Nothing Special   »   [go: up one dir, main page]

JP2003161879A - Imaging optical system and image photographing device using the same - Google Patents

Imaging optical system and image photographing device using the same

Info

Publication number
JP2003161879A
JP2003161879A JP2002134252A JP2002134252A JP2003161879A JP 2003161879 A JP2003161879 A JP 2003161879A JP 2002134252 A JP2002134252 A JP 2002134252A JP 2002134252 A JP2002134252 A JP 2002134252A JP 2003161879 A JP2003161879 A JP 2003161879A
Authority
JP
Japan
Prior art keywords
image
image forming
plane
optical system
forming optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134252A
Other languages
Japanese (ja)
Inventor
Atsushi Kawamura
篤 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002134252A priority Critical patent/JP2003161879A/en
Publication of JP2003161879A publication Critical patent/JP2003161879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging optical system, which can be reduced in size and thickness, with high productivity and an image photographing device incorporating it. <P>SOLUTION: Related to the imaging optical system, a plurality of imaging units provided with a beam reflecting means 3 which makes an object plane 1 and an image plane almost parallel to each other are disposed in second dimension in the inter-object optical path of an imaging optical means that meets so-called Scheimpflug condition in which a titled object plane 1, an image plane 4, and a main flat plane of an optical system 2 cross each other at the same straight line B. It comprises a unit image plane on which focusing is made by dividing, one to one, to the number identical with the imaging units, for synthesizing the images of divided unit image planes. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、結像光学系、およ
びそれを用いた画像撮影装置に関し、特に薄型で広画角
が可能な結像光学系および、それを用いたデジタルカメ
ラ、デジタルビデオカメラなどの画像撮影装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image forming optical system and an image capturing apparatus using the same, and particularly to a thin image forming optical system capable of wide angle of view, a digital camera and a digital video using the same. The present invention relates to an image capturing device such as a camera.

【0002】[0002]

【従来の技術】特開平10−107975号公報は、絞
り(瞳)を共通にし対物レンズを曲面状に2次元に配置
し、対応する個数の光検出部を配置して、光電変換され
た出力から画像信号を合成する画像入力装置を開示して
いる。即ち、画像を分割し、対応する結像光学系を介し
て像を作り、後処理で全体像を合成する方法である。こ
こでは、分解能や明るさが改善できるとする昆虫の複眼
を真似た複眼方式の薄型の画像入力装置を示している。
しかしながら、同発明によると、光検出部および画像導
入部が曲面状をしており、そのため薄型化、コンパクト
化には限界があった。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 10-107975 discloses that a diaphragm (pupil) is used in common, objective lenses are two-dimensionally arranged on a curved surface, and a corresponding number of photodetector units are arranged to output photoelectrically converted light. There is disclosed an image input device for synthesizing an image signal from. That is, it is a method of dividing an image, forming an image through a corresponding imaging optical system, and combining the entire image in post-processing. Here, a thin image input device of a compound eye system that imitates the compound eye of an insect that can improve resolution and brightness is shown.
However, according to the present invention, the photodetection section and the image introduction section have curved surfaces, so that there is a limit to reduction in thickness and size.

【0003】[0003]

【発明が解決しようとする課題】したがって、本発明の
目的は、薄型化、コンパクト化、広角化を更に進めた結
像光学系、および該結像光学系を用いた画像撮影装置を
提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an image forming optical system which is further thinned, made compact, and has a wider angle, and an image taking apparatus using the image forming optical system. Is.

【0004】[0004]

【課題を解決するための手段】請求項1の発明は、傾斜
した物体面、像面と光学系の主平面が同一直線で交わる
いわゆるシャインプルーフ(Scheimpflug)
の条件を満たす結像光学手段の物像間光路中に、物体面
と像面をほぼ平行にする光線屈曲手段を有する結像単位
を2次元に複数個配置し、結像単位と同数のそれぞれ1
対1に対応して分割して結像する単位物体面を備え、分
割された前記単位物体面の像を合成することを特徴とす
る結像光学系である。このような結像光学系によって、
薄型で小型化が可能になる。
According to a first aspect of the present invention, a so-called Scheimpflug in which an inclined object plane, an image plane and a main plane of an optical system intersect each other on the same straight line.
In the optical path between object images of the image forming optical means satisfying the condition of (2), a plurality of image forming units having light beam bending means for making the object plane and the image plane substantially parallel to each other are arranged two-dimensionally, and each of the same number as the image forming unit. 1
An image forming optical system comprising a unit object surface for dividing and forming an image corresponding to pair 1, and combining the divided images of the unit object surface. With such an imaging optical system,
It is thin and can be miniaturized.

【0005】請求項2の発明は、請求項1に記載の結像
光学系において、前記2次元に配置されたそれぞれの結
像単位によって結像される前記それぞれの単位結像面
は、同一の共通の像面上にあり、前記光線の屈曲手段に
よる光線の屈曲方向が前記共通の像面から該物体面を見
たときに相互に遠ざかる方向で対称的に配置されること
を特徴とする。
According to a second aspect of the present invention, in the image forming optical system according to the first aspect, the respective unit image forming planes formed by the image forming units arranged in the two dimensions are the same. It is characterized in that they are on a common image plane, and the bending directions of the light rays by the light beam bending means are symmetrically arranged in directions that are away from each other when the object plane is viewed from the common image surface.

