超音波ホ−ンにおいて、前記メス部
は、本体部の先端において本体部側壁から突出するよう
に鈎状に形成することがある。In the ultrasonic horn, the female portion may be formed in a hook shape so as to project from the side wall of the main body portion at the tip of the main body portion.
【0013】また、上記超音波ホ−ンにおいて、本体部
に対する鈎状メス部の開度は、鈎状メス部の内側面と本
体部側壁とのなす角が直角より大で2直角より小となる
範囲に設定して被切削部と本体部との間に術者の視野空
間を確保できるようになすことがある。Further, in the above ultrasonic horn, the opening degree of the hook-shaped knife portion with respect to the main body portion is such that the angle formed between the inner side surface of the hook-shaped knife portion and the side wall of the main body portion is larger than a right angle and smaller than two right angles. It may be set to a certain range so that the operator's visual field space can be secured between the part to be cut and the main body.
【0014】さらに、上記超音波ホ−ンにおいて、鈎状
メス部先端の作業部には骨等の硬組織との接触において
滑動を防止するための係合部を形成することがある。Further, in the above ultrasonic horn, the working portion at the tip of the hook-shaped female portion may be formed with an engaging portion for preventing sliding when contacting with hard tissue such as bone.
【0015】さらにまた、上記超音波ホ−ンにおいて、
鈎状メス部の断面における外郭部は曲線形状、すなわち
鈎状メス部は例えばその断面においてほぼ円弧状に形成
し、本体部とメス部との間に切削された骨組織の誘出部
を形成することがある。Furthermore, in the above ultrasonic horn,
The outer peripheral portion in the cross section of the hook-shaped knife portion is curved, that is, the hook-shaped knife portion is formed, for example, in a substantially arc shape in the cross section, and forms a guide portion for the cut bone tissue between the main body portion and the knife portion. I have something to do.
【0016】[0016]
【発明の実施形態】以下、本願発明の実施形態を説明す
る。なお、以下の各実施形態で説明する超音波ホ−ン
は、図4に示す超音波ハンドピ−スAの構成部材である
が、ホ−ン部材を除いた他の構成は全く同一であるため
重複説明は省略する。図1は、本願発明の第1実施形態
に係る超音波ホ−ンの一部切欠斜視図であり、ホ−ン2
1は本体部22と、この本体部22の先端に形成され骨
等の硬組織を切削するメス部23とからなり、該メス部
23の先端には、作業部23aが形成されている。 こ
の作業部23aは、骨等の硬組織への接触により振動を
伝達して微細破砕層を形成するもので、骨等の硬組織の
対象部位に対する応力を拡散してメス部23が骨等の硬
組織の組織内に必要以上に刺さるのを防止するために平
坦面で構成されている。DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below. The ultrasonic horn described in each of the following embodiments is a constituent member of the ultrasonic handpiece A shown in FIG. 4, but the other structure except the horn member is exactly the same. A duplicate description will be omitted. FIG. 1 is a partially cutaway perspective view of an ultrasonic horn according to a first embodiment of the present invention.
Reference numeral 1 denotes a body portion 22 and a knife portion 23 formed at the tip of the body portion 22 for cutting hard tissue such as bone, and a working portion 23a is formed at the tip of the knife portion 23. The working portion 23a transmits vibrations by contact with hard tissue such as bone to form a finely crushed layer. The working portion 23a diffuses stress to a target portion of hard tissue such as bone and the female portion 23 causes It is composed of a flat surface to prevent excessive sticking into the hard tissue.
【0017】そして、平坦面で構成されたこの作業部2
3aの周縁には、エッジ部30が形成されていて、作業
部23aの振動伝達によって微細に破砕された骨組織を
掻き取り所定の切削をなすようになっている。また、作
業部23aには、イリゲ−ション液とともに切削された
骨組織変片等を吸引排出するための孔部(開口部)32
が形成されている。 この孔部(開口部)32は、前記
本体部22を縦貫通する吸引路(不図示)を介して外部
の吸引機構に連通している。 該実施形態では、作業部
23aは円形となっているが、この形状に限定されるこ
となく4角、6角、8角等の多角形状でもよい。Then, the working unit 2 having a flat surface.
An edge portion 30 is formed on the peripheral edge of 3a, and scrapes finely crushed bone tissue by vibration transmission of the working portion 23a to perform a predetermined cutting. Further, the working portion 23a has a hole portion (opening portion) 32 for sucking and discharging the cut bone tissue fragment and the like together with the irrigation liquid.
Are formed. The hole portion (opening portion) 32 communicates with an external suction mechanism via a suction passage (not shown) that vertically penetrates the main body portion 22. In the embodiment, the working portion 23a has a circular shape, but is not limited to this shape, and may have a polygonal shape such as a square, a hexagon, and an octagon.
【0018】さらに、この実施形態において、作業部2
3aは一つの平坦面で構成されているが、この作業部2
3aは組織への接触時に応力が点または線に集中するの
を防止する手段として面部を有すればよいから、曲面と
なしてもよく、所望の多面構成としても良い。Further, in this embodiment, the working unit 2
3a is composed of one flat surface.
Since 3a may have a surface portion as a means for preventing stress from concentrating on a point or a line when contacting a tissue, it may be a curved surface or may have a desired multi-sided structure.
【0019】図2は、本願発明の第2実施形態に係る超
音波ホ−ンの構成を示す図であり、(a)は一部切欠斜
視図、(b)、(c)(d)、(d)はその断面図であ
る。図において、21は超音波ホ−ンであり、所定周波
数の超音波を出力する超音波振動機構と、この超音波振
動機構を収納する外筒部等を具えた超音波ハンドピ−ス
の外筒部の開口端に先端部を突出して装着されて前記超
音波振動機構から伝達される振動により骨等の硬組織を
切削するようになっている。この超音波ホ−ン21は、
本体部22と、この本体部22の先端において本体部側
壁から突出するように形成され生体組織に接触する鈎状
メス部23とからなり、該鈎状メス部23の先端には、
骨等の硬組織の対象部位に対する応力集中を排して過大
な穿刺を防止するとともに振動を伝達して微細破砕層を
形成するための作業部23aが形成され、平坦面で構成
されるこの作業部23aの周縁には、エッジ部30が形
成されていて、作業部23aの振動伝達によって形成さ
れた微細破砕層を掻き取るようにして所定の切削をなす
ようになっている。FIG. 2 is a view showing the structure of an ultrasonic horn according to the second embodiment of the present invention, in which (a) is a partially cutaway perspective view, (b), (c) (d), (D) is the sectional view. In the figure, reference numeral 21 denotes an ultrasonic horn, which is an outer cylinder of an ultrasonic handpiece including an ultrasonic vibration mechanism for outputting an ultrasonic wave of a predetermined frequency and an outer cylinder part for housing this ultrasonic vibration mechanism. A tip portion is attached to the open end of the portion so as to project, and hard tissue such as bone is cut by vibration transmitted from the ultrasonic vibration mechanism. This ultrasonic horn 21
The main body 22 and a hook-shaped female portion 23 that is formed so as to project from the side wall of the main body 22 at the tip of the main body 22 and comes into contact with living tissue, and the tip of the hook-shaped female portion 23 has
The work portion 23a for eliminating stress concentration on the target site of hard tissue such as bone to prevent excessive puncture and transmitting vibration to form a fine crush layer is formed by a flat surface. An edge portion 30 is formed on the peripheral edge of the portion 23a, and a predetermined cutting is performed by scraping off the fine crushed layer formed by the vibration transmission of the working portion 23a.
