JP2003101032A - Minute structure unit having movable structure part and method of manufacturing the same - Google Patents
Minute structure unit having movable structure part and method of manufacturing the sameInfo
- Publication number
- JP2003101032A JP2003101032A JP2001291537A JP2001291537A JP2003101032A JP 2003101032 A JP2003101032 A JP 2003101032A JP 2001291537 A JP2001291537 A JP 2001291537A JP 2001291537 A JP2001291537 A JP 2001291537A JP 2003101032 A JP2003101032 A JP 2003101032A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- movable structure
- movable
- microstructure
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P2015/0805—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
- G01P2015/0822—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
- G01P2015/084—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
- G01P2015/0842—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape
Landscapes
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、可動構造部を有する微
小構造体に関し、特に、可動構造部の動きに応じて出力
信号を得る加速度センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microstructure having a movable structure, and more particularly to an acceleration sensor which obtains an output signal according to the movement of the movable structure.
【0002】[0002]
【従来の技術】可動構造部を利用したセンサには種々の
タイプのものがある。例えば、慣性センサとして代表的
なものとして、加速度センサや角加速度センサ(振動ジ
ャイロ)がある。2. Description of the Related Art There are various types of sensors using a movable structure. For example, typical inertial sensors include an acceleration sensor and an angular acceleration sensor (vibration gyro).
【0003】自動車などの車両の加速度を検出する加速
度センサは、一般に、半導体のピエゾ抵抗効果を利用し
ている。このようなセンサは、例えば、シリコン基体に
空洞部を形成し、その中に3次元方向に動くことができ
る箱形の可動構造部を収容している。可動構造部にはピ
エゾ素子が連結されており、可動構造部の動きに対応し
た応力がピエゾ素子に加わるように構成されている。そ
して、ピエゾ素子に加わる応力の変化を抵抗の変化とし
て検出し、当該検出結果を用いて車両の走行制御などを
行っている。An acceleration sensor for detecting the acceleration of a vehicle such as an automobile generally utilizes the piezoresistive effect of a semiconductor. In such a sensor, for example, a cavity is formed in a silicon substrate, and a box-shaped movable structure that can move in a three-dimensional direction is accommodated in the cavity. A piezo element is connected to the movable structure section, and a stress corresponding to the movement of the movable structure section is applied to the piezo element. Then, a change in stress applied to the piezo element is detected as a change in resistance, and the traveling result of the vehicle is controlled using the detection result.
【0004】ところで、上記のようにシリコン基体に収
容される可動構造部は、動けることが重要であるが、過
剰に動いた場合には、センサの破壊につながることもあ
る。そこで、従来においては、例えば、特公平5−71
148号公報に開示されているように、可動構造部の上
下方向の過剰動作を防止するための、ガラス製のストッ
パーが設けられている。By the way, it is important that the movable structure housed in the silicon substrate as described above can move, but if it moves excessively, it may lead to destruction of the sensor. Therefore, in the past, for example, Japanese Patent Publication No.
As disclosed in Japanese Patent Publication No. 148, a stopper made of glass is provided to prevent excessive movement of the movable structure in the vertical direction.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
ようにガラス製のストッパーを設けると、センサ(チッ
プ)の厚みが増すという問題点があった。また、ガラス
の接合工程が煩雑であり、製造コストの増加につなが
る。更に、ガラスとシリコンの接合による応力がセンサ
特性に影響することも否定できない。However, when the glass stopper is provided as in the conventional case, there is a problem that the thickness of the sensor (chip) increases. Further, the glass bonding process is complicated, which leads to an increase in manufacturing cost. Furthermore, it cannot be denied that the stress due to the bonding of glass and silicon affects the sensor characteristics.
【0006】従って、本発明の目的は、厚みの増加を最
小限に抑えることが可能であり、実質的に微小構造体の
特性への影響が無く、簡易且つ低コストで製造可能な微
小構造体を提供することを目的とする。Therefore, an object of the present invention is to reduce the increase in thickness to a minimum, substantially without affecting the characteristics of the microstructure, and to manufacture the microstructure easily and at low cost. The purpose is to provide.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明の第1の態様に係る微小構造体は、可動構造
部を3次元方向に移動可能に収容した基体を備え;可動
構造部は、基体に収容された時に、少なくとも1面が外
部に露出した状態であり;所定の間隙を介して可動構造
部の露出した面を覆うように形成され、当該可動部の過
剰な動きを防止する薄膜を設けている。In order to achieve the above object, a microstructure according to a first aspect of the present invention comprises a base body in which a movable structure portion is housed so as to be movable in three dimensions. The part has a state in which at least one surface is exposed to the outside when it is accommodated in the base body; it is formed so as to cover the exposed surface of the movable structure part through a predetermined gap to prevent excessive movement of the movable part. A thin film is provided to prevent this.
