JP2003166489A - Manufacturing method for multi-stage compression type rotary compressor - Google Patents
Manufacturing method for multi-stage compression type rotary compressorInfo
- Publication number
- JP2003166489A JP2003166489A JP2001366210A JP2001366210A JP2003166489A JP 2003166489 A JP2003166489 A JP 2003166489A JP 2001366210 A JP2001366210 A JP 2001366210A JP 2001366210 A JP2001366210 A JP 2001366210A JP 2003166489 A JP2003166489 A JP 2003166489A
- Authority
- JP
- Japan
- Prior art keywords
- rotary
- rotary compression
- cylinder
- compression element
- excluded volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、第1の回転圧縮要
素で圧縮されて吐出された冷媒ガスを第2の回転圧縮要
素に吸引し、圧縮して吐出する多段圧縮式ロータリコン
プレッサの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multi-stage compression type rotary compressor in which a refrigerant gas compressed and discharged by a first rotary compression element is sucked into a second rotary compression element, compressed and discharged. It is about.
【0002】[0002]
【従来の技術】従来のこの種多段圧縮式ロータリコンプ
レッサでは、第1の回転圧縮要素の吸入ポートから冷媒
ガスがシリンダの低圧室側に吸入され、ローラとベーン
の動作により圧縮されて中間圧となり、シリンダの高圧
室側の吐出ポートより吐出される。そして、中間圧とな
った冷媒ガスは第2の回転圧縮要素の吸入ポートからシ
リンダの低圧室側に吸入され、ローラとベーンの動作に
より2段目の圧縮が行われて高温高圧の冷媒ガスとな
り、高圧室側の吐出ポートより吐出される。そして、こ
のコンプレッサから吐出された冷媒は、放熱器に流入
し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、第
1の回転圧縮要素に吸入するサイクルを繰り返すもので
あった。2. Description of the Related Art In a conventional multi-stage compression type rotary compressor of this kind, refrigerant gas is sucked from a suction port of a first rotary compression element to a low pressure chamber side of a cylinder and compressed by an operation of rollers and vanes to an intermediate pressure. , Is discharged from the discharge port on the high pressure chamber side of the cylinder. Then, the refrigerant gas having the intermediate pressure is sucked into the low pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane to become the high temperature and high pressure refrigerant gas. , Is discharged from the discharge port on the high pressure chamber side. Then, the refrigerant discharged from the compressor repeats the cycle of flowing into the radiator and radiating heat, then being throttled by the expansion valve, absorbed by the evaporator, and sucked into the first rotary compression element.
【0003】[0003]
【発明が解決しようとする課題】係る多段圧縮式ロータ
リコンプレッサにおいて、特に、高低圧差の大きい冷
媒、例えば、二酸化炭素(CO2)を冷媒として用いた
場合、吐出冷媒圧力は、図5で示すように高圧(HP)
となる第2の回転圧縮要素で12MPaGに達し、低段
側となる第1の回転圧縮要素で8MPaG(中間圧M
P)となる(第1の回転圧縮要素の吸込圧力LPは4M
PaG)。その結果、2段目の段差圧(第2の回転圧縮
要素の吸入圧力MPと第2の回転圧縮要素の吐出圧力H
Pの差)は4MPaGと大きくなる。特に、低外気温で
は第1の回転圧縮要素の吐出圧力MPが低くなってしま
うため、2段目の段差圧(第2の回転圧縮要素の吸入圧
力MPと第2の回転圧縮要素の吐出圧力HPの差)が更
に大きくなり、第2の回転圧縮要素の圧縮負荷が増大
し、耐久性及び信頼性が低下してしまう問題があった。In the multi-stage compression type rotary compressor according to the present invention, in particular, when a refrigerant having a large high-low pressure difference, for example, carbon dioxide (CO 2 ) is used as the refrigerant, the discharge refrigerant pressure is as shown in FIG. High pressure (HP)
12 MPaG is reached by the second rotary compression element that becomes, and 8 MPaG (intermediate pressure M by the first rotary compression element that is at the lower stage side).
P) (the suction pressure LP of the first rotary compression element is 4M
PaG). As a result, the second step pressure (the suction pressure MP of the second rotary compression element and the discharge pressure H of the second rotary compression element)
The difference of P) is as large as 4 MPaG. In particular, since the discharge pressure MP of the first rotary compression element becomes low at low outside air temperature, the step pressure of the second stage (the suction pressure MP of the second rotary compression element and the discharge pressure of the second rotary compression element). There is a problem that the HP difference) further increases, the compression load of the second rotary compression element increases, and the durability and reliability decrease.
【0004】このため、従来では第2の回転圧縮要素の
排除容積が第1の回転圧縮要素の排除容積より小さくな
るように第1の回転圧縮要素のシリンダの厚さ(高さ)
寸法を変更することにより、2段目の段差圧が小さくな
るように排除容積比を設定していた。Therefore, conventionally, the thickness (height) of the cylinder of the first rotary compression element is set so that the displacement volume of the second rotary compression element becomes smaller than the displacement volume of the first rotary compression element.
By changing the dimensions, the excluded volume ratio is set so that the pressure difference in the second step is reduced.
【0005】しかしながらこのような設定方法では、第
1のシリンダの厚さ(高さ)寸法が大きくなるため、そ
れに伴い第1の回転圧縮要素のシリンダ素材、偏心部、
ローラ等の全部品を変更しなければならなかった。ま
た、シリンダの厚さ(高さ)寸法が大きくなることによ
って回転圧縮機構部の厚さ(高さ)寸法も大きくなるた
め、多段圧縮式ロータリコンプレッサの全体寸法も大き
くなってしまい、コンプレッサの小型化を図り難い問題
があった。However, in such a setting method, since the thickness (height) dimension of the first cylinder becomes large, the cylinder material of the first rotary compression element, the eccentric portion,
I had to change all parts such as rollers. In addition, since the thickness (height) of the rotary compression mechanism increases as the thickness (height) of the cylinder increases, the overall size of the multi-stage compression rotary compressor also increases, which reduces the size of the compressor. There was a problem that was difficult to achieve.