【0020】このように、骨等の硬組織へ当接する鈎状
メス部23の先端には、作業部23aとしての平端面が
形成されているため、尖鋭先端を有する従来技術の場合
と異なり、骨等の硬組織への当接時に点または線への応
力集中がなく、必要な範囲で骨等の硬組織の切削部位に
適正な微細破砕層を形成でき、先端が骨等の硬組織へ深
く刺さり過ぎることに起因する不都合も生じない。した
がって、切削動作もスム−ズになすことができ微細な制
御も可能となる。なお、図2(b)に示すように前記平
端部23aの厚みaは、切削効率、操作性等を勘案する
と0.5mm<a<2.5mmの範囲に設定するのが望
ましいことが実験の結果判明している。 また、図にお
いて、32は鈎状メス部23の近傍に形成された開口部
で前記本体部22を縦貫通する吸引路33を介して外部
の吸引機構(不図示)に連通され、動作時に発生する切
削片やイリゲーション液を排出する。なお、前記開口部
32は、図示のように1以上設けられている。 すなわ
ち、図2(b)に示す実施形態では、開口部32は本体
部22において鈎状メス部23の根元近傍に形成され、
吸引路33に連通している。 また、図2(c)に示す
実施形態では、開口部32は本体部22の先端面に形成
されている。 さらに、図2(d)に示す実施形態で
は、開口部32は2箇所の形成され、その一方は前記図
2(b)と同様の位置に、他方は図2(c)と同様の位
置に形成されている。なお、吸引路33の端末は装置外
部のスイッチ機構(不図示)を介して前記吸引機構およ
び送水機構(装置外部にあり、不図示)に連結され、前
記スイッチ機構の操作により吸引又は送水のいずれかを
選択的にできるようになすことがある。As described above, since the flat end surface as the working portion 23a is formed at the tip of the hook-shaped female portion 23 that comes into contact with hard tissue such as bone, unlike the case of the prior art having a sharp tip, There is no stress concentration on points or lines when contacting hard tissue such as bone, and an appropriate fine fracture layer can be formed in the cutting site of hard tissue such as bone within the required range, and the tip can be hard tissue such as bone. There is no inconvenience caused by sticking too deeply. Therefore, the cutting operation can be smoothly performed and fine control can be performed. Note that, as shown in FIG. 2B, it is desirable that the thickness a of the flat end portion 23a is set in a range of 0.5 mm <a <2.5 mm in consideration of cutting efficiency, operability, and the like. The result is known. Further, in the figure, reference numeral 32 denotes an opening formed in the vicinity of the hook-shaped female portion 23, which is communicated with an external suction mechanism (not shown) via a suction passage 33 which vertically penetrates the main body portion 22 and is generated during operation. Drain cuttings and irrigation liquid. It should be noted that one or more openings 32 are provided as shown. That is, in the embodiment shown in FIG. 2B, the opening 32 is formed in the main body 22 near the root of the hook-shaped female portion 23,
It communicates with the suction passage 33. Further, in the embodiment shown in FIG. 2C, the opening 32 is formed on the tip surface of the main body 22. Further, in the embodiment shown in FIG. 2 (d), the openings 32 are formed at two positions, one of them is at the same position as that of FIG. 2 (b), and the other is at the same position of FIG. 2 (c). Has been formed. The terminal of the suction passage 33 is connected to the suction mechanism and the water supply mechanism (external to the apparatus, not shown) via a switch mechanism (not shown) outside the apparatus, and either suction or water supply is performed by operating the switch mechanism. In some cases, it can be selectively performed.
【0021】図3は、本願発明の第3実施形態に係る超
音波ホ−ンの構成を示す図で、(a)は一部切欠斜視
図、(b)はその断面図である。該実施形態では、鈎状
メス部23の先端は断面円弧状に形成され、したがって
作業部23aは曲面で構成されており、この曲面の一端
には作業部23aの振動伝達によって形成された微細破
砕層から骨組織を掻き取るためのエッジ部30が形成さ
れている。 このように作業部23aは曲面構成となっ
ているため、前記各実施形態と同様に骨等の硬組織への
当接時に応力集中がなく、必要な範囲で骨等の硬組織の
切削部位に適正な微細破砕層を形成でき、先端が骨等の
硬組織へ深く刺さり過ぎることに起因する不都合も生じ
ない。先端が骨等の硬組織へ深く刺さり過ぎることがな
いので、切削動作もスム−ズになすことができ、微細な
制御も可能となる。3A and 3B are views showing the structure of an ultrasonic horn according to a third embodiment of the present invention, wherein FIG. 3A is a partially cutaway perspective view and FIG. 3B is a sectional view thereof. In the embodiment, the tip of the hook-shaped female portion 23 is formed in an arcuate cross section, and therefore the working portion 23a is formed into a curved surface, and one end of this curved surface is finely crushed by the vibration transmission of the working portion 23a. An edge 30 is formed for scraping bone tissue from the layer. As described above, since the working portion 23a has a curved surface structure, stress concentration does not occur at the time of abutting on hard tissue such as bone as in the above-described embodiments, and the cutting portion of hard tissue such as bone can be cut within a necessary range. An appropriate finely crushed layer can be formed, and the inconvenience caused by the tip sticking too deeply into hard tissue such as bone does not occur. Since the tip does not stick too deeply into hard tissue such as bone, the cutting operation can be performed smoothly and fine control is possible.
【0022】また、前記応力拡散端面部としての円弧部
23aの厚み,すなわち骨の被切削面に対向する部分の
厚みaは、前記実施形態と同様に、切削効率、操作性等
を勘案すると0.5mm<a<2.5mmの範囲に設定
するのが望ましいことが実験の結果判明している。 ま
た、図において、32は鈎状メス部23の近傍に形成さ
れた開口部で前記本体部22を縦貫通する吸引路33を
介して外部の吸引機構に連通され、動作時に発生する切
削片やイリゲーション液を排出するようになっている。
そして、前記開口部32は、図示のように1以上設けら
れている。 すなわち、図3(b)に示す実施形態で
は、開口部32は本体部22において鈎状メス部23の
根元近傍に形成され、吸引路33に連通している。 ま
た、図3(c)に示す実施形態では、開口部32は本体
部22の先端面に形成されている。 さらに、図3
(d)に示す実施形態では、開口部32は2箇所の形成
され、その一方は前記図3(b)と同様の位置に、他方
は図3(c)と同様の位置に形成されている。なお、吸
引路33の端末は装置外部のスイッチ機構(不図示)を
介して前記吸引機構および送水機構(装置外部にあり、
不図示)に連結され、前記スイッチ機構の操作により吸
引又は送水のいずれかを選択的にできるようになすこと
がある。Further, the thickness of the circular arc portion 23a as the stress diffusion end face portion, that is, the thickness a of the portion of the bone facing the surface to be cut is 0 in consideration of cutting efficiency, operability and the like as in the above embodiment. Experiments have revealed that it is desirable to set the range of 0.5 mm <a <2.5 mm. Further, in the figure, reference numeral 32 denotes an opening formed in the vicinity of the hook-shaped female portion 23, which is communicated with an external suction mechanism through a suction passage 33 which vertically penetrates the main body portion 22, and which is a cutting piece generated during operation or It is designed to drain the irrigation liquid.
Then, one or more openings 32 are provided as shown. That is, in the embodiment shown in FIG. 3B, the opening 32 is formed in the main body 22 near the root of the hook-shaped female portion 23 and communicates with the suction passage 33. Further, in the embodiment shown in FIG. 3C, the opening 32 is formed on the tip surface of the main body 22. Furthermore, FIG.
In the embodiment shown in (d), the openings 32 are formed at two positions, one of which is formed at the same position as in FIG. 3 (b) and the other of which is formed at the same position as in FIG. 3 (c). . The terminal of the suction passage 33 is provided with the suction mechanism and the water supply mechanism (external to the device via a switch mechanism (not shown) outside the device,
In some cases, either suction or water supply can be selectively performed by operating the switch mechanism.
【0023】図4は、本願発明の第4実施形態に係る超
音波ホ−ンの構成を示す断面図である。該実施形態にあ
っては、鈎状メス部23先端の作業部部23aを構成す
る面部には骨等の硬組織との接触において滑動を防止す
るための係合部が形成されている。図4において、
(a)、(b)、(c)は、作業部(応力拡散端面部)
23aに前記係合部23bとして数条の曲面突条を形成
した場合を示している。FIG. 4 is a sectional view showing the structure of an ultrasonic horn according to the fourth embodiment of the present invention. In this embodiment, an engaging portion is formed on the surface of the tip of the hook-shaped female portion 23 that constitutes the working portion 23a to prevent sliding when contacting hard tissue such as bone. In FIG.
(A), (b), (c) are working parts (stress diffusion end face parts)
23a shows a case where several curved surface protrusions are formed as the engaging portion 23b.