【0008】好ましくは、薄膜は、弾性部材を介して基
体に連結される。これにより、可動構造部の衝撃を吸収
することができ、可動構造部の過剰な動きによるセンサ
破壊の確率を低減させることが可能となる。[0008] Preferably, the thin film is connected to the base body via an elastic member. As a result, the impact of the movable structure can be absorbed, and the probability of sensor destruction due to excessive movement of the movable structure can be reduced.
【0009】また、薄膜を網目状に成形した場合には、
可動構造部が過剰に動いて当該薄膜に衝突したときの衝
撃が分散され、センサ破壊の確率を低減させることが可
能となる。更に、弾性部材がスプリング構造であると、
そのバネ性によって、より衝撃が吸収されやすく、セン
サ破壊の確率を一層低減できる。When the thin film is formed into a mesh,
The impact when the movable structure moves excessively and collides with the thin film is dispersed, and the probability of sensor destruction can be reduced. Furthermore, if the elastic member has a spring structure,
Due to the elasticity, the shock is more easily absorbed, and the probability of sensor destruction can be further reduced.
【0010】本発明の第2の態様に係る微小構造体の製
造方法においては、基体上に犠牲層を形成し;犠牲層上
に薄膜を形成する。そして、可動構造部を形成した後、
犠牲層を除去する。In the method for manufacturing a microstructure according to the second aspect of the present invention, a sacrificial layer is formed on the substrate; and a thin film is formed on the sacrificial layer. Then, after forming the movable structure part,
The sacrificial layer is removed.
【0011】薄膜を形成するに際し、ダイシング及びワ
イヤボンディングなどのアセンブリ工程の後に犠牲層を
除去すれば、アセンブリ工程における薄膜ストッパの破
壊を回避することができる。When the thin film is formed, if the sacrificial layer is removed after the assembly process such as dicing and wire bonding, the thin film stopper can be prevented from being broken in the assembly process.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施の形態につい
て、加速度センサを例にとって説明する。なお、本発明
は、角加速度センサ(振動ジャイロ)等の他の慣性セン
サに加えて、アクチュエータ等の可動構造部を有するあ
らゆるタイプの微小構造体(MEMS)に適用可能であ
る。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below by taking an acceleration sensor as an example. The present invention is applicable to all types of microstructures (MEMS) having a movable structure portion such as an actuator, in addition to other inertial sensors such as an angular acceleration sensor (vibration gyro).
【0013】図1は、本発明の実施例に係る加速度セン
サ10の構造を示す斜視図である。図2は、加速度セン
サ10の薄膜ストッパを省略した構造を示す斜視図であ
る。図3は、加速度センサ10の構造を示す平面図であ
る。また、図4は、加速度センサ10の内部構造を示す
断面図である。本実施例に係る加速度センサ10は、シ
リコン基体12と、シリコン基体12の中央付近におい
て上下左右のあらゆる方向に移動可能に収容された可動
構造部(可動マス)14とを備えている。シリコン基体
12の内側には、箱形の空間が形成されており、その中
に可動構造部14が収容される。可動構造部14は、慣
性力を向上させるために、4つの正方形を中央で連結し
た所謂クローバー型に成形されている。なお、シリコン
基体12と可動構造部14との上面は、同一面となるよ
うに設計されている。FIG. 1 is a perspective view showing the structure of an acceleration sensor 10 according to an embodiment of the present invention. FIG. 2 is a perspective view showing a structure in which the thin film stopper of the acceleration sensor 10 is omitted. FIG. 3 is a plan view showing the structure of the acceleration sensor 10. 4 is a sectional view showing the internal structure of the acceleration sensor 10. The acceleration sensor 10 according to the present embodiment includes a silicon substrate 12 and a movable structure portion (movable mass) 14 that is housed near the center of the silicon substrate 12 so as to be movable in all directions of up, down, left and right. A box-shaped space is formed inside the silicon substrate 12, and the movable structure portion 14 is accommodated therein. The movable structure portion 14 is formed in a so-called clover shape in which four squares are connected at the center in order to improve the inertial force. The upper surfaces of the silicon base 12 and the movable structure 14 are designed to be flush with each other.