【0006】本発明は、係る従来技術の課題を解決する
ために成されたものであり、部品の変更を極力抑えてコ
ストの削減を図り、且つ、コンプレッサの寸法拡大を防
止しながら最適な排除容積比を容易に設定することがで
きる多段圧縮式ロータリコンプレッサの製造方法を提供
することを目的とする。The present invention has been made in order to solve the problems of the prior art, and it is possible to suppress the change of parts as much as possible to reduce the cost, and to prevent the dimensional expansion of the compressor while optimally eliminating it. It is an object of the present invention to provide a method for manufacturing a multi-stage compression rotary compressor whose volume ratio can be easily set.
【0007】[0007]
【課題を解決するための手段】即ち、本発明の多段圧縮
式ロータリコンプレッサの製造方法は、密閉容器内に電
動要素と、該電動要素にて駆動される第1及び第2の回
転圧縮要素を備え、これら第1及び第2の回転圧縮要素
は、第1及び第2のシリンダ及び前記電動要素の回転軸
に形成された第1及び第2の偏心部に嵌合されて各シリ
ンダ内で偏心回転する第1及び第2のローラから構成さ
れると共に、第1の回転圧縮要素で圧縮され、吐出され
た冷媒ガスを第2の回転圧縮要素に吸引し、圧縮して吐
出する多段圧縮式ロータリコンプレッサを製造するに当
たり、第1のシリンダの厚さ(高さ)寸法を変更するこ
と無く、当該シリンダの内径を変更することにより、第
1及び第2の回転圧縮要素の排除容積比を設定するもの
である。That is, a method for manufacturing a multi-stage compression rotary compressor according to the present invention comprises an electric element and first and second rotary compression elements driven by the electric element in a closed container. The first and second rotary compression elements are fitted into the first and second eccentric portions formed on the rotary shafts of the first and second cylinders and the electric element, and are eccentric in each cylinder. A multi-stage compression rotary that is composed of rotating first and second rollers, sucks the refrigerant gas compressed by the first rotary compression element and discharged to the second rotary compression element, and compresses and discharges it. In manufacturing a compressor, the excluded volume ratio of the first and second rotary compression elements is set by changing the inner diameter of the cylinder without changing the thickness (height) dimension of the first cylinder. It is a thing.
【0008】このため、第1の回転圧縮要素のシリンダ
素材やローラ、回転軸の偏心部等の全部品を変更するこ
と無く、例えばローラのみ、或いは、ローラと偏心部の
みの変更などに極力抑えて、コストの削減を図ることが
可能となる。また、コンプレッサの全体寸法の拡大も防
止できるので、寸法の小型化も図ることができる。Therefore, without changing all parts such as the cylinder material of the first rotary compression element, the roller, and the eccentric portion of the rotary shaft, for example, only the roller or the change between the roller and the eccentric portion is suppressed as much as possible. Therefore, it is possible to reduce the cost. In addition, since the overall size of the compressor can be prevented from increasing, the size can be reduced.
【0009】また、請求項2の多段圧縮式ロータリコン
プレッサの製造方法は上記において、第2の回転圧縮要
素の排除容積を、第1の回転圧縮要素の排除容積の40
%以上75%以下に設定するものである。Further, in the manufacturing method of the multi-stage compression type rotary compressor of claim 2, in the above description, the excluded volume of the second rotary compression element is 40 times the excluded volume of the first rotary compression element.
% And 75% or less.
【0010】これにより、第2の回転圧縮要素の排除容
積を、第1の回転圧縮要素の排除容積の40%以上75
%以下に設定すれば、第1及び第2の回転圧縮要素の排
除容積比が最適なものとなる。As a result, the excluded volume of the second rotary compression element is 40% or more of the excluded volume of the first rotary compression element 75.
When it is set to be not more than%, the excluded volume ratio of the first and second rotary compression elements becomes optimum.
【0011】[0011]
【発明の実施の形態】次に、図面に基づき本発明の実施
形態を詳述する。図1は本発明の多段圧縮式ロータリコ
ンプレッサの実施例として、第1及び第2の回転圧縮要
素32、34を備えた内部中間圧型多段(2段)圧縮式
ロータリコンプレッサ10の縦断面図、図2は多段圧縮
式ロータリコンプレッサ10の正面図、図3は多段圧縮
式ロータリコンプレッサ10の側面図をそれぞれ示して
いる。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of the multi-stage compression rotary compressor of the present invention. 2 is a front view of the multi-stage compression rotary compressor 10, and FIG. 3 is a side view of the multi-stage compression rotary compressor 10.