【0024】また、図4(d)、(e)、(f)は前記
係合部23bとして丘状部を形成した場合を示してい
る。これら係合部23bは、図1、2に示す応力拡散端
面部23aのいずれにも形成することができる。このよ
うに、作業部23aに係合部23bを設けることによ
り、切削時に鈎状メス部23先端に思わぬ滑動が発生す
ることを防止し得て、より精妙な切削制御が可能にな
る。なお、これらの実施形態において、エッジ部が作業
部23aの周縁に形成されることは前記各実施形態と同
様である。また、図において、32は鈎状メス部23の
近傍に形成された開口部で前記本体部22を縦貫通する
吸引路33を介して外部の吸引機構に連通され、動作時
に発生する切削片やイリゲーション液を排出するように
なっている。そして、前記開口部32は、図示のように
1以上設けられている。 すなわち、図4(a)、
(d)に示す実施形態では、開口部32は本体部22に
おいて鈎状メス部23の根元近傍に形成され、吸引路3
3に連通している。 また、図4(b)、(e)に示す
実施形態では、開口部32は本体部22の先端面に形成
されている。 さらに、図4(c)、(f)に示す実施
形態では、開口部32は2箇所の形成され、その一方は
前記図4(a)、(d)と同様の位置に、他方は図4
(b)、(e)と同様の位置に形成されている。なお、
吸引路33の端末は装置外部のスイッチ機構(不図示)
を介して前記吸引機構および送水機構(装置外部にあ
り、不図示)に連結され、前記スイッチ機構の操作によ
り吸引又は送水のいずれかを選択的にできるようになす
ことがある。Further, FIGS. 4D, 4E, and 4F show the case where a hill portion is formed as the engaging portion 23b. These engaging portions 23b can be formed on any of the stress diffusion end face portions 23a shown in FIGS. As described above, by providing the engaging portion 23b on the working portion 23a, it is possible to prevent unexpected sliding from occurring at the tip of the hook-shaped female portion 23 during cutting, and more precise cutting control becomes possible. Note that, in these embodiments, the edge portion is formed on the peripheral edge of the working portion 23a, as in the above-described embodiments. Further, in the figure, reference numeral 32 denotes an opening formed in the vicinity of the hook-shaped female portion 23, which is communicated with an external suction mechanism through a suction passage 33 which vertically penetrates the main body portion 22, and which is a cutting piece generated during operation or It is designed to drain the irrigation liquid. Then, the opening 32 is
One or more are provided. That is, in FIG.
In the embodiment shown in (d), the opening 32 is formed in the main body 22 near the root of the hook-shaped female portion 23, and the suction passage 3 is formed.
It communicates with 3. Further, in the embodiment shown in FIGS. 4B and 4E, the opening 32 is formed on the tip surface of the main body 22. Further, in the embodiment shown in FIGS. 4 (c) and 4 (f), the opening 32 is formed at two locations, one of which is at the same position as in FIGS. 4 (a) and 4 (d) and the other of which is shown in FIG.
It is formed at the same position as in (b) and (e). In addition,
The terminal of the suction passage 33 is a switch mechanism (not shown) outside the device.
In some cases, the suction mechanism and the water feeding mechanism (external to the apparatus, not shown) are connected via the, and either suction or water feeding can be selectively performed by operating the switch mechanism.
【0025】図5は、本願発明の第5実施形態に係る超
音波ホ−ンの構成を示す断面図である。この実施形態で
は、ホ−ン本体部22に対する鈎状メス部23の開度θ
を、鈎状メス部の内側面と本体部側壁とのなす角、また
は鈎状メス部の内側面と本体部の中心軸とのなす角が直
角より大で2直角より小となる範囲に設定して被切削部
と本体部との間に術者の視野空間を確保できるようにし
ている。FIG. 5 is a sectional view showing the structure of an ultrasonic horn according to the fifth embodiment of the present invention. In this embodiment, the opening θ of the hook-shaped female portion 23 with respect to the horn body 22
Is set to a range where the angle between the inner surface of the hook-shaped knife and the side wall of the body or the angle between the inner surface of the hook-shaped knife and the center axis of the body is greater than a right angle and less than two right angles. In addition, the operator's visual field space can be secured between the part to be cut and the main body.
【0026】すなわち、図5(a)に示すように、鈎状
メス部23の内側面23cと本体部22側壁とのなす角
θは約120度に設定されている。このため、図5
(b)に示すように、ホ−ン本体部22を傾斜させて骨
等の硬組織Hの切削をなすことができるので、術者は矢
符に示すように広い視野を確保して状況を確認しながら
操作できるのでより適正な切削が可能になる。なお、こ
こで説明したホ−ン本体部22に対する鈎状メス部23
の開度の設定に関する構成は、図2ないし4に係る超音
波ホ−ンに適用できることは言うまでもない。 また、
作業部、エッジ部に関する構成は上述の各実施形態と同
様である。 また、図示しないが、作業部23aおよび
鈎状メス部23の内側面23cの双方またはいずれか一
方に開口部を形成し、この開口部を前記本体部22に縦
貫通するように形成される吸引路を介して外部の吸引機
構に連通して、動作時に発生する切削片やイリゲーショ
ン液を排出するようになすことがある。 なお、前記開
口部、吸引路は、それぞれリゲーション液等の送水口、
送水路として作用することがあるのは前述の各実施形態
と同様である。That is, as shown in FIG. 5A, the angle θ formed by the inner side surface 23c of the hook-shaped female portion 23 and the side wall of the main body portion 22 is set to about 120 degrees. Therefore, in FIG.
As shown in (b), the horn body 22 can be inclined to cut the hard tissue H such as bone, so that the operator can secure a wide field of view as indicated by the arrow. Since it can be operated while checking, more appropriate cutting is possible. In addition, the hook-shaped female portion 23 with respect to the horn body portion 22 described here.
It goes without saying that the configuration relating to the setting of the opening degree can be applied to the ultrasonic horn according to FIGS. Also,
The configurations related to the working unit and the edge unit are the same as those in the above-described embodiments. Although not shown, an opening is formed in both or one of the working portion 23a and the inner side surface 23c of the hook-shaped female portion 23, and suction is formed so as to vertically penetrate the opening in the main body portion 22. The cutting piece or the irrigation liquid generated during the operation may be discharged by communicating with an external suction mechanism through the passage. Incidentally, the opening, the suction path, the water supply port for the ligation liquid,
The fact that it may act as a water supply channel is the same as in each of the above-described embodiments.
【0027】図6は、本願発明の第6実施形態に係る超
音波ホ−ンの構成を示す斜視図である。この実施形態で
は、鈎状メス部23はスプ−ン形状に類似していて作業
部23aは凹曲面で構成され、この作業部23aの上端
縁にエッジ部30が形成されている。作業部23aの前
記凹曲面部は切削片の誘出部として機能し、この凹曲面
部に吸引チュ−ブに連通する開口部を設けることによ
り、イリゲ−ション液、切削片の排出を極めて容易にな
すことができる。 すなわち、図7に示すように、図6
に示す超音波ホ−ンのメス部の近傍に1以上の開口部を
設けこの開口部からホ−ン本体部を通り吸引機構に連結
される吸引路を形成し、手術部位における水分、切削
片、破砕片等の吸引除去を容易にして、適正かつ効率的
な手術を実現する。図7(a)において、33はホ−ン
本体部22を貫通して不図示の吸引機構に連結される吸
引通路であり、メス部23の近傍内側すなわち作業部2
3aの前記凹曲面部に開口部32を有している。また、
図7(b)に示す超音波ホ−ンでは、吸引路33は2つ
の開口部32を有しており、一方は図7(a)に示す位
置と同一箇所に形成され、他方はホ−ン本体部22の先
端においてメス部23の近傍外側に形成されている。そ
して、図7(c)に示す超音波ホ−ンでは、吸引路33
の開口部32はホ−ン本体部22の先端においてメス部
23の近傍外側に形成されている。手術部位における水
分、切削片、破砕片等は矢符に示すように開口部32に
おいて吸引され吸引路33を経て排出されることになるFIG. 6 is a perspective view showing the structure of an ultrasonic horn according to the sixth embodiment of the present invention. In this embodiment, the hook-shaped female portion 23 resembles a spoon shape, the working portion 23a has a concave curved surface, and the edge portion 30 is formed at the upper end edge of the working portion 23a. The concave curved surface portion of the working portion 23a functions as a cutting piece guiding portion, and by providing an opening communicating with the suction tube in the concave curved surface portion, it is extremely easy to discharge the irrigation liquid and the cutting piece. Can be done. That is, as shown in FIG.
In the vicinity of the female part of the ultrasonic horn shown in Fig. 1, one or more openings are provided to form a suction path that passes through the horn main body and is connected to the suction mechanism. , Facilitates suction removal of crushed pieces, etc., and realizes proper and efficient surgery. In FIG. 7A, reference numeral 33 denotes a suction passage that penetrates the horn body 22 and is connected to a suction mechanism (not shown).
The concave curved surface portion 3a has an opening 32. Also,
In the ultrasonic horn shown in FIG. 7B, the suction passage 33 has two openings 32, one of which is formed at the same position as the position shown in FIG. 7A and the other of which is a horn. It is formed outside the vicinity of the female portion 23 at the tip of the main body portion 22. Then, in the ultrasonic horn shown in FIG.
The opening 32 is formed outside the vicinity of the female portion 23 at the tip of the horn body 22. Moisture, cutting pieces, crushed pieces, and the like in the surgical site are sucked in the opening 32 and discharged through the suction passage 33 as shown by the arrow.
