Nothing Special   »   [go: up one dir, main page]

JP2003113565A - Formed glassfiber article and forming method therefor - Google Patents

Formed glassfiber article and forming method therefor

Info

Publication number
JP2003113565A
JP2003113565A JP2001311137A JP2001311137A JP2003113565A JP 2003113565 A JP2003113565 A JP 2003113565A JP 2001311137 A JP2001311137 A JP 2001311137A JP 2001311137 A JP2001311137 A JP 2001311137A JP 2003113565 A JP2003113565 A JP 2003113565A
Authority
JP
Japan
Prior art keywords
glass fiber
glass
inorganic binder
fibers
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001311137A
Other languages
Japanese (ja)
Other versions
JP3790694B2 (en
Inventor
Kazuo Kodera
和男 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GLASS FIBER KOGYO KK
Original Assignee
NIPPON GLASS FIBER KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GLASS FIBER KOGYO KK filed Critical NIPPON GLASS FIBER KOGYO KK
Priority to JP2001311137A priority Critical patent/JP3790694B2/en
Publication of JP2003113565A publication Critical patent/JP2003113565A/en
Application granted granted Critical
Publication of JP3790694B2 publication Critical patent/JP3790694B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a formed glassfiber article suitable for the use at a high temperature, keeping the flexibility of the constituent fiber and relatively easily formable to a complicate form at a low cost and provide a method for forming the article. SOLUTION: A core material 11 for vacuum insulation use consisting of a formed glassfiber article is produced by a process comprising an attaching step to immerse a needle mat 1 obtained by the needling of glassfibers in an aqueous solution of a silica sol 2 and squeeze the mat with a roller 4, a compression-molding step to place the mat between a pair of upper and lower heated plates 5 of a hot press and bond the fibers with an inorganic binder attached to the glassfibers to form a compression-molded plate, a welding step to heat the formed needle mat 1 in an electric oven 8 and keep the mat at a temperature lower than the softening point of the glassfiber to weld the glass fiber to the inorganic binder or weld the contact point of the glassfibers with each other and a solidifying step to take the needle mat 1 out of the electric oven 8 and spontaneously cool the mat to solidify the bonded points.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス繊維成形品
及びその成形方法に関するものである。
TECHNICAL FIELD The present invention relates to a glass fiber molded article and a method for molding the same.

【0002】[0002]

【従来の技術】ガラス繊維からマット、ボード、ペーパ
ー等の成形品を成形する方法としては、下記のものがあ
る。 フェルト成形:ガラス短繊維をバインダにより接着
して結合し、フェルトマット状にまとめる方法である。 ニードリング:ガラス長繊維をニードルパンチ加工
により絡み合わせて結合し、やや圧縮されたマット状に
成形する方法である。その表面をバインダで被覆する場
合もある。 抄造:ガラス繊維をバインダ添加水に入れてスラリ
を形成し、このスラリを紙を抄くように掬い上げてから
乾燥させて、ガラス繊維間をバインダにより接着して結
合する方法である。 上記〜に使用される各バインダとしては、澱粉系、
シリコン系、ゴム系等の有機バインダが一般的であり、
有機バインダにシリカ系等の無機バインダを混合する場
合もある。
2. Description of the Related Art There are the following methods for molding molded articles such as mats, boards and papers from glass fibers. Felt molding: A method in which short glass fibers are bonded and bonded with a binder to form a felt mat. Needling: A method in which long glass fibers are entangled with each other by needle punching and bonded to each other to form a slightly compressed mat. The surface may be coated with a binder. Papermaking: A method in which glass fibers are put into a binder-added water to form a slurry, and the slurry is scooped up so as to make paper and then dried, and the glass fibers are bonded and bonded with a binder. Each binder used in the above ~, starch-based,
Organic binders such as silicone and rubber are common,
The organic binder may be mixed with an inorganic binder such as silica.

【0003】ガラス繊維材を無機バインダで固めたガラ
ス繊維成形体を使用する例は、この無機バインダで固め
たガラス繊維成形体に付着させた吸着剤と、これらを密
閉する少なくとも1つの金属箔を有するラミネートフィ
ルムとを具備する断熱パネルがある(特開昭63−18
7084号公報)。
An example of using a glass fiber molded product obtained by hardening a glass fiber material with an inorganic binder is an adsorbent attached to the glass fiber molded product hardened with the inorganic binder and at least one metal foil for sealing them. There is a heat insulation panel provided with the laminated film which has (JP-A-63-18).
7084).

【0004】また、ガラス繊維同士を接着する効果を持
つ方法として、無機質繊維同士を酸処理により、該繊維
の溶出した成分で各接触点を結着させた真空断熱材があ
る(特開平7−167376号公報)。
Further, as a method having an effect of adhering glass fibers to each other, there is a vacuum heat insulating material in which inorganic fibers are treated with an acid to bond each contact point with a component eluted from the fibers (Japanese Patent Laid-Open No. 7- 167376).

【0005】[0005]

【発明が解決しようとする課題】上記のフェルト成形、
ニードリング及び抄造には、後出の表1にまとめた通り
の利点と欠点とがあり、それぞれの利点を生かした用途
に適用されている。しかし、成形品が高温使用に適し、
かつ、種々の形状への成形の容易性があり、成形品の強
度も高くなるといった成形方法はなかった。すなわち、
フェルト成形及び抄造は有機バインダを必須とする。そ
のため、成形品の高温使用時に有機バインダの分解によ
り煙が発生するとか、有機バインダによる結合力が失わ
れて耐熱性がなくなるとか、このようなガラス繊維成形
体を真空包装して用いる場合には、有機バインダが気化
することにより真空度が低下し断熱性能が劣化する問題
があり、高温使用には適さなかった。一方、ニードリン
グはバインダを必須としないため、バインダを被覆をし
ない限りこのような問題はないが、単純板状のマットし
か成形することかできないとか、飛び飛びのニードリン
グ点による結合なので成形品の強度を高めにくいとかと
いう問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Needling and papermaking have advantages and disadvantages as summarized in Table 1 below, and they are applied to applications making use of their respective advantages. However, the molded product is suitable for high temperature use,
In addition, there has been no molding method that facilitates molding into various shapes and increases the strength of the molded product. That is,
Felt molding and papermaking require an organic binder. Therefore, when the molded product is used at high temperature, smoke is generated due to decomposition of the organic binder, or the binding force due to the organic binder is lost to lose heat resistance. However, there is a problem that the degree of vacuum is lowered due to vaporization of the organic binder and the heat insulation performance is deteriorated, and it is not suitable for high temperature use. On the other hand, since the needling does not require a binder, this problem does not occur unless the binder is coated, but it is possible to mold only a simple plate-like mat, or because it is a connection by a discrete needling point. There was a problem that it was difficult to increase the strength.