【0012】各図において、10は二酸化炭素を冷媒と
する内部中間圧型多段圧縮式ロータリコンプレッサで、
この多段圧縮式ロータリコンプレッサ10は鋼板からな
る円筒状の密閉容器12と、この密閉容器12の内部空
間の上側に配置収納された電動要素14及びこの電動要
素14の下側に配置され、電動要素14の回転軸16に
より駆動される第1の回転圧縮要素32(1段目)及び
第2の回転圧縮要素34(2段目)からなる回転圧縮機
構部18にて構成されている。密閉容器12は底部をオ
イル溜めとし、電動要素14の回転圧縮機構部18を収
納する容器本体12Aと、この容器本体12Aの上部開
口を閉塞する略椀状のエンドキャップ(蓋体)12Bと
で構成され、且つ、このエンドキャップ12Bの上面中
心には円形の取付孔12Dが形成されており、この取付
孔12Dには電動要素14に電力を供給するためのター
ミナル(配線を省略)20が取り付けられている。In each drawing, 10 is an internal intermediate pressure type multi-stage compression rotary compressor using carbon dioxide as a refrigerant,
The multi-stage compression rotary compressor 10 includes a cylindrical hermetic container 12 made of a steel plate, an electric element 14 arranged and housed above the inner space of the hermetic container 12, and an electric element 14 arranged below the electric element 14. The rotary compression mechanism section 18 is composed of a first rotary compression element 32 (first stage) and a second rotary compression element 34 (second stage) driven by a rotary shaft 16 of 14. The closed container 12 has a bottom as an oil reservoir, and includes a container body 12A that houses the rotary compression mechanism portion 18 of the electric element 14, and a substantially bowl-shaped end cap (lid) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed in the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Has been.
【0013】電動要素14は、密閉容器12の上部空間
の内周面に沿って環状に取り付けられたステータ22
と、このステータ22の内側に若干の間隔を設けて挿入
設置されたロータ24とからなる。このロータ24は中
心を通り鉛直方向に延びる回転軸16に固定されてい
る。The electric element 14 has a stator 22 mounted in an annular shape along the inner peripheral surface of the upper space of the closed container 12.
And a rotor 24 inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center.
【0014】ステータ22は、ドーナッツ状の電磁鋼板
を積層した積層体26と、この積層体26の歯部に直巻
き(集中巻き)方式により巻装されたステータコイル2
8を有している。また、ロータ24もステータ22と同
様に電磁鋼板の積層体30で形成され、この積層体30
内に永久磁石MGを挿入して形成されている。The stator 22 includes a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 2 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method.
Have eight. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates, like the stator 22.
It is formed by inserting a permanent magnet MG therein.
【0015】前記第1の回転圧縮要素32と第2の回転
圧縮要素34との間には中間仕切板36が挟持されてい
る。即ち、第1の回転圧縮要素32と第2の回転圧縮要
素34は、中間仕切板36と、この中間仕切板36の上
下に配置された上シリンダ38、下シリンダ40と、こ
の上下シリンダ38、40内を180度の位相差を有し
て回転軸16に設けた上下偏心部42、44にて偏心回
転する上下ローラ46、48と、この上下ローラ46、
48に当接して上下シリンダ38、40内をそれぞれ低
圧室側と高圧室側に区画するベーン50、52と、上シ
リンダ38の上側の開口面及び下シリンダ40の下側の
開口面を閉塞して回転軸16の軸受けを兼用する支持部
材としての上部支持部材54及び下部支持部材56にて
構成される。An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38 and a lower cylinder 40 arranged above and below the intermediate partition plate 36, and the upper and lower cylinders 38, Upper and lower rollers 46 and 48 which are eccentrically rotated by upper and lower eccentric portions 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees in 40, and the upper and lower rollers 46,
The vanes 50 and 52 that abut the valve 48 to partition the insides of the upper and lower cylinders 38 and 40 into the low pressure chamber side and the high pressure chamber side, respectively, and the upper opening surface of the upper cylinder 38 and the lower opening surface of the lower cylinder 40 are closed. The upper support member 54 and the lower support member 56 function as support members that also serve as bearings for the rotary shaft 16.
【0016】第2及び第1の回転圧縮要素34、32を
それぞれ構成する上下シリンダ38、40は実施例では
同一の厚さ寸法の素材にて構成されている。また、各シ
リンダ38、40を切削加工することにより構成される
それぞれの内径をD2、D1とすると、第1及び第2の
回転圧縮要素32、34の排除容積比を変更する場合に
は、上記第1の回転圧縮要素32の下シリンダ40の内
径D1を変更することで、排除容積比を設定する。The upper and lower cylinders 38 and 40 constituting the second and first rotary compression elements 34 and 32, respectively, are made of a material having the same thickness dimension in the embodiment. When the inner diameters of the cylinders 38 and 40 formed by cutting are D2 and D1, respectively, when changing the excluded volume ratio of the first and second rotary compression elements 32 and 34, The excluded volume ratio is set by changing the inner diameter D1 of the lower cylinder 40 of the first rotary compression element 32.
【0017】ここで、例えば下シリンダ40の厚さ(高
さ)寸法を変更することで排除容積比を設定する場合に
は、下シリンダ40の素材、下偏心部44及び下ローラ
48の厚さ(高さ)寸法を全てを変更しなければならな
い。即ち、この場合には少なくとも下シリンダ40及び
下ローラ48を素材から変更し、下偏心部44について
は回転軸16の切削加工を変更する必要が生じる。一
方、本発明の場合には、少なくとも下シリンダ40につ
いては素材はそのままで、切削加工する際の内径のみの
変更で済む。また、下ローラ48については少なくとも
外径を変更する必要が生じるものの、内径が同一であれ
ば下偏心部44の変更は生じない。このように、本発明
によれば、少なくとも下シリンダ40の素材はそのまま
で、その切削加工と下ローラ48の外径の変更、若しく
は、下ローラ48の外径及び内径の変更と下偏心部44
の変更のみで対処可能となる。これにより、部品変更を
最小限に抑えながら最適な第1及び第2の回転圧縮要素
32、34の排除容積比を設定可能となる。尚、実施例
では第2の回転圧縮要素34の排除容積を、第1の回転
圧縮要素32の排除容積の40%以上75%以下に設定
している。Here, for example, when the excluded volume ratio is set by changing the thickness (height) dimension of the lower cylinder 40, the thickness of the material of the lower cylinder 40, the lower eccentric portion 44, and the lower roller 48. All (height) dimensions must be changed. That is, in this case, it is necessary to change at least the lower cylinder 40 and the lower roller 48 from the material and change the cutting process of the rotary shaft 16 for the lower eccentric portion 44. On the other hand, in the case of the present invention, at least the lower cylinder 40 is made of the same material, and only the inner diameter when cutting is required. Although it is necessary to change at least the outer diameter of the lower roller 48, if the inner diameter is the same, the lower eccentric portion 44 will not be changed. As described above, according to the present invention, at least the material of the lower cylinder 40 is left unchanged, and the cutting process and the outer diameter of the lower roller 48 are changed, or the outer and inner diameters of the lower roller 48 are changed and the lower eccentric portion 44 is changed.