【0014】センサ10は、また、可動構造部14とシ
リコン基体12とを連結する4本のビーム(支持梁)1
6と、ビーム16とシリコン基体12との連結部分に跨
って配置された8個のピエゾ抵抗素子18とを備えてい
る。各ビーム16は、可動構造部14のクローバーの葉
と葉の間に対応する位置に配置される。シリコン基体1
2の上面には、電極パッド20が形成されており、図示
しない配線によってピエゾ抵抗素子18と電気的に接続
されている。The sensor 10 also includes four beams (support beams) 1 for connecting the movable structure 14 and the silicon substrate 12.
6 and eight piezoresistive elements 18 arranged across the connecting portion between the beam 16 and the silicon substrate 12. Each beam 16 is arranged at a corresponding position between leaves of the clover of the movable structure portion 14. Silicon substrate 1
An electrode pad 20 is formed on the upper surface of 2, and is electrically connected to the piezoresistive element 18 by a wiring (not shown).
【0015】可動構造部14の上面には、所定の間隙を
介して当該可動構造部14を覆うように形成された薄膜
ストッパ22が配置されている。薄膜ストッパ22は、
網目状に成形されているが、穴の空いていない薄膜を使
用することもできる。薄膜ストッパ22は、正方形状に
成形されており、四隅及び各辺の中央部付近において、
弾性部32を介してシリコン基体12に連結固定されて
いる。弾性部32は、薄膜の一部をスプリング構造にパ
ターンニングすることによって形成され、アンカー部3
4を介してシリコン基体12に固定される。ここで、所
定の間隙とは、可動構造部14の上方向への過動を十分
に制止できるか又は、吸収することができるだけの距離
的な余裕、又は隙間のことを言い、それぞれのサイズに
よって設計上適宜選択される。A thin film stopper 22 is formed on the upper surface of the movable structure portion 14 so as to cover the movable structure portion 14 with a predetermined gap therebetween. The thin film stopper 22 is
Although it is formed in a mesh shape, it is also possible to use a thin film having no holes. The thin film stopper 22 is formed in a square shape, and in the four corners and near the center of each side,
It is connected and fixed to the silicon substrate 12 via the elastic portion 32. The elastic portion 32 is formed by patterning a part of the thin film into a spring structure, and the anchor portion 3 is formed.
It is fixed to the silicon substrate 12 via 4. Here, the predetermined gap refers to a distance margin or a gap that can sufficiently suppress or absorb the upward movement of the movable structure portion 14, or a gap depending on each size. It is appropriately selected in design.
【0016】図3(a),(b)に示すように、シリコ
ン基体12は、ダイボンド面24上に固定されている。
上述したように、可動構造部14はシリコン基体12の
内側空間内で上下左右に移動可能であるが、下方向への
過動はダイボンド面24によって制止され、水平方向の
過動はシリコン基体12の内壁面によって制止される。
そして、可動構造部14の上方向への過動は、薄膜スト
ッパ22によって制止される。ここで、「過動」とは、
センサなどの微小構造体が正常に動作しなくなる程度の
動き、例えば、構造体が破壊される以上の動き、若しく
は、センサ出力の最大定格以上の動き等を言う。As shown in FIGS. 3A and 3B, the silicon substrate 12 is fixed on the die bond surface 24.
As described above, the movable structure portion 14 can move vertically and horizontally in the inner space of the silicon substrate 12, but the downward movement is stopped by the die bond surface 24, and the horizontal movement is prevented from occurring. It is stopped by the inner wall of the.
The upward movement of the movable structure 14 is stopped by the thin film stopper 22. Here, "overactivity" means
It refers to a movement to the extent that a microstructure such as a sensor does not operate normally, for example, movement above the destruction of the structure or movement above the maximum rating of the sensor output.