【0006】請求項3の発明は請求項1に記載の結像光
学系において、前記光線屈曲手段のなす偏角が、前記結
像光学手段の分割方向の画角をその方向の分割数で割っ
た値にほぼ等しいか、もしくはわずかに小さいことを特
徴とする。
According to a third aspect of the present invention, in the image forming optical system according to the first aspect, the deviation angle formed by the light beam bending means is obtained by dividing the angle of view of the dividing direction of the image forming optical means by the number of divisions in that direction. It is characterized by being approximately equal to or slightly smaller than the value.

【0007】請求項4の発明は請求項1に記載の結像光
学系において、前記結像光学手段は、1枚または複数枚
からなるレンズであり、前記光線屈曲手段は1または複
数からなるプリズムであって、前記レンズおよび前記プ
リズムは、それぞれ同じ配置間隔と対称な傾きとを有
し、かつそれぞれが平板状の支持基板上に配列されてい
ることを特徴とする。
According to a fourth aspect of the present invention, in the image forming optical system according to the first aspect, the image forming optical means is a lens including one or a plurality of sheets, and the light beam bending means includes a prism including one or a plurality of sheets. The lens and the prism have the same arrangement interval and symmetrical inclination, and are arranged on a flat support substrate.

【0008】請求項5の発明は請求項4に記載の結像光
学系において、前記結像光学手段は、レンズおよびプリ
ズムから選択される少なくとも1の要素のそれぞれが平
板状に支持基板と一体的に配列されて形成されているこ
とを特徴とする。
According to a fifth aspect of the present invention, in the image forming optical system according to the fourth aspect, at least one element selected from a lens and a prism of the image forming optical means is formed in a plate shape integrally with a supporting substrate. It is characterized in that it is formed by arranging.

【0009】請求項6の発明は請求項4に記載の結像光
学系において、前記プリズムと、前記レンズが該物体面
からこの順序で配置され、前記プリズムの該物体面側の
面が、前記物体面と平行であることを特徴とする。
According to a sixth aspect of the present invention, in the image forming optical system according to the fourth aspect, the prism and the lens are arranged in this order from the object plane, and the surface of the prism on the object plane side is the It is characterized by being parallel to the object plane.

【0010】請求項7の発明は請求項4に記載の結像光
学系において、前記光線屈曲手段が、曲面からなる面を
有するプリズムを含むことを特徴とする。
According to a seventh aspect of the invention, in the image forming optical system according to the fourth aspect, the beam bending means includes a prism having a curved surface.

【0011】請求項8の発明は、請求項1乃至7のうち
1に記載の結像光学系を有し、該結像光学系の該単位結
像面には、該結像単位による該単位結像に対応した光検
出手段がそれぞれ配置され、それぞれの前記光検出手段
の出力を合成し画像信号を作成する画像信号生成手段を
備えることを特徴とする画像撮影装置である。
According to an eighth aspect of the present invention, there is provided the image forming optical system according to any one of the first to seventh aspects, wherein the unit image forming surface of the image forming optical system includes the unit formed by the image forming unit. The image pickup device is provided with image signal generating means for arranging light detecting means corresponding to image formation and synthesizing outputs of the respective light detecting means to generate an image signal.

【0012】請求項9の発明は請求項8に記載の画像撮
影装置において、前記単位結像面には、前記結像単位数
以下の光検出手段が配置され、1個又はそれぞれの該光
検出手段の出力を合成し画像信号を作成する画像信号生
成手段を有することを特徴とする。
According to a ninth aspect of the present invention, in the image photographing apparatus according to the eighth aspect, the unit image forming surface is provided with light detecting means of the number of image forming units or less, and one or each of the light detecting units. It is characterized by having an image signal generating means for synthesizing the outputs of the means to generate an image signal.

【0013】請求項10の発明は請求項8または9に記
載の画像撮影装置において、平板状をなす前記結像光学
手段、前記屈曲手段、および前記光検出手段から選択さ
れる1以上を、該物像間の光路上で、該それぞれ平板状
の各手段の平行を保ちながら移動させることによって、
合焦することを特徴とする。
According to a tenth aspect of the present invention, in the image photographing apparatus according to the eighth or ninth aspect, one or more selected from the flat plate-shaped image forming optical means, the bending means, and the light detecting means are provided. On the optical path between the object images, by moving the respective flat plate-shaped means while maintaining the parallelism,
It is characterized by focusing.

【0014】請求項11の発明は請求項8乃至10のう
ち1に記載の画像撮影装置において、前記画像信号作成
手段は、合成された画像信号のつなぎ部分のずれや特性
の差を低減させ、画像の歪曲を良好に低減する機能を有
することを特徴とする。
According to an eleventh aspect of the present invention, in the image photographing apparatus according to any one of the eighth to tenth aspects, the image signal creating means reduces a shift in a joint portion of the combined image signals and a difference in characteristics. It is characterized by having a function of favorably reducing image distortion.

【0015】[0015]

【発明の実施の形態】(第1の実施の形態)以下の説明
文中で、結像光学系は結像光学手段と、光線の曲手段と
から成っている。そして、1個の結像単位は、1個の結
像光学手段と、1個の光線屈曲手段とからなっている。
本実施の形態においては、シャインプルーフの条件を導
入し更に光線屈曲手段を付加することによって、画像を
分割し対応する結像光学手段で像を作る複眼方式であり
ながら、物体と像とが平行な平面上に位置できる結像光
学系を構成する。この構成によって、薄型で、広角で、
コンパクトな結像光学系を提供できる。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) In the following description, an image forming optical system comprises image forming optical means and light beam bending means. Further, one image forming unit is composed of one image forming optical means and one light beam bending means.
In the present embodiment, although the Scheimpflug condition is introduced and the beam bending means is added, the image is divided and the image is formed by the corresponding image forming optical means, but the object and the image are parallel to each other. An imaging optical system that can be positioned on a flat plane. With this configuration, it is thin, wide-angle,
It is possible to provide a compact imaging optical system.

【0016】物体は光軸に対し(一般には垂直である
が)、傾斜しているとき像面も傾斜し、レンズ(薄肉レ
ンズ)面と同一直線で交わるという(シャインプルーフ
の)法則が成り立つ。一般光学系ではレンズ面には物体
側主平面と像側主平面があり、その両平面間に距離が生
じるが、この距離は設計時に考慮すれば良いので、主平
面は一つとする近似で説明する。本発明ではシャインプ
ルーフの条件を満たす結像光学手段の物像間光路中に、
光線屈曲手段を付加し物体面と像面をほぼ平行にする。
When the object is tilted with respect to the optical axis (generally perpendicular to the optical axis), the image surface is tilted when tilted, and the Scheimpflug's law is established that intersects the lens (thin lens) surface in the same straight line. In a general optical system, there are an object-side principal plane and an image-side principal plane on the lens surface, and a distance occurs between the two planes, but this distance can be taken into consideration when designing. To do. In the present invention, in the optical path between object images of the imaging optical means satisfying the Scheimpflug condition,
A beam bending means is added to make the object plane and the image plane substantially parallel.

【0017】図1に示すようにこの時の屈曲角=偏角は
物体面と像面がなす角(=α1+α2)になる。これを
1つの結像単位として、2次元に複数個配置することで
結像単位と同数の分割像を形成することができ、従来の
複眼をベースにした各種発明が有した欠点、即ち結像単
位と分割像の配置が曲面状になる欠点を解決し、平面状
の配置が可能になる。
As shown in FIG. 1, the bending angle = deflection angle at this time is the angle formed between the object plane and the image plane (= α1 + α2). By using this as one image forming unit and arranging a plurality of two-dimensionally, it is possible to form the same number of divided images as the image forming unit, which is a drawback of various conventional inventions based on compound eyes, that is, image forming. The defect that the arrangement of the unit and the divided image is curved is solved, and the plane arrangement becomes possible.

【0018】ここで結像光学手段にはレンズ(系)、曲
面ミラー(系)、両者を組み合わせたハイブリッド光学
系、屈折率分布型光学素子などが可能である。また光線
の屈曲手段は、ミラー、プリズム、回折素子、フレネル
素子、ホログラムなどを意味する。
Here, the image forming optical means can be a lens (system), a curved mirror (system), a hybrid optical system in which both are combined, a gradient index optical element, or the like. The light beam bending means means a mirror, a prism, a diffraction element, a Fresnel element, a hologram, or the like.

【0019】図1では物体面、結像光学手段、光線屈曲
手段、像面の順で配置してあるが、光線屈曲手段と結像
光学手段を入れ換える、結像光学手段を複数の部品構成
にして内部に光線屈曲手段を配置する、などの構成も可
能である。このような構成によって、一組の結像光学系
が持つ画角を、複数個配置することで合成でき、複眼と
同様に広角の結像または撮影が可能になる。また、結像
光を遮らない範囲に、遮光板を設置することでフレア光
を低減できる(請求項1)。
In FIG. 1, the object plane, the image-forming optical means, the light beam bending means, and the image plane are arranged in this order. However, the light-beam bending means and the image-forming optical means are replaced with each other. It is also possible to arrange a light beam bending means inside. With such a configuration, the angle of view of a set of imaging optical systems can be combined by arranging a plurality of angles, and wide-angle imaging or photographing can be performed similarly to the compound eye. Further, the flare light can be reduced by installing a light shielding plate in a range that does not block the imaging light (claim 1).

【0020】また、物体面と像面を平行にできること
は、結像単位の配置を構成部品ごとに同一平面上に配置
でき、分割像の形成も同一平面上に可能になる。即ち、
複数のレンズがある場合は第1レンズごと、あるいは第
2レンズごと、または光線屈曲手段ごとに配置すること
である。ここで光線屈曲手段による光線の屈曲方向が像
面から物体面を見たときに相互に遠ざかる方向で対称的
に配置することで、結像光学手段と光線の屈曲手段を配
置する平面の面積を小さくでき薄型とともに小型な結像
光学系が提供できる。図2に2セットを配置したときの
断面図を、図3に4セットを配置したときの像面から見
た射影図を、光線屈曲手段による光線の屈曲方向が像面
から物体面を見たときに相互に遠ざかる方向で対称的に
配置している様子を示す。これらから、結像光学系が中
心線近傍に集約でき小型化を実現していることがわか
る。(請求項2)
Further, the fact that the object plane and the image plane can be made parallel to each other enables the arrangement of image forming units to be arranged on the same plane for each component, and the division images can be formed on the same plane. That is,
When there are a plurality of lenses, they are arranged for each first lens, each second lens, or each beam bending means. Here, by symmetrically arranging the bending direction of the light beam by the light beam bending means in a direction away from each other when the object surface is viewed from the image plane, the area of the plane where the imaging optical means and the light beam bending means are arranged can be reduced. It is possible to provide an imaging optical system that is small, thin, and small. 2 is a cross-sectional view when two sets are arranged, and FIG. 3 is a projection view seen from the image plane when four sets are arranged. The bending direction of light rays by the ray bending means is the object plane viewed from the image plane. At times, it is shown that they are arranged symmetrically with respect to each other. From these, it can be seen that the image forming optical system can be integrated near the center line to realize downsizing. (Claim 2)