【0006】無機バインダを使った場合は、無機バイン
ダが粉末化し、被覆材を封止する部分に飛散し、封止が
不完全となって真空度が落ち、断熱性能を高く維持する
ために必要な完全な密閉を阻害する危険性が生じるとい
う問題があった。また、無機バインダにはシリカゾル、
セメント系などがあるが、有機バインダと比較して、耐
圧性に劣るという問題があった。
When an inorganic binder is used, it is necessary to maintain the high heat insulation performance because the inorganic binder is pulverized and scatters in the portion where the coating material is sealed, the sealing is incomplete and the degree of vacuum is lowered. There is a problem that there is a risk of hindering the perfect sealing. Further, silica sol is used as the inorganic binder,
Although there are cement type and the like, there is a problem that the pressure resistance is inferior as compared with the organic binder.

【0007】さらに、無機バインダのみの結着力では、
0.1MPa(1.02kg/cm )加圧での圧縮率
を10%以下にするには、嵩密度の増加を要し、熱伝導
率や真空脱気性を低下させてしまう。また、圧縮率が1
0%を越えると、コア材として断熱容器や袋に入れ真空
排気した際に、真空力で断熱容器や袋が顕著に凹むとい
う問題点を有する。
Furthermore, with the binding force of only the inorganic binder,
0.1 MPa (1.02 kg / cm Two) Compressibility under pressure
Of less than 10% requires an increase in bulk density,
Rate and vacuum deaeration will be reduced. Also, the compression rate is 1
If it exceeds 0%, put it in a heat-insulating container or bag as a core material and vacuum.
When evacuated, the vacuum force may cause the heat insulating container or bag to dent significantly.
Have problems.

【0008】また、酸処理によるガラス繊維同士の結着
方法は、結着部に酸の成分が残りやすく、ステンレス等
の被覆材の腐食劣化を伴いやすく、環境が汚染されると
いう問題があった。
Further, the method of binding glass fibers to each other by acid treatment has a problem that the acid component is likely to remain in the binding portion, the coating material such as stainless steel is likely to be corroded and deteriorated, and the environment is polluted. .

【0009】本発明の目的は、上記課題を解決し、成形
品が高温使用に適し、繊維の持つ柔軟性を維持し、比較
的容易にかつ安価に複雑形状のガラス繊維成形品及びそ
の成形方法を、提供することにある。
An object of the present invention is to solve the above-mentioned problems, to make molded articles suitable for high temperature use, to maintain the flexibility of fibers, and to relatively easily and inexpensively form a glass fiber molded article and a molding method thereof. Is to provide.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明のガラス繊維成形品は、ガラス繊維が該ガラ
ス繊維に付着した無機バインダによる繊維間の固着を伴
って所望の圧縮形状に圧縮成形されるとともに、該ガラ
ス繊維と該無機バインダとの間及び該ガラス繊維同士の
接触点が、ガラスの軟化点より低い温度で融着されてな
ることを特徴とする。
In order to achieve the above object, the glass fiber molded article of the present invention has a glass fiber formed into a desired compressed shape with fixation between the fibers by an inorganic binder adhered to the glass fiber. While being compression-molded, the glass fiber and the inorganic binder and the contact points between the glass fibers are fused at a temperature lower than the softening point of the glass.

【0011】また、本発明のガラス繊維成形品の成形方
法は、ガラス繊維に無機バインダを付着する付着工程
と、該ガラス繊維を所望の圧縮形状に圧縮し、該ガラス
繊維に付着した無機バインダが繊維間を固着することで
圧縮形状を保持する圧縮成形工程と、該ガラス繊維を該
ガラス繊維の軟化点より10〜100℃だけ低い温度に
保持することにより、該ガラス繊維と該無機バインダと
の間及び該ガラス繊維同士の接触点を融着させる融着工
程と、前記ガラス繊維を冷却することにより前記融着を
固化させる固化工程とを含むことを特徴とする。
Further, the method for molding a glass fiber molded article of the present invention comprises a step of adhering an inorganic binder to the glass fiber and a step of compressing the glass fiber into a desired compressed shape so that the inorganic binder adhered to the glass fiber is A compression molding step of maintaining a compressed shape by fixing the fibers, and a temperature of the glass fiber lower than the softening point of the glass fiber by 10 to 100 ° C. to maintain the glass fiber and the inorganic binder. The present invention is characterized by including a fusing step of fusing the spaces and the contact points of the glass fibers with each other, and a solidifying step of cooling the glass fibers to solidify the fusing.

【0012】ガラス繊維を構成するガラスの種類は、特
に限定されないが、Aガラス、Cガラス、Eガラス、T
ガラス等を例示できる。また、ガラス繊維に、ガラス繊
維以外の耐熱性無機繊維(アルミナ繊維、セラミック繊
維、シリカ繊維、ロックウール等)又は耐熱性金属繊維
(ステンレス鋼、クロム−ニッケル系合金、高ニッケル
合金、高コバルト合金等の繊維)を混合することもでき
る。ガラス繊維の繊維径は、特に限定されないが、1〜
30μmが好ましく、真空度にもよるが、細いほど熱伝
導率が低くなり、断熱性能に優れる傾向がある。
The type of glass constituting the glass fiber is not particularly limited, but A glass, C glass, E glass, T
Glass etc. can be illustrated. In addition to glass fibers, heat-resistant inorganic fibers other than glass fibers (alumina fibers, ceramic fibers, silica fibers, rock wool, etc.) or heat-resistant metal fibers (stainless steel, chromium-nickel alloys, high nickel alloys, high cobalt alloys) Fibers) can also be mixed. The fiber diameter of the glass fiber is not particularly limited, but 1 to
The thickness is preferably 30 μm, and although it depends on the degree of vacuum, the thinner it is, the lower the thermal conductivity is and the more excellent the heat insulating performance tends to be.

【0013】無機バインダとしては、シリカゾル、アル
ミナゾル、チタニアゾル、ジルコニアゾル、水ガラス等
を例示でき、これらを混合してもよく、あるいはセラミ
ック粉体、低融点ガラスを添加してもよい。セラミック
粉体を添加する場合、固体熱伝導率の低い粉体のチタニ
ア、窒化珪素が好ましい。さらにこの場合は、空隙が小
さくなり、気体熱伝導がほとんどなくなるため、真空断
熱性能が向上する。一方、セラミック粉体を添加する
と、物体の伝熱点が多くなり、粉体中を熱が伝わる固体
熱伝導が大きくなるため、真空断熱性能が悪化する問題
点がある。そのため、セラミック粉体を添加したガラス
繊維成形品を真空断熱用コア材として使う場合は、その
温度条件にて、相反する熱伝導が最大限に低減できる添
加量に調整することが重要となる。さらに、必要に応じ
て無機バインダの付着分散性と付着力を高めるため、有
機バインダを添加してもよい。有機分は後工程の加熱処
理で気化され、排除することができる。
Examples of the inorganic binder include silica sol, alumina sol, titania sol, zirconia sol, water glass and the like. These may be mixed, or ceramic powder or low melting point glass may be added. When ceramic powder is added, titania and silicon nitride, which are powders having low solid thermal conductivity, are preferable. Further, in this case, the voids become small and the gas heat conduction is almost eliminated, so that the vacuum heat insulation performance is improved. On the other hand, when the ceramic powder is added, the number of heat transfer points of the object increases, and solid heat conduction in which heat is transferred through the powder increases, so that there is a problem that the vacuum heat insulation performance deteriorates. Therefore, when a glass fiber molded product to which ceramic powder is added is used as a core material for vacuum heat insulation, it is important to adjust the addition amount to maximize the reduction of contradictory heat conduction under the temperature conditions. Furthermore, an organic binder may be added as necessary to enhance the adhesion dispersibility and adhesion of the inorganic binder. The organic component is vaporized by the heat treatment in the subsequent step and can be eliminated.

