Nothing Special   »   [go: up one dir, main page]

JP2003173801A - Solid electrolyte fuel cell and its manufacturing method - Google Patents

Solid electrolyte fuel cell and its manufacturing method

Info

Publication number
JP2003173801A
JP2003173801A JP2001370677A JP2001370677A JP2003173801A JP 2003173801 A JP2003173801 A JP 2003173801A JP 2001370677 A JP2001370677 A JP 2001370677A JP 2001370677 A JP2001370677 A JP 2001370677A JP 2003173801 A JP2003173801 A JP 2003173801A
Authority
JP
Japan
Prior art keywords
reaction
solid electrolyte
fuel cell
oxide fuel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370677A
Other languages
Japanese (ja)
Other versions
JP4018377B2 (en
Inventor
Yoshihiro Funahashi
佳宏 舟橋
Hiroya Ishikawa
浩也 石川
Masaaki Hattori
昌晃 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2001370677A priority Critical patent/JP4018377B2/en
Publication of JP2003173801A publication Critical patent/JP2003173801A/en
Application granted granted Critical
Publication of JP4018377B2 publication Critical patent/JP4018377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell, and its manufacturing method, equipped with an anti-reaction layer for effectively preventing reaction of solid electrolyte and each electrode. <P>SOLUTION: The solid electrolyte fuel cell is provided with a fuel electrode equipped on one side of a planar solid electrolyte and an air electrode equipped on the other side of the solid electrolyte, and an anti-reaction layer fitted between the solid electrolyte and at least either the fuel electrode or the air electrode with a porosity to be not more than 25%. By controlling the porosity at 25% or under, a solid electrolyte fuel cell with a good low electric resistance. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、平板型固体電解質
の両側に燃料極及び空気極を有し、固体電解質の電極界
面に反応防止層を導入した平板型の固体電解質型燃料電
池及びその製造方法に関するものである。更に詳しく
は、固体電解質と各電極との反応を有効に防止する反応
防止層を用いた内部抵抗が低い固体電解質型燃料電池及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate type solid electrolyte fuel cell having a fuel electrode and an air electrode on both sides of a flat plate type solid electrolyte, and introducing a reaction preventive layer at the electrode interface of the solid electrolyte, and its manufacture. It is about the method. More specifically, the present invention relates to a solid oxide fuel cell having a low internal resistance using a reaction preventive layer that effectively prevents a reaction between a solid electrolyte and each electrode, and a method for producing the same.

【0002】[0002]

【従来の技術】固体電解質型燃料電池(以下、燃料電池
と略す)を作製する際、ジルコニア系電解質と空気極材
料との反応性が高いため、電極焼付け時に固体電解質と
電極との界面において高抵抗の反応相が生成し燃料電池
全体の内部抵抗が増加し、燃料電池の出力低下を招く問
題があった。また、ランタンガレード系電解質と燃料極
材料及び空気極材料との反応性も高いため、同様に固体
電解質と各電極との界面に反応相が生成して燃料電池の
出力低下を招く問題があった。その問題に対し、酸化セ
リウムを主成分とした反応防止層用グリーンシートを焼
成済の固体電解質上に焼成し、更に各電極を焼成するこ
とで、反応を防止する検討がH.Uchida,S.Arisaka,and
M.Watanabe,Solid State Ionics,135,347(2000)及びH.U
chida,S.Arisaka,and M.Watanabe,Erectrochem.Solid-S
tate.Lett.,2,428(1999)等でなされている。
2. Description of the Related Art When manufacturing a solid oxide fuel cell (hereinafter abbreviated as "fuel cell"), the reactivity between the zirconia-based electrolyte and the air electrode material is high. There is a problem that a reaction phase of resistance is generated, the internal resistance of the entire fuel cell increases, and the output of the fuel cell decreases. In addition, since the reactivity of the lanthanum garde-based electrolyte with the fuel electrode material and the air electrode material is also high, there is a problem that a reaction phase is similarly generated at the interface between the solid electrolyte and each electrode, which causes a reduction in the output of the fuel cell. It was To solve the problem, there is a study to prevent the reaction by firing a green sheet for reaction prevention layer containing cerium oxide as a main component on the fired solid electrolyte, and further firing each electrode. Arisaka, and
M. Watanabe, Solid State Ionics, 135, 347 (2000) and HU
chida, S.Arisaka, and M.Watanabe, Erectrochem.Solid-S
Tate. Lett., 2, 428 (1999), etc.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記文
献の反応防止層の組織には所々に気孔があるため、この
気孔を介して電極材料と固体電解質とが直接接触して反
応し、この部分で反応相が生成する恐れがある。また、
一般に反応防止層は電気抵抗が小さい、即ち、酸素イオ
ン導電性が高いものが求められるため、粒子同士が繋が
った緻密なものが好ましい。このため、ジルコニア系電
解質の表面に酸化セリウムを主成分とする反応防止層を
形成する際、焼付け温度を高くして反応防止層を緻密化
することが行われる。しかし、無闇に焼付け温度を高く
すると電解質と反応防止層との反応により、イオン導電
性の低下を招く恐れがある。
However, since the structure of the reaction-preventing layer in the above-mentioned document has pores in places, the electrode material and the solid electrolyte directly contact with each other through the pores to react with each other. A reaction phase may form. Also,
In general, the reaction preventive layer is required to have a low electric resistance, that is, a high oxygen ion conductivity. Therefore, a dense one in which particles are connected to each other is preferable. Therefore, when forming the reaction preventive layer containing cerium oxide as a main component on the surface of the zirconia-based electrolyte, the baking temperature is raised to densify the reaction preventive layer. However, if the baking temperature is unduly raised, the reaction between the electrolyte and the reaction preventive layer may lead to a decrease in ionic conductivity.

【0004】また、固体電解質を焼成した後に、その表
面に反応防止層を焼き付けると言う工程は、二工程の焼
成工程となるため、焼成に伴うコストが増大する。本発
明は、上記問題点を解決するものであり、固体電解質と
各電極との反応を効果的に防止する反応防止層を用いた
内部抵抗が低い固体電解質型燃料電池及びその製造方法
を提供することを目的とする。
Further, the process of baking the reaction preventive layer on the surface of the solid electrolyte after baking is a two-step baking process, so that the cost associated with baking increases. The present invention solves the above problems, and provides a solid oxide fuel cell having a low internal resistance using a reaction preventive layer that effectively prevents a reaction between a solid electrolyte and each electrode, and a method for producing the same. The purpose is to

【0005】[0005]

【課題を解決するための手段】本発明の固体電解質型燃
料電池は、平板状の固体電解質と、該固体電解質の一方
の面に設けられた燃料極と、上記固体電解質の他方の面
に設けられた空気極と、上記固体電解質と上記燃料極及
び上記空気極の少なくとも一方との間に設けられ、気孔
率が25%以下のCe1−xLn2−δである反応
防止層と、を備えることを特徴とする。また、Lnは希
土類元素であり、xの範囲は0.05≦x≦0.3であ
る。尚、δは酸素欠損量である。
The solid oxide fuel cell of the present invention comprises a flat solid electrolyte, a fuel electrode provided on one surface of the solid electrolyte, and a fuel electrode provided on the other surface of the solid electrolyte. And a reaction prevention layer which is provided between the solid electrolyte and at least one of the fuel electrode and the air electrode, and which is Ce 1-x Ln x O 2-δ having a porosity of 25% or less. , Are provided. Ln is a rare earth element, and the range of x is 0.05 ≦ x ≦ 0.3. In addition, δ is the amount of oxygen deficiency.

【0006】更に、上記反応防止層はGa元素を含み、
該Ga元素の含有量は酸化物換算で0.05〜1.5m
ol%であるとすることができる。また、上記反応防止
層の厚さは1〜20μmとすることができる。更に、上
記固体電解質の厚さは上記反応防止層の10倍以上とす
ることができる。また、上記固体電解質はLn23(た
だし、Lnは希土類元素)で安定化したジルコニア(Z
rO)、又はSr及びMgの少なくとも一方をドープ
したランタンガレード(LaGaO)とすることがで
きる。
Further, the reaction preventing layer contains Ga element,
The content of the Ga element is 0.05 to 1.5 m in terms of oxide.
can be ol%. The thickness of the reaction preventive layer may be 1 to 20 μm. Furthermore, the thickness of the solid electrolyte can be 10 times or more that of the reaction preventive layer. The solid electrolyte is zirconia (Z) stabilized with Ln 2 O 3 (where Ln is a rare earth element).
rO 2 ), or lanthanum garde (LaGaO 3 ) doped with at least one of Sr and Mg.

【0007】固体電解質型燃料電池の製造方法は、固体
電解質用グリーンシートの表面上に反応防止層用グリー
ンシートを積層した積層体を形成し、その後該積層体を
同時に焼成することを特徴とする。また、上記固体電解
質用グリーンシートを単独焼成した場合の収縮率が、上
記反応防止層用グリーンシートを単独焼成した場合の収
縮率より小さくなる条件で上記焼成を行うことができ
る。更に、上記積層体の焼成温度は、1250〜155
0℃とすることができる。また、上記反応防止層用グリ
ーンシートの原料粉末の平均粒径が0.3〜3μmとす
ることができる。
The method for producing a solid oxide fuel cell is characterized in that a laminated body in which a green sheet for a reaction preventing layer is laminated is formed on the surface of a green sheet for a solid electrolyte, and then the laminated body is simultaneously fired. . The firing can be performed under the condition that the shrinkage rate when the green sheet for solid electrolyte is fired alone is smaller than the shrinkage rate when the green sheet for reaction prevention layer is fired alone. Furthermore, the firing temperature of the laminate is 1250 to 155.
It can be 0 ° C. Further, the average particle size of the raw material powder of the green sheet for reaction prevention layer can be 0.3 to 3 μm.

【0008】[0008]

【発明の効果】本発明の固体電解質型燃料電池によれ
ば、25%以下の気孔率となる緻密な反応防止層を用い
ることにより、燃料極及び空気極の少なくとも一方と固
体電解質との間の反応を有効に防止し、内部抵抗が小さ
い固体電解質型燃料電池とすることができる。特に、反
応防止層をCe1−xLn2−δにより構成するこ
とで、イオン導電性が高く、しかも固体電解質と各電極
との反応性を低くすることができる。更に、Ga元素を
所定割合で含有させることで、緻密化した反応防止層を
容易に得ることができる。
EFFECTS OF THE INVENTION According to the solid oxide fuel cell of the present invention, by using a dense reaction preventing layer having a porosity of 25% or less, the solid electrolyte can be provided between at least one of the fuel electrode and the air electrode and the solid electrolyte. The reaction can be effectively prevented, and a solid oxide fuel cell having a small internal resistance can be obtained. In particular, when the reaction preventive layer is made of Ce 1-x Ln x O 2-δ , the ionic conductivity is high and the reactivity between the solid electrolyte and each electrode can be lowered. Furthermore, by containing Ga element in a predetermined ratio, a densified reaction preventing layer can be easily obtained.

【0009】また、上記反応防止層の厚さを1〜20μ
mとすることで、固体電解質と反応防止層との反応を有
効に防止でき、また電気抵抗が低いものとすることがで
きる。更に、上記固体電解質の厚さを上記反応防止層の
10倍以上とすることで、反応防止層と固体電解質との
焼結時の収縮率の違いによる固体電解質型燃料電池の反
りを防止することができる。
The thickness of the reaction preventive layer is 1 to 20 μm.
By setting m, the reaction between the solid electrolyte and the reaction preventive layer can be effectively prevented, and the electric resistance can be made low. Further, by making the thickness of the solid electrolyte 10 times or more that of the reaction preventive layer, it is possible to prevent warpage of the solid oxide fuel cell due to the difference in shrinkage ratio between the reaction preventive layer and the solid electrolyte during sintering. You can

【0010】本発明の固体電解質型燃料電池の製造方法
によれば、固体電解質用グリーンシート及び反応防止層
用グリーンシートを同時に焼成することにより、固体電
解質用グリーンシートの焼結時の収縮により、反応防止
層用グリーンシートを強制的に収縮させ、反応防止層を
緻密化でき、気孔率を制御することができる。特に、上
記固体電解質用グリーンシートを単独で焼成した時の収
縮率を、上記反応防止層用グリーンシートを単独で焼成
した時の収縮率よりも小さいものとすることで、反応防
止層用グリーンシートの収縮率を小さくし、より緻密化
することができる。更に、上記固体電解質用グリーンシ
ート及び上記反応防止層用グリーンシートを所定範囲の
焼成温度で同時に焼成することにより、反応防止層を緻
密化しつつ、固体電解質と反応防止層との反応を防止す
ることができる。また、上記反応防止層の原料粉末の平
均粒径を限定することにより、固体電解質と反応防止層
との反応を防止し、気孔率も制御することができる。
According to the method for producing a solid oxide fuel cell of the present invention, the solid electrolyte green sheet and the reaction preventive layer green sheet are simultaneously fired, so that the solid electrolyte green sheet shrinks during sintering. The reaction preventing layer green sheet can be forcibly shrunk, the reaction preventing layer can be densified, and the porosity can be controlled. In particular, by setting the shrinkage ratio when the solid electrolyte green sheet is fired alone to be smaller than the shrinkage ratio when the reaction prevention layer green sheet is fired alone, the reaction prevention layer green sheet. It is possible to reduce the shrinkage rate and to make it more compact. Further, by simultaneously firing the solid electrolyte green sheet and the reaction prevention layer green sheet at a firing temperature within a predetermined range, while preventing the reaction between the solid electrolyte and the reaction prevention layer while densifying the reaction prevention layer. You can Further, by limiting the average particle size of the raw material powder of the reaction preventive layer, the reaction between the solid electrolyte and the reaction preventive layer can be prevented and the porosity can be controlled.

【0011】[0011]

【発明の実施の形態】本発明について、以下に詳細に説
明する。上記本発明の固体電解質型燃料電池は、各電極
材料と固体電解質とが直接接触して反応を起こすことを
防止するために導入する反応防止層について、低電気抵
抗とすることを目的とし反応防止層の気孔率を所定の割
合未満とし、反応防止層を緻密にしたことが特徴であ
る。本発明者らがこの気孔率について、種々の方法で制
御した結果、特に気孔率が25%以下(好ましくは24
%以下、更に好ましくは23%以下)である場合には、
各電極と固体電解質との反応を有効に防止することがで
きることがわかった。また、反応防止層の粒界における
電気抵抗も小さくなり、気孔率が25%を超えるものに
比べて、性能向上が明確となる。上記「気孔率」は、上
記「反応防止層」の断面を撮影し、その撮影物全体に対
した気孔が占める面積の比率とする。また、気孔率を2
5%以内とするのは、25%を超えるとものに比べて、
出力密度の性能向上が明確となるためである。上記「C
1−xLn2−δ」を構成するLnは、希土類元
素、つまりSc及びY等からなる群から選ばれる少なく
とも一種である。また、この希土類元素のうち、Sm及
びGdが好ましい。更に、具体例としては、Ce0.8
0.2 1.9(以下SDCと表記)及びCe0.8Gd0.2
1.9(以下GDCと表記)を挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
Reveal The solid oxide fuel cell of the present invention comprises electrodes
Direct contact between the material and the solid electrolyte
For the reaction prevention layer to be introduced to prevent the
The porosity of the reaction-prevention layer should be
The feature is that the reaction prevention layer is made finer.
It The present inventors have controlled the porosity by various methods.
As a result, the porosity was 25% or less (preferably 24).
% Or less, more preferably 23% or less),
It is possible to effectively prevent the reaction between each electrode and the solid electrolyte.
I found out that In addition, in the grain boundary of the reaction prevention layer
Electric resistance also decreases, and porosity exceeds 25%
In comparison, the performance improvement becomes clear. Above "porosity" is
Note: Take a cross-section of the "reaction prevention layer" and make sure that the entire
The ratio of the area occupied by the created pores. Also, the porosity is 2
Within 5% is more than 25%,
This is because the performance improvement of the output density becomes clear. Above "C
e1-xLnxO2-δIs a rare earth element
Elementary, that is, at least selected from the group consisting of Sc and Y
Both are a kind. Of these rare earth elements, Sm and
And Gd are preferred. Further, as a specific example, Ce0.8S
m0.2O 1.9(Hereinafter referred to as SDC) and Ce0.8Gd0.2O
1.9(Hereinafter referred to as GDC).

【0012】また、上記反応防止層は、Ga元素を酸化
物換算で0.05〜1.5mol%(好ましくは、0.
1〜1mol%、更に好ましくは、0.3〜1mol
%)含有することが好ましい。Ga元素を含有すること
により、反応防止層を緻密化しやすく、気孔率を低くす
ることができ、電気抵抗を更に小さくすることができ
る。更に、Ga元素の含有量が0.05mol%未満で
は、その効果が明確には認められない。一方、1.5m
ol%よりも多く添加すると、反応防止層の電気抵抗は
逆に高くなる傾向にあり、好ましくない。尚、上記反応
防止層は、イオン導電性を阻害せず、しかも上記反応を
防止する効果を損なわない限り、他の目的で種々の成分
や添加剤等を含んでいてもかまわない。
Further, in the reaction preventing layer, the Ga element is converted into an oxide in an amount of 0.05 to 1.5 mol% (preferably, 0.1.
1-1 mol%, more preferably 0.3-1 mol
%) Is preferably contained. By containing the Ga element, the reaction preventing layer can be easily densified, the porosity can be lowered, and the electric resistance can be further reduced. Further, if the content of Ga element is less than 0.05 mol%, the effect is not clearly recognized. On the other hand, 1.5m
If it is added in excess of ol%, the electric resistance of the reaction-preventing layer tends to increase, which is not preferable. The reaction-preventing layer may contain various components and additives for other purposes as long as it does not impair the ionic conductivity and does not impair the effect of preventing the reaction.

【0013】次に、本発明の固体電解質型燃料電池は、
上記固体電解質と上記燃料極及び/又は上記空気極との
間に上記本発明の反応防止層を設けることにより、各電
極と固体電解質との反応を有効に防止することができ、
高抵抗の反応相の生成が抑制される。この結果、本発明
の固体電解質型燃料電池は電気抵抗が極めて小さくなり
性能が向上する。上記本発明の反応防止層は、上記固体
電解質と上記空気極との間、及び上記固体電解質と上記
燃料極との間のいずれか一方、あるいはその両方に設け
ることができる。特に反応が起こりやすい固体電解質の
電極界面に設けることができる。
Next, the solid oxide fuel cell of the present invention is
By providing the reaction preventive layer of the present invention between the solid electrolyte and the fuel electrode and / or the air electrode, it is possible to effectively prevent the reaction between each electrode and the solid electrolyte,
Generation of a high resistance reaction phase is suppressed. As a result, the solid oxide fuel cell of the present invention has extremely low electric resistance and improved performance. The reaction preventing layer of the present invention can be provided between the solid electrolyte and the air electrode, between the solid electrolyte and the fuel electrode, or both. In particular, it can be provided at the electrode interface of the solid electrolyte where the reaction easily occurs.

【0014】上記反応防止層の厚さは1〜20μm(好
ましくは、1〜10μm、更に好ましくは、1〜5μ
m、特に好ましくは2〜5μm)であることが好まし
い。1μm未満であると、気孔によって表裏が連通し易
くなり、その部分での固体電解質と各電極との反応が起
こる傾向にあるため、好ましくない。また、反応防止層
を固体電解質上に固定するための熱処理時に固体電解質
と反応防止層との界面で反応が起こり、高抵抗の反応相
を形成しやすいため好ましくない。一方、20μmを越
えると、反応防止層中のイオン移動抵抗が大きくなる傾
向にあるため、好ましくない。従って、反応防止層の厚
さはできる限り薄くするのが好ましくい。
The thickness of the reaction preventive layer is 1 to 20 μm (preferably 1 to 10 μm, more preferably 1 to 5 μm).
m, particularly preferably 2 to 5 μm). When it is less than 1 μm, the front and back are easily communicated with each other due to pores, and the reaction between the solid electrolyte and each electrode tends to occur at that portion, which is not preferable. In addition, a reaction occurs at the interface between the solid electrolyte and the reaction preventive layer during the heat treatment for fixing the reaction preventive layer on the solid electrolyte, and a high resistance reaction phase is easily formed, which is not preferable. On the other hand, if it exceeds 20 μm, the ion migration resistance in the reaction preventive layer tends to increase, which is not preferable. Therefore, it is preferable that the thickness of the reaction preventing layer is as thin as possible.

【0015】上記固体電解質の厚さは上記反応防止層の
10倍以上である。上記固体電解質の厚さが上記反応防
止層の10倍以上であると、反応防止層と固体電解質と
の焼結時の収縮率の違いによる燃料電池の反りを防止す
ることができる。即ち、固体電解質を反応防止層に比べ
て厚く構成することで、反応防止層の影響をほとんど受
けずに燃料電池を焼成することができる。
The thickness of the solid electrolyte is 10 times or more that of the reaction preventive layer. When the thickness of the solid electrolyte is 10 times or more that of the reaction preventive layer, the warp of the fuel cell due to the difference in shrinkage rate between the reaction preventive layer and the solid electrolyte during sintering can be prevented. That is, by making the solid electrolyte thicker than the reaction prevention layer, the fuel cell can be fired almost without being affected by the reaction prevention layer.

【0016】上記固体電解質としては、いずれの従来公
知の固体電解質を用いてもよい。また、Ln(ただし、
Lnは希土類元素)で安定化したジルコニア(Zr
)、又はSr及びMgのうちのいずれか一方又は両
方をドープしたランタンガレード(LaGaO)、例
えば、ジルコニア系酸化物、LaGaO系酸化物、B
aCeO系酸化物等を挙げることができる。これらは
燃料電池用の固体電解質として安定して使用でき、イオ
ン導電性が優れている材料であるためである。ジルコニ
ア系電解質は、空気極との反応が起こりやすいため、固
体電解質と空気極との界面へ上記本発明の反応防止層を
導入することが好ましく、上記本発明の反応防止層を用
いることで、燃料電池特性が有効に向上される。また、
ランタンガレード系電解質は燃料極と固体電解質との界
面及び空気極と固体電解質との界面の両方において構成
元素の拡散が起こりやすいため、両方の界面へ反応防止
層を導入することが好ましい。
As the solid electrolyte, any conventionally known solid electrolyte may be used. In addition, Ln (however,
Ln is a rare earth element stabilized zirconia (Zr
O 2 ), or lanthanum garade (LaGaO 3 ) doped with either or both of Sr and Mg, for example, zirconia-based oxide, LaGaO 3 -based oxide, B
Examples thereof include aCeO 3 based oxide. This is because these are materials that can be stably used as solid electrolytes for fuel cells and have excellent ionic conductivity. Zirconia-based electrolyte, since the reaction with the air electrode is likely to occur, it is preferable to introduce the reaction preventive layer of the present invention at the interface between the solid electrolyte and the air electrode, by using the reaction preventive layer of the present invention, The fuel cell characteristics are effectively improved. Also,
In the lanthanum garde-based electrolyte, the constituent elements are easily diffused at both the interface between the fuel electrode and the solid electrolyte and the interface between the air electrode and the solid electrolyte. Therefore, it is preferable to introduce the reaction preventive layer into both interfaces.

【0017】上記燃料極としては、いずれの従来公知の
材料でも良いが、例えば、Au、Pd、Ni及びFe等
の金属、又は前記金属とZrO2、CeO2、MnO2
の金属酸化物との混合物を挙げることができる。また、
上記空気極としては、いずれの従来公知の材料でも良い
が、例えば、白金、又は金属酸化物、例えば、酸化ラン
タン、酸化ストロンチウム、酸化セリウム、酸化コバル
ト、酸化マンガン、酸化鉄又はこれらの組合せの複合酸
化物等が挙げられる。
As the fuel electrode, any conventionally known material may be used. For example, a metal such as Au, Pd, Ni and Fe, or the above metal and a metal oxide such as ZrO 2 , CeO 2 or MnO 2 may be used. Can be mentioned. Also,
The air electrode may be any conventionally known material, for example, platinum, or a metal oxide such as lanthanum oxide, strontium oxide, cerium oxide, cobalt oxide, manganese oxide, iron oxide or a combination thereof. Examples thereof include oxides.

【0018】更に、本発明の固体電解質型燃料電池の製
造方法によれば、固体電解質用グリーンシートと反応防
止層用グリーンシートとを同時に焼成することにより、
固体電解質の焼結時の収縮により、反応防止層を強制的
に収縮させ、反応防止層を緻密化でき、気孔率を制御す
ることができる。その後、反応防止層を形成した固体電
解質に、燃料極及び空気極を同時に、又は一方ずつ形成
する。燃料極及び空気極を形成する順序は、いずれが先
であってもよい。尚、上記各「グリーンシート」は、未
焼成体の他、仮焼体も含めたシートとする。
Further, according to the method for producing a solid oxide fuel cell of the present invention, the solid electrolyte green sheet and the reaction preventive layer green sheet are simultaneously fired,
Due to the shrinkage of the solid electrolyte during sintering, the reaction-preventing layer can be forcibly contracted, the reaction-preventing layer can be densified, and the porosity can be controlled. Then, the fuel electrode and the air electrode are formed simultaneously or one at a time on the solid electrolyte on which the reaction prevention layer is formed. Either the fuel electrode or the air electrode may be formed first. Each of the above-mentioned "green sheets" is a sheet that includes not only the unfired body but also the calcined body.

【0019】特に、上記固体電解質用グリーンシートを
単独で焼成した場合の収縮率を、上記反応防止層を単独
で焼成した場合の収縮率よりも小さいものとすること
で、反応防止層をより収縮させて(収縮率を小さく
し)、より緻密化することができる。この「収縮率」
は、該当する部位を単独で焼結し、グリーンシートの幅
Xで焼結体の幅Yを割った値である。(収縮率=Y÷
X) 収縮率の差は、いずれであってもよいが、効果的に収縮
させ、かつ反りがないように、好ましくは固体電解質用
グリーンシートの収縮率Aと反応防止層用グリーンシー
トの収縮率Bの比(A÷Bの値)が固体電解質の収縮率
の0.80〜0.98倍、より好ましくは0.85〜
0.95倍程度とすることが好ましい。
In particular, the shrinkage factor when the green sheet for solid electrolyte is fired alone is set to be smaller than the shrinkage factor when the reaction preventive layer is fired alone, so that the reaction preventive layer is further shrunk. It is possible to further densify (reduce the shrinkage rate). This "contraction rate"
Is a value obtained by dividing the width Y of the sintered body by the width X of the green sheet by sintering the corresponding portion alone. (Shrinkage rate = Y ÷
X) The difference in shrinkage may be any, but it is preferable that the shrinkage A of the green sheet for the solid electrolyte and the shrinkage of the green sheet for the reaction preventive layer be such that the shrinkage is effective and there is no warpage. The ratio of B (the value of A ÷ B) is 0.80 to 0.98 times the shrinkage of the solid electrolyte, and more preferably 0.85.
It is preferably about 0.95 times.

【0020】焼成方法としては、いずれの従来公知の方
法を用いてもよいが、上記固体電解質及び上記反応防止
層は、1250〜1550℃(好ましくは、1250〜
1550℃、更に好ましくは1300〜1500℃、特
に好ましくは1350〜1500℃)の焼成温度で同時
に焼成することができる。1250℃未満であると、固
体電解質及び反応防止層は十分に緻密化されることが困
難であり、燃料電池として使用が困難である。また、1
550℃を超えると、固体電解質と反応防止層との界面
において焼結時に反応が起こり、高抵抗の反応相ができ
てしまい、燃料電池性能が低下する傾向にある。
Although any conventionally known method may be used as the firing method, the solid electrolyte and the reaction-preventing layer may be 1250 to 1550 ° C. (preferably 1250 to 1550 ° C.).
The firing temperature can be 1550 ° C., more preferably 1300 to 1500 ° C., and particularly preferably 1350 to 1500 ° C.). When the temperature is lower than 1250 ° C, it is difficult for the solid electrolyte and the reaction preventing layer to be sufficiently densified, and it is difficult to use as a fuel cell. Also, 1
If the temperature exceeds 550 ° C, a reaction occurs at the interface between the solid electrolyte and the reaction preventive layer during sintering to form a high resistance reaction phase, which tends to deteriorate the fuel cell performance.

【0021】また、上記反応防止層の原料粉末の平均粒
径は、0.3〜3μm(好ましくは、0.5〜2.5μ
m、更に好ましくは0.5〜1.5μm)が好ましい。
反応防止層の原材料の平均粒径が0.3μm未満である
と、固体電解質と反応防止層との界面において焼結時に
反応が起こりやすく、高抵抗の反応相の生成により燃料
電池の性能が低下する傾向にある。一方、該平均粒径が
3μmを超えると、固体電解質成形体もしくは仮焼体上
に反応防止層用グリーンシートを形成する際に、反応防
止層成形体の粉末充填密度が低くなってしまい、同時焼
成をしても反応防止層中に気孔が残りやすく、気孔率を
制御することが困難である。
The average particle diameter of the raw material powder for the reaction prevention layer is 0.3 to 3 μm (preferably 0.5 to 2.5 μm).
m, and more preferably 0.5 to 1.5 μm).
When the average particle size of the raw material of the reaction preventive layer is less than 0.3 μm, a reaction is likely to occur at the interface between the solid electrolyte and the reaction preventive layer at the time of sintering, and a high resistance reaction phase is generated to deteriorate the performance of the fuel cell. Tend to do. On the other hand, if the average particle size exceeds 3 μm, the powder packing density of the reaction-preventing layer compact becomes low when the green sheet for the reaction-preventing layer is formed on the solid electrolyte compact or the calcined body. Porosity tends to remain in the reaction preventive layer even after firing, and it is difficult to control the porosity.

【0022】[0022]

【実施例】以下、本発明について、実施例を挙げて具体
的に説明する。 1.試料の作製 固体電解質としてイットリア安定化ジルコニア(8mo
l%Y−92mol%ZrO、以下8YSZと
略称する)を、反応防止層としてサマリアをドープした
セリア(Sm0.2Ce0.81.9、以下SDCと略称す
る)を用い、各試験を行った。また、YSZの粉末を円
板状に成形し、冷間静水圧プレス(CIP)にて150
0kg/cmの圧力を加え、成形体基板を得た。更
に、反応防止層材料のSDCは、酸化サマリウム、酸化
セリウムを所定量エタノール中で混合後、1400℃で
6時間の仮焼をし、SDC粉末を得た。その後、エタノ
ール中で粉砕し、粒径を制御した粉末を得てペースト化
した。YSZの成形体上にSDCペーストをスクリーン
印刷し、以下の表1に示す温度で同時焼成し、試料を得
た。尚、今回は固相法により得た粉末にて実施例を示す
が、共沈法により得たSDC粉末でも同様の効果がある
ことを確認している。
EXAMPLES The present invention will be specifically described below with reference to examples. 1. Sample preparation Yttria-stabilized zirconia (8mo
1% Y 2 O 3 -92 mol% ZrO 2 , hereinafter abbreviated as 8YSZ), and ceria (Sm 0.2 Ce 0.8 O 1.9 , hereinafter abbreviated as SDC) doped with Samaria as a reaction-preventing layer was used to perform each test. It was In addition, YSZ powder is molded into a disk shape and subjected to cold isostatic pressing (CIP) for 150
A pressure of 0 kg / cm 2 was applied to obtain a molded body substrate. Further, SDC of the reaction preventing layer material was obtained by mixing samarium oxide and cerium oxide in a predetermined amount in ethanol and then calcining at 1400 ° C. for 6 hours to obtain SDC powder. Then, it was crushed in ethanol to obtain a powder having a controlled particle size and made into a paste. The SDC paste was screen-printed on the YSZ compact and co-fired at the temperatures shown in Table 1 below to obtain a sample. In addition, this time, although an example is shown with the powder obtained by the solid phase method, it has been confirmed that the SDC powder obtained by the coprecipitation method has the same effect.

【0023】2.実施例1 (1)測定方法 本実施例1では、以下〜に示す測定を行った。その
詳細を次に示す。 反応防止層の厚さ測定、気孔率測定 反応防止層の厚さ、及び反応防止層の気孔率について
は、電界放出電子顕微鏡(以下、FE−SEMと略称す
る)により得られた写真から測定した。得られた円板状
試料を半分に切断し、エポキシ系樹脂を用いて埋め込ん
だ後、断面が見られるように鏡面状に研磨した。鏡面状
に研磨した断面について、FE−SEMにて500倍の
視野で写真を取得し、反応防止層の厚さを写真上の寸法
から求めた。また、反応防止層の気孔率については、F
E−SEMを用い画像の短辺幅が反応防止層の厚さの8
0%に相当する視野で画像全体が反応防止層の組織とな
るようSEM写真を得た後、得られた電子顕微鏡の気孔
部を白、SDC組織部を黒に着色し、コンピューター上
の画像解析ソフトウェアで気孔部(白部)の面積比率を
求め、その割合を気孔率とした。
2. Example 1 (1) Measuring method In Example 1, the following measurements were performed. The details are shown below. Measurement of thickness of reaction-preventing layer, measurement of porosity The thickness of reaction-preventing layer and porosity of reaction-preventing layer were measured from a photograph obtained by a field emission electron microscope (hereinafter abbreviated as FE-SEM). . The obtained disk-shaped sample was cut in half, embedded with an epoxy resin, and then polished into a mirror surface so that a cross section could be seen. With respect to the mirror-polished cross section, a photograph was taken with a FE-SEM in a field of view of 500 times, and the thickness of the reaction-preventing layer was determined from the dimension on the photograph. The porosity of the reaction preventive layer is F
Using E-SEM, the width of the short side of the image is 8 times the thickness of the reaction prevention layer
After obtaining an SEM photograph so that the entire image would be the structure of the reaction-preventing layer in the field of view corresponding to 0%, the pores of the obtained electron microscope were colored white and the SDC texture was colored black, and image analysis on a computer was performed. The area ratio of the pores (white parts) was determined by software, and the ratio was defined as the porosity.

【0024】平均粒径測定 ヘキサメタリン酸ナトリウム水溶液に粉末を分散し、レ
ーザー回析式粒度分布測定装置にて粒度分布を測定し
た。その結果から得られた平均粒径を測定結果として示
した。 固体電解質用グリーンシートの収縮率、及び反応防止
層用グリーンシートの収縮率 固体電解質用グリーンシートの収縮率、及び反応防止層
用グリーンシートの収縮率単独の収縮率は、以下の計算
式から求めた。 (収縮率)=(焼結体の直径)÷(グリーンシートの直
径)
Measurement of Average Particle Size The powder was dispersed in an aqueous solution of sodium hexametaphosphate, and the particle size distribution was measured by a laser diffraction type particle size distribution measuring device. The average particle size obtained from the results is shown as the measurement result. Shrinkage of the solid electrolyte green sheet, and shrinkage of the reaction-prevention layer green sheet Shrinkage of the solid electrolyte green sheet, and shrinkage of the reaction-prevention layer green sheet The shrinkage alone is calculated from the following formula: It was (Shrinkage rate) = (Sintered body diameter) / (Green sheet diameter)

【0025】電気特性評価 「1.試料の作製」の手順で作製した試料を0.5mm
厚とし、反応防止層の無い面に対極として多孔質な白金
電極を焼付け、他方の面にLa0.6Sr0.4CoO
3-δ(以下、LSCと略称する)を空気極として焼付
け、更に試料の反応防止層のある面で電解質に直接固定
できる部分に参照電極を取り出した。ここで、対極、空
気極の電極面積は0.785cmであり、800℃大
気圧下で電流200mAを対極−空気極間に印加し、そ
の時降下する参照極−空気極間の電圧変化を測定した。
本評価法は、固体電解質型燃料電池のハーフセルによる
評価であるが、この方法で、空気極側に形成した反応防
止層の性能向上による燃料電池の評価は、十分可能であ
る。
Evaluation of electrical characteristics 0.5 mm of the sample prepared by the procedure of “1. Preparation of sample”
A porous platinum electrode is baked as a counter electrode on the surface having no reaction prevention layer, and La 0.6 Sr 0.4 CoO is formed on the other surface.
3-δ (hereinafter abbreviated as LSC) was baked as an air electrode, and the reference electrode was taken out to a portion of the sample where the reaction-preventing layer was present, which could be directly fixed to the electrolyte. Here, the electrode area of the counter electrode and the air electrode was 0.785 cm 2 , and a current of 200 mA was applied between the counter electrode and the air electrode under the atmospheric pressure of 800 ° C., and the change in the voltage between the reference electrode and the air electrode that was dropping at that time was measured. did.
This evaluation method is an evaluation by a half cell of a solid oxide fuel cell, but the evaluation of the fuel cell by improving the performance of the reaction preventive layer formed on the air electrode side is sufficiently possible by this method.

【0026】(2)測定結果 固体電解質(8YSZ)及び反応防止層(SDC)を同
時焼成して得た試料について、気孔率及び電気特性の評
価を上記〜に示す手法により行った結果を表1に示
す。
(2) Measurement Results For the sample obtained by co-firing the solid electrolyte (8YSZ) and the reaction preventive layer (SDC), the porosity and the electrical characteristics were evaluated by the methods shown in the above Tables 1 and 2. Shown in.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から、気孔率が25%を超える
比較例となる試料1、6、7及び14は、電気特性に劣
ることが分かる。試料1は、1200℃で同時焼成した
ものであるが、反応防止層の気孔率が32%で十分に緻
密化できておらず、それに伴い、電圧降下が大きく、電
気抵抗が大きいことが分かった。試料5は、焼成温度を
1600℃で同時焼成し作製した試料で、気孔率は3%
と非常に小さくなっているものの、直流法による電気特
性評価の結果、電圧降下が非常に大きく、電気抵抗が大
きいことが分かった。試料5について、エネルギー分散
型X線検出器(以下、EDSと略称する)で固体電解質
と反応防止層との界面を調査したところ、高抵抗の反応
相ができていることが確認された。このことから、最適
な同時焼成温度が1250〜1550℃であることが分
かった。試料6は、固体電解質焼結体上に反応防止層と
してSDCを焼き付けて2回焼成により得られた試料で
あるが、気孔率が36%で十分に緻密化できておらず、
それに伴って電圧降下が大きくなり、電気抵抗が大きい
ことが分かった。
From the results shown in Table 1, it can be seen that Samples 1, 6, 7 and 14 which are comparative examples having a porosity of more than 25% have poor electrical characteristics. Sample 1 was co-fired at 1200 ° C., but the reaction preventive layer had a porosity of 32% and was not sufficiently densified, and accordingly, it was found that the voltage drop was large and the electric resistance was large. . Sample 5 is a sample prepared by co-firing at a firing temperature of 1600 ° C. and a porosity of 3%.
However, as a result of electrical characteristics evaluation by the DC method, it was found that the voltage drop was very large and the electric resistance was large. When the interface between the solid electrolyte and the reaction preventive layer of Sample 5 was examined with an energy dispersive X-ray detector (hereinafter abbreviated as EDS), it was confirmed that a high resistance reaction phase was formed. From this, it was found that the optimum co-firing temperature was 1250 to 1550 ° C. Sample 6 is a sample obtained by baking SDC as a reaction-preventing layer on the solid electrolyte sintered body and firing twice, but the porosity is 36% and the sample is not sufficiently densified.
As a result, the voltage drop increased and the electrical resistance was found to be high.

【0029】試料7〜9は、固体電解質の厚さによる燃
料電池セル作製への影響を調査した結果である。その結
果、試料7は、固体電解質が反応防止層に比べて薄いた
め(100:15)に、燃料電池セルに反りが発生し
た。固体電解質の厚さが薄くなるにつれ、反応防止層に
加わる強制的に収縮させる応力は小さくなる傾向が見ら
れ、反応防止層の気孔率も十分得られないことが分かっ
た。このため、試料7においては、気孔率が28%で、
電気抵抗が良好でなかった。試料8(200:15)及
び試料9(300:15)については、良好な結果が得
られた。したがって、固体電解質の厚さは、反応防止層
に比べて10倍以上であることが最適である。
Samples 7 to 9 are the results of investigating the influence of the thickness of the solid electrolyte on the production of fuel cells. As a result, in the sample 7, the solid electrolyte was thinner than the reaction preventive layer (100: 15), so that the fuel cell was warped. It was found that as the thickness of the solid electrolyte became thinner, the stress forcibly contracting the reaction-preventing layer tended to become smaller, and the porosity of the reaction-preventing layer was not sufficiently obtained. Therefore, in sample 7, the porosity is 28%,
The electric resistance was not good. Good results were obtained for sample 8 (200: 15) and sample 9 (300: 15). Therefore, the thickness of the solid electrolyte is optimally 10 times or more that of the reaction preventive layer.

【0030】試料10は、反応防止層の厚さを25μm
と厚くしたために、十分収縮できず、同時焼成を行った
にもかかわらず、2回焼成した従来法の試料6と同程度
の電気特性しか得られないことが分かった。このため、
反応防止層の厚さは、20μm以下が最適であることが
わかる。試料11〜14は、反応防止層SDC粉末の平
均粒径を検討した結果である。その結果から、試料11
において、0.3μm未満の平均粒径の粉末を用いる
と、気孔率が4%と緻密になるが、電気特性は電圧降下
が大きく、性能が劣っていることが分かった。この原因
をEDSを用いて固体電解質−反応防止層界面を調査し
たところ、高抵抗の反応相ができていることが確認され
た。また、試料14については、3μmを超える平均粒
径であるため、気孔率が42%となった。反応防止層用
グリーンシート形成時における粉末充填密度が低かった
ことが原因と考えられる。このため、反応防止層SDC
粉末の平均粒径は、0.3〜3μmが最適である。
Sample 10 has a reaction preventive layer having a thickness of 25 μm.
Since it was made thicker, it could not be sufficiently shrunk, and it was found that even though the simultaneous firing was performed, only the electrical characteristics comparable to those of the sample 6 of the conventional method fired twice were obtained. For this reason,
It can be seen that the optimum thickness of the reaction prevention layer is 20 μm or less. Samples 11 to 14 are the results of examining the average particle size of the reaction preventive layer SDC powder. From the results, sample 11
It was found that when powder having an average particle size of less than 0.3 μm was used, the porosity was 4% and the density was high, but the electrical characteristics had a large voltage drop and the performance was poor. When the cause of this was investigated at the solid electrolyte-reaction prevention layer interface using EDS, it was confirmed that a high resistance reaction phase was formed. Further, since the sample 14 had an average particle size of more than 3 μm, the porosity was 42%. It is considered that the powder packing density was low at the time of forming the reaction preventing layer green sheet. Therefore, the reaction prevention layer SDC
The optimum average particle diameter of the powder is 0.3 to 3 μm.

【0031】また、上記試料1〜14においては、全て
において、固体電解質であるYSZの収縮率が、反応防
止層であるSDCの収縮率よりも小さくなっている。こ
のため、他の条件が良好である試料では、同時焼成によ
り、有効に収縮・緻密化した反応防止層が得られ、気孔
率が制御されている。
In all of Samples 1 to 14, the shrinkage rate of YSZ which is the solid electrolyte is smaller than that of SDC which is the reaction preventing layer. For this reason, in the sample in which other conditions are favorable, the reaction preventive layer which is effectively shrunk and densified is obtained by the simultaneous firing, and the porosity is controlled.

【0032】3.実施例2 ガリウムの添加量をxmol%とし、Ce0.8Sm
(0.2-0.01x)Ga0.01x2 の組成となるように反応
防止層粉末を合成し、その添加量による特性の変化を調
査した。その結果を表2に示す。
3. Example 2 The amount of gallium added was x mol%, and Ce 0.8 Sm was used.
The reaction-preventing layer powder was synthesized so as to have a composition of (0.2-0.01x) Ga 0.01x O 2 , and changes in the characteristics depending on the amount added were investigated. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2の結果から、Gaの添加量が0.05
mol%以上の領域では、気孔率が減少する傾向が確認
され、電気特性もそれに伴い、電圧降下が小さくなるこ
とが確認された。2mol%以上のGaを添加した試料
について気孔率は小さいままであるが、電圧降下量が大
きくなることを確認した。したがって、0.1〜1mo
l%のGaを添加することによって、反応防止層焼結時
の収縮が向上し、更に良好な特性が得られることを確認
した。
From the results shown in Table 2, the amount of Ga added was 0.05.
It was confirmed that the porosity tends to decrease in the region of mol% or more, and the electrical characteristics are accompanied by a decrease in the voltage drop. It was confirmed that the porosity of the sample added with 2 mol% or more of Ga remained small but the amount of voltage drop increased. Therefore, 0.1 to 1 mo
It was confirmed that by adding 1% of Ga, the shrinkage during sintering of the reaction preventive layer was improved, and more favorable characteristics were obtained.

【0035】4.実施例3 固体電解質をLa0.9Sr0.1Ga0.8Mg0.22.85(L
SGM)として実施例1と同様の実験を行った。その結
果を表3に示す。
4. Example 3 The solid electrolyte was La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 (L
The same experiment as in Example 1 was performed as SGM). The results are shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】表3から、同様な条件下におけるYSZを
電解質とした実施例1と比較して、気孔率、電圧降下と
もに、同等の性能もしくは若干の向上をしている結果が
得られた。この結果より、緻密な反応防止層をLSGM
上に形成する際にも、同時焼成による形成は有効である
ことが確認された。LSGMを固体電解質とした場合、
燃料極側、空気極側両方への反応防止層の適用が考えら
れ、良好な電気特性を持つ反応防止層を使用すること
で、燃料電池性能が向上する。
From Table 3, it can be seen that, as compared with Example 1 in which YSZ is used as the electrolyte under the same conditions, the porosity and the voltage drop are the same or slightly improved. From this result, it is possible to form a dense reaction-preventing layer with LSGM.
It was confirmed that the formation by co-firing is also effective when forming on top. When LSGM is used as a solid electrolyte,
It is conceivable that the reaction prevention layer is applied to both the fuel electrode side and the air electrode side, and the fuel cell performance is improved by using the reaction prevention layer having good electric characteristics.

【0038】尚、本発明においては、上記実施例に限ら
ず、目的、用途に応じて本発明の範囲内で種々変更した
実施例とすることができる。即ち、固体電解質は実施例
のYSZ及びLSGMに限らず、種々の固体電解質とし
て公知の酸化物を使用することができる。また、反応防
止層の種類も上記実施例のSDCに限られず、種々のセ
リア化合物等を使用することができる。
It should be noted that the present invention is not limited to the above-described embodiments, but various modifications may be made within the scope of the present invention according to the purpose and application. That is, the solid electrolyte is not limited to YSZ and LSGM in the examples, and various known solid electrolytes can be used. Further, the kind of the reaction preventing layer is not limited to the SDC of the above-mentioned examples, and various ceria compounds and the like can be used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 昌晃 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 5H026 AA06 BB01 BB02 BB08 CX01 EE12 HH00 HH03 HH04 HH05 HH08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaaki Hattori             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. F term (reference) 5H026 AA06 BB01 BB02 BB08 CX01                       EE12 HH00 HH03 HH04 HH05                       HH08

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 平板状の固体電解質と、該固体電解質の
一方の面に設けられた燃料極と、上記固体電解質の他方
の面に設けられた空気極と、上記固体電解質と上記燃料
極及び上記空気極の少なくとも一方との間に設けられ、
気孔率が25%以下のCe1−xLn2−δである
反応防止層と、を備えることを特徴とする固体電解質型
燃料電池。ただし、Lnは希土類元素であり、xの範囲
は0.05≦x≦0.3である。
1. A flat solid electrolyte, a fuel electrode provided on one surface of the solid electrolyte, an air electrode provided on the other surface of the solid electrolyte, the solid electrolyte, the fuel electrode, and It is provided between at least one of the air electrodes,
A solid oxide fuel cell, comprising: a reaction preventive layer made of Ce 1-x Ln x O 2-δ having a porosity of 25% or less. However, Ln is a rare earth element, and the range of x is 0.05 ≦ x ≦ 0.3.
【請求項2】 上記反応防止層はGa元素を含み、該G
a元素の含有量は酸化物換算で0.05〜1.5mol
%である請求項1記載の固体電解質型燃料電池。
2. The reaction preventing layer contains a Ga element,
The content of element a is 0.05 to 1.5 mol in terms of oxide.
%, The solid oxide fuel cell according to claim 1.
【請求項3】 上記反応防止層の厚さが1〜20μmで
ある請求項1又は2に記載の固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein the reaction prevention layer has a thickness of 1 to 20 μm.
【請求項4】 上記固体電解質の厚さが上記反応防止層
の10倍以上である請求項1乃至3のいずれか一項に記
載の固体電解質型燃料電池。
4. The solid oxide fuel cell according to claim 1, wherein the thickness of the solid electrolyte is 10 times or more that of the reaction prevention layer.
【請求項5】 上記固体電解質がLn23(ただし、L
nは希土類元素)で安定化したジルコニア(Zr
)、又はSr及びMgの少なくとも一方をドープし
たランタンガレード(LaGaO)である請求項1乃
至4のうちのいずれか一項に記載の固体電解質型燃料電
池。
5. The solid electrolyte is Ln 2 O 3 (where L is
n is a rare earth element) stabilized zirconia (Zr
O 2), or solid oxide fuel cell according to any one of claims 1 to 4 at least one of Sr and Mg is doped lanthanum gallate de (LaGaO 3).
【請求項6】 請求項1乃至5のうちのいずれか一項に
記載の固体電解質型燃料電池の製造方法であって、固体
電解質用グリーンシートの表面上に反応防止層用グリー
ンシートを積層した積層体を形成し、その後該積層体を
同時に焼成することを特徴とする固体電解質型燃料電池
の製造方法。
6. The method for producing a solid oxide fuel cell according to claim 1, wherein a green sheet for reaction prevention layer is laminated on a surface of the green sheet for solid electrolyte. A method for producing a solid oxide fuel cell, which comprises forming a laminated body and then simultaneously firing the laminated body.
【請求項7】 上記固体電解質用グリーンシートを単独
焼成した場合の収縮率が、上記反応防止層用グリーンシ
ートを単独焼成した場合の収縮率より小さくなる条件で
上記焼成を行う請求項6記載の固体電解質型燃料電池の
製造方法。
7. The firing according to claim 6, wherein the shrinkage rate when the green sheet for solid electrolyte is fired alone is smaller than the shrinkage rate when the green sheet for reaction prevention layer is fired alone. Method of manufacturing solid oxide fuel cell.
【請求項8】 上記積層体の焼成温度が1250〜15
50℃である請求項6又は7記載の固体電解質型燃料電
池の製造方法。
8. The firing temperature of the laminate is 1250 to 15
It is 50 degreeC, The manufacturing method of the solid oxide fuel cell of Claim 6 or 7.
【請求項9】 上記反応防止層用グリーンシートの原料
粉末の平均粒径が0.3〜3μmである請求項6乃至8
のうちのいずれか一項に記載の固体電解質型燃料電池の
製造方法。
9. The average particle diameter of the raw material powder of the green sheet for reaction prevention layer is 0.3 to 3 μm.
The method for manufacturing a solid oxide fuel cell according to any one of the above.
JP2001370677A 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof Expired - Lifetime JP4018377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370677A JP4018377B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370677A JP4018377B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003173801A true JP2003173801A (en) 2003-06-20
JP4018377B2 JP4018377B2 (en) 2007-12-05

Family

ID=19179861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370677A Expired - Lifetime JP4018377B2 (en) 2001-12-04 2001-12-04 Solid oxide fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4018377B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158528A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell and fuel battery
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2006127821A (en) * 2004-10-27 2006-05-18 Toto Ltd Solid oxide fuel cell and solid oxide fuel battery
JP2007508677A (en) * 2003-10-17 2007-04-05 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP4913260B1 (en) * 2011-03-03 2012-04-11 日本碍子株式会社 Solid oxide fuel cell
JP4988072B1 (en) * 2011-03-03 2012-08-01 日本碍子株式会社 Solid oxide fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2014060161A (en) * 2008-10-09 2014-04-03 Ceramic Fuel Cells Ltd Solid oxide fuel cell or solid oxide fuel cell sub-component, and method for manufacturing the same
JP2021174683A (en) * 2020-04-27 2021-11-01 森村Sofcテクノロジー株式会社 Method for manufacturing electrochemical reaction single cell
KR20220139538A (en) * 2021-04-08 2022-10-17 한국세라믹기술원 Lscm-cmf composite ceramic oxide for fuel electrode of solid oxide electrochemical cell and method of manufacturing the same and the solid oxide electrochemical cell including the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508677A (en) * 2003-10-17 2007-04-05 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
JP4838721B2 (en) * 2003-10-17 2011-12-14 ゼネラル・モーターズ・コーポレーション Control of polymer surface distribution on diffusion media for improved fuel cell performance
US7300718B2 (en) 2003-11-05 2007-11-27 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
US7604670B2 (en) 2003-11-05 2009-10-20 Honda Motor Co., Ltd. Electrolyte-electrode joined assembly and method for producing the same
JP2005158528A (en) * 2003-11-26 2005-06-16 Kyocera Corp Fuel battery cell and fuel battery
JP2005216760A (en) * 2004-01-30 2005-08-11 Kyocera Corp Fuel cell and its manufacturing method
JP2005310737A (en) * 2004-03-23 2005-11-04 Toto Ltd Solid oxide fuel cell
JP2006127821A (en) * 2004-10-27 2006-05-18 Toto Ltd Solid oxide fuel cell and solid oxide fuel battery
JP2014060161A (en) * 2008-10-09 2014-04-03 Ceramic Fuel Cells Ltd Solid oxide fuel cell or solid oxide fuel cell sub-component, and method for manufacturing the same
JP4913260B1 (en) * 2011-03-03 2012-04-11 日本碍子株式会社 Solid oxide fuel cell
JP4988072B1 (en) * 2011-03-03 2012-08-01 日本碍子株式会社 Solid oxide fuel cell
US8715880B2 (en) 2011-03-03 2014-05-06 Ngk Insulators, Ltd. Solid oxide fuel cell
JP5023250B1 (en) * 2011-07-19 2012-09-12 日本碍子株式会社 Fuel cell
JP2021174683A (en) * 2020-04-27 2021-11-01 森村Sofcテクノロジー株式会社 Method for manufacturing electrochemical reaction single cell
JP7073441B2 (en) 2020-04-27 2022-05-23 森村Sofcテクノロジー株式会社 Electrochemical reaction Single cell manufacturing method
KR20220139538A (en) * 2021-04-08 2022-10-17 한국세라믹기술원 Lscm-cmf composite ceramic oxide for fuel electrode of solid oxide electrochemical cell and method of manufacturing the same and the solid oxide electrochemical cell including the same
KR102640796B1 (en) 2021-04-08 2024-02-27 한국세라믹기술원 Manufacturing method of lscm-cmf composite ceramic oxide for fuel electrode of solid oxide electrochemical cell

Also Published As

Publication number Publication date
JP4018377B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP3777903B2 (en) Solid oxide fuel cell with gradient composition between electrode and electrolyte
JP4018378B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP4953152B2 (en) Solid oxide fuel cell
US20080102337A1 (en) Solid Oxide Type Fuel Battery Cell and Process for Producing the Same
JP5160131B2 (en) Electrolyte / electrode assembly and method for producing the same
EP3021393A1 (en) Solid oxide fuel cell, manufacturing method therefor, fuel-cell stack, and solid oxide fuel-cell device
JPH06124711A (en) Ceramic electrode material
KR101675301B1 (en) Single-Phase Perovskite type Solid Electrolytes, Solid Oxide Fuel Cells containing the same and Method of Fabricating the Solid Oxide Fuel Cells
WO2019241738A1 (en) Cathode layer and electrochemical device including the same
JP4018377B2 (en) Solid oxide fuel cell and manufacturing method thereof
JP4383092B2 (en) Electrochemical element
JP2007200664A (en) Method of manufacturing solid oxide fuel cell
WO2006098272A1 (en) Ion conductor
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
JP3661676B2 (en) Solid oxide fuel cell
WO2013054759A1 (en) Fuel cell
JP2004164878A (en) Manufacturing method of solid electrolyte type fuel cell
JPH09180731A (en) Solid electrolyte fuel cell
JP3121993B2 (en) Method for producing conductive ceramics
JP2006059611A (en) Ceria based solid electrolyte fuel cell and its manufacturing method
JP2003217597A (en) Solid electrolyte type fuel cell
JP4496749B2 (en) Solid oxide fuel cell
JP2008077998A (en) Solid oxide fuel cell
JP2009231052A (en) Solid oxide type fuel battery cell and its manufacturing method
JP2006059610A (en) Solid electrolyte fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term