【0017】次に、上述した加速度センサ10の製造工
程について、図5を参照して説明する。最初に、活性層
(Si)42;埋め込み酸化膜層(SiO2)41;S
i基板からなるSOI基板40を用意し、SOI基板4
0の活性層42上(上表面側)に半導体加工技術を用
い、ピエゾ抵抗素子18,金属配線及び電極パッド20
を配列形成してブリッジ回路を構成する。その後、Si
N等の保護膜(図示せず)を形成し、図5(A)に示す
ように、可動構造部14に対応したパターン14‘及び
ビーム16とをSOI基板40の活性層42に形成す
る。Next, a manufacturing process of the acceleration sensor 10 described above will be described with reference to FIG. First, the active layer (Si) 42; the buried oxide film layer (SiO 2 ) 41; S
The SOI substrate 40 including the i substrate is prepared, and the SOI substrate 4
0 on the active layer 42 (upper surface side) by using a semiconductor processing technique, the piezoresistive element 18, the metal wiring and the electrode pad
To form a bridge circuit. Then Si
A protective film (not shown) of N or the like is formed, and as shown in FIG. 5A, the pattern 14 ′ corresponding to the movable structure portion 14 and the beam 16 are formed on the active layer 42 of the SOI substrate 40.
【0018】次に、図5(B)に示すように、SOI基
板40上に有機薄膜(レジスト、ポリイミド等)を塗布
後、パターニングして犠牲層44を形成する。この犠牲
層の膜厚が可動構造部14と薄膜ストッパ22までの間
隙の距離となる。次に、図5(C)に示すように、薄膜
ストッパ22となる薄膜(アルミニウム等の金属又は、
無機膜等)を形成してパターニングする。薄膜ストッパ
22のパターンは、支持部(アンカー部)から延びるス
プリング構造部32を有する。また、後に犠牲層44を
エッチングしやすくするために、エッチングホールを形
成することが好ましい。Next, as shown in FIG. 5B, after applying an organic thin film (resist, polyimide, etc.) on the SOI substrate 40, patterning is performed to form a sacrificial layer 44. The film thickness of the sacrificial layer is the distance between the movable structure 14 and the thin film stopper 22. Next, as shown in FIG. 5C, a thin film (metal such as aluminum or
An inorganic film or the like) is formed and patterned. The pattern of the thin film stopper 22 has a spring structure portion 32 extending from the support portion (anchor portion). Further, it is preferable to form an etching hole so that the sacrifice layer 44 can be easily etched later.
【0019】その後、Si基板側(下側)からSi De
ep RIE (Reactive IonEtching)によって可動構造部14
を形成し、埋め込み酸化膜をエッチングすることによ
り、可動構造部14をリリースする。可動構造部14が
完成した後、O2プラズマエッチングによって犠牲層4
4のエッチングを行い、図5(D)に示すように、薄膜
ストッパ22を形成する。その後、ダイシングによって
個々のセンサチップに切断し、このセンサチップをパッ
ケージにボンディングし、センサチップ10の電極パッ
ド20とパッケージのリードパッド(図示せず)をワイ
ヤボンディングする。なお、犠牲層44の除去は、上述
したダイシングやワイヤボンディング等のアセンブリ工
程後に行うこともできる。この場合、アセンブリ工程に
おける薄膜ストッパ22の破壊を回避することができ
る。Then, from the Si substrate side (lower side), Si De
Moving structure 14 by ep RIE (Reactive Ion Etching)
Is formed and the buried oxide film is etched to release the movable structure portion 14. After the movable structure 14 is completed, the sacrificial layer 4 is formed by O 2 plasma etching.
4 is performed to form a thin film stopper 22 as shown in FIG. Thereafter, the individual sensor chips are cut by dicing, the sensor chips are bonded to the package, and the electrode pads 20 of the sensor chip 10 and the lead pads (not shown) of the package are wire bonded. The sacrificial layer 44 can be removed after the assembly process such as dicing and wire bonding described above. In this case, breakage of the thin film stopper 22 in the assembly process can be avoided.