【0014】付着工程は特に限定されないが、ガラス繊
維をニードリングしてなるニードルマットを無機バイン
ダに浸漬し、ローラにて絞る方法を例示できる。圧縮成
形工程は特に限定されないが、ガラス繊維を加熱した挟
み板により圧縮する方法を例示できる。
The attaching step is not particularly limited, but a method of immersing a needle mat formed by needling glass fibers in an inorganic binder and squeezing with a roller can be exemplified. The compression molding step is not particularly limited, but a method of compressing the glass fiber with a heated sandwich plate can be exemplified.

【0015】融着工程は特に限定されないが、無機バイ
ンダで固着して圧縮成形されたガラス繊維を、挟み板よ
りはずして、加熱によりガラス繊維と無機バインダとの
間及びガラス繊維同士の接触点を融着させる方法を例示
できる。この際、ガラス繊維は無機バインダにて外熱よ
り保護された形となっている。加熱条件は限定されない
が、繊維の劣化を防止し、柔軟性を維持するため、軟化
点より10〜100℃だけ低い温度でかつ短時間で融着
処理することが好ましい。
The fusing step is not particularly limited, but the glass fibers fixed by an inorganic binder and compression-molded are removed from the sandwich plate, and the contact points between the glass fibers and the inorganic binder and between the glass fibers are heated by heating. A method of fusing can be exemplified. At this time, the glass fibers are protected from the external heat by the inorganic binder. The heating conditions are not limited, but in order to prevent fiber deterioration and maintain flexibility, it is preferable to perform fusion treatment at a temperature lower by 10 to 100 ° C. than the softening point and in a short time.

【0016】前記温度を「軟化点より10〜100℃だ
け低い温度」としたのは、この範囲の上限より高い温度
ではガラス繊維が溶融しすぎて固まり状に収縮してしま
うおそれがあり、この範囲の下限より低い温度ではガラ
ス繊維の粘度が高すぎて融着しにくくなるからである。
より好ましくは「軟化点より20〜80℃だけ低い温
度」であり、さらに好ましくは「軟化点より30〜60
℃だけ低い温度」である。
The above-mentioned temperature is defined as "temperature lower than the softening point by 10 to 100 ° C.", because at a temperature higher than the upper limit of this range, the glass fiber may be excessively melted and shrunk into a lump. This is because if the temperature is lower than the lower limit of the range, the viscosity of the glass fiber is too high and it becomes difficult to fuse.
More preferably, the temperature is 20 to 80 ° C. lower than the softening point, and further preferably 30 to 60 ° C. from the softening point.
The temperature is lower by ℃.

【0017】「軟化点より10〜100℃だけ低い温
度」は、ガラス繊維を構成するガラスの粘度の観点から
して「粘度が5×10P〜10Pとなる温度」と置
き換えることもできる。粘度が5×10Pより低くな
るとガラス繊維が溶融しすぎて固まり状に収縮してしま
うおそれがあり、粘度が10Pより高くなると融着し
にくくなるからである。より好ましくは「粘度が6×1
P〜8×10Pとなる温度」であり、さらに好ま
しくは「粘度が7×10P〜5×10Pとなる温
度」である。
The "temperature lower than the softening point by 10 to 100 ° C." may be replaced with "the temperature at which the viscosity is 5 × 10 7 P to 10 9 P" from the viewpoint of the viscosity of the glass constituting the glass fiber. it can. This is because if the viscosity is lower than 5 × 10 7 P, the glass fibers may be excessively melted and shrink into a lump, and if the viscosity is higher than 10 9 P, it is difficult to fuse the glass fibers. More preferably, "the viscosity is 6 × 1
“Temperature at which 0 7 P to 8 × 10 8 P is obtained”, and more preferably “Temperature at which viscosity is 7 × 10 7 P to 5 × 10 8 P”.

【0018】ここで、ガラス繊維と無機バインダとの間
及びガラス繊維同士の接触点を例にして融着するメカニ
ズムを説明する。ガラス繊維は非晶質であるため、結晶
質の物質が持っている融点は持たず、温度を上げていっ
たとき、連続的に原始の移動とともに粘度が低下してい
き、液体へ移行してゆく。一般に、ガラスの軟化点とは
粘度4.5×10P(logη=7.65)のときの
温度をいい、ガラスを成形できる下限温度とされてい
る。本発明の成形方法は、このように連続的に変化する
ガラスの粘度を利用し、ガラスの粘度が4.5×10
Pよりやや低いときに、ガラス繊維と無機バインダとの
間及びガラス繊維同士が互いの接触点で融着を起こす現
象を利用し、繊維内部の熱劣化を生じない程度に表面融
着すること、セラミックス粉体の焼結過程におけるネッ
クを短時間で形成できる現象を利用している。実際、現
象的には、セラミックスの焼結よりも、むしろ樹脂の成
形の方が本メカニズムに近いと思われる。また、点接触
の融着であるので、内部に閉じた気泡が取り残されるこ
ともない。
Here, the mechanism of fusion bonding will be described by taking the contact points between the glass fibers and the inorganic binder and between the glass fibers as an example. Since glass fibers are amorphous, they do not have the melting point of crystalline substances, and when the temperature is raised, the viscosity continuously decreases with the migration of the primitive substances, and it shifts to a liquid. go. Generally, the softening point of glass refers to the temperature when the viscosity is 4.5 × 10 7 P (log η = 7.65), which is the lower limit temperature at which the glass can be molded. The molding method of the present invention utilizes the continuously changing viscosity of glass as described above, and the glass has a viscosity of 4.5 × 10 7
When the temperature is slightly lower than P, the phenomenon of fusion between the glass fiber and the inorganic binder and between the glass fibers at the contact points of each other is utilized, and surface fusion is performed to the extent that thermal degradation inside the fiber does not occur, It utilizes the phenomenon that a neck can be formed in a short time during the sintering process of ceramic powder. In fact, in theory, it seems that the molding of resin is closer to this mechanism than the sintering of ceramics. Further, since the fusion is point contact fusion, closed air bubbles are not left behind.

【0019】前記「軟化点より10〜100℃だけ低い
温度」あるいは前記別範囲の各温度に保持する時間は、
その範囲内における温度の高低によって異なり、温度が
高い場合には短くし(例えば1〜20分)、温度が低い
場合には長くする(例えば15〜50分)。また、同時
間は、圧縮形状・寸法によっても異なり、例えば厚さが
大きくて熱が内部にまで伝わりにくい場合には長くす
る。
The time for holding at the temperature "10 to 100 ° C. lower than the softening point" or each temperature in the other range is
Depending on whether the temperature is high or low within the range, it is shortened when the temperature is high (for example, 1 to 20 minutes) and long when the temperature is low (for example, 15 to 50 minutes). In addition, the same time differs depending on the compression shape and size, and is made longer when, for example, the thickness is large and it is difficult to transfer heat to the inside.

【0020】圧縮形状としては、特に限定されないが、
板状(平板状のみならず、湾曲板状、波板状等も含
む)、棒状、ブロック状等や箱状、管状等の複雑形状へ
の成形を、さらに、表面に大きな凹凸を賦形する成形を
例示できる。
The compressed shape is not particularly limited,
Forming into complicated shapes such as plate shape (including not only flat plate shape but also curved plate shape, corrugated plate shape, etc.), rod shape, block shape, box shape, tubular shape, etc., and further forming large irregularities on the surface An example is molding.

【0021】ガラス繊維成形品は、特に限定されない
が、多用されるのは嵩密度が250〜480kg/m
で、0.1MPa加圧にて圧縮率を10%以下であるこ
とが好ましい。圧縮の荷重は、特に限定されず、ごく軽
くてもよいが、圧縮率が大きく高比重(高密度)のもの
を成形するときには荷重を大きくする必要がある。
The glass fiber molded article is not particularly limited, but is often used because it has a bulk density of 250 to 480 kg / m 3.
Then, it is preferable that the compressibility is 10% or less at a pressure of 0.1 MPa. The load of compression is not particularly limited and may be very light, but when molding a product having a high compression ratio and a high specific gravity (high density), it is necessary to increase the load.

【0022】また、「ガラス繊維を所望の圧縮形状に圧
縮する」ことは、「軟化点より10〜100℃だけ低い
温度」あるいは前記別範囲の各温度に保持することより
先に行うことが好ましい。
Further, "compressing the glass fiber into a desired compressed shape" is preferably carried out prior to "holding at a temperature lower than the softening point by 10 to 100 ° C." or each temperature in the other range. .

【0023】ガラス繊維成形品の成形方法を用いたガラ
ス繊維成形品の用途は、特に限定されないが、真空断熱
用コア材を例示できる。
The use of the glass fiber molded product obtained by the method for molding a glass fiber molded product is not particularly limited, but a vacuum heat insulating core material can be exemplified.

【0024】[0024]

【発明の実施の形態】本発明を具体化した真空断熱用コ
ア材及びその成形方法の実施形態について説明する。な
お、実施形態で記す材料、構成、数値等は例示であっ
て、適宜変更できる。 [実施形態] (1)付着工程 図1(a)〜(c)に示すように、Eガラスよりなるガ
ラス繊維をニードリングしてなるニードルマット1(厚
さ10mm、繊維径9μm、嵩密度100kg/m
バインダ不使用)を、シリカゾル2(日産化学工業
(株)製スノーテックスST20)を同重量の水3で希
釈し、浸漬する。その後、ローラ4にて絞りをかけた。
含浸液量は5.5kg/mとなり、ガラス繊維に無機
バインダが付着した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a vacuum heat insulating core material and a molding method thereof embodying the present invention will be described. Note that the materials, configurations, numerical values, etc. described in the embodiments are merely examples, and can be changed as appropriate. [Embodiment] (1) Adhesion step As shown in FIGS. 1A to 1C, a needle mat 1 (thickness 10 mm, fiber diameter 9 μm, bulk density 100 kg) formed by needling glass fibers made of E glass. / M 3 ,
Silica sol 2 (Snowtex ST20 manufactured by Nissan Chemical Industries, Ltd.) is diluted with the same weight of water 3 and the binder is not used. Then, it was squeezed by the roller 4.
The impregnating liquid amount was 5.5 kg / m 2 , and the inorganic binder adhered to the glass fiber.

【0025】(2)圧縮成形工程 次に、図2(a)に示すように、160℃に加熱した両
挟み板5に、絞り後のガラス繊維を狭持し、周縁間に高
さ4mmのストッパ6(金属ゲージ)をセットした。該
ストッパ6で厚さの減少が規制され、所望の圧縮形状に
圧縮される。結局、加熱した両挟み板5による圧縮(熱
間プレス)によりニードルマット1は厚さ4mmに圧縮
され板状(図2(b))となった。この際の、ガラス繊
維14とシリカゾル2の接合の拡大模式図を図3(a)
に示す。この工程では、ガラス繊維14全体を覆ってい
た水分が蒸発するに従って、シリカゾル2が粉末化し固
化することにより、シリカゾル2を介してガラス繊維1
4同士が接合され圧縮成形された。
(2) Compression molding step Next, as shown in FIG. 2 (a), the glass fiber after drawing is sandwiched between both sandwiching plates 5 heated to 160 ° C., and a height of 4 mm is provided between the peripheral edges. The stopper 6 (metal gauge) was set. The stopper 6 regulates the reduction of the thickness and compresses into a desired compression shape. Eventually, the needle mat 1 was compressed to a thickness of 4 mm by compression (hot pressing) by the both sandwiched plates 5 and formed into a plate shape (FIG. 2B). FIG. 3 (a) is an enlarged schematic view of the joining of the glass fiber 14 and the silica sol 2 at this time.
Shown in. In this step, the silica sol 2 is powdered and solidified as the water content covering the entire glass fiber 14 is evaporated, so that the glass fiber 1 passes through the silica sol 2.
4 pieces were joined and compression molded.

【0026】(3)融着工程 次に、図2(c)に示すように、両挟み板5からはず
し、無機バインダが固着することで成形されたニードル
マット1を、耐火物7の上に載せ、電気炉8に入れてヒ
ータ9により加熱し、Eガラス繊維の軟化点840℃よ
り60℃低い780℃に30分保持することにより、ガ
ラス繊維と無機バインダのシリカゾルとの間又はガラス
繊維同士の接触点を融着させた。この際のガラス繊維1
4とシリカゾル2との間及びガラス繊維14同士の融着
部位15の拡大模式図を図3(b)に示す。
(3) Fusing Step Next, as shown in FIG. 2 (c), the needle mat 1 formed by removing from both sandwiching plates 5 and fixing the inorganic binder is placed on the refractory 7. It is placed, placed in an electric furnace 8 and heated by a heater 9 and held at 780 ° C., which is 60 ° C. lower than the softening point 840 ° C. of the E glass fiber, for 30 minutes, so that the space between the glass fiber and the silica sol of the inorganic binder or the glass fibers Of the contact points were fused. Glass fiber 1 at this time
3 (b) is an enlarged schematic view of the fused portion 15 between the glass sol 2 and the silica sol 2 and between the glass fibers 14.

【0027】(4)固化工程 上記30分の保持後、ニードルマット1を電気炉8から
取り出して室温で自然冷却することにより、前記融着を
固化させたところ、厚さ4mm、嵩密度380kg/m
の真空断熱用コア材が成形された。これは、ガラス
繊維250kg/mにシリカゾル固形分が130kg
/mの比率で加味されたことを意味する。
(4) Solidifying Step After the above-mentioned holding for 30 minutes, the needle mat 1 was taken out from the electric furnace 8 and naturally cooled at room temperature to solidify the fusion. The thickness was 4 mm and the bulk density was 380 kg / m
No. 3 vacuum insulation core material was molded. This is because the silica sol solid content is 130 kg in 250 kg / m 3 of glass fiber.
/ M 3 means that it was added.

【0028】この成形体を評価したところ、平均繊維径
9μm、繊維長10〜30mm、強熱減量が0.1%以
下であり、圧縮率が0.10MPa(1.02kg/c
)で10%以下であり、引張強度は12kgf/c
であった。また、500℃大気雰囲気での引張強度
の低下もなく、0.1MPa(1.02kg/cm
加圧による圧縮復元性も100%で変化がなかった。
When this molded product was evaluated, the average fiber diameter was 9 μm, the fiber length was 10 to 30 mm, the loss on ignition was 0.1% or less, and the compressibility was 0.10 MPa (1.02 kg / c).
m 2 ) is 10% or less, and the tensile strength is 12 kgf / c.
It was m 2 . In addition, there is no decrease in tensile strength in the air atmosphere at 500 ° C., and the pressure is 0.1 MPa (1.02 kg / cm 2 ).
The compression recovery property by pressurization was 100% and remained unchanged.

【0029】図2(d)に示すように、この成形された
真空断熱用コア材11の長さ方向の両面から2枚の被覆
材10で真空断熱用コア材11を挟みこみ、真空断熱用
コア材11の周囲端面12を覆うように被覆材10同士
の周辺部を封止材で接着し、真空断熱材13となった。
As shown in FIG. 2D, the vacuum heat insulating core material 11 is sandwiched between two covering materials 10 from both sides in the length direction of the molded vacuum heat insulating core material 11 for vacuum heat insulating. The peripheral portions of the coating materials 10 were bonded with a sealing material so as to cover the peripheral end surface 12 of the core material 11 to form a vacuum heat insulating material 13.

【0030】なお、挟み板5の材質は、ステンレス鋼に
限定されず、例えばセラミックス(アルミナ、SiC
等)でもよい。挟み板5の面積が小さい場合には、材質
の自由度が高いが、挟み板5の面積の大きい場合には、
ステンレス鋼では熱膨張による反りが発生して成形しに
くくなるため、その問題が少ないセラミックスが好まし
い。
The material of the sandwich plate 5 is not limited to stainless steel, but may be ceramics (alumina, SiC, etc.).
Etc.) When the area of the sandwich plate 5 is small, the degree of freedom of the material is high, but when the area of the sandwich plate 5 is large,
In stainless steel, warpage due to thermal expansion occurs and it becomes difficult to form, and thus ceramics that are less problematic are preferable.

【0031】なお、本実施形態における温度条件として
は、Eガラスの軟化点840℃よりも30〜60℃低い
温度に10〜30分保持することが好ましい。例えば8
10℃で長時間保持すると、ボード厚さがストッパ6の
高さ以下になってしまうおそれがあるため、各要求する
サイズに対応した温度と保持時間とが必要である。その
他、例えばCガラスよりなるガラス繊維の場合には、軟
化点760℃よりも30〜60℃低い温度(例えば70
0℃)に10〜30分保持することが好ましい。
As the temperature condition in this embodiment, it is preferable to maintain the temperature at a temperature 30 to 60 ° C. lower than the softening point 840 ° C. of E glass for 10 to 30 minutes. Eg 8
If the substrate is held at 10 ° C. for a long time, the board thickness may be less than the height of the stopper 6, so that the temperature and the holding time corresponding to each required size are required. In addition, for example, in the case of glass fiber made of C glass, a temperature 30 to 60 ° C. lower than the softening point 760 ° C. (eg 70
It is preferable to hold at 0 ° C. for 10 to 30 minutes.

【0032】[比較例1]実施形態で行う融着工程及び
固化工程を行わない例 (1)付着工程 Eガラスよりなるガラス繊維をニードリングしてなるニ
ードルマット(厚さ10mm、繊維9μm、密度100
kg/m、バインダ不使用)に、シリカゾル(日産化
学工業(株)製スノーテックスST20)を同重量の水
で希釈し、浸漬後、ローラーにて絞ると、含浸液量は
5.5kg/mとなり、ガラス繊維に無機バインダが
付着した。
[Comparative Example 1] Example in which the fusion process and the solidification process performed in the embodiment are not performed (1) Adhesion process E Needle mat formed by needling glass fibers made of glass (thickness 10 mm, fiber 9 μm, density 100
Silica sol (Snowtex ST20 manufactured by NISSAN CHEMICAL INDUSTRIES CO., LTD.) was diluted with kg / m 3 of the binder (no binder), and was dipped and then squeezed with a roller to obtain an impregnating liquid amount of 5.5 kg / m 2, and the inorganic binder are adhered to the glass fiber.

【0033】(2)圧縮成形工程 160℃に加熱した両挟み板に、両挟み板に、絞り後の
ガラス繊維を設置し、周縁間に高さ4mmのストッパ
(金属ゲージ)をセットした。概ね5分間プレスするこ
とで、厚み4mm、嵩密度380kg/mの成形体を
得た。ここでは、実施例との比較とするため、加熱処理
は行わない。この成形体を評価したところ、平均繊維径
9μm、繊維長10〜30mm、強熱減量が0.5%で
あり、圧縮率が0.10MPa(1.02kg/c
)で15%であり、引張強度は8kgf/cm
あった。
(2) Compression molding step The glass fibers after drawing were placed on both sandwich plates heated to 160 ° C., and a stopper (metal gauge) having a height of 4 mm was set between the peripheral edges. By pressing for approximately 5 minutes, a molded body having a thickness of 4 mm and a bulk density of 380 kg / m 3 was obtained. Here, for comparison with the example, the heat treatment is not performed. When this molded product was evaluated, the average fiber diameter was 9 μm, the fiber length was 10 to 30 mm, the loss on ignition was 0.5%, and the compression rate was 0.10 MPa (1.02 kg / c).
m 2 ), and the tensile strength was 8 kgf / cm 2 .

【0034】比較例1のように、加熱処理をしないで、
圧縮率を0.10MPa(1.02kg/cm)で1
0%以下とするには、嵩密度を500kg/m以上に
高める必要がある。この場合は、熱伝導率および真空脱
気性の低下による断熱効果の劣化が起こり、また繊維の
柔軟性が拘束され圧縮復元性を損なう傾向がみられた。
As in Comparative Example 1, without heat treatment,
1 at a compression rate of 0.10 MPa (1.02 kg / cm 2 ).
In order to achieve 0% or less, it is necessary to increase the bulk density to 500 kg / m 3 or more. In this case, the thermal conductivity and the vacuum degassing property were deteriorated, so that the heat insulating effect was deteriorated, and the flexibility of the fiber was restricted, and the compression recovery property tended to be impaired.

【0035】[比較例2]実施例に含まれる付着工程及
び圧縮成形工程を行わない例 (1)融着工程・固化工程 Eガラスよりなるガラス繊維をニードリングしてなるニ
ードルマット(厚さ12mm、繊維9μm、嵩密度10
0kg/m、バインダ不使用)1枚のマットを、両挟
み板(ステンレス板(厚さ2mm、SUS304))の
間に設置し、周縁間に高さ4mmのストッパ(SUS3
04)をセットした。
[Comparative Example 2] Example in which the attaching step and the compression molding step included in the example are not performed (1) Fusing step / solidifying step E Needle mat formed by needling glass fiber made of glass (thickness: 12 mm , Fiber 9 μm, bulk density 10
A mat of 0 kg / m 3 , no binder is installed between both sandwich plates (stainless steel plate (thickness 2 mm, SUS304)), and a stopper (SUS3) with a height of 4 mm is provided between the peripheral edges.
04) was set.

【0036】このニードルマットを両挟み板に挟んだま
ま、電気炉を用いて780℃にて30分加熱後、冷却固
化することで、厚さ4mm、嵩密度319kg/m
(面方向の線収縮が約3%発生)の成形体を得た。こ
の成形体を評価したところ、平均繊維径9μm、繊維長
10〜30mm、強熱減量が0.1%以下であり、圧縮
率が0.10MPa(1.02kg/cm)で5%で
あった。
While the needle mat was sandwiched between both sandwich plates, it was heated in an electric furnace at 780 ° C. for 30 minutes and then cooled and solidified to obtain a thickness of 4 mm and a bulk density of 319 kg / m.
A molded product of 3 (linear shrinkage in the plane direction of about 3% occurred) was obtained. When this molded product was evaluated, the average fiber diameter was 9 μm, the fiber length was 10 to 30 mm, the loss on ignition was 0.1% or less, and the compression rate was 5% at 0.10 MPa (1.02 kg / cm 2 ). It was

【0037】この比較例2の方法では、内部の繊維まで
熱劣化を生じやすく、やや圧縮復元性を損なう傾向がみ
られた。また、箱状、管状等の複雑形状への成形や、表
面に大きな凹凸を賦形することが困難である。
In the method of Comparative Example 2, even the fibers inside were prone to thermal deterioration, and there was a tendency to slightly impair the compression recovery property. In addition, it is difficult to form a complex shape such as a box shape or a tubular shape, or to form large irregularities on the surface.

【0038】本発明で述べたような無機バインダで固着
してから融着成形する方法を「無機バインダ融着成
形」、無機バインダのみで成形する比較例1のような成
形方法を「抄造」、無機バインダを用いない比較例2の
ような成形方法を「融着成形」と呼ぶこととし、その利
点及び欠点を前記従来の各成形方法と対比させて次の表
1にまとめた。
"Inorganic binder fusion molding" is a method of fixing with an inorganic binder and then fusion molding as described in the present invention, and "papermaking" is a molding method of Comparative Example 1 in which only an inorganic binder is molded. The molding method like Comparative Example 2 which does not use the inorganic binder is referred to as "fusion molding", and its advantages and disadvantages are summarized in Table 1 below in comparison with the conventional molding methods.

【0039】[0039]

【表1】 [Table 1]

【0040】ここで、「単純形状」とは板状、棒状、ブ
ロック状等の単純形状への成形の容易性をいい、「複雑
形状」とは箱状、管状等の複雑形状への成形の容易性を
いう。また、「耐熱性」とはガラス繊維自体の耐熱性で
はなく、ガラス繊維及び他素材を総合した成形品として
の耐熱性をいう。ガラス繊維に樹脂等の有機分を加える
必要のあるものは有機分の耐熱性が成形品の耐熱性を決
めてしまう。
Here, the "simple shape" refers to the ease of forming into a simple shape such as a plate shape, a rod shape, or a block shape, and the "complex shape" refers to forming into a complicated shape such as a box shape or a tubular shape. Says the ease. Further, the "heat resistance" does not mean the heat resistance of the glass fiber itself, but the heat resistance of a molded product obtained by integrating the glass fiber and other materials. In the case of glass fibers to which organic matter such as resin needs to be added, the heat resistance of the organic matter determines the heat resistance of the molded product.

【0041】無機バインダ融着成形の利点は次の通りで
ある。 比較的表層部の熱処理による融着のため、内部の繊
維の柔軟性を維持しており、圧縮復元性を損なうことも
ない。 治具さえよければ、比較的簡単に大型(大面積)の
ボードができる。 有機分を全く含まないので、高温使用時に煙が出な
いので、真空状態で使用する場合の真空劣化が、長期に
わたって生じない。 表面の軟らかさや比重(嵩密度)の変更が条件設定
で容易にできる。 無機バインダのみで成形した場合の表面の粉っぽさ
がない。 箱状、管状等の複雑形状への成形や、表面に大きな
凹凸を賦形することが比較的簡単である。
The advantages of the inorganic binder fusion molding are as follows. Due to the fusion of the surface layer by heat treatment, the flexibility of the fibers inside is maintained, and the compression recovery is not impaired. A large (large-area) board can be made relatively easily with a jig. Since it does not contain organic matter at all, no smoke is emitted during high temperature use, and therefore vacuum deterioration does not occur for a long time when used in a vacuum state. The softness and specific gravity (bulk density) of the surface can be easily changed by setting the conditions. There is no powdery surface when molded with only an inorganic binder. It is relatively easy to form a complex shape such as a box shape or a tubular shape, or to form large irregularities on the surface.

【0042】この無機バインダ融着成形によるガラス繊
維成形体の用途は、特に限定されないが、各種断熱容
器、各種熱機器等に使用される断熱材(特に断熱用コア
材)に好適である。現時点では、400℃前後で使用す
る真空断熱容器の断熱用コア材、−20〜80℃で使用
する真空断熱用コア材(例えば魔法瓶の真空断熱用コア
材)が予定されており、主に上記の利点を生かした用
途である。その他、ケイカル板やセラミックボードが使
用されている用途であって、かつ最高500℃位までの
用途に適している。
The use of the glass fiber molded body obtained by the fusion molding of the inorganic binder is not particularly limited, but it is suitable for a heat insulating material (in particular, a heat insulating core material) used in various heat insulating containers, various heat appliances and the like. At present, the heat insulating core material of the vacuum heat insulating container to be used at around 400 ° C and the vacuum heat insulating core material to be used at -20 to 80 ° C (for example, the vacuum heat insulating core material of a thermos bottle) are planned. It is an application that makes full use of the advantage of. In addition, it is suitable for applications in which a calcareous board or a ceramic board is used and up to about 500 ° C.

【0043】なお、本発明は前記実施形態の構成に限定
されず、例えば以下のように、発明の趣旨から逸脱しな
い範囲で適宜変更して具体化することもできる。 (1)ニードルマット1の枚数を1枚にし又は重ね枚数
を2枚若しくは4枚以上にすること。 (2)種類の異なるニードルマット1を重ねること。 (3)断面コの字型の成形体を2つを組み合わせること
で、箱状とすること。
The present invention is not limited to the configuration of the above-described embodiment, and may be embodied with appropriate modifications, for example, as follows, without departing from the spirit of the invention. (1) The number of the needle mats 1 should be one, or the number of layers should be two or four or more. (2) To stack different types of needle mats 1. (3) Forming a box by combining two shaped bodies with a U-shaped cross section.

【0044】[0044]

【発明の効果】以上詳述したように、本発明に係るガラ
ス繊維成形品及びその成形方法によれば、成形品が高温
使用に適し、繊維の持つ柔軟性を維持し、複雑形状を比
較的容易にかつ安価にできるという優れた効果を奏す
る。
As described above in detail, according to the glass fiber molded product and the molding method thereof according to the present invention, the molded product is suitable for high temperature use, the flexibility of the fiber is maintained, and the complex shape is comparatively formed. It has an excellent effect that it can be made easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る(a)ニードルマッ
ト、(b)無機バインダ処理、(c)無機バインダ処理
後のローラ絞りを示す説明図である。
FIG. 1 is an explanatory diagram showing (a) a needle mat, (b) an inorganic binder treatment, and (c) a roller squeeze after an inorganic binder treatment according to an embodiment of the present invention.

【図2】同実施形態に係る(a)(b)両挟み板使用
図、(c)電気炉内設置図、(d)真空断熱用コア材を
示す説明図である。
FIG. 2 is (a), (b) both sandwich plate usage diagrams, (c) electric furnace installation diagram, and (d) an explanatory diagram showing a vacuum heat insulating core material according to the embodiment.

【図3】同実施形態に係る(a)ガラス繊維と無機バイ
ンダの接合の拡大模式図、(b)融着後のガラス繊維と
無機バインダの接合の拡大模式図を示す。
3A and 3B are enlarged schematic diagrams of the joining of the glass fiber and the inorganic binder according to the same embodiment, and FIG. 3B is an enlarged schematic diagram of the joining of the glass fiber and the inorganic binder after fusion.

【符号の説明】[Explanation of symbols]

1 ニードルマット 2 シリカゾル 5 挟み板 8 電気炉 11 真空断熱用コア材 14 ガラス繊維 15 融着部位 1 Needle mat 2 Silica sol 5 sandwich plate 8 electric furnace 11 Vacuum insulation core material 14 glass fiber 15 Fusion part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維が該ガラス繊維に付着した無
機バインダによる繊維間の固着を伴って所望の圧縮形状
に圧縮成形されるとともに、該ガラス繊維と該無機バイ
ンダとの間及び該ガラス繊維同士の接触点が、ガラスの
軟化点より低い温度で融着されてなるガラス繊維成形
品。
1. A glass fiber is compression-molded into a desired compression shape with fixation between fibers by an inorganic binder adhered to the glass fiber, and the glass fiber is sandwiched between the inorganic fiber and the glass fiber. A glass fiber molded product obtained by fusing at a contact point of less than the softening point of glass.
【請求項2】 ガラス繊維に無機バインダを付着する付
着工程と、該ガラス繊維を所望の圧縮形状に圧縮し、該
ガラス繊維に付着した無機バインダが繊維間を固着する
ことで圧縮形状を保持する圧縮成形工程と、該ガラス繊
維を該ガラス繊維の軟化点より10〜100℃だけ低い
温度に保持することにより、該ガラス繊維と該無機バイ
ンダとの間及び該ガラス繊維同士の接触点を融着させる
融着工程と、前記ガラス繊維を冷却することにより前記
融着を固化させる固化工程とを含むガラス繊維成形品の
成形方法。
2. An adhering step of adhering an inorganic binder to glass fibers, compressing the glass fibers into a desired compressed shape, and the inorganic binder adhered to the glass fibers holds the compressed shape by fixing the fibers together. By a compression molding step and maintaining the glass fiber at a temperature lower than the softening point of the glass fiber by 10 to 100 ° C., the contact points between the glass fiber and the inorganic binder and the contact points between the glass fibers are fused to each other. A method for molding a glass fiber molded article, which includes a fusion step of: and a solidification step of solidifying the fusion by cooling the glass fiber.
【請求項3】 ガラス繊維に無機バインダを付着する付
着工程と、該ガラス繊維を所望の圧縮形状に圧縮し、該
ガラス繊維に付着した無機バインダが繊維間を固着する
ことで圧縮形状を保持する圧縮成形工程と、該ガラス繊
維を粘度が5×10P〜10Pとなる温度に保持す
ることにより、該ガラス繊維と該無機バインダとの間及
び該ガラス繊維同士の接触点を融着させる融着工程と、
前記ガラス繊維を冷却することにより前記融着を固化さ
せる固化工程とを含むガラス繊維成形品の成形方法。
3. An adhering step of adhering an inorganic binder to glass fibers, and compressing the glass fibers into a desired compression shape, and the inorganic binder adhering to the glass fibers fixes the fibers to maintain the compression shape. By the compression molding step and maintaining the glass fiber at a temperature at which the viscosity becomes 5 × 10 7 P to 10 9 P, the contact points between the glass fiber and the inorganic binder and the contact points between the glass fibers are fused. Fusing process to
A method of molding a glass fiber molded article, which includes a solidifying step of solidifying the fusion by cooling the glass fiber.
【請求項4】 前記付着工程は、前記ガラス繊維を無機
バインダに浸漬し、絞る請求項2又は3記載のガラス繊
維成形品の成形方法。
4. The method for molding a glass fiber molded article according to claim 2, wherein in the attaching step, the glass fiber is immersed in an inorganic binder and squeezed.
【請求項5】 前記圧縮成形工程は、前記ガラス繊維を
加熱した挟み板により圧縮する請求項2又は3記載のガ
ラス繊維成形品の成形方法。
5. The method for molding a glass fiber molded article according to claim 2, wherein in the compression molding step, the glass fiber is compressed by a sandwich plate that is heated.
【請求項6】 前記融着工程は、前記無機バインダで固
着して圧縮成形された前記ガラス繊維を、挟み板よりは
ずして、行う請求項2又は3記載のガラス繊維成形品の
成形方法。
6. The method for molding a glass fiber molded article according to claim 2, wherein the fusion bonding step is carried out by removing the glass fiber fixed by the inorganic binder and compression molded from the sandwich plate.
【請求項7】 前記ガラス繊維が、ガラス繊維をニード
リングしてなるニードルマットである請求項1記載のガ
ラス繊維成形品又は請求項2若しくは3記載のガラス繊
維成形品の成形方法。
7. The method for molding a glass fiber molded product according to claim 1 or a glass fiber molded product according to claim 2 or 3, wherein the glass fiber is a needle mat formed by needling glass fiber.
【請求項8】 前記ガラス繊維成形品は、嵩密度が25
0〜480kg/m で、0.1MPa加圧にて圧縮率
を10%以下であることを特徴とする請求項1記載のガ
ラス繊維成形品又は請求項2若しくは3記載ガラス繊維
成形品の成形方法。
8. The glass fiber molded article has a bulk density of 25.
0-480kg / m ThreeThen, compressibility at 0.1 MPa pressurization
Is less than or equal to 10%.
Lath fiber molded product or glass fiber according to claim 2 or 3.
Molding method for molded products.
【請求項9】 前記ガラス繊維成形品は、真空断熱用コ
ア材であることを特徴とする請求項1記載のガラス繊維
成形品又は請求項2若しくは3記載ガラス繊維成形品の
成形方法。
9. The glass fiber molded product according to claim 1, or the glass fiber molded product according to claim 2 or 3, wherein the glass fiber molded product is a vacuum heat insulating core material.
JP2001311137A 2001-10-09 2001-10-09 Glass fiber molded article and molding method thereof Expired - Lifetime JP3790694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001311137A JP3790694B2 (en) 2001-10-09 2001-10-09 Glass fiber molded article and molding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001311137A JP3790694B2 (en) 2001-10-09 2001-10-09 Glass fiber molded article and molding method thereof

Publications (2)

Publication Number Publication Date
JP2003113565A true JP2003113565A (en) 2003-04-18
JP3790694B2 JP3790694B2 (en) 2006-06-28

Family

ID=19130011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001311137A Expired - Lifetime JP3790694B2 (en) 2001-10-09 2001-10-09 Glass fiber molded article and molding method thereof

Country Status (1)

Country Link
JP (1) JP3790694B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316901A (en) * 2005-05-12 2006-11-24 Asahi Fiber Glass Co Ltd Manufacturing method of core material for vacuum heat insulating material, and vacuum heat insulating material
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
WO2013103199A1 (en) * 2012-01-05 2013-07-11 (주)엘지하우시스 Glass fiber board comprising inorganic binder and method for preparing same
CN103307409A (en) * 2013-05-29 2013-09-18 安徽循环经济技术工程院 Vacuum insulation panel adopting acupuncture cotton-glass fiber combined core material and preparation method of vacuum insulation panel
WO2016140156A1 (en) * 2015-03-02 2016-09-09 藤田 鉦則 Molded body, construction material, vehicle, ship, aircraft, and electrical appliance comprising the molded body, and method for producing molded body
JP2017040255A (en) * 2015-07-28 2017-02-23 イソライト ゲーエムベーハー Continuously fiber-molded article
JP2019148031A (en) * 2018-02-27 2019-09-05 井前工業株式会社 Three-dimensional shape compact and method for producing the same
WO2021127804A1 (en) * 2019-12-23 2021-07-01 滁州银兴新材料科技有限公司 Method for manufacturing thermal insulation panel, and thermal insulation panel using same, and thermal insulation wall

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316901A (en) * 2005-05-12 2006-11-24 Asahi Fiber Glass Co Ltd Manufacturing method of core material for vacuum heat insulating material, and vacuum heat insulating material
JP2013508652A (en) * 2010-01-05 2013-03-07 エルジー・ハウシス・リミテッド Vacuum insulation panel and method of manufacturing the same
WO2013103199A1 (en) * 2012-01-05 2013-07-11 (주)엘지하우시스 Glass fiber board comprising inorganic binder and method for preparing same
KR101417243B1 (en) * 2012-01-05 2014-07-09 (주)엘지하우시스 Glass wool board including inorganic binder and manufacturing method thereof
CN104040067A (en) * 2012-01-05 2014-09-10 乐金华奥斯有限公司 Glass fiber board comprising inorganic binder and method for preparing same
US9970588B2 (en) 2012-01-05 2018-05-15 Lg Hausys, Ltd. Glass fiber board comprising inorganic binder and method for preparing the same
CN103307409A (en) * 2013-05-29 2013-09-18 安徽循环经济技术工程院 Vacuum insulation panel adopting acupuncture cotton-glass fiber combined core material and preparation method of vacuum insulation panel
WO2016140156A1 (en) * 2015-03-02 2016-09-09 藤田 鉦則 Molded body, construction material, vehicle, ship, aircraft, and electrical appliance comprising the molded body, and method for producing molded body
JP2017040255A (en) * 2015-07-28 2017-02-23 イソライト ゲーエムベーハー Continuously fiber-molded article
JP2019148031A (en) * 2018-02-27 2019-09-05 井前工業株式会社 Three-dimensional shape compact and method for producing the same
WO2021127804A1 (en) * 2019-12-23 2021-07-01 滁州银兴新材料科技有限公司 Method for manufacturing thermal insulation panel, and thermal insulation panel using same, and thermal insulation wall

Also Published As

Publication number Publication date
JP3790694B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
TWI403576B (en) Metal based composites material containing carbon and manufacturing method thereof
CA2505593C (en) Semiconductor substrate having copper/diamond composite material and method of making same
JP4860005B1 (en) Insulating material and manufacturing method thereof
TW426639B (en) Bonding of silicon carbide components
JPH0355719B2 (en)
JP2004308691A (en) Vacuum heat insulating material and manufacturing method thereof
WO1996040498A1 (en) Fibrous insulation product having inorganic binders
JP2003113565A (en) Formed glassfiber article and forming method therefor
WO2002081405A1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP2016033419A (en) Manufacturing method of heat insulation plate and vacuum heat insulation material
CN101984112B (en) High thermal conductivity copper-reinforced aluminum composite material and preparation method thereof
JPS60253535A (en) Composite member
JP2023164450A (en) High temperature heat insulation material
US5925451A (en) Composite ceramic board and process for the productivity thereof
CN107387944B (en) Environment-friendly vacuum insulation board
JP5057904B2 (en) Temperature control plate and manufacturing method thereof
JP2006017169A (en) Vacuum heat insulating material, core material for vacuum heat insulating material and its producing method
JP2012036283A (en) Ceramic seal material and method of using the same
JP4728506B2 (en) Molding method of glass fiber molded product
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
JP2004323789A (en) Composite material for sliding member and method for producing the same
CZ288097A3 (en) Heat-insulating profiled body and process for producing thereof
JP3548151B2 (en) Vacuum insulation material and method of manufacturing the same
CN115138851B (en) Preparation method of copper-diamond electronic packaging material integrating heat pipe function
JP3593416B2 (en) Brazing sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060403

R150 Certificate of patent or registration of utility model

Ref document number: 3790694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250