【0021】さらに、分割像が同一平面上に作成された
とき、分割される部分の情報の欠落は望ましくない。複
数の分割像に重複して結像されているときは画像信号を
作成するときに取捨することでつなぐことができ、また
重複が多すぎると合成した情報数が低減する。部品の加
工誤差や配置誤差を考慮する必要があり、従って光線の
屈曲手段のなす偏角は結像光学手段の分割方向の画角を
その方向の分割数で割った値にほぼ等しいか、わずかに
小さい事が望ましい。(請求項3)
Further, when the divided images are formed on the same plane, it is not desirable that the information of the divided portions be lost. When a plurality of divided images are overlapped and formed, they can be connected by discarding them when creating an image signal, and when there are too many overlaps, the number of combined information decreases. It is necessary to consider the processing error and the placement error of the parts. Therefore, the deflection angle of the light beam bending means is almost equal to the value obtained by dividing the angle of view in the dividing direction of the imaging optical means by the number of divisions in that direction, or only slightly. It is desirable to be small. (Claim 3)

【0022】さらに、結像光学手段を1枚または複数枚
のレンズにすることは簡潔でかつ効果的であり、光線屈
曲手段をプリズムにすることも有効である。平板に光線
を透過させる開口部と光学部品を保持する形状部分を作
成し各部品を同じ配置間隔と対称な傾きを有し配置する
ことで結像光学系を位置決めすることが可能である。ま
た、この構成によると、支持基板が明るさ絞りと迷光の
除去を兼ねることができる(請求項4)
Furthermore, it is simple and effective to use one or a plurality of lenses as the image forming optical means, and it is also effective to use a prism as the light beam bending means. It is possible to position the imaging optical system by forming an opening for transmitting light rays on the flat plate and forming a shape portion for holding the optical component and arranging each component with the same arrangement interval and a symmetrical inclination. Further, according to this structure, the support substrate can serve both as the aperture stop and for removing stray light (claim 4).

【0023】さらに、レンズ及びプリズムの少なくとも
1種の部品を支持部材である平板と一体で作成すること
が出来る。成型法で加工でき、レンズに非球面が必要な
場合の複雑で高精度を要求するときでも、低コストで大
量生産が可能で、組み付けを簡易にすることも可能であ
る。(請求項5)
Further, at least one of the lens and the prism can be formed integrally with the flat plate which is the supporting member. It can be processed by the molding method, and even when complicated and high precision is required when an aspherical surface is required for the lens, mass production is possible at low cost, and assembly can be simplified. (Claim 5)

【0024】さらに、プリズムを平板と一体で構成する
とき、結像光学系を物体側からプリズム、レンズ(系)
の順で配置し、物体側のプリズム面が物体面と平行(=
像面と平行)にすることができる。金型の一方の面が共
通の平面にでき加工性に優れるほか、カメラなど撮影装
置でユーザが触れやすい状態で配置されても、凹凸がな
いためゴミが付着することが回避でき、汚れにくく清掃
も容易である。又該当する面に耐摩耗性を向上する表面
処理を施すことはさらに有効である。(請求項6)
Further, when the prism is formed integrally with the flat plate, the imaging optical system is arranged from the object side to the prism and the lens (system).
, And the prism surface on the object side is parallel to the object surface (=
Parallel to the image plane). One side of the mold can be made into a common flat surface, which is excellent in workability, and even if the mold is placed in a state where the user can easily touch it with a shooting device such as a camera, there is no unevenness, so it is possible to avoid dust from adhering and to clean it easily. Is also easy. Further, it is more effective to subject the relevant surface to a surface treatment for improving wear resistance. (Claim 6)

【0025】さらに、使用するプリズムにおいて曲面を
有するプリズムを用いることが望ましい。それによっ
て、収差を低減できるからである(請求項7)。
Furthermore, it is desirable to use a prism having a curved surface in the prism used. This is because the aberration can be reduced (claim 7).

【0026】ここで、図について説明する。図1および
2は、本発明の第1の実施形態の構成図である。図3お
よび4は、それぞれ物体面を4分割および16分割して
結像した像を像面から見た模式図である。
Here, the drawings will be described. 1 and 2 are configuration diagrams of a first embodiment of the present invention. 3 and 4 are schematic views of the images formed by dividing the object plane into four and sixteen, respectively, as viewed from the image plane.