【0020】図6は、本発明の他の実施例に係る加速度
センサ50の構成を示す平面図である。本実施例におい
ては、4枚の分割された薄膜ストッパ22a,22b,
22c,22dを用いて、可動構造部14の上方への過
動を制止するようになっている。本実施例において、上
記実施例と同一又は対応する構成要素については、同一
の参照符号を付し、重複した説明は省略する。4枚の薄
膜ストッパ22a,22b,22c,22dは、各々ス
プリング(スプリング構造部)32を介してシリコン基
体12に連結されている。また、隣接する薄膜ストッパ
同士についても、スプリング32によって連結されてい
る。本実施例のように、薄膜ストッパを分割すると同時
に、薄膜ストッパ同士をスプリング32で連結すること
により、上記実施例に比べ、可動構造部14の過動によ
る衝撃をより効果的に吸収することが可能となる。FIG. 6 is a plan view showing the structure of an acceleration sensor 50 according to another embodiment of the present invention. In this embodiment, four divided thin film stoppers 22a, 22b,
The upward movement of the movable structure portion 14 is restrained by using 22c and 22d. In the present embodiment, constituent elements that are the same as or correspond to those in the above embodiments are assigned the same reference numerals, and redundant description will be omitted. The four thin film stoppers 22a, 22b, 22c, 22d are connected to the silicon substrate 12 via springs (spring structure portions) 32, respectively. Further, adjacent thin film stoppers are also connected by the spring 32. By dividing the thin film stoppers and connecting the thin film stoppers with the spring 32 at the same time as in the present embodiment, the shock due to the excessive movement of the movable structure portion 14 can be more effectively absorbed as compared with the above embodiment. It will be possible.
【0021】以上、本発明の実施例(実施形態、実施態
様)について説明したが、本発明はこれらの実施例に何
ら限定されるものではなく、特許請求の範囲に示された
技術的思想の範疇において変更可能なものである。Although the embodiments (embodiments and embodiments) of the present invention have been described above, the present invention is not limited to these embodiments, and the technical idea shown in the scope of claims is not limited thereto. It can be changed in the category.
【0022】[0022]
【発明の効果】以上説明したように、本発明において
は、薄膜を用いて可動構造部の過剰な動きを防止してい
るため、ガラス製のストッパーを用いた場合に比べ、厚
みの増加を最小限に抑えることが可能となる。また、薄
膜の形成時に基体及び可動構造部に加わる応力は殆ど無
いため、センサなどの微小構造体の特性への影響が実質
的に無い。As described above, in the present invention, since the thin film is used to prevent the excessive movement of the movable structure, the increase in the thickness is minimized as compared with the case where the glass stopper is used. It is possible to limit it. Further, since there is almost no stress applied to the base body and the movable structure portion when the thin film is formed, there is substantially no influence on the characteristics of a microstructure such as a sensor.
【図1】図1は、本発明の実施例に係る加速度センサの
構造を示す斜視図である。FIG. 1 is a perspective view showing a structure of an acceleration sensor according to an embodiment of the present invention.
【図2】図2は、実施例に係る加速度センサのストッパ
ネット(薄膜)を省略した構造を示す斜視図である。FIG. 2 is a perspective view showing a structure in which a stopper net (thin film) of the acceleration sensor according to the embodiment is omitted.
【図3】図3(a),(b)は、図1のI−I方向及び
J−J方向の断面図である。3 (a) and 3 (b) are cross-sectional views in the I-I direction and the JJ direction of FIG.
【図4】図4は、実施例に係る加速度センサの構造を示
す平面図である。FIG. 4 is a plan view showing the structure of the acceleration sensor according to the embodiment.
【図5】図5は、実施例に係る加速度センサの製造工程
を示す断面図である。FIG. 5 is a cross-sectional view showing the manufacturing process of the acceleration sensor according to the embodiment.
【図6】図6は、本発明の他の実施例に係る加速度セン
サの構成を示す平面図である。FIG. 6 is a plan view showing the configuration of an acceleration sensor according to another embodiment of the present invention.