【0028】図8は、本願発明の第7実施形態に係る超
音波ホ−ンの構成を示す断面図である。 この実施形態
では、鈎状メス部の断面における外郭部は曲線形状にな
っている。 すなわち、図8(a)に示す超音波ホ−ン
は、先細りに形成されたホ−ン本体部22の端部に曲線
を描いて屈曲する鈎状メス部23が一体に形成されてい
る。 換言すれば、この鈎状メス部23の上面部24と
下面部25は所定径の円弧曲面に形成され、先端部には
1以上の平坦面およびまたは曲面で構成される作業部2
3aが形成され、その周縁にはエッジ部が形成されてい
る。なお、この作業部23aには必要に応じて前述の係
合部23bを具えることがある。FIG. 8 is a sectional view showing the structure of an ultrasonic horn according to the seventh embodiment of the present invention. In this embodiment, the outer portion in the cross section of the hook-shaped female portion has a curved shape. That is, in the ultrasonic horn shown in FIG. 8A, a hook-shaped female portion 23 which is curved and drawn is integrally formed at the end of the tapered horn body 22. In other words, the upper surface portion 24 and the lower surface portion 25 of the hook-shaped female portion 23 are formed into arcuate curved surfaces having a predetermined diameter, and the working portion 2 having one or more flat surfaces and / or curved surfaces at the tip portion.
3a is formed, and an edge portion is formed on the peripheral edge thereof. The working portion 23a may be provided with the above-mentioned engaging portion 23b, if necessary.
【0029】また、図8(b)に示す超音波ホ−ンで
は、鈎状メス部23はホ−ン本体部22の内側(骨に対
向する側)端部に切り欠き部を形成するように断面ほぼ
円弧形状をなして形成されている。 すなわち、鈎状メ
ス部23の上面部24と下面部25は、前記(a)と同
様に所定径の円弧曲面に形成され、先端部には、1以上
の平坦面およびまたは曲面で構成される作業部23aを
具えている。また、図において、26は、ホ−ン本体部
22の内側(骨に対向する側)端部に形成された断面半
円状の切削片誘出部であり、エッジ部30が微細破砕部
から掻き取った切削片がここに導かれるようになってい
る。なお、ここでも作業部23aには必要に応じて前述
の係合部23bが形成される。 図8に示す実施形態に
おいて、鈎状メス部23は上記の構成を採用することに
より、骨等の硬組織の切削に際して、術者は図5(b)
に示す場合と同様に超音波ホ−ンを骨の切削面に対して
傾けた状態で使用できるから、広い視野を得ることがで
きる。また、図示しないが、作業部23aおよび鈎状メ
ス部23の前記上面24または切削片誘出部26の双
方、あるいはいずれか一方に開口部を形成し、この開口
部を前記本体部22に縦貫通するように形成される吸引
路を介して外部の吸引機構に連通して、動作時に発生す
る切削片やイリゲーション液を排出するようになすこと
がある。Further, in the ultrasonic horn shown in FIG. 8 (b), the hook-shaped female portion 23 is formed so as to form a cutout portion at the inner (side facing the bone) end portion of the horn body portion 22. It has a substantially arcuate cross section. That is, the upper surface portion 24 and the lower surface portion 25 of the hook-shaped female portion 23 are formed in an arc curved surface having a predetermined diameter as in the case of (a), and the tip portion is formed of one or more flat surfaces and / or curved surfaces. It has a working unit 23a. Further, in the drawing, reference numeral 26 is a cutting piece guide portion having a semicircular cross section formed at the inner (side facing the bone) end of the horn body portion 22, and the edge portion 30 is formed from the fine crushed portion. The scraps scraped off are guided here. Here, again, the working portion 23a is formed with the above-mentioned engaging portion 23b, if necessary. In the embodiment shown in FIG. 8, the hook-shaped female portion 23 adopts the above-mentioned configuration, so that the operator can cut the hard tissue such as bones as shown in FIG.
Similar to the case shown in (1), since the ultrasonic horn can be used in a state of being inclined with respect to the cutting surface of the bone, a wide field of view can be obtained. Further, although not shown, an opening is formed in both or one of the upper surface 24 of the working portion 23a and the hook-shaped female portion 23 or the cutting piece guiding portion 26, and the opening is vertically penetrated into the main body portion 22. In some cases, a cutting piece or an irrigation liquid generated during operation may be discharged by communicating with an external suction mechanism via a suction passage formed so as to pass therethrough.
【0030】なお、上記図7、図8に示す各実施形態に
おいて、前記吸引路33の一端はメス部23近傍に形成
された1以上の開口部32に連通させるとともに、他端
はスイッチ機構を介して吸引機構および送水機構に連通
させ、前記スイッチ機構の操作により吸引又は送水のい
ずれかを選択的にできるように構成することがある。こ
れにより、装置の小型化が可能となり、切削動作の容易
性も確保でき、特に狭隘な深凹部での精細かつ効率的な
切削動作を実現できる。In each of the embodiments shown in FIGS. 7 and 8, one end of the suction passage 33 communicates with one or more openings 32 formed near the female portion 23, and the other end of the suction passage 33 has a switch mechanism. In some cases, the suction mechanism and the water feeding mechanism are communicated with each other via the switch mechanism so that either suction or water feeding can be selectively performed. As a result, the device can be downsized, the easiness of the cutting operation can be ensured, and the fine and efficient cutting operation can be realized especially in a narrow deep recess.
【0031】本願発明において、作業部は骨等の硬組織
への接触時に、振動エネルギ−の点または線への一挙集
中を回避することにより、微細破砕層の特に深さ方向へ
の必要以上の拡大に起因する弊害を防止しようとするも
のである。したがって、作業部は上記作用を奏するため
に、必然的に面を具えることとなり、この面は、単数で
も複数でも、また平坦でも、曲面でもよく、要は、エネ
ルギ−の分散伝達を実現できればよい。また、本願発明
では、発生する切削片、イリゲーション液等の排出を切
削動作継続中に実行できるうえ、排出経路も超音波ホー
ン内部に収納されるため、特に深くかつ狭隘な凹部箇所
での作業が極めて容易になる。さらに、吸引路を送水路
としても使用できるので装置の小型化が実現でき、切削
動作も容易になる。In the present invention, the working portion avoids the concentration of vibration energy at a point or a line at the time of contact with a hard tissue such as a bone, so that the fine crushed layer is more than necessary in the depth direction. It is intended to prevent the harmful effects caused by the expansion. Therefore, the working unit inevitably has a surface in order to perform the above-mentioned action, and this surface may be a single or plural, and may be flat or curved. The point is that if energy dispersive transfer can be realized. Good. Further, in the present invention, the generated cutting pieces, the discharge of the irrigation liquid, etc. can be executed during the continuous cutting operation, and since the discharge path is also stored inside the ultrasonic horn, the work especially in the deep and narrow recessed portions can be performed. It will be extremely easy. Furthermore, since the suction passage can also be used as a water supply passage, the device can be downsized and the cutting operation can be facilitated.
【0032】[0032]
【付記事項1】 超音波振動源から伝達される振動に
より、骨等の硬組織の切削をなすための超音波ホ−ンで
あって、 前記ホ−ンは本体部と、この本体部の先端に
形成され骨等の硬組織を切削するために前記ホーン本体
から外方に突出するフック状のメス部とからなり、該メ
ス部は、球面または湾曲面に形成された先端部と外方に
突出する部分の内側面(前記先端部とは反対側の面)で
構成される作業面と、この作業面の端縁で構成されるエ
ッジ部とからなり、前記作業面またはその近傍には1以
上の開口部を設け、この開口部を切削片等の吸引または
切削部位への冷却水の送水のための経路として前記本体
部に縦貫通させた通路に連通させてなる超音波ホーン。[Additional remark 1] An ultrasonic horn for cutting hard tissue such as bone by vibration transmitted from an ultrasonic vibration source, the horn being a main body and a tip of the main body. And a hook-shaped female portion projecting outward from the horn body for cutting hard tissue such as bone, the female portion having a distal end portion formed on a spherical surface or a curved surface and an outward portion. The work surface is composed of the inner surface (the surface opposite to the tip) of the protruding portion and the edge portion composed of the edge of the work surface. An ultrasonic horn which is provided with the above-mentioned opening and which is connected to a passage vertically penetrated through the main body as a passage for sucking a cutting piece or sending cooling water to a cutting portion.
【付記事項2】 付記事項1記載の超音波ホーンにおい
て、開口部はさらにメス部先端面にも設けたことを特徴
とする超音波ホーン。[Additional Item 2] The ultrasonic horn according to Additional Item 1, wherein the opening is further provided on the distal end surface of the female portion.