It can be dealt with only by changing. As a result, it is possible to set the optimum excluded volume ratio of the first and second rotary compression elements 32, 34 while minimizing the change of parts. In the embodiment, the excluded volume of the second rotary compression element 34 is set to 40% or more and 75% or less of the excluded volume of the first rotary compression element 32.
【0018】一方、上部支持部材54及び下部支持部材
56には、図示しない吸込ポートにて上下シリンダ3
8、40の内部とそれぞれ連通する吸込通路60(上側
の吸込通路は図示せず)と、一部を凹陥させ、この凹陥
部を上カバー66、下カバー68にて閉塞することによ
り形成される吐出消音室62、64とが設けられてい
る。On the other hand, the upper support member 54 and the lower support member 56 have upper and lower cylinders 3 through suction ports (not shown).
A suction passage 60 (the suction passage on the upper side is not shown) communicating with the insides of the reference numerals 8 and 40 is partially recessed, and the recess is closed by an upper cover 66 and a lower cover 68. Discharge muffling chambers 62 and 64 are provided.
【0019】尚、吐出消音室64と密閉容器12内と
は、上下シリンダ38、40や中間仕切板36を貫通す
る連通路にて連通されており、連通路の上端には中間突
出管121が立設され、この中間吐出管121から第1
の回転圧縮要素32で圧縮された中間圧の冷媒が密閉容
器12内に吐出される。The discharge muffling chamber 64 and the inside of the closed container 12 are communicated with each other by a communication passage that penetrates the upper and lower cylinders 38, 40 and the intermediate partition plate 36, and an intermediate projecting pipe 121 is provided at the upper end of the communication passage. It is installed upright and the first from the intermediate discharge pipe 121.
The intermediate-pressure refrigerant compressed by the rotary compression element 32 is discharged into the closed container 12.
【0020】また、第2の回転圧縮要素34の上シリン
ダ38内部と連通する吐出消音室62の上面開口部を閉
塞する上部カバー66は、密閉容器12内を吐出消音室
62と電動要素14側とに仕切る。An upper cover 66 which closes the upper opening of the discharge muffling chamber 62 which communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 has the inside of the closed container 12 as the discharge muffling chamber 62 and the electric element 14 side. Divide into
【0021】そして、この場合冷媒としては地球環境に
やさしく、可燃性及び毒性等を考慮して自然冷媒である
前記二酸化炭素(CO2)を使用し、潤滑油としてのオ
イルは、例えば鉱物油(ミネラルオイル)、アルキルベ
ンゼン油、エーテル油、エステル油、PAG(ポリアル
キルグリコール)等既存のオイルが使用される。In this case, the carbon dioxide (CO 2 ) which is a natural refrigerant in consideration of flammability and toxicity is used as the refrigerant, and the oil as the lubricating oil is, for example, mineral oil ( Existing oils such as mineral oil), alkylbenzene oil, ether oil, ester oil, PAG (polyalkyl glycol) are used.
【0022】密閉容器12の容器本体12Aの側面に
は、上部支持部材54と下部支持部材56の吸込通路6
0(上側は図示せず)、吐出消音室62、上部カバー6
6の上側(電動要素14の下端に略対応する位置)に対
応する位置に、スリーブ141、142、143及び1
44がそれぞれ溶接固定されている。スリーブ141と
142は上下に隣接すると共に、スリーブ143はスリ
ーブ141の略対角線上にある。また、スリーブ144
はスリーブ141と略90度ずれた位置にある。The suction passage 6 of the upper support member 54 and the lower support member 56 is provided on the side surface of the container body 12A of the closed container 12.
0 (upper side not shown), discharge muffling chamber 62, upper cover 6
The sleeves 141, 142, 143, and 1 at positions corresponding to the upper side of 6 (the position substantially corresponding to the lower end of the electric element 14).
44 are fixed by welding. The sleeves 141 and 142 are vertically adjacent to each other, and the sleeve 143 is substantially on the diagonal line of the sleeve 141. Also, the sleeve 144
Is at a position displaced from the sleeve 141 by approximately 90 degrees.
【0023】そして、スリーブ141内には上シリンダ
38に冷媒ガスを導入するための冷媒導入管92の一端
が挿入接続され、この冷媒導入管92の一端は上シリン
ダ38の図示しない吸込通路と連通する。この冷媒導入
管92は密閉容器12の上側を通過してスリーブ144
に至り、他端はスリーブ144内に挿入接続されて密閉
容器12内に連通する。One end of a refrigerant introducing pipe 92 for introducing a refrigerant gas into the upper cylinder 38 is inserted and connected in the sleeve 141, and one end of the refrigerant introducing pipe 92 communicates with a suction passage (not shown) of the upper cylinder 38. To do. The refrigerant introducing pipe 92 passes above the closed container 12 and passes through the sleeve 144.
The other end is inserted and connected in the sleeve 144 and communicates with the closed container 12.
【0024】また、スリーブ142内には下シリンダ4
0に冷媒ガスを導入するための冷媒導入管94の一端が
挿入接続され、この冷媒導入管94の一端は下シリンダ
40の吸込通路60と連通する。この冷媒導入管94の
他端はアキュムレータ146の下端に接続されている。
また、スリーブ143内には冷媒吐出管96が挿入接続
され、この冷媒導入管96の一端は吐出消音室62と連
通する。In the sleeve 142, the lower cylinder 4
One end of a refrigerant introduction pipe 94 for introducing the refrigerant gas to 0 is inserted and connected, and one end of this refrigerant introduction pipe 94 communicates with the suction passage 60 of the lower cylinder 40. The other end of the refrigerant introducing pipe 94 is connected to the lower end of the accumulator 146.
A refrigerant discharge pipe 96 is inserted and connected in the sleeve 143, and one end of the refrigerant introduction pipe 96 communicates with the discharge muffling chamber 62.
【0025】上記アキュムレータ146は吸込冷媒の気
液分離を行うタンクであり、密閉容器12の容器本体1
2Aの上部側面に溶接固定された密閉容器側のブラケッ
ト147にアキュムレータ側のブラケット148を介し
て取り付けられている(図2)。The accumulator 146 is a tank for separating the suction refrigerant into gas and liquid, and is the container body 1 of the closed container 12.
It is attached via a bracket 148 on the accumulator side to a bracket 147 on the closed container side welded and fixed to the upper side surface of 2A (FIG. 2).
【0026】そして、本実施例の多段圧縮式ロータリコ
ンプレッサ10は図4に示すような給湯装置153の冷
媒回路に使用される。即ち、多段圧縮式ロータリコンプ
レッサ10の冷媒吐出管96は水加熱用のガスクーラ1
54の入口に接続される。このガスクーラ154が給湯
装置153の図示しない貯湯タンクに設けられる。ガス
クーラ154を出た配管は減圧装置としての膨張弁15
6を経て蒸発器157の入口に至り、蒸発器157の出
口は冷媒導入管94に接続される。また冷媒導入管92
の中途部から図4に示すように除霜回路を構成するデフ
ロスト管158が分岐し、流路制御装置としての電磁弁
159を介してガスクーラ154の入口に至る冷媒吐出
管96に接続されている。尚、図4ではアキュムレータ
146は省略されている。The multi-stage compression rotary compressor 10 of this embodiment is used in the refrigerant circuit of the water heater 153 as shown in FIG. That is, the refrigerant discharge pipe 96 of the multi-stage compression rotary compressor 10 is the gas cooler 1 for heating water.
It is connected to the inlet of 54. The gas cooler 154 is provided in a hot water storage tank (not shown) of the hot water supply device 153. The pipe exiting the gas cooler 154 is an expansion valve 15 as a pressure reducing device.
6 to reach the inlet of the evaporator 157, and the outlet of the evaporator 157 is connected to the refrigerant introducing pipe 94. Further, the refrigerant introduction pipe 92
As shown in FIG. 4, a defrost pipe 158 that constitutes a defrosting circuit branches from a midway portion thereof and is connected to a refrigerant discharge pipe 96 that reaches an inlet of the gas cooler 154 via an electromagnetic valve 159 as a flow path control device. . The accumulator 146 is omitted in FIG.
【0027】以下の構成で次に動作を説明する。尚、加
熱運転では電磁弁159は閉じているものとする。ター
ミナル20及び図示されない配線を介して電動要素14
のステータコイル28に通電されると、電動要素14が
起動してロータ24が回転する。この回転により回転軸
16と一体に設けられた上下偏心部42、44に嵌合さ
れて上下ローラ46、48が上下シリンダ38、40内
を偏心回転する。The operation will be described below with the following configuration. In the heating operation, the solenoid valve 159 is closed. The electric element 14 via the terminal 20 and wiring (not shown)
When the stator coil 28 is energized, the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46, 48 are fitted into the upper and lower eccentric portions 42, 44 integrally provided with the rotating shaft 16, and the upper and lower rollers 46, 48 eccentrically rotate in the upper and lower cylinders 38, 40.
【0028】これにより、冷媒導入管94及び下部支持
部材56に形成された吸込通路60を経由して図示しな
い吸込ポートからシリンダ40の低圧室側に吸入された
低圧の冷媒は、ローラ48とベーン52の動作により圧
縮されて中間圧となり下シリンダ40の高圧室側より図
示しない吐出ポート、下部支持部材56に形成された吐
出消音室64から図示しない連通路を経て中間吐出管1
21から密閉容器12内に吐出される。これによって、
密閉容器12内は中間圧となる。As a result, the low-pressure refrigerant sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56, the rollers 48 and the vanes. The intermediate discharge pipe 1 is compressed by the operation of 52 to become an intermediate pressure from the high pressure chamber side of the lower cylinder 40 through a discharge port (not shown) and a discharge muffling chamber 64 formed in the lower support member 56 through a communication passage (not shown).
21 is discharged into the closed container 12. by this,
The pressure inside the closed container 12 is an intermediate pressure.
【0029】そして、密閉容器12内の中間圧の冷媒ガ
スは、スリーブ144から出て冷媒導入管92及び上部
支持部材54に形成された図示しない吸込通路を経由し
て図示しない吸込ポートから上シリンダ38の低圧室側
に吸入される。吸入された中間圧の冷媒ガスは、ローラ
46とベーン50の動作により2段目の圧縮が行われて
高温高圧の冷媒ガスとなり、高圧室側から図示しない吐
出ポートを通り上部支持部材54に形成された吐出消音
室62、冷媒吐出管96を経由してガスクーラ154内
に流入する。この時の冷媒温度は略+100
℃まで上昇しており、係る高温高圧の冷媒ガスは放熱
して、貯湯タンク内の水を加熱し、約+90℃の温水を
生成する。The intermediate pressure refrigerant gas in the closed container 12 exits from the sleeve 144, passes through the refrigerant introduction pipe 92 and the suction passage (not shown) formed in the upper support member 54, and then from the suction port (not shown) to the upper cylinder. 38 is sucked into the low pressure chamber side. The sucked intermediate-pressure refrigerant gas is compressed in the second stage by the operation of the roller 46 and the vane 50 to become high-temperature high-pressure refrigerant gas, and is formed on the upper support member 54 from the high-pressure chamber side through a discharge port (not shown). The gas flows into the gas cooler 154 via the discharge silencer chamber 62 and the refrigerant discharge pipe 96. At this time, the refrigerant temperature is approximately +100.
The temperature rises to 0 ° C., and the high-temperature and high-pressure refrigerant gas radiates heat to heat the water in the hot water storage tank to generate hot water of about + 90 ° C.
【0030】一方、ガスクーラ154において冷媒自体
は冷却され、ガスクーラ154を出る。そして、膨張弁
156で減圧された後、蒸発器157に流入して蒸発
し、アキュムレータ146(図4では示していない)を
経て冷媒導入管94から第1の回転圧縮要素32内に吸
い込まれるサイクルを繰り返す。On the other hand, the refrigerant itself is cooled in the gas cooler 154 and exits the gas cooler 154. Then, after being decompressed by the expansion valve 156, it enters the evaporator 157, evaporates, and is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator 146 (not shown in FIG. 4). repeat.
【0031】このように、下シリンダ40の厚さ(高
さ)寸法を変更すること無く、当該下シリンダ40の内
径D1を変更し、第2の回転圧縮要素34の排除容積
を、第1の回転圧縮要素32の排除容積の40%以上7
5%以下に設定することにより、第1及び第2の回転圧
縮要素32、34の排除容積比を設定しているので、シ
リンダ素材や偏心部、ローラ等の部品の変更を極力抑え
ながら、第2の回転圧縮要素34の圧縮負荷を小さく
し、段差圧を極力抑えた最適な排除容積比とすることが
可能となる。また、回転圧縮機構部18の上下寸法も拡
大しないので、多段圧縮式ロータリコンプレッサ10の
小型化も図れることになる。In this way, the inner diameter D1 of the lower cylinder 40 is changed without changing the thickness (height) dimension of the lower cylinder 40, and the displacement volume of the second rotary compression element 34 is changed to the first volume. 40% or more of the excluded volume of the rotary compression element 32 7
By setting the ratio to 5% or less, the excluded volume ratio of the first and second rotary compression elements 32, 34 is set, so that it is possible to suppress changes in parts such as the cylinder material, the eccentric part, and the roller as much as possible. It is possible to reduce the compression load of the rotary compression element 34 of No. 2 and obtain the optimum excluded volume ratio in which the step pressure is suppressed as much as possible. Further, since the vertical dimension of the rotary compression mechanism portion 18 is not enlarged, the multi-stage compression rotary compressor 10 can be downsized.
【0032】尚、実施例では上下シリンダ38、40を
同一厚さ(高さ)寸法としたが、それに限らず、元々異
なる厚さ(高さ)寸法のものにおいて、第1の回転圧縮
要素のシリンダの内径を変更することで、排除容積比を
設定する場合も含む。Although the upper and lower cylinders 38 and 40 have the same thickness (height) size in the embodiment, the present invention is not limited to this, and those having different thickness (height) size from the first rotary compression element can be used. This includes the case where the excluded volume ratio is set by changing the inner diameter of the cylinder.
【0033】また、実施例はいずれも回転軸16を縦置
型とした多段圧縮式ロータリコンプレッサ10について
説明したが、この発明は回転軸を横置型とした多段圧縮
式ロータリコンプレッサにも適応できることは云うまで
もない。更に、多段圧縮式ロータリコンプレッサを第1
及び第2の回転圧縮要素を備えた2段圧縮式ロータリコ
ンプレッサで説明したが、これに限らず回転圧縮要素を
3段、4段或いはそれ以上の回転圧縮要素を備えた多段
圧縮式ロータリコンプレッサに適応しても差し支えな
い。Although all the embodiments have described the multi-stage compression rotary compressor 10 in which the rotary shaft 16 is of a vertical type, the present invention can be applied to a multi-stage compression rotary compressor in which the rotary shaft is of a horizontal type. There is no end. Furthermore, the multi-stage compression rotary compressor is the first
Also, the two-stage compression rotary compressor having the second rotary compression element has been described, but the present invention is not limited to this, and the rotary compression element may be a multi-stage compression rotary compressor having three, four, or more rotary compression elements. It does not matter if you adapt.
【0034】更にまた、実施例では多段圧縮式ロータリ
コンプレッサ10を給湯装置153の冷媒回路に用いた
が、これに限らず、室内の暖房用などに用いても本発明
は有効である。Furthermore, although the multi-stage compression rotary compressor 10 is used in the refrigerant circuit of the hot water supply device 153 in the embodiment, the present invention is not limited to this, and the present invention is effective when used for heating the room.
【0035】[0035]
【発明の効果】以上詳述した如く本発明によれば、密閉
容器内に電動要素と、該電動要素にて駆動される第1及
び第2の回転圧縮要素を備え、これら第1及び第2の回
転圧縮要素は、第1及び第2のシリンダ及び前記電動要
素の回転軸に形成された第1及び第2の偏心部に嵌合さ
れて各シリンダ内で偏心回転する第1及び第2のローラ
から構成されると共に、前記第1の回転圧縮要素で圧縮
され、吐出された冷媒ガスを第2の回転圧縮要素に吸引
し、圧縮して吐出する多段圧縮式ロータリコンプレッサ
を製造するに当たり、第1のシリンダの厚さ(高さ)寸
法を変更すること無く、当該シリンダの内径を変更する
ことにより、第1及び第2の回転圧縮要素の排除容積比
を設定するようにしているので、第1の回転圧縮要素の
シリンダ素材やローラ、回転軸の偏心部等の全部品を変
更すること無く、例えばローラのみ、或いは、ローラと
偏心部のみの変更などに極力抑えて、コストの削減を図
ることが可能となる。また、コンプレッサの全体寸法の
拡大も防止できるので、寸法の小型化も図ることができ
る。そして、例えば請求項2の如く第2の回転圧縮要素
の排除容積を、第1の回転圧縮要素の排除容積の40%
以上75%以下に設定すれば、第1及び第2の回転圧縮
要素の排除容積比が最適なものとなる。As described above in detail, according to the present invention, the closed container is provided with the electric element and the first and second rotary compression elements driven by the electric element. The rotary compression element is fitted into first and second eccentric portions formed on the rotary shafts of the first and second cylinders and the electric element, and is eccentrically rotated in each cylinder. In manufacturing a multi-stage compression rotary compressor which is composed of rollers and which sucks the refrigerant gas compressed by the first rotary compression element and discharged to the second rotary compression element, and compresses and discharges the same, The displacement volume ratio of the first and second rotary compression elements is set by changing the inner diameter of the cylinder without changing the thickness (height) dimension of the first cylinder. 1 rotary compression element cylinder material and La, without changing the entire parts of the eccentric portion and the like of the rotary shaft, for example the roller only, or suppressed as much as possible to such change of the roller and the eccentric portion only, it becomes possible to reduce the cost. In addition, since the overall size of the compressor can be prevented from increasing, the size can be reduced. Then, for example, the excluded volume of the second rotary compression element is 40% of the excluded volume of the first rotary compression element.
If it is set to 75% or more, the excluded volume ratio of the first and second rotary compression elements becomes optimum.
【図1】本発明の実施例の多段圧縮式ロータリコンプレ
ッサの縦断面図である。FIG. 1 is a vertical sectional view of a multi-stage compression rotary compressor according to an embodiment of the present invention.
【図2】図1のロータリコンプレッサの正面図である。FIG. 2 is a front view of the rotary compressor of FIG.
【図3】図1のロータリコンプレッサの側面図である。3 is a side view of the rotary compressor of FIG. 1. FIG.
【図4】図1のロータリコンプレッサを適用した給湯装
置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of a hot water supply device to which the rotary compressor of FIG. 1 is applied.
【図5】多段圧縮式ロータリコンプレッサにおける外気
温度と各圧力の関係を示す図である。FIG. 5 is a diagram showing a relationship between outside air temperature and each pressure in a multi-stage compression rotary compressor.
10 多段圧縮式ロータリコンプレッサ 12 密閉容器 14 電動要素 16 回転軸 18 回転圧縮機構部 32 第1の回転圧縮要素 34 第2の回転圧縮要素 38、40 上下シリンダ 42、44 上下偏心部 46、48 上下ローラ 50、52 ベーン 54 上部支持部材 56 下部支持部材 10 Multi-stage compression rotary compressor 12 airtight container 14 Electric elements 16 rotation axes 18 Rotary compression mechanism 32 First rotary compression element 34 Second rotary compression element 38, 40 Vertical cylinder 42,44 Vertical eccentric part 46, 48 upper and lower rollers 50,52 vanes 54 Upper support member 56 Lower support member
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04C 23/02 F04C 23/02 E (72)発明者 只野 昌也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 里 和哉 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会 社内 (72)発明者 松浦 大 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 隆泰 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H029 AA05 AA09 AA13 AB03 BB31 BB41 BB43 BB51 CC03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F04C 23/02 F04C 23/02 E (72) Inventor Masaya Tadano 2-5 Keihanhondori, Moriguchi-shi, Osaka No. 5 In Sanyo Electric Co., Ltd. (72) Inventor Kazuya Sato 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. In-house (72) Inventor Dai Matsuura 2, Keihan-hondori, Moriguchi-shi, Osaka 5-5 Sanyo Electric Co., Ltd. (72) Inventor Takayasu Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. F-term (reference) 3H029 AA05 AA09 AA13 AB03 BB31 BB41 BB43 BB51 CC03
Claims (2)
て駆動される第1及び第2の回転圧縮要素を備え、これ
ら第1及び第2の回転圧縮要素は、第1及び第2のシリ
ンダ及び前記電動要素の回転軸に形成された第1及び第
2の偏心部に嵌合されて前記各シリンダ内で偏心回転す
る第1及び第2のローラから構成されると共に、前記第
1の回転圧縮要素で圧縮され、吐出された冷媒ガスを前
記第2の回転圧縮要素に吸引し、圧縮して吐出する多段
圧縮式ロータリコンプレッサの製造方法であって、 前記第1のシリンダの厚さ寸法を変更すること無く、当
該シリンダの内径を変更することにより、前記第1及び
第2の回転圧縮要素の排除容積比を設定することを特徴
とする多段圧縮式ロータリコンプレッサの製造方法。1. A hermetic container includes an electric element and first and second rotary compression elements driven by the electric element, wherein the first and second rotary compression elements are the first and second rotary compression elements. And first and second eccentric portions formed on the rotary shaft of the electric element to be fitted to the first and second eccentric portions, and eccentrically rotated in the respective cylinders. Is a method for manufacturing a multi-stage compression rotary compressor in which the refrigerant gas compressed by the rotary compression element and discharged is sucked into the second rotary compression element, compressed, and discharged, wherein the thickness of the first cylinder is A method for manufacturing a multi-stage compression rotary compressor, characterized in that the excluded volume ratio of the first and second rotary compression elements is set by changing the inner diameter of the cylinder without changing the dimensions.
前記第1の回転圧縮要素の排除容積の40%以上75%
以下に設定することを特徴とする請求項1の多段圧縮式
ロータリコンプレッサの製造方法。2. The excluded volume of the second rotary compression element is
40% or more and 75% or more of the excluded volume of the first rotary compression element
The method for manufacturing a multi-stage compression rotary compressor according to claim 1, wherein the following setting is made.
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001366210A JP2003166489A (en) | 2001-11-30 | 2001-11-30 | Manufacturing method for multi-stage compression type rotary compressor |
CN 200610006023 CN1807895B (en) | 2001-11-30 | 2002-08-28 | Multistage compression type rotary compressor |
CN02142300A CN1423055A (en) | 2001-11-30 | 2002-08-28 | Revolving compressor, its manufacturing method and defrosting device using said compressor |
CN 200610006025 CN1807896B (en) | 2001-11-30 | 2002-08-28 | Multi-stage compression type rotary compressor |
TW91123073A TW564289B (en) | 2001-11-30 | 2002-10-07 | Multiple stage compression type rotary compressor and method for making same |
EP02257800A EP1316730A3 (en) | 2001-11-30 | 2002-11-13 | Rotary compressor |
US10/305,775 US6892454B2 (en) | 2001-11-30 | 2002-11-27 | Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit |
KR1020020075257A KR100893464B1 (en) | 2001-11-30 | 2002-11-29 | Multi-stage compression type rotary compressor manufacturing method |
US10/916,273 US7008199B2 (en) | 2001-11-30 | 2004-08-11 | Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit |
US10/916,271 US6974314B2 (en) | 2001-11-30 | 2004-08-11 | Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit |
US10/916,200 US7168257B2 (en) | 2001-11-30 | 2004-08-11 | Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit |
US10/916,272 US7101161B2 (en) | 2001-11-30 | 2004-08-11 | Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit |
KR1020080062250A KR100862824B1 (en) | 2001-11-30 | 2008-06-30 | Multi-stage compression type rotary compressor |
KR1020080062187A KR100862823B1 (en) | 2001-11-30 | 2008-06-30 | Multi-stage compression type rotary compressor |
KR1020080062256A KR100862825B1 (en) | 2001-11-30 | 2008-06-30 | Defroster of refrigerant circuit |
KR1020080062188A KR20080066905A (en) | 2001-11-30 | 2008-06-30 | Multi-stage compression type rotary compressor manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001366210A JP2003166489A (en) | 2001-11-30 | 2001-11-30 | Manufacturing method for multi-stage compression type rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003166489A true JP2003166489A (en) | 2003-06-13 |
Family
ID=19176140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001366210A Pending JP2003166489A (en) | 2001-11-30 | 2001-11-30 | Manufacturing method for multi-stage compression type rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003166489A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278686A (en) * | 2006-03-17 | 2007-10-25 | Mitsubishi Electric Corp | Heat pump water heater |
CN102418699A (en) * | 2011-11-30 | 2012-04-18 | 珠海凌达压缩机有限公司 | Grade variable compressor |
-
2001
- 2001-11-30 JP JP2001366210A patent/JP2003166489A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007278686A (en) * | 2006-03-17 | 2007-10-25 | Mitsubishi Electric Corp | Heat pump water heater |
JP4613916B2 (en) * | 2006-03-17 | 2011-01-19 | 三菱電機株式会社 | Heat pump water heater |
CN102418699A (en) * | 2011-11-30 | 2012-04-18 | 珠海凌达压缩机有限公司 | Grade variable compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004293813A (en) | Refrigerant cycle device | |
JP2005003239A (en) | Refrigerant cycling device | |
JP2004293871A (en) | Refrigerant cycle equipment | |
JP4039921B2 (en) | Transcritical refrigerant cycle equipment | |
JP2004116957A (en) | Refrigerant cycle system | |
JP2004184022A (en) | Cooling medium cycle device | |
JP2004317073A (en) | Refrigerant cycling device | |
JP2006097549A (en) | Compressor | |
JP4115296B2 (en) | Transcritical refrigerant cycle equipment | |
JP4278402B2 (en) | Refrigerant cycle equipment | |
JP2003166489A (en) | Manufacturing method for multi-stage compression type rotary compressor | |
JP2004028492A (en) | Cooling medium circuit using co2 cooling medium | |
JP2005139973A (en) | Multistage compression type rotary compressor | |
JP4107926B2 (en) | Transcritical refrigerant cycle equipment | |
JP2003161280A (en) | Rotary compressor | |
JP2001153476A (en) | Refrigerating plant | |
JP3986338B2 (en) | Refrigerant circuit using inverter-controlled compressor | |
JP2004251492A (en) | Refrigerant cycle device | |
JP2005127215A (en) | Transition critical refrigerant cycle device | |
JP3883837B2 (en) | Rotary compressor | |
JP2004251514A (en) | Refrigerant cycle device | |
JP4020622B2 (en) | Rotary compressor | |
JP2004309012A (en) | Refrigerant cycle device | |
JP2001082368A (en) | Two-stage compression type rotary compressor | |
JP2006125377A (en) | Compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051226 |
|
A131 | Notification of reasons for refusal |
Effective date: 20061107 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20070619 Free format text: JAPANESE INTERMEDIATE CODE: A02 |