10 加速度センサ
12 シリコン基体
14 可動構造部(可動マス)
14’ 可動構造部14に対応したパターン部であ
り、後に可動構造部14の一部となる部分
16 ビーム(支持梁)
18 ピエゾ抵抗素子
20 電極パッド
22 薄膜ストッパ
22a,22b,22c,22d 薄膜ストッパ
24 ダイボンド面
32 弾性構造部(スプリング)
34 アンカー部
40 SOI基板
41 埋め込み酸化膜
42 活性層
44 犠牲層10 Acceleration Sensor 12 Silicon Substrate 14 Movable Structure Part (Movable Mass) 14 ′ A Pattern Part Corresponding to the Movable Structure Part 14 that Will Be a Part of Movable Structure Part 14 16 Beam (Support Beam) 18 Piezoresistive Element 20 Electrode pad 22 Thin film stoppers 22a, 22b, 22c, 22d Thin film stopper 24 Die bond surface 32 Elastic structure portion (spring) 34 Anchor portion 40 SOI substrate 41 Embedded oxide film 42 Active layer 44 Sacrificial layer
フロントページの続き (72)発明者 橋本 浩幸 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会 エレクトロニクス技術研究所内 (72)発明者 大麻 隆彦 兵庫県尼崎市扶桑町1番8号 住友金属工 業株式会 エレクトロニクス技術研究所内 Fターム(参考) 4M112 AA02 CA03 CA04 CA08 CA11 DA03 DA16 EA06 EA13 Continued front page (72) Inventor Hiroyuki Hashimoto Sumitomo Metal Works, No. 8 Fuso-cho, Amagasaki City, Hyogo Prefecture Industry Stock Institute Electronics Technology Research Institute (72) Inventor Takahiko Cannabis Sumitomo Metal Works, No. 8 Fuso-cho, Amagasaki City, Hyogo Prefecture Industry Stock Institute Electronics Technology Research Institute F-term (reference) 4M112 AA02 CA03 CA04 CA08 CA11 DA03 DA16 EA06 EA13
Claims (10)
を備え;前記可動構造部は、前記基体に収容された時
に、少なくとも1面が外部に露出した状態であり;所定
の間隙を介して前記可動構造部の露出した面を覆うよう
に形成され、当該可動部の過剰な動きを防止する薄膜を
設けたことを特徴とする微小構造体。1. A microstructure having a movable structure part, comprising a base body accommodating the movable structure part so as to be movable in a three-dimensional direction; the movable structure part has at least one surface when accommodated in the base body. Is exposed to the outside; a minute film is formed to cover the exposed surface of the movable structure through a predetermined gap, and a thin film is provided to prevent excessive movement of the movable part. Structure.
連結されていることを特徴とする請求項1に記載の微小
構造体。2. The microstructure according to claim 1, wherein the thin film is connected to the base through an elastic member.
いることを特徴とする請求項1又は2に記載の微小構造
体。3. The microstructure according to claim 1, wherein the thin film is divided into a plurality of thin film regions.
て連結されていることを特徴とする請求項3に記載の微
小構造体。4. The microstructure according to claim 3, wherein the plurality of thin film regions are connected to each other via an elastic member.
とを特徴とする請求項2又は4に記載の微小構造体。5. The microstructure according to claim 2, wherein the elastic member has a spring structure.
を特徴とする請求項1,2,3,4又は5に記載の微小
構造体。6. The microstructure according to claim 1, 2, 3, 4, or 5, wherein the thin film is formed in a mesh shape.
とを特徴とする請求項1,2,3,4,5又は6に記載
の微小構造体。7. The microstructure according to claim 1, 2, 3, 4, 5 or 6, wherein the microstructure is an acceleration sensor.
法において、 前記基体上に犠牲層を形成し;前記犠牲層上に前記薄膜
を形成し;前記可動構造部を形成した後、前記犠牲層を
除去することを特徴とする微小構造体の製造方法。8. The method for manufacturing a microstructure according to claim 1, wherein a sacrificial layer is formed on the base, the thin film is formed on the sacrificial layer, and the movable structure is formed. A method for manufacturing a microstructure, comprising removing the sacrificial layer.
アセンブリ工程の後に前記犠牲層を除去することを特徴
とする請求項8に記載の製造方法。9. The manufacturing method according to claim 8, wherein the sacrificial layer is removed after an assembly process such as dicing and wire bonding.