【0027】図1はシャインプルーフの条件を満たす結
像光学手段に光線の屈曲手段を付加し、物体面と像面を
平行にできることを示す。物体側から結像光学手段、光
線の屈曲手段の順である。図中、光線の屈曲手段がなく
シャインプルーフの条件を満たす光路が実線であり、光
線の屈曲手段を挿入し像面を物体面と平行にした光路が
破線である。符号については、1は物体面、2は結像光
学手段、2'は結像光学手段の主平面、4はシャインプ
ルーフの条件を満たす像面、5は光軸、3は光線の屈曲
手段および4'は光線の屈曲手段により物体面と平行に
なった像面である。ここでα1は、物体面と結像光学手
段の主面とのなす角、α2は結像光学手段の主面と像面
とのなす角、θは結像光学手段の半画角である。ここで
は、θ=(α1+α2)である。なお(α1+α2)は
光軸5から物体面と像面の交線Bまでの距離を変更する
ことで、任意に変えることができ。
FIG. 1 shows that a beam bending means can be added to the image forming optical means satisfying the Scheimpflug condition to make the object plane and the image plane parallel to each other. The imaging optical means and the light beam bending means are arranged in this order from the object side. In the figure, the solid line is an optical path that does not have a light beam bending means and satisfies the Scheimpflug condition, and the broken line is an optical path in which the light beam bending means is inserted and the image plane is parallel to the object plane. Regarding the reference numerals, 1 is an object plane, 2 is an image forming optical means, 2'is a main plane of the image forming optical means, 4 is an image surface satisfying the Scheimpflug condition, 5 is an optical axis, 3 is a beam bending means, and Reference numeral 4'denotes an image plane which is parallel to the object plane by the beam bending means. Here, α1 is an angle formed by the object plane and the main surface of the image forming optical means, α2 is an angle formed by the main surface of the image forming optical means and the image plane, and θ is a half angle of view of the image forming optical means. Here, θ = (α1 + α2). Note that (α1 + α2) can be arbitrarily changed by changing the distance from the optical axis 5 to the line B of intersection of the object plane and the image plane.

【0028】図2では、物体側面、光線屈曲手段、結像
光学手段、像面の順に配置された例で、物体面と物体側
光路は、光線の屈曲手段により屈曲した配置のみを破線
で示す。一点鎖線は物体の中心からの垂線で中心線をあ
らわし、中心線に対称に2個の結像光学系を配置してあ
る。物体面は抜けがなく連続して分割結像されている。
プリズムの物体側面は物体面と平行にした例であり共通
の同一平面を作る。レンズの偏心(傾き)も対称に保た
れる。結像光学手段、光線屈曲手段と分割結像された像
面は中心線近傍に配置できるので、結像光学系や画像撮
影装置をコンパクトに実現できる。符号についてはここ
で、6は中心線、1'は光線の屈曲手段により像面と平
行になった物体面である。
In FIG. 2, the object side surface, the light beam bending means, the imaging optical means, and the image plane are arranged in this order, and the object plane and the object side optical path are indicated by broken lines only in the arrangement bent by the light beam bending means. . The alternate long and short dash line represents the center line as a perpendicular line from the center of the object, and two image forming optical systems are arranged symmetrically with respect to the center line. The object plane is continuously divided and imaged without any omission.
The object side surface of the prism is an example parallel to the object surface and forms a common coplanar surface. The eccentricity (tilt) of the lens is also kept symmetrical. Since the image forming optical means, the light beam bending means and the image surface formed by the divided image formation can be arranged in the vicinity of the center line, the image forming optical system and the image photographing device can be realized compactly. Regarding the reference numeral, 6 is a center line, and 1'is an object plane which is made parallel to the image plane by the beam bending means.

【0029】図3は物体面を4分割して結像したときの
像面から見た図で、光線屈曲手段による光線の屈曲方向
が像面から物体面を見たときに相互に遠ざかる方向で対
称的に配置している様子を示す。小丸が起点であり矢印
の方向が光線屈曲手段による光線の屈曲方向を示し、プ
リズム等の傾きの方向と同時に対称の方向を示す。
FIG. 3 is a view as seen from the image plane when an image is formed by dividing the object plane into four parts, and the bending directions of the rays by the ray bending means are such that they are distant from each other when the object plane is seen from the image plane. The figure shows how they are arranged symmetrically. The small circle is the starting point, and the direction of the arrow shows the bending direction of the light beam by the light beam bending means, and shows the direction of symmetry at the same time as the direction of inclination of the prism or the like.

【0030】図4は物体面を16分割したときの対称性
を利用した結像光学手段と光線の屈曲手段の共通性を示
す簡易図で、起点の符号が同じものは同じ部品の向きと
配置をかえることで使用可能であることを示している。
また光線屈曲手段による屈曲の方向は各分割像の中心と
中心線を結ぶ延長線上が良いことが分かり、16分割の
ときには4種類でよいことが分かる。
FIG. 4 is a simplified diagram showing the commonality of the image forming optical means and the light beam bending means utilizing the symmetry when the object plane is divided into 16 parts. It is indicated that it can be used by changing.
Further, it is understood that the direction of bending by the beam bending means is preferably on the extension line connecting the center of each divided image and the center line, and it can be understood that four types can be used in the case of 16 divisions.

【0031】(第2の実施の形態)本発明第1の実施の
形態における結像光学装置の、結像単位毎の分割像は倒
立像であり、そのままでは繋がらない。像面に結像単位
に対応した光検出手段を配置し、それぞれの光検出手段
の出力を合成することで画像信号を作成でき、画像撮影
装置を提供する事ができる。薄型、小型で広角である。
光検出手段にはエリア型のCCD、C−MOS等を用い
ることができ、同一平面上に配列することができる。複
数の光検出手段の出力を合成するので画素数の多い画像
信号が得られ高密度、高精細な画像撮影装置が得られ
る。適正露光の制御にはCCDの積分時間を変更するほ
か、NDフィルタを使用することができる。また、結像
光を遮らない範囲に、遮光板を設置することでフレア光
を低減できる(請求項8)。
(Second Embodiment) In the image forming optical device according to the first embodiment of the present invention, the divided image for each image forming unit is an inverted image and cannot be connected as it is. An image signal can be created by arranging a photodetecting unit corresponding to an image forming unit on the image plane and synthesizing the outputs of the respective photodetecting units, so that an image capturing apparatus can be provided. Thin, small and wide-angle.
An area type CCD, C-MOS, or the like can be used as the light detecting means, and they can be arranged on the same plane. Since the outputs of a plurality of light detecting means are combined, an image signal having a large number of pixels can be obtained, and a high-density and high-definition image capturing device can be obtained. In addition to changing the CCD integration time, an ND filter can be used to control the proper exposure. Further, the flare light can be reduced by installing a light shielding plate in a range that does not block the imaging light (claim 8).

【0032】また、光検出手段を同一平面上に配列する
ことができることは、光検出手段の数は結像単位数より
少なく構成することを可能にする。光検出手段の最小数
は1個である。分割された像に対応するアドレスの光電
変換された信号を合成し画像信号を得る。合成による画
素数増加の効果は少ないか又はないが、更に小型であっ
たり低コストな画像撮影装置が得られる。(請求項9)
Further, the fact that the light detecting means can be arranged on the same plane enables the number of light detecting means to be smaller than the number of image forming units. The minimum number of light detecting means is one. An image signal is obtained by synthesizing the photoelectrically converted signals at the addresses corresponding to the divided images. Although there is little or no effect of increasing the number of pixels by combining, it is possible to obtain a more compact and low-cost image capturing device. (Claim 9)

【0033】さらに、結像光学手段の全部または一部、
結像光学手段と光検出手段の一方又は両方を物体面と平
行に移動することで合焦可能な機能を付与することがで
きる。結像光学手段と光検出手段を曲面上に配置する従
来の複眼方式では合焦が極めて困難であり、大きな利点
である。深度内に限定された前方式に比べ、撮影範囲を
大きく広げることができる。このような機能は、常法に
より可能である(請求項10)。
Further, all or a part of the image forming optical means,
By moving one or both of the image forming optical means and the light detecting means in parallel to the object plane, a function capable of focusing can be provided. Focusing is extremely difficult with the conventional compound eye method in which the image forming optical means and the light detecting means are arranged on a curved surface, which is a great advantage. Compared to the previous method, which is limited to the depth, the shooting range can be greatly expanded. Such a function can be performed by a conventional method (claim 10).

【0034】また、シャインプルーフの結像条件におい
ては台形歪み(Keystone Distortion)が発生する事が
知られている。光線屈曲手段で台形歪みを低減できる可
能性があるが、結像光学系が有する像の形状の歪みの一
部を電気的に補正することで、結像光学系の負担が減少
し高性能な像を得ることができる。分割像ごとに像の反
転を行うのは勿論のこと、つなぎ部分の形状のずれや明
るさ、色合いの差を小さくする機能を有することで、高
品位な画像が再現できる画像撮影装置が得られる。(請
求項11)
Further, it is known that trapezoidal distortion (Keystone Distortion) occurs under the Scheimpflug image formation condition. There is a possibility that the beam bending means can reduce the trapezoidal distortion, but by electrically correcting a part of the distortion of the image shape of the imaging optical system, the burden on the imaging optical system is reduced and high performance is achieved. You can get a statue. It is possible to obtain an image capturing device capable of reproducing a high-quality image by not only performing the image inversion for each divided image but also having a function of reducing the difference in the shape of the joint portion, the brightness, and the hue. . (Claim 11)

【0035】[0035]

【発明の効果】本発明の結像光学系によれば、一組の結
像光学系が持つ画角を、複数個配置することで合成で
き、複眼であることに加え広角の結像または撮影が可能
になり、さらに、光線屈曲手段を用いることによって結
像面を共通平面とすることによりさらに小型化、薄型化
が可能となる。また、結像光学手段、光線屈曲手段を、
平板状に複数配列された構成として作製することによっ
て、それら各手段を平板状の1単位として構成すること
ができるため、取り付けなど生産性、成型の容易さ、お
よび製作精度の向上などが可能となる、低コスト化に資
する。また、そのような構成によっても小型化、薄型化
に資することができる。
According to the image forming optical system of the present invention, the angle of view of a set of image forming optical systems can be combined by arranging a plurality of them, and in addition to the compound eye, wide angle image forming or photographing can be performed. Further, it is possible to further reduce the size and thickness by using the beam bending means to make the image forming surface a common plane. In addition, the image forming optical means and the ray bending means,
By making a plurality of flat plate-shaped arrangements, each of these means can be formed as a flat plate unit, so that productivity such as mounting, ease of molding, and manufacturing accuracy can be improved. It contributes to cost reduction. Further, such a configuration can also contribute to downsizing and thinning.

【0036】本発明の画像撮影装置は、上記の効果を有
する結像光学系を組み込んでいるために、画像撮影装置
自体の小型化、薄型化が可能になるほか、分割された像
を補正する機能によって、シャインプルーフ条件を満た
す光学系における台形歪みを補正した鮮明な画像を撮影
することが可能となる。
Since the image photographing apparatus of the present invention incorporates the image forming optical system having the above effects, the image photographing apparatus itself can be made smaller and thinner, and the divided image is corrected. The function makes it possible to capture a clear image in which trapezoidal distortion is corrected in an optical system that satisfies the Scheimpflug condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】第1の実施形態の構成図である。FIG. 2 is a configuration diagram of the first embodiment.

【図3】物体面を4分割して結像した像を像面から見た
模式図である。
FIG. 3 is a schematic view of an image formed by dividing an object plane into four and viewed from the image plane.

【図4】物体面を16分割して結像した像を像面から見
た模式図である。
FIG. 4 is a schematic diagram of an image formed by dividing an object plane into 16 parts and viewed from the image plane.

【符号の説明】[Explanation of symbols]

1……物体面 2……結像光学手段 2'……結像光学手段の主平面 3……光線の屈曲手段 4……シャインプルーフの条件を満たす像面 4'……光線の屈曲手段により物体面と平行になった像
面 5……光軸。
1 ... Object plane 2 ... Imaging optical means 2 '... Main plane of imaging optical means 3 ... Beam bending means 4 ... Image plane 4' ... by ray bending means satisfying Scheimpflug condition Image plane 5 that is parallel to the object plane .... Optical axis.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 傾斜した物体面、像面と光学系の主平面
が同一直線で交わるいわゆるシャインプルーフ(Sch
eimpflug)の条件を満たす結像光学手段の物像
間光路中に、物体面と像面をほぼ平行にする光線屈曲手
段を有する結像単位を2次元に複数個配置し、結像単位
と同数のそれぞれ1対1に対応して分割して結像する単
位像面を備え、分割された前記単位像面の像を合成する
ことを特徴とする結像光学系。
1. A so-called Scheimpflug (Sch) in which an inclined object plane, an image plane and a principal plane of an optical system intersect on the same straight line
In the optical path between object images of the image forming optical means satisfying the condition of (eimpflug), a plurality of image forming units having light beam bending means for making the object plane and the image plane substantially parallel are arranged two-dimensionally, and the same number as the image forming units is provided. An image forming optical system comprising: unit image planes that are divided and image-formed in a one-to-one correspondence with each other, and combine the divided images of the unit image planes.
【請求項2】 前記2次元に配置されたそれぞれの結像
単位によって結像される前記それぞれの単位結像面は、
同一の共通の結像面上にあり、前記光線屈曲手段による
光線の屈曲方向が前記共通の結像面から該物体面を見た
ときに相互に遠ざかる方向で対称的に配置されることを
特徴とする請求項1に記載の結像光学系。
2. The respective unit imaging planes imaged by the respective two-dimensionally arranged imaging units,
It is on the same common image forming plane, and the bending directions of the light rays by the light ray bending means are symmetrically arranged so that they are distant from each other when the object plane is viewed from the common image forming plane. The imaging optical system according to claim 1.
【請求項3】 前記光線屈曲手段のなす偏角は、前記結
像光学系の分割方向の画角をその方向の分割数で割った
値にほぼ等しいか、もしくはわずかに小さいことを特徴
とする請求項1に記載の結像光学系。
3. The deflection angle formed by the beam bending means is substantially equal to or slightly smaller than a value obtained by dividing the angle of view of the imaging optical system in the division direction by the number of divisions in that direction. The image forming optical system according to claim 1.
【請求項4】 前記結像光学手段は、1枚または複数枚
からなるレンズであり、前記光線屈曲手段は1または複
数からなるプリズムであって、前記レンズおよび前記プ
リズムは、それぞれ同じ配置間隔と対称な傾きとを有
し、かつそれぞれが平板状の支持基板上に配列されてい
ることを特徴とする請求項1に記載の結像光学系。
4. The image forming optical means is a lens composed of one or a plurality of lenses, and the light beam bending means is a prism composed of one or a plurality of lenses. The lenses and the prisms have the same arrangement interval. The image forming optical system according to claim 1, wherein the image forming optical systems have symmetrical inclinations and are arranged on a flat support substrate.
【請求項5】 前記結像単位は、レンズおよびプリズム
から選択される少なくとも1の要素のそれぞれが平板状
に一体的に配列されて形成されていることを特徴とする
請求項4に記載の結像光学系。
5. The image forming unit according to claim 4, wherein each of at least one element selected from a lens and a prism is integrally arranged in a flat plate shape. Image optics.
【請求項6】 前記プリズムと、前記レンズが該物体か
らこの順序で配置され、前記プリズムの該物体面側の面
が物体面に平行であることを特徴とする請求項4または
5に記載の結像光学系。
6. The prism and the lens are arranged in this order from the object, and the surface of the prism on the object plane side is parallel to the object plane. Imaging optics.
【請求項7】 前記光線屈曲手段は、曲面からなる面を
有するプリズムを含むことを特徴とする請求項4に記載
の結像光学系。
7. The image forming optical system according to claim 4, wherein the light beam bending means includes a prism having a curved surface.
【請求項8】 請求項1乃至7のうち1に記載の結像光
学系を有し、該結像光学系の該単位結像面には、該結像
単位による該単位結像に対応した光検出手段がそれぞれ
配置され、それぞれの前記光検出手段の出力を合成し画
像信号を作成する画像信号生成手段を備えることを特徴
とする画像撮影装置。
8. An image forming optical system according to claim 1, wherein the unit image forming surface of the image forming optical system corresponds to the unit image forming by the image forming unit. An image pickup apparatus, comprising: an image signal generating unit that is provided with each of the light detecting units and that synthesizes outputs of the respective light detecting units to generate an image signal.
【請求項9】 前記単位結像面には、前記結像単位数以
下の光検出手段が配置され、1個又はそれぞれの該光検
出手段の出力を合成し画像信号を作成する画像信号生成
手段を有することを特徴とする請求項8に記載の画像撮
影装置。
9. An image signal generating means for arranging on the unit image-forming surface, light detecting means equal to or smaller than the number of image forming units and synthesizing an output of one or each of the light detecting means to generate an image signal. The image capturing apparatus according to claim 8, further comprising:
【請求項10】 平板状をなす前記結像光学手段、前記
光線屈曲手段、および前記光検出手段から選択される1
以上を、該物像間の光路上で、該それぞれ平板状の各手
段の平行を保ちながら移動させることによって、合焦す
ることを特徴とする請求項8または9に記載の画像撮影
装置。
10. One selected from the flat plate-shaped image forming optical means, the light beam bending means, and the light detecting means.
The image photographing apparatus according to claim 8 or 9, wherein the above-mentioned means is moved on the optical path between the object images while maintaining the parallelism of the respective flat plate-shaped means to focus.
【請求項11】 前記画像信号作成手段は、合成された
画像信号のつなぎ部分のずれや特性の差を低減させ、画
像の歪曲を良好に低減する機能を有することを特徴とす
る請求項8乃至10のうち1に記載の画像撮影装置。
11. The image signal generating means has a function of reducing a shift or a difference in characteristics of a joint portion of the combined image signals, and satisfactorily reducing image distortion. The image capturing device according to 1 of 10.
JP2002134252A 2001-09-13 2002-05-09 Imaging optical system and image photographing device using the same Pending JP2003161879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134252A JP2003161879A (en) 2001-09-13 2002-05-09 Imaging optical system and image photographing device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001278623 2001-09-13
JP2001-278623 2001-09-13
JP2002134252A JP2003161879A (en) 2001-09-13 2002-05-09 Imaging optical system and image photographing device using the same

Publications (1)

Publication Number Publication Date
JP2003161879A true JP2003161879A (en) 2003-06-06

Family

ID=26622173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134252A Pending JP2003161879A (en) 2001-09-13 2002-05-09 Imaging optical system and image photographing device using the same

Country Status (1)

Country Link
JP (1) JP2003161879A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179615B1 (en) 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
US8482863B2 (en) 2010-12-15 2013-07-09 Largan Precision Co. Imagery optical system
US8488255B2 (en) 2010-12-09 2013-07-16 Largan Precision Co. Image pickup optical system
WO2014156712A1 (en) * 2013-03-26 2014-10-02 コニカミノルタ株式会社 Compound optical system and image pickup device
JP2015044212A (en) * 2013-08-28 2015-03-12 オムロン株式会社 Laser processing apparatus
USRE46747E1 (en) 2012-01-12 2018-03-06 Largan Precision Co., Ltd. Image capturing system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488255B2 (en) 2010-12-09 2013-07-16 Largan Precision Co. Image pickup optical system
US8482863B2 (en) 2010-12-15 2013-07-09 Largan Precision Co. Imagery optical system
US8179615B1 (en) 2011-01-07 2012-05-15 Largan Precision Co. Image pickup optical lens assembly
USRE45765E1 (en) 2011-01-07 2015-10-20 Largan Precision Co., Ltd Image pickup optical lens assembly
USRE46747E1 (en) 2012-01-12 2018-03-06 Largan Precision Co., Ltd. Image capturing system
WO2014156712A1 (en) * 2013-03-26 2014-10-02 コニカミノルタ株式会社 Compound optical system and image pickup device
JP2015044212A (en) * 2013-08-28 2015-03-12 オムロン株式会社 Laser processing apparatus

Similar Documents

Publication Publication Date Title
US8094183B2 (en) Panoramic imaging device
JP5031475B2 (en) Zoom lens and photographing system having the same
JP4259541B2 (en) Panorama imaging device
WO2011049195A1 (en) Objective optical system for three-dimensional image capturing and endoscope
JP4173210B2 (en) Imaging lens
JP2007047792A (en) Super-slim mobile camera optical lens system and image forming method using same
JPH08265804A (en) Image pickup device
JP6847071B2 (en) Imaging optics, projection display, and imaging equipment
TW200931097A (en) Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
TWI401484B (en) A photographing system, a manufacturing method of a photographing system, and a photographing device having the photographic system, a portable terminal device, a vehicle-mounted device, and a medical device
KR20230003582A (en) Optical lenses, lens modules and terminals
JP3800420B2 (en) Macro lens
JP2021039162A (en) Imaging optical system, projection display device, and image capturing device
JP2003161879A (en) Imaging optical system and image photographing device using the same
KR101493928B1 (en) Imaging lens system
JP2006084886A (en) Lens device
JP2012145624A (en) Stereoscopic image photographing device and electronic apparatus
JP2004029641A (en) Focus system for monofocal lens
JP4708970B2 (en) Focus detection device and imaging device having the focus detection device
JP2003161909A (en) Projection system and image projection device using the same
JP4546781B2 (en) Imaging apparatus and color misregistration correction program
JP6576299B2 (en) Imaging optical system, imaging device, and projection display device
JP2015106773A (en) Imaging device with array optical system
JPH09138342A (en) Lens for small-sized solid-state image pickup element
JP6242373B2 (en) Imaging optical system and image reading apparatus having the same