【付記事項3】 超音波振動源から伝達される振動によ
り、骨等の硬組織の切削をなすための超音波ホ−ンであ
って、 前記ホ−ンは本体部と、この本体部の先端に形
成され骨等の硬組織を切削するために前記ホーン本体か
ら外方に突出するフック状のメス部とからなり、該メス
部は、球面または湾曲面に形成された先端部と外方に突
出する部分の内側面(前記先端部とは反対側の面)で構
成される作業面と、この作業面の端縁で構成されるエッ
ジ部とからなり、前記先端部には開口部を設け、この開
口部を切削片等の吸引または切削部位への冷却水の送水
のための経路として前記本体部に縦貫通させた通路に連
通させてなる超音波ホーン。[Additional Item 3] An ultrasonic horn for cutting hard tissue such as bone by vibration transmitted from an ultrasonic vibration source, the horn being a main body and a tip of the main body. And a hook-shaped female portion projecting outward from the horn body for cutting hard tissue such as bone, the female portion having a distal end portion formed on a spherical surface or a curved surface and an outward portion. The work surface is composed of the inner side surface of the projecting portion (the surface opposite to the tip portion), and the edge portion is composed of the edge of the work surface. The tip portion is provided with an opening. An ultrasonic horn in which the opening is communicated with a passage longitudinally penetrating the main body as a passage for sucking a cutting piece or sending cooling water to a cutting portion.
【0033】[0033]
【発明の効果】本願発明にあっては、以上説明した構成
作用により、次のような効果を期待できる。
(1)メス部が被切削部位に、必要以上に深く刺さるこ
とに起因する種々の弊害を防止して、メス部の動きを精
妙にコントロ−ルできるので治療目的に則した適正な骨
等の硬組織の切削が実現できる。
(2)術者は、広い視野の下に、切削状況を常に把握で
きるので作業が安全、容易になる。
(3)発生する切削片、イリゲーション液等の排出を切
削動作継続中に実行できるうえ、排出経路も超音波ホー
ン内部に収納されるため、特に深くかつ狭隘な凹部箇所
での作業が極めて容易になり、精細かつ安全な手術作業
を迅速容易になしえる。
(4)吸引路と送水路とを共用とすることにより、装置
の小型化が可能となり、切削動作の容易性も確保でき、
特に狭隘な深凹部での精細かつ効率的な切削動作を実現
できる。According to the invention of the present application, the following effects can be expected by virtue of the above-described constitutional operation. (1) Preventing various harmful effects resulting from the piercing of the scalpel part into the part to be cut more deeply than necessary, and the motion of the scalpel part can be delicately controlled, so that proper bones, etc. according to the therapeutic purpose can be obtained. Hard tissue can be cut. (2) Since the operator can always grasp the cutting situation in a wide field of view, the work is safe and easy. (3) The generated cutting pieces, irrigation liquid, etc. can be discharged while the cutting operation is continuing, and the discharge path is also stored inside the ultrasonic horn, making it extremely easy to work especially in deep and narrow recesses. Therefore, precise and safe surgical work can be performed quickly and easily. (4) By using the suction passage and the water supply passage in common, the device can be downsized and the easiness of cutting operation can be secured.
In particular, a fine and efficient cutting operation can be realized in a narrow deep recess.
【図1】 第1実施形態に係る超音波ホ−ンを示す斜視
図および断面図である。FIG. 1 is a perspective view and a cross-sectional view showing an ultrasonic horn according to a first embodiment.
【図2】 第2実施形態に係る超音波ホ−ンを示す斜視
図および断面図である。FIG. 2 is a perspective view and a sectional view showing an ultrasonic horn according to a second embodiment.
【図3】 第3実施形態に係る超音波ホ−ンを示す断面
図である。FIG. 3 is a sectional view showing an ultrasonic horn according to a third embodiment.
【図4】 第4実施形態に係る超音波ホ−ンを示す説明
図である。FIG. 4 is an explanatory diagram showing an ultrasonic horn according to a fourth embodiment.
【図5】 第5実施形態に係る超音波ホ−ンを示す断面
図である。FIG. 5 is a sectional view showing an ultrasonic horn according to a fifth embodiment.
【図6】 第6実施形態に係る超音波ホ−ンを示す斜視
図である。FIG. 6 is a perspective view showing an ultrasonic horn according to a sixth embodiment.
【図7】 第6実施形態に係る超音波ホ−ンを示す断面
図である。FIG. 7 is a sectional view showing an ultrasonic horn according to a sixth embodiment.
【図8】 第7実施形態に係る超音波ホ−ンを示す断面
図である。FIG. 8 is a sectional view showing an ultrasonic horn according to a seventh embodiment.
【図9】 従来の超音波ハンドピ−スを示す側面図であ
る。FIG. 9 is a side view showing a conventional ultrasonic handpiece.
【図10】 従来の超音波ホ−ンによる骨の切削状態を
示す断面図である。FIG. 10 is a cross-sectional view showing a cutting state of bone by a conventional ultrasonic horn.
【図11】従来の超音波ホ−ンによる微細破砕層の形成
状態を示す説明図である。FIG. 11 is an explanatory diagram showing a state of formation of a finely crushed layer by a conventional ultrasonic horn.
A.........超音波ハンドピ−ス 21........超音波ホ−ン 22........超音波ホ−ン本体部 23........鈎状メス部 23a.......応力拡散端面部(メス部先端) 23b.......係合部 24........鈎状メス部の上面部 25........鈎状メス部の下面部 26........切削片誘出部 30........エッジ部 32........開口部 33........吸引路 A. . . . . . . . . Ultrasonic handpiece 21. . . . . . . . Ultrasonic horn 22. . . . . . . . Ultrasonic horn body 23. . . . . . . . Hook female part 23a. . . . . . . Stress diffusion end face (female end) 23b. . . . . . . Engagement part 24. . . . . . . . Top surface of hook-shaped knife 25. . . . . . . . Lower surface of hook-shaped knife 26. . . . . . . . Cutting piece invitation part 30. . . . . . . . Edge part 32. . . . . . . . Aperture 33. . . . . . . . Suction path
Claims (11)
波振動、または縦、捩れの両者により合成された超音波
振動を出力する超音波振動機構と、この超音波振動機構
を収納する外筒部と、外筒部の一端に取り付けられて前
記超音波振動機構から伝達される振動により骨等の硬組
織を切削するホ−ンと、を具えた超音波ハンドピ−スに
おいて、前記ホ−ンは本体部と、この本体部の先端に形
成され骨等の硬組織を切削するメス部とからなり、該メ
ス部の端部には、骨等の硬組織の対象部位に対する応力
集中を排して過大な穿刺を防止するとともに振動を伝達
して微細破砕層を形成するため少なくとも1以上の面部
からなる作業部と、この作業部により微細に破砕された
骨組織を掻き取るためのエッジ部とを形成するととも
に、前記ホーン本体部には縦貫通する吸引路を設け、そ
の一端はメス部又はその近傍に形成された1以上の開口
部に連結され、他端は吸引機構に連結するようにしてな
る超音波ハンドピ−ス。1. An ultrasonic vibrating mechanism for outputting longitudinal ultrasonic vibration of a predetermined frequency, torsional ultrasonic vibration, or ultrasonic vibration combined by both longitudinal and torsion, and an outer cylinder accommodating the ultrasonic vibrating mechanism. And a horn that is attached to one end of the outer cylindrical portion and that cuts hard tissue such as bone by vibration transmitted from the ultrasonic vibration mechanism. Is composed of a main body and a scalpel formed at the tip of the main body to cut hard tissue such as bone. At the end of the scalpel, stress concentration on the target site of hard tissue such as bone is eliminated. To prevent excessive puncture and to transmit vibrations to form a finely crushed layer, and a working portion composed of at least one surface portion, and an edge portion for scraping finely crushed bone tissue by this working portion. And the horn body An ultrasonic handpiece having a suction passage vertically extending therethrough, one end of which is connected to one or more openings formed in or near the female portion and the other end of which is connected to a suction mechanism.
いて、前記メス部は、本体部の先端において本体部側壁
から突出するように鈎状に形成したことを特徴とする超
音波ハンドピ−ス2. The ultrasonic handpiece according to claim 1, wherein the female portion is formed in a hook shape so as to project from the side wall of the main body portion at the tip of the main body portion.
メス部の開度は、鈎状メス部の内側面と本体部側壁との
なす角が直角より大で2直角より小となる範囲に設定し
て被切削部と本体部との間に術者の視野空間を確保でき
るようにしたことを特徴とする超音波ハンドピ−ス。3. The opening of the hook-shaped knife portion with respect to the main body portion according to claim 2, in a range in which an angle formed by an inner surface of the hook-shaped knife portion and a side wall of the main body portion is larger than a right angle and smaller than two right angles. An ultrasonic hand piece characterized by being set so that a visual field space for the operator can be secured between the part to be cut and the main body.
の接触において滑動を防止するための係合部を形成した
ことを特徴とする請求項1ないし3いずれかの超音波ハ
ンドピ−ス。4. The ultrasonic handpiece according to any one of claims 1 to 3, wherein the working portion at the tip of the female portion is formed with an engaging portion for preventing slippage in contact with hard tissue such as bone. -Su.
形状に形成し本体部とメス部との間に切削された骨組織
の誘出部を形成したことを特徴とする請求項2ないし4
いずれかの超音波ハンドピ−ス。5. The hook-shaped scalpel part is formed in a substantially arc shape in its cross section, and a cut-out bone tissue guiding part is formed between the main body part and the scalpel part.
Either ultrasonic handpiece.
ハンドピ−スにおいて、吸引路の一端はメス部近傍に形
成された1以上の開口部に連結され、他端はスイッチ機
構を介して吸引機構および送水機構に連結され、前記ス
イッチ機構の操作により吸引又は送水のいずれかを選択
的にできるようにしたことを特徴とする超音ハンドピー
ス。6. The ultrasonic handpiece according to claim 1, wherein one end of the suction passage is connected to one or more openings formed in the vicinity of the female portion, and the other end is connected via a switch mechanism. An ultrasonic handpiece, characterized in that it is connected to a suction mechanism and a water supply mechanism, and that either suction or water supply can be selectively performed by operating the switch mechanism.
り、骨等の硬組織の切削をなすための超音波ホ−ンであ
って、 前記ホ−ンは本体部と、この本体部の先端に形成され骨
等の硬組織を切削するメス部とからなり、該メス部の端
部には、骨等の硬組織の対象部位に対する応力集中を排
して過大な穿刺を防止するとともに振動を伝達して微細
破砕層を形成するため少なくとも1以上の面部からなる
作業部と、この作業部により微細に破砕された骨組織を
掻き取るためのエッジ部と、前記ホーン本体部には縦貫
通する吸引路とを設け、前記吸引路の一端はメス部近傍
に形成された1以上の開口部に連結され、他端はホーン
外の吸引機構に連結できるようにしたことを特徴とする
超音波ホ−ン。7. An ultrasonic horn for cutting hard tissue such as bone by vibration transmitted from an ultrasonic vibration source, the horn being a main body and a tip of the main body. It is composed of a scalpel part that is formed on and cuts hard tissue such as bone, and the end of the scalpel part eliminates stress concentration on the target site of hard tissue such as bone to prevent excessive puncture and to prevent vibration. A working part composed of at least one surface part for transmitting and forming a finely crushed layer, an edge part for scraping off the bone tissue finely crushed by this working part, and a piercing body vertically through the horn body part. A suction path is provided, one end of the suction path is connected to one or more openings formed in the vicinity of the female portion, and the other end can be connected to a suction mechanism outside the horn. -N.
て、前記メス部は、本体部の先端において本体部側壁か
ら突出するように鈎状に形成したことを特徴とする超音
波ホ−ン。8. The ultrasonic horn according to claim 7, wherein the female portion is formed in a hook shape so as to project from the side wall of the main body at the tip of the main body. N.
て、本体部に対する鈎状メス部の開度は、鈎状メス部の
内側面と本体部側壁とのなす角が直角より大で2直角よ
り小となる範囲に設定して被切削部と本体部との間に術
者の視野空間を確保できるようにしたことを特徴とする
超音波ホ−ン。9. The ultrasonic horn according to claim 8, wherein an opening angle of the hook-shaped knife portion with respect to the main body portion is larger than a right angle between an inner surface of the hook-shaped knife portion and a side wall of the body portion. An ultrasonic horn characterized by being set to a range smaller than 2 right angles so that a visual field space for the operator can be secured between the part to be cut and the main body.
との接触において滑動を防止するための係合部を形成し
たことを特徴とする請求項7ないし9いずれかの超音波
ホ−ン。10. The ultrasonic hob according to any one of claims 7 to 9, wherein an engaging portion is formed on the working portion at the tip of the female portion to prevent sliding when contacting hard tissue such as bone. -N.
弧形状に形成し本体部とメス部との間に切削された骨組
織の誘出部を形成したことを特徴とする請求項8ないし
10いずれかの超音波ホ−ン。11. The hook-shaped knife portion is formed in a substantially arc shape in its cross section, and a cut-out bone tissue guide portion is formed between the body portion and the knife portion. Either ultrasonic horn.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002307872A JP2003116870A (en) | 2002-10-23 | 2002-10-23 | Ultrasonic hand piece and ultrasonic horn used for this |
CNA021540691A CN1491616A (en) | 2002-10-23 | 2002-12-10 | Ultrasonic hand driven device and ultrasonic grinding head used on it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002307872A JP2003116870A (en) | 2002-10-23 | 2002-10-23 | Ultrasonic hand piece and ultrasonic horn used for this |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000338488A Division JP2002143177A (en) | 2000-11-07 | 2000-11-07 | Ultrasonic hand piece and ultrasonic horn used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003116870A true JP2003116870A (en) | 2003-04-22 |
Family
ID=19197441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002307872A Pending JP2003116870A (en) | 2002-10-23 | 2002-10-23 | Ultrasonic hand piece and ultrasonic horn used for this |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2003116870A (en) |
CN (1) | CN1491616A (en) |
Cited By (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013519441A (en) * | 2010-02-11 | 2013-05-30 | エシコン・エンド−サージェリィ・インコーポレイテッド | Outer sheath and blade arrangement for ultrasonic surgical instruments |
US8623040B2 (en) | 2009-07-01 | 2014-01-07 | Alcon Research, Ltd. | Phacoemulsification hook tip |
EP2862535A1 (en) * | 2013-10-15 | 2015-04-22 | Gyrus Medical Limited | Electrosurgical electrode & instrument |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9339289B2 (en) | 2007-11-30 | 2016-05-17 | Ehticon Endo-Surgery, LLC | Ultrasonic surgical instrument blades |
WO2016111029A1 (en) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | Treatment instrument and treatment system |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
WO2017013887A1 (en) * | 2015-07-23 | 2017-01-26 | オリンパス株式会社 | Ultrasonic probe |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US9642644B2 (en) | 2007-07-27 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10258505B2 (en) | 2010-09-17 | 2019-04-16 | Alcon Research, Ltd. | Balanced phacoemulsification tip |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10682155B2 (en) | 2016-03-31 | 2020-06-16 | Olympus Corporation | Ultrasonic treatment system for joint |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10842580B2 (en) | 2012-06-29 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10939935B2 (en) | 2016-02-29 | 2021-03-09 | Olympus Corporation | Ultrasonic treatment instrument for articulations, and ultrasonic treatment system for articulations |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
WO2021060157A1 (en) * | 2019-09-25 | 2021-04-01 | オリンパス株式会社 | Electrode with conduit and treatment tool |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3243463A4 (en) * | 2015-01-07 | 2018-09-12 | Olympus Corporation | Ultrasonic probe |
-
2002
- 2002-10-23 JP JP2002307872A patent/JP2003116870A/en active Pending
- 2002-12-10 CN CNA021540691A patent/CN1491616A/en active Pending
Cited By (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US11730507B2 (en) | 2004-02-27 | 2023-08-22 | Cilag Gmbh International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
US10537352B2 (en) | 2004-10-08 | 2020-01-21 | Ethicon Llc | Tissue pads for use with surgical instruments |
US10856896B2 (en) | 2005-10-14 | 2020-12-08 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US12042168B2 (en) | 2006-01-20 | 2024-07-23 | Cilag Gmbh International | Ultrasound medical instrument having a medical ultrasonic blade |
US9801648B2 (en) | 2007-03-22 | 2017-10-31 | Ethicon Llc | Surgical instruments |
US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
US10722261B2 (en) | 2007-03-22 | 2020-07-28 | Ethicon Llc | Surgical instruments |
US9883884B2 (en) | 2007-03-22 | 2018-02-06 | Ethicon Llc | Ultrasonic surgical instruments |
US9987033B2 (en) | 2007-03-22 | 2018-06-05 | Ethicon Llc | Ultrasonic surgical instruments |
US9504483B2 (en) | 2007-03-22 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US10531910B2 (en) | 2007-07-27 | 2020-01-14 | Ethicon Llc | Surgical instruments |
US9636135B2 (en) | 2007-07-27 | 2017-05-02 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
US9913656B2 (en) | 2007-07-27 | 2018-03-13 | Ethicon Llc | Ultrasonic surgical instruments |
US10398466B2 (en) | 2007-07-27 | 2019-09-03 | Ethicon Llc | Ultrasonic end effectors with increased active length |
US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
US9642644B2 (en) | 2007-07-27 | 2017-05-09 | Ethicon Endo-Surgery, Llc | Surgical instruments |
US9414853B2 (en) | 2007-07-27 | 2016-08-16 | Ethicon Endo-Surgery, Llc | Ultrasonic end effectors with increased active length |
US9707004B2 (en) | 2007-07-27 | 2017-07-18 | Ethicon Llc | Surgical instruments |
US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US10420579B2 (en) | 2007-07-31 | 2019-09-24 | Ethicon Llc | Surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
US10426507B2 (en) | 2007-07-31 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instruments |
US10828059B2 (en) | 2007-10-05 | 2020-11-10 | Ethicon Llc | Ergonomic surgical instruments |
US9848902B2 (en) | 2007-10-05 | 2017-12-26 | Ethicon Llc | Ergonomic surgical instruments |
US11266433B2 (en) | 2007-11-30 | 2022-03-08 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US10045794B2 (en) | 2007-11-30 | 2018-08-14 | Ethicon Llc | Ultrasonic surgical blades |
US10433865B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US10441308B2 (en) | 2007-11-30 | 2019-10-15 | Ethicon Llc | Ultrasonic surgical instrument blades |
US10265094B2 (en) | 2007-11-30 | 2019-04-23 | Ethicon Llc | Ultrasonic surgical blades |
US10245065B2 (en) | 2007-11-30 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical blades |
US11766276B2 (en) | 2007-11-30 | 2023-09-26 | Cilag Gmbh International | Ultrasonic surgical blades |
US9339289B2 (en) | 2007-11-30 | 2016-05-17 | Ehticon Endo-Surgery, LLC | Ultrasonic surgical instrument blades |
US10463887B2 (en) | 2007-11-30 | 2019-11-05 | Ethicon Llc | Ultrasonic surgical blades |
US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
US10888347B2 (en) | 2007-11-30 | 2021-01-12 | Ethicon Llc | Ultrasonic surgical blades |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US10433866B2 (en) | 2007-11-30 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical blades |
US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US11690643B2 (en) | 2007-11-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical blades |
US9795808B2 (en) | 2008-08-06 | 2017-10-24 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US11890491B2 (en) | 2008-08-06 | 2024-02-06 | Cilag Gmbh International | Devices and techniques for cutting and coagulating tissue |
US10022568B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10022567B2 (en) | 2008-08-06 | 2018-07-17 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US10335614B2 (en) | 2008-08-06 | 2019-07-02 | Ethicon Llc | Devices and techniques for cutting and coagulating tissue |
US9504855B2 (en) | 2008-08-06 | 2016-11-29 | Ethicon Surgery, LLC | Devices and techniques for cutting and coagulating tissue |
US10709906B2 (en) | 2009-05-20 | 2020-07-14 | Ethicon Llc | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US9233021B2 (en) | 2009-07-01 | 2016-01-12 | Alcon Research, Ltd. | Phacoemulsification hook tip |
US8623040B2 (en) | 2009-07-01 | 2014-01-07 | Alcon Research, Ltd. | Phacoemulsification hook tip |
US9764164B2 (en) | 2009-07-15 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instruments |
US11717706B2 (en) | 2009-07-15 | 2023-08-08 | Cilag Gmbh International | Ultrasonic surgical instruments |
US10688321B2 (en) | 2009-07-15 | 2020-06-23 | Ethicon Llc | Ultrasonic surgical instruments |
US10265117B2 (en) | 2009-10-09 | 2019-04-23 | Ethicon Llc | Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10201382B2 (en) | 2009-10-09 | 2019-02-12 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US9623237B2 (en) | 2009-10-09 | 2017-04-18 | Ethicon Endo-Surgery, Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10263171B2 (en) | 2009-10-09 | 2019-04-16 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11871982B2 (en) | 2009-10-09 | 2024-01-16 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US9962182B2 (en) | 2010-02-11 | 2018-05-08 | Ethicon Llc | Ultrasonic surgical instruments with moving cutting implement |
US9427249B2 (en) | 2010-02-11 | 2016-08-30 | Ethicon Endo-Surgery, Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
US9510850B2 (en) | 2010-02-11 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments |
JP2013519441A (en) * | 2010-02-11 | 2013-05-30 | エシコン・エンド−サージェリィ・インコーポレイテッド | Outer sheath and blade arrangement for ultrasonic surgical instruments |
US9848901B2 (en) | 2010-02-11 | 2017-12-26 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US11382642B2 (en) | 2010-02-11 | 2022-07-12 | Cilag Gmbh International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US10299810B2 (en) | 2010-02-11 | 2019-05-28 | Ethicon Llc | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
US9649126B2 (en) | 2010-02-11 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Seal arrangements for ultrasonically powered surgical instruments |
EP3597127A1 (en) * | 2010-02-11 | 2020-01-22 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US10117667B2 (en) | 2010-02-11 | 2018-11-06 | Ethicon Llc | Control systems for ultrasonically powered surgical instruments |
US10835768B2 (en) | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US9707027B2 (en) | 2010-05-21 | 2017-07-18 | Ethicon Endo-Surgery, Llc | Medical device |
US10278721B2 (en) | 2010-07-22 | 2019-05-07 | Ethicon Llc | Electrosurgical instrument with separate closure and cutting members |
US10524854B2 (en) | 2010-07-23 | 2020-01-07 | Ethicon Llc | Surgical instrument |
US10258505B2 (en) | 2010-09-17 | 2019-04-16 | Alcon Research, Ltd. | Balanced phacoemulsification tip |
US10433900B2 (en) | 2011-07-22 | 2019-10-08 | Ethicon Llc | Surgical instruments for tensioning tissue |
US10729494B2 (en) | 2012-02-10 | 2020-08-04 | Ethicon Llc | Robotically controlled surgical instrument |
US9925003B2 (en) | 2012-02-10 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Robotically controlled surgical instrument |
US9232979B2 (en) | 2012-02-10 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Robotically controlled surgical instrument |
US11419626B2 (en) | 2012-04-09 | 2022-08-23 | Cilag Gmbh International | Switch arrangements for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9700343B2 (en) | 2012-04-09 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Devices and techniques for cutting and coagulating tissue |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US10517627B2 (en) | 2012-04-09 | 2019-12-31 | Ethicon Llc | Switch arrangements for ultrasonic surgical instruments |
US10987123B2 (en) | 2012-06-28 | 2021-04-27 | Ethicon Llc | Surgical instruments with articulating shafts |
US10543008B2 (en) | 2012-06-29 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10335182B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Surgical instruments with articulating shafts |
US10842580B2 (en) | 2012-06-29 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US11717311B2 (en) | 2012-06-29 | 2023-08-08 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US9737326B2 (en) | 2012-06-29 | 2017-08-22 | Ethicon Endo-Surgery, Llc | Haptic feedback devices for surgical robot |
US10524872B2 (en) | 2012-06-29 | 2020-01-07 | Ethicon Llc | Closed feedback control for electrosurgical device |
US10441310B2 (en) | 2012-06-29 | 2019-10-15 | Ethicon Llc | Surgical instruments with curved section |
US11096752B2 (en) | 2012-06-29 | 2021-08-24 | Cilag Gmbh International | Closed feedback control for electrosurgical device |
US10993763B2 (en) | 2012-06-29 | 2021-05-04 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US10398497B2 (en) | 2012-06-29 | 2019-09-03 | Ethicon Llc | Lockout mechanism for use with robotic electrosurgical device |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US10966747B2 (en) | 2012-06-29 | 2021-04-06 | Ethicon Llc | Haptic feedback devices for surgical robot |
US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
US11583306B2 (en) | 2012-06-29 | 2023-02-21 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US10779845B2 (en) | 2012-06-29 | 2020-09-22 | Ethicon Llc | Ultrasonic surgical instruments with distally positioned transducers |
US9713507B2 (en) | 2012-06-29 | 2017-07-25 | Ethicon Endo-Surgery, Llc | Closed feedback control for electrosurgical device |
US11871955B2 (en) | 2012-06-29 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with articulating shafts |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US10335183B2 (en) | 2012-06-29 | 2019-07-02 | Ethicon Llc | Feedback devices for surgical control systems |
US11426191B2 (en) | 2012-06-29 | 2022-08-30 | Cilag Gmbh International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US10881449B2 (en) | 2012-09-28 | 2021-01-05 | Ethicon Llc | Multi-function bi-polar forceps |
US9795405B2 (en) | 2012-10-22 | 2017-10-24 | Ethicon Llc | Surgical instrument |
US11179173B2 (en) | 2012-10-22 | 2021-11-23 | Cilag Gmbh International | Surgical instrument |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US11324527B2 (en) | 2012-11-15 | 2022-05-10 | Cilag Gmbh International | Ultrasonic and electrosurgical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
US9743947B2 (en) | 2013-03-15 | 2017-08-29 | Ethicon Endo-Surgery, Llc | End effector with a clamp arm assembly and blade |
US10925659B2 (en) | 2013-09-13 | 2021-02-23 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
JP2015083127A (en) * | 2013-10-15 | 2015-04-30 | ジャイラス メディカル リミテッド | Electrosurgical electrode and instrument |
EP2862535A1 (en) * | 2013-10-15 | 2015-04-22 | Gyrus Medical Limited | Electrosurgical electrode & instrument |
US10376303B2 (en) | 2013-10-15 | 2019-08-13 | Gyrus Medical Limited | Electrosurgical electrode and instrument |
US10912603B2 (en) | 2013-11-08 | 2021-02-09 | Ethicon Llc | Electrosurgical devices |
US10912580B2 (en) | 2013-12-16 | 2021-02-09 | Ethicon Llc | Medical device |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US10856929B2 (en) | 2014-01-07 | 2020-12-08 | Ethicon Llc | Harvesting energy from a surgical generator |
US10932847B2 (en) | 2014-03-18 | 2021-03-02 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US10779879B2 (en) | 2014-03-18 | 2020-09-22 | Ethicon Llc | Detecting short circuits in electrosurgical medical devices |
US11399855B2 (en) | 2014-03-27 | 2022-08-02 | Cilag Gmbh International | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US11471209B2 (en) | 2014-03-31 | 2022-10-18 | Cilag Gmbh International | Controlling impedance rise in electrosurgical medical devices |
US10349999B2 (en) | 2014-03-31 | 2019-07-16 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US11337747B2 (en) | 2014-04-15 | 2022-05-24 | Cilag Gmbh International | Software algorithms for electrosurgical instruments |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US11413060B2 (en) | 2014-07-31 | 2022-08-16 | Cilag Gmbh International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
JPWO2016111029A1 (en) * | 2015-01-07 | 2017-05-25 | オリンパス株式会社 | Treatment tool and treatment system |
US10617466B2 (en) | 2015-01-07 | 2020-04-14 | Olympus Corporation | Treatment instrument and treatment system |
WO2016111029A1 (en) * | 2015-01-07 | 2016-07-14 | オリンパス株式会社 | Treatment instrument and treatment system |
US11311326B2 (en) | 2015-02-06 | 2022-04-26 | Cilag Gmbh International | Electrosurgical instrument with rotation and articulation mechanisms |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11903634B2 (en) | 2015-06-30 | 2024-02-20 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10952788B2 (en) | 2015-06-30 | 2021-03-23 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
JP6147457B1 (en) * | 2015-07-23 | 2017-06-14 | オリンパス株式会社 | Ultrasonic probe and vibrator unit for arthroscopic surgery |
WO2017013886A1 (en) * | 2015-07-23 | 2017-01-26 | オリンパス株式会社 | Ultrasonic probe for arthroscopic surgery and ultrasonic probe unit |
WO2017013887A1 (en) * | 2015-07-23 | 2017-01-26 | オリンパス株式会社 | Ultrasonic probe |
US10905455B2 (en) | 2015-07-23 | 2021-02-02 | Olympus Corporation | Ultrasonic probe |
US10751108B2 (en) | 2015-09-30 | 2020-08-25 | Ethicon Llc | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
US11766287B2 (en) | 2015-09-30 | 2023-09-26 | Cilag Gmbh International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US11058475B2 (en) | 2015-09-30 | 2021-07-13 | Cilag Gmbh International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
US11559347B2 (en) | 2015-09-30 | 2023-01-24 | Cilag Gmbh International | Techniques for circuit topologies for combined generator |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US10194973B2 (en) | 2015-09-30 | 2019-02-05 | Ethicon Llc | Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments |
US10610286B2 (en) | 2015-09-30 | 2020-04-07 | Ethicon Llc | Techniques for circuit topologies for combined generator |
US10687884B2 (en) | 2015-09-30 | 2020-06-23 | Ethicon Llc | Circuits for supplying isolated direct current (DC) voltage to surgical instruments |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10624691B2 (en) | 2015-09-30 | 2020-04-21 | Ethicon Llc | Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US11666375B2 (en) | 2015-10-16 | 2023-06-06 | Cilag Gmbh International | Electrode wiping surgical device |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11751929B2 (en) | 2016-01-15 | 2023-09-12 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10251664B2 (en) | 2016-01-15 | 2019-04-09 | Ethicon Llc | Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly |
US10779849B2 (en) | 2016-01-15 | 2020-09-22 | Ethicon Llc | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
US10842523B2 (en) | 2016-01-15 | 2020-11-24 | Ethicon Llc | Modular battery powered handheld surgical instrument and methods therefor |
US10828058B2 (en) | 2016-01-15 | 2020-11-10 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
US11051840B2 (en) | 2016-01-15 | 2021-07-06 | Ethicon Llc | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
US11684402B2 (en) | 2016-01-15 | 2023-06-27 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US11058448B2 (en) | 2016-01-15 | 2021-07-13 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multistage generator circuits |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US11896280B2 (en) | 2016-01-15 | 2024-02-13 | Cilag Gmbh International | Clamp arm comprising a circuit |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
US11974772B2 (en) | 2016-01-15 | 2024-05-07 | Cilag GmbH Intemational | Modular battery powered handheld surgical instrument with variable motor control limits |
US11134978B2 (en) | 2016-01-15 | 2021-10-05 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US11202670B2 (en) | 2016-02-22 | 2021-12-21 | Cilag Gmbh International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
US10939935B2 (en) | 2016-02-29 | 2021-03-09 | Olympus Corporation | Ultrasonic treatment instrument for articulations, and ultrasonic treatment system for articulations |
US10682155B2 (en) | 2016-03-31 | 2020-06-16 | Olympus Corporation | Ultrasonic treatment system for joint |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US11864820B2 (en) | 2016-05-03 | 2024-01-09 | Cilag Gmbh International | Medical device with a bilateral jaw configuration for nerve stimulation |
US11883055B2 (en) | 2016-07-12 | 2024-01-30 | Cilag Gmbh International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US11344362B2 (en) | 2016-08-05 | 2022-05-31 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US12114914B2 (en) | 2016-08-05 | 2024-10-15 | Cilag Gmbh International | Methods and systems for advanced harmonic energy |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
USD1049376S1 (en) | 2016-08-16 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10420580B2 (en) | 2016-08-25 | 2019-09-24 | Ethicon Llc | Ultrasonic transducer for surgical instrument |
US11925378B2 (en) | 2016-08-25 | 2024-03-12 | Cilag Gmbh International | Ultrasonic transducer for surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11998230B2 (en) | 2016-11-29 | 2024-06-04 | Cilag Gmbh International | End effector control and calibration |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
WO2021060157A1 (en) * | 2019-09-25 | 2021-04-01 | オリンパス株式会社 | Electrode with conduit and treatment tool |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11986234B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Surgical system communication pathways |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
Also Published As
Publication number | Publication date |
---|---|
CN1491616A (en) | 2004-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003116870A (en) | Ultrasonic hand piece and ultrasonic horn used for this | |
JP2002143177A (en) | Ultrasonic hand piece and ultrasonic horn used therefor | |
JP5379501B2 (en) | Ultrasonic treatment device | |
US6379371B1 (en) | Ultrasonic cutting blade with cooling | |
US6033375A (en) | Ultrasonic probe with isolated and teflon coated outer cannula | |
US6443969B1 (en) | Ultrasonic cutting blade with cooling | |
US6270471B1 (en) | Ultrasonic probe with isolated outer cannula | |
EP2032043B1 (en) | Hook shaped ultrasonic cutting blade | |
EP0972493B1 (en) | Ultrasonic trocar | |
CA2602485C (en) | Ultrasonic wound debrider probe and method of use | |
JP4204324B2 (en) | Ultrasonic scalpel | |
JP2005040222A (en) | Ultrasonic treatment apparatus | |
EP3102126B1 (en) | Ultrasonic debrider probe | |
JP2500213B2 (en) | Surgical tools | |
JP2005152098A (en) | Ultrasonic handpiece and ultrasonic horn used for the same | |
EP1311197B1 (en) | Ultrasonic cutting blade with cooling | |
JPH0529696Y2 (en) | ||
JP2006263031A (en) | Ultrasonic surgery implement | |
JPH0546428Y2 (en) | ||
JPH0529701Y2 (en) | ||
JPH0529697Y2 (en) | ||
JPH0529700Y2 (en) | ||
JPS61191350A (en) | Surgical operation tool | |
EP1041932B1 (en) | Ultrasonic probe with isolated outer cannula | |
US20220361910A1 (en) | Ultrasound probe and treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051024 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060302 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060530 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060714 |