ことを特徴とする請求項8又は9に記載の製造方法。10. The manufacturing method according to claim 8, wherein the microstructure is an acceleration sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001291537A JP3597806B2 (en) | 2001-09-25 | 2001-09-25 | Microstructure having movable structure and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001291537A JP3597806B2 (en) | 2001-09-25 | 2001-09-25 | Microstructure having movable structure and method of manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004072821A Division JP4020875B2 (en) | 2004-03-15 | 2004-03-15 | MICROSTRUCTURE HAVING MOVABLE STRUCTURE AND METHOD FOR MANUFACTURING SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003101032A true JP2003101032A (en) | 2003-04-04 |
JP3597806B2 JP3597806B2 (en) | 2004-12-08 |
Family
ID=19113666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001291537A Expired - Fee Related JP3597806B2 (en) | 2001-09-25 | 2001-09-25 | Microstructure having movable structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3597806B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1517151A1 (en) * | 2003-09-16 | 2005-03-23 | Hitachi Metals, Ltd. | Acceleration sensor |
JP2006177768A (en) * | 2004-12-22 | 2006-07-06 | Oki Electric Ind Co Ltd | Acceleration sensor and its manufacturing method |
JP2009236824A (en) * | 2008-03-28 | 2009-10-15 | Oki Semiconductor Co Ltd | Structure of acceleration sensor and method of manufacturing the same |
US8474318B2 (en) | 2007-07-27 | 2013-07-02 | Hitachi Metals, Ltd. | Acceleration sensor |
US10215566B2 (en) | 2015-09-15 | 2019-02-26 | Seiko Epson Corporation | Oscillator, electronic device, and moving object |
US10386186B2 (en) | 2015-09-15 | 2019-08-20 | Seiko Epson Corporation | Physical quantity sensor, electronic device, and moving object |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103557853B (en) * | 2013-10-24 | 2017-03-01 | 华东光电集成器件研究所 | A kind of MEMS gyro of anti high overload |
-
2001
- 2001-09-25 JP JP2001291537A patent/JP3597806B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1517151A1 (en) * | 2003-09-16 | 2005-03-23 | Hitachi Metals, Ltd. | Acceleration sensor |
US7111514B2 (en) | 2003-09-16 | 2006-09-26 | Hitachi Metals, Ltd. | Acceleration sensor |
KR100817736B1 (en) | 2003-09-16 | 2008-03-31 | 히다찌긴조꾸가부시끼가이사 | Acceleration sensor |
JP2006177768A (en) * | 2004-12-22 | 2006-07-06 | Oki Electric Ind Co Ltd | Acceleration sensor and its manufacturing method |
JP4542885B2 (en) * | 2004-12-22 | 2010-09-15 | Okiセミコンダクタ株式会社 | Acceleration sensor and manufacturing method thereof |
US8474318B2 (en) | 2007-07-27 | 2013-07-02 | Hitachi Metals, Ltd. | Acceleration sensor |
JP2009236824A (en) * | 2008-03-28 | 2009-10-15 | Oki Semiconductor Co Ltd | Structure of acceleration sensor and method of manufacturing the same |
US10215566B2 (en) | 2015-09-15 | 2019-02-26 | Seiko Epson Corporation | Oscillator, electronic device, and moving object |
US10386186B2 (en) | 2015-09-15 | 2019-08-20 | Seiko Epson Corporation | Physical quantity sensor, electronic device, and moving object |
Also Published As
Publication number | Publication date |
---|---|
JP3597806B2 (en) | 2004-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100627217B1 (en) | Inertial sensor | |
KR100590151B1 (en) | Inertial sensor | |
US7658109B2 (en) | Inertial sensor and manufacturing method of the same | |
US11945712B2 (en) | Process for manufacturing a micro-electro-mechanical device, and MEMS device | |
US7107847B2 (en) | Semiconductor acceleration sensor and method of manufacturing the same | |
KR100638928B1 (en) | Microstructure with movable mass | |
JP2006084327A (en) | Capacitance-type mechanical force sensor unit | |
US7237316B2 (en) | Method for fabricating a three-dimensional acceleration sensor | |
JP2009236824A (en) | Structure of acceleration sensor and method of manufacturing the same | |
US20100024549A1 (en) | In-Plane Sensor, Out-of-Plane Sensor, and Method for Making Same | |
JP2658949B2 (en) | Semiconductor acceleration sensor | |
JP2003101032A (en) | Minute structure unit having movable structure part and method of manufacturing the same | |
US7361523B2 (en) | Three-axis accelerometer | |
JP4020875B2 (en) | MICROSTRUCTURE HAVING MOVABLE STRUCTURE AND METHOD FOR MANUFACTURING SAME | |
JP2003156511A (en) | Very small structure with movable structure part | |
JP2011075418A (en) | Vibration type physical quantity sensor | |
JP2004082238A (en) | Microstructure having movable structural part | |
JP2004317478A (en) | Semiconductor acceleration sensor and its manufacturing method | |
US8816451B2 (en) | MEMS structure and manufacturing method thereof | |
KR20060109090A (en) | Single-axis acceleration detection element and sensor using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040315 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040909 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100917 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |