JP2003157830A - Lithium ion secondary battery - Google Patents
Lithium ion secondary batteryInfo
- Publication number
- JP2003157830A JP2003157830A JP2001356217A JP2001356217A JP2003157830A JP 2003157830 A JP2003157830 A JP 2003157830A JP 2001356217 A JP2001356217 A JP 2001356217A JP 2001356217 A JP2001356217 A JP 2001356217A JP 2003157830 A JP2003157830 A JP 2003157830A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrode plate
- secondary battery
- diameter
- ion secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウムイオン二次
電池に関する。TECHNICAL FIELD The present invention relates to a lithium ion secondary battery.
【0002】[0002]
【従来の技術】一般にリチウムイオン二次電池は、電解
液を含浸させたセパレータを正極板と負極板とで挟み込
んでなる構造を有している。正極板および負極板は、そ
れぞれ、活物質とバインダーを少なくとも含むスラリー
(正極においては、通常、活物質とともに導電材も使用
される)を、金属箔などの集電体上に塗工し、乾燥され
た塗工物層を設けて形成される。正極の活物質としては
Li−Co系複合酸化物が一般的であり、負極の活物質
としては炭素材料が一般的である。2. Description of the Related Art Generally, a lithium ion secondary battery has a structure in which a separator impregnated with an electrolytic solution is sandwiched between a positive electrode plate and a negative electrode plate. For the positive electrode plate and the negative electrode plate, a slurry containing at least an active material and a binder (a conductive material is usually used together with the active material in the positive electrode) is applied on a current collector such as a metal foil and dried. It is formed by providing the applied coating layer. A Li—Co-based composite oxide is generally used as the positive electrode active material, and a carbon material is generally used as the negative electrode active material.
【0003】このように構成されたリチウムイオン二次
電池は、ニッカド電池などに比べ高エネルギー密度、高
電圧を達成することができる。そのため、リチウムイオ
ン二次電池は、近年、携帯電話やノート型パソコンとい
った携帯機器の駆動源として急速に採用が進んでいる。
さらに、将来的には適用範囲の拡大が期待される。The lithium-ion secondary battery thus constructed can achieve higher energy density and higher voltage than nickel-cadmium batteries and the like. Therefore, in recent years, lithium ion secondary batteries have been rapidly adopted as a drive source for mobile devices such as mobile phones and notebook computers.
Furthermore, it is expected that the scope of application will be expanded in the future.
【0004】リチウムイオン二次電池の問題として、低
温で放電を行うと、室温で放電を行う場合と比較して放
電容量および放電電圧が大きく低下する性質がある。こ
のため、リチウムイオン二次電池は観測機器や通信機
器、さらには電気自動車や電力貯蔵機器といった低温下
での使用が想定される機器への適用が困難となってい
る。したがって、リチウムイオン二次電池を上記機器に
適用するには、低温下における放電容量および放電電圧
の低下を抑制できる性質、すなわち低温特性をより向上
させる必要がある。また、低温特性が良好であっても、
充分なサイクル特性を備えていなければ実用的なリチウ
ムイオン二次電池とはいえない。さらに、各種機器への
適用のために、大電流放電(ハイレート放電)時の放電
特性の更なる向上が要求されている。As a problem of the lithium ion secondary battery, there is a property that when discharged at a low temperature, the discharge capacity and the discharge voltage are greatly reduced as compared with the case of discharging at room temperature. For this reason, it is difficult to apply the lithium-ion secondary battery to observation equipment, communication equipment, and equipment that is supposed to be used at low temperatures, such as electric vehicles and power storage equipment. Therefore, in order to apply the lithium ion secondary battery to the above-mentioned equipment, it is necessary to further improve the property capable of suppressing the decrease in discharge capacity and discharge voltage at low temperature, that is, the low temperature property. In addition, even if the low temperature characteristics are good,
It cannot be said that it is a practical lithium-ion secondary battery unless it has sufficient cycle characteristics. Further, for application to various devices, further improvement in discharge characteristics during large current discharge (high rate discharge) is required.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記事情に
鑑み、従来よりも、低温特性、サイクル特性およびハイ
レート放電特性のいずれもが大きく改善されたリチウム
イオン二次電池を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above circumstances, the present invention aims to provide a lithium ion secondary battery in which all of the low temperature characteristics, the cycle characteristics and the high rate discharge characteristics are greatly improved as compared with conventional ones. And
【0006】[0006]
【課題を解決するための手段】本発明者等は、上記目的
を達成すべく鋭意研究した結果、正極板における正極塗
工物層中の高分子バインダーに融点が165℃以下のポ
リフッ化ビニリデンを使用して、正極塗工物層の空孔率
を従来よりも大きい特定の範囲内にするとともに、導電
材に特定粒径範囲の大粒径成分と特定粒径以下の小粒径
成分とを主成分とする導電材を使用し、さらに、電解液
の粘度を十分に低下させることにより、従来よりも、低
温特性、サイクル特性およびハイレート放電特性のいず
れもが大きく改善され得ることを見出し、本発明を完成
させた。Means for Solving the Problems As a result of intensive studies to achieve the above object, the inventors of the present invention have found that the polymer binder in the positive electrode coating layer of the positive electrode plate contains polyvinylidene fluoride having a melting point of 165 ° C. or lower. By using, the porosity of the positive electrode coating layer within a specific range larger than the conventional one, a large particle size component of a specific particle size range and a small particle size component of a specific particle size or less in the conductive material. By using a conductive material as the main component and further sufficiently reducing the viscosity of the electrolytic solution, it has been found that all of the low temperature characteristics, cycle characteristics and high rate discharge characteristics can be greatly improved compared to conventional ones. Completed the invention.
【0007】即ち、本発明は以下のとおりである。
(1)正極板、負極板および電解液を少なくとも含むリ
チウムイオン二次電池であって、正極板が、Li−Co
系複合酸化物からなる活物質と、粒径が4〜8μmの範
囲内にある大径成分および粒径が0.1μm以下の小径
成分の合計量が全体の70重量%以上であり、かつ、大
径成分と小径成分の重量比が1:0.01〜1:1であ
る粒状の導電材と、融点が165℃以下のポリフッ化ビ
ニリデンとを含む塗工物層を集電体上に形成し、該塗工
物層の空孔率を0.08〜0.14CC/gの範囲に設
定したものであり、電解液の粘度(23℃)が3.0c
ps以下であることを特徴とするリチウムイオン二次電
池。
(2)粒状のLi−Co系複合酸化物の平均粒径が10
μm以上である、上記(1)記載のリチウムイオン二次
電池。That is, the present invention is as follows. (1) A lithium ion secondary battery including at least a positive electrode plate, a negative electrode plate, and an electrolytic solution, wherein the positive electrode plate is Li—Co.
The total amount of the active material composed of a system-based complex oxide, the large-diameter component having a particle diameter in the range of 4 to 8 μm, and the small-diameter component having a particle diameter of 0.1 μm or less, is 70% by weight or more, and A coating layer including a granular conductive material having a weight ratio of a large diameter component and a small diameter component of 1: 0.01 to 1: 1 and polyvinylidene fluoride having a melting point of 165 ° C. or less is formed on a current collector. The porosity of the coating layer was set in the range of 0.08 to 0.14 CC / g, and the viscosity of the electrolytic solution (23 ° C.) was 3.0 c.
A lithium-ion secondary battery characterized by being ps or less. (2) The average particle size of the granular Li-Co-based composite oxide is 10
The lithium ion secondary battery according to (1) above, which has a thickness of at least μm.
【0008】[0008]
【発明の実施の形態】以下、本発明のリチウムイオン二
次電池を詳細に説明する。本発明のリチウムイオン二次
電池は、正極板、負極板および電解液を少なくとも含
み、正極板が、粒状のLi−Co系複合酸化物からなる
活物質と、粒径が4〜8μmの範囲内にある大径成分お
よび粒径が0.1μm以下の小径成分の合計量が全体の
70重量%以上であり、かつ、大径成分と小径成分の重
量比が1:0.01〜1:1である粒状の導電材と、融
点が165℃以下のポリフッ化ビニリデンとを含む塗工
物層を集電体上に形成し、該塗工物層の空孔率を0.0
8〜0.14CC/gの範囲に設定したものであり、電
解液の粘度(23℃)が3.0cps以下であることを
特徴とする。BEST MODE FOR CARRYING OUT THE INVENTION The lithium ion secondary battery of the present invention will be described in detail below. The lithium-ion secondary battery of the present invention includes at least a positive electrode plate, a negative electrode plate, and an electrolytic solution, and the positive electrode plate has an active material made of a granular Li—Co-based composite oxide and a particle size within a range of 4 to 8 μm. The total amount of the large-diameter component and the small-diameter component having a particle size of 0.1 μm or less is 70% by weight or more of the whole, and the weight ratio of the large-diameter component and the small-diameter component is 1: 0.01 to 1: 1. And a polyvinylidene fluoride having a melting point of 165 ° C. or less on the current collector, and the porosity of the coating layer is 0.0
It is set in the range of 8 to 0.14 CC / g, and the viscosity of the electrolytic solution (23 ° C.) is 3.0 cps or less.
【0009】リチウムイオン二次電池において良好な電
池特性を引き出すために、正極板の設計は最も重要なフ
ァクターである。そして、正極板の構成材料の選択もさ
ることながら、正極板の構造も良好な電池特性を引き出
すために重要となる。そこで、一般的に、正極板は、集
電体上に、活物質、導電材および高分子バインダーを含
むスラリーを塗工し、これを乾燥、圧延することで、集
電体上に、多孔性の塗工物層を設けている。かかる多孔
性の塗工物層における空孔率の制御はスラリーの、乾燥
温度や圧延時の圧力等で調整するのが簡単であるため、
専らこの方法で行われている。塗工物層の空孔率は電解
液の保持性(含浸性)の観点からはより大きいことが好
ましい。しかし、空孔率が大きいことは、その分、構成
材料(活物質、導電材、高分子バインダー等)間の結合
力が小さくなるので、充放電サイクルの繰り返しによる
温度変化等によって、塗工物層の多孔構造が壊れやす
く、そのために放電特性の低下を起こすことになってし
まう。このような背景から、従来、塗工物層の空孔率は
せいぜい大きくできても0.02〜0.06cc/g程
度であった。The design of the positive electrode plate is the most important factor for obtaining good battery characteristics in the lithium ion secondary battery. In addition to selecting the constituent material of the positive electrode plate, the structure of the positive electrode plate is also important for obtaining good battery characteristics. Therefore, in general, the positive electrode plate is formed by applying a slurry containing an active material, a conductive material and a polymer binder on a current collector, and drying and rolling the slurry to form a porous film on the current collector. Coating layer is provided. The control of the porosity in such a porous coating layer of the slurry is easy to adjust by the drying temperature, the pressure during rolling, etc.,
It is done this way exclusively. The porosity of the coating layer is preferably higher from the viewpoint of electrolyte retention (impregnation). However, since the porosity is large, the bonding force between the constituent materials (active material, conductive material, polymer binder, etc.) is correspondingly small, so the temperature changes due to repeated charge / discharge cycles, etc. The porous structure of the layer is easily broken, which causes deterioration of discharge characteristics. From such a background, conventionally, the porosity of the coating layer has been at most about 0.02 to 0.06 cc / g even if it can be increased.
【0010】本発明のリチウムイオン二次電池では、正
極板の塗工物層の空孔率を0.08〜0.14CC/g
の範囲に設定しているが、融点が165℃以下のポリフ
ッ化ビニリデンを使用したことによって、かかる高い空
孔率を有しながらも、安定な多孔構造の塗工物層を達成
している。これは、融点が165℃以下のポリフッ化ビ
ニリデン(以下、PVdFともいう)は、溶媒に溶解し
てスラリーを調整した場合に、従来の融点が170〜1
80℃程度のPVdFを使用した場合とはスラリー中で
異なる挙動を示し(活物質表面へポリマーの絡みかたが
異なる)、スラリーを乾燥して得られる塗工物層内に空
孔を作りやすく、また、スラリーの乾燥過程で、従来の
融点が高いPVdFよりもその結晶化度が高くなり、安
定な多孔構造を形成するものと考えられる(すなわち、
集電体上に塗工したスラリーの乾燥時に、その熱履歴に
よって集電体の機械的強度が低下し、圧延、捲回作業時
等に集電体が切断されやすくなるという問題があり、こ
の点から、スラリーの乾燥は通常このような問題が起こ
らないように100〜200℃程度で行われるが、融点
が165℃以下のポリフッ化ビニリデンは、かかるスラ
リーの乾燥時に従来から用いられてきたPVdF(融点
が170〜180℃程度)に比べて、結晶化がより進行
し、活物質、導電材等との結合力が高くなり、塗工物層
は従来よりも安定な多孔構造を形成するものと考えられ
る)。In the lithium ion secondary battery of the present invention, the porosity of the coating layer of the positive electrode plate is 0.08 to 0.14 CC / g.
However, by using polyvinylidene fluoride having a melting point of 165 ° C. or less, a coating layer having a stable porous structure is achieved while having such a high porosity. Polyvinylidene fluoride having a melting point of 165 ° C. or lower (hereinafter, also referred to as PVdF) has a conventional melting point of 170 to 1 when dissolved in a solvent to prepare a slurry.
Behaves differently in the slurry than when PVdF of about 80 ° C. is used (how the polymer is entangled with the surface of the active material), and it is easy to form pores in the coating layer obtained by drying the slurry. In addition, it is considered that during the drying process of the slurry, the crystallinity of PVdF becomes higher than that of the conventional PVdF having a high melting point, and a stable porous structure is formed (ie,
When drying the slurry coated on the current collector, there is a problem that the mechanical strength of the current collector decreases due to its thermal history, and the current collector is easily cut during rolling, winding work, etc. From the point of view, the drying of the slurry is usually performed at about 100 to 200 ° C. so that such a problem does not occur, but the polyvinylidene fluoride having a melting point of 165 ° C. or less is used for PVdF which has been conventionally used at the time of drying the slurry. Compared with (melting point of about 170 to 180 ° C.), crystallization progresses more, the binding force with active material, conductive material, etc. becomes higher, and the coating layer forms a more stable porous structure than before. it is conceivable that).
【0011】本発明で用いる融点が165℃以下のポリ
フッ化ビニリデンは、好ましくは融点が150〜165
℃、より好ましくは155℃〜160℃であり、また、
232℃で測定した溶融粘度が29〜33kps(キロ
ポイズ)であるものが特に好ましい。The polyvinylidene fluoride having a melting point of 165 ° C. or lower used in the present invention preferably has a melting point of 150 to 165.
C., more preferably 155 to 160.degree. C., and
It is particularly preferable that the melt viscosity measured at 232 ° C. is 29 to 33 kps (kilopoise).
【0012】本発明において、正極板の塗工物層の空孔
率が0.08CC/g未満であると、そのような正極板
は電解液が十分に浸透せず、その導電性が低下するため
に、低温特性およびサイクル特性が十分に向上し得な
い。また、塗工物層の空孔率が0.14CC/gを超え
ると、そのような正極板は活物質の充填量の低下のため
に、目標とする容量が得られにくくなる(電池サイズに
よって塗工物層の厚みは規制される)。本発明におい
て、正極板の塗工物層の空孔率は0.09〜0.12C
C/gの範囲が好まく、特に好ましくは0.09〜0.
10CC/gである。In the present invention, when the porosity of the coating layer of the positive electrode plate is less than 0.08 CC / g, such a positive electrode plate does not sufficiently permeate the electrolytic solution and its conductivity decreases. Therefore, the low temperature characteristics and the cycle characteristics cannot be improved sufficiently. Further, when the porosity of the coating layer exceeds 0.14 CC / g, it becomes difficult to obtain a target capacity in such a positive electrode plate due to a decrease in the filling amount of the active material (depending on the battery size. The thickness of the coating layer is regulated). In the present invention, the porosity of the coating layer of the positive electrode plate is 0.09 to 0.12C.
A range of C / g is preferred, and particularly preferably 0.09-0.
It is 10 CC / g.
【0013】本発明では、電解液の23℃における粘度
が3.0cps(センチポイズ)以下であることも重要
である。即ち、電解液の粘度がかかる3.0cps以下
の低粘度であることにより、電解液が塗工物層の空孔に
十分に浸透し、保持され、活物質との間でLiイオンの
挿入・脱離が活発に行われ、十分に高い放電容量が得ら
れる。電解液の粘度が3.0cpsより大きくなると、
電解液が塗工物層中に十分量保持されず、低温特性、ハ
イレート放電特性およびサイクル特性が低下し、ひいて
は、低温やハイレートでの放電が困難になる場合があ
る。なお、電解液の粘度(23℃)は2.0cps以下
であるのが好ましく、電解液の粘度(23℃)の下限は
好ましくは0.1cps以上である。これは、電解液の
粘度が0.1cps未満になると、揮発性が増し、高温
保存特性が低下する傾向となるからである。In the present invention, it is also important that the viscosity of the electrolytic solution at 23 ° C. is 3.0 cps (centipoise) or less. That is, since the viscosity of the electrolytic solution is a low viscosity of 3.0 cps or less, the electrolytic solution is sufficiently permeated and retained in the pores of the coating layer, and Li ions are inserted between the active material and the active material. Desorption is actively performed and a sufficiently high discharge capacity is obtained. If the viscosity of the electrolyte is greater than 3.0 cps,
The electrolytic solution may not be retained in a sufficient amount in the coating layer, lowering the low temperature characteristics, the high rate discharge characteristics and the cycle characteristics, which may make it difficult to discharge at low temperature or high rate. The viscosity (23 ° C.) of the electrolytic solution is preferably 2.0 cps or less, and the lower limit of the viscosity (23 ° C.) of the electrolytic solution is preferably 0.1 cps or more. This is because when the viscosity of the electrolytic solution is less than 0.1 cps, the volatility increases and the high temperature storage characteristics tend to deteriorate.
【0014】本発明で用いる粘度(23℃)が3.0c
ps以下の電解液は、ジエチルカーボネート(DEC)
およびエチルメチルカーボネート(EMC)から選ばれ
る少なくとも一種と、エチレンカーボネート(EC)
と、プロピレンカーボネート(PC)と、ジメチルカー
ボネート(DMC)との混合溶媒によって達成するのが
好ましい。The viscosity (23 ° C.) used in the present invention is 3.0 c
Electrolyte below ps is diethyl carbonate (DEC)
And at least one selected from ethyl methyl carbonate (EMC) and ethylene carbonate (EC)
Is preferably achieved by a mixed solvent of propylene carbonate (PC) and dimethyl carbonate (DMC).
【0015】具体的組成としては、例えば、ジエチルカ
ーボネートおよびエチルメチルカーボネートから選ばれ
る少なくとも一種を25体積%〜50体積%(好ましく
は30体積%〜35体積%)、エチレンカーボネートを
4体積%〜20体積%(好ましくは6体積%〜18体積
%)、プロピレンカーボネートを3体積%〜17体積%
(好ましくは5体積%〜15体積%)、ジメチルカーボ
ネートを40体積〜60体積%(好ましくは45体積%
〜55体積%)が挙げられる。また、このとき、エチレ
ンカーボネート(EC)およびプロピレンカーボネート
(PC)の合計量を全体の25体積%以下にするのが好
ましい。The specific composition is, for example, 25% by volume to 50% by volume (preferably 30% by volume to 35% by volume) of at least one selected from diethyl carbonate and ethylmethyl carbonate, and 4% by volume to 20% by volume of ethylene carbonate. Volume% (preferably 6% to 18% by volume), propylene carbonate 3% to 17% by volume
(Preferably 5% to 15% by volume), dimethyl carbonate 40% to 60% by volume (preferably 45% by volume)
˜55% by volume). At this time, the total amount of ethylene carbonate (EC) and propylene carbonate (PC) is preferably 25% by volume or less of the whole.
【0016】ジエチルカーボネートおよびエチルメチル
カーボネートから選ばれる少なくとも一種においては、
上記混合比が25体積%未満であると、電解液の凝固点
が上昇して、特に−20℃以下の極低温下において、電
池の内部抵抗を増大させ、充放電サイクル特性および低
温特性を低下させることがあり好ましくない。一方、上
記混合比が50体積%を超えると電解液の揮発が容易に
進行し、高温保存特性が低下することがあり好ましくな
い。In at least one selected from diethyl carbonate and ethyl methyl carbonate,
If the mixing ratio is less than 25% by volume, the freezing point of the electrolytic solution rises, the internal resistance of the battery is increased, and the charge / discharge cycle characteristics and the low temperature characteristics are deteriorated, especially at an extremely low temperature of -20 ° C or lower. Sometimes it is not preferable. On the other hand, if the mixing ratio exceeds 50% by volume, the volatilization of the electrolytic solution may easily proceed and the high temperature storage characteristics may deteriorate, which is not preferable.
【0017】エチレンカーボネートにおいては、上記混
合比が4体積%未満であると、負極板表面で安定な皮膜
が形成されにくく、サイクル特性を低下させる虞れがあ
り好ましくない。また上記混合比が20体積%を超える
と、電解液の粘度が上昇して電池の内部抵抗を増大さ
せ、充放電サイクル特性が低下させることがあり好まし
くない。In the case of ethylene carbonate, if the mixing ratio is less than 4% by volume, it is difficult to form a stable film on the surface of the negative electrode plate, which may deteriorate cycle characteristics, which is not preferable. On the other hand, if the mixing ratio exceeds 20% by volume, the viscosity of the electrolytic solution may increase, increasing the internal resistance of the battery and deteriorating the charge / discharge cycle characteristics, which is not preferable.
【0018】プロピレンカーボネートにおいては、上記
混合比が3体積%未満であると充放電サイクルに伴うイ
ンピーダンスの増加の抑制効果が小さくなり、サイクル
特性を低下させる虞れがあり好ましくない。上記混合比
が17体積%を超えると、電解液の粘度が上昇して電池
の内部抵抗を増大させ、充放電サイクル特性を低下させ
ることがあり好ましくない。When the mixing ratio of propylene carbonate is less than 3% by volume, the effect of suppressing an increase in impedance associated with charge / discharge cycles becomes small, which may deteriorate cycle characteristics, which is not preferable. If the mixing ratio exceeds 17% by volume, the viscosity of the electrolytic solution may increase to increase the internal resistance of the battery and deteriorate the charge / discharge cycle characteristics, which is not preferable.
【0019】ジメチルカーボネートにおいては、上記混
合比が40体積%未満であると電解液の粘度が上昇して
電池の内部抵抗を増大させ、充放電サイクル特性を低下
させることがあり好ましくない。上記混合比が60体積
%を超えると、電解液の揮発が容易に進行し、高温保存
特性が低下することがあり好ましくない。When the mixing ratio of dimethyl carbonate is less than 40% by volume, the viscosity of the electrolytic solution increases, the internal resistance of the battery increases, and the charge / discharge cycle characteristics deteriorate, which is not preferable. If the mixing ratio exceeds 60% by volume, volatilization of the electrolytic solution may easily proceed and the high temperature storage characteristics may deteriorate, which is not preferable.
【0020】電解液におけるリチウム塩としては、Li
ClO4、LiBF4、LiPF6、LiAsF6、LiA
lCl4およびLi(CF3SO2)2Nから選ばれる一種
または二種以上が好適であり、その非水溶媒中の濃度
は、好ましくは0.1モル/L〜2モル/L、より好ま
しくは0.5モル/L〜1.8モル/Lがよい。リチウ
ム塩の濃度が0.1モル/L未満であると、電解液とし
てのイオン伝導度が十分に得られず、リチウム塩の濃度
が2モル/Lを超えると、電解液の粘度が上昇し、3.
0cps以下の低粘度を実現することが困難になる。Lithium salt used in the electrolytic solution is Li
ClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiA
One or more selected from lCl 4 and Li (CF 3 SO 2 ) 2 N are suitable, and the concentration thereof in the non-aqueous solvent is preferably 0.1 mol / L to 2 mol / L, more preferably Is preferably 0.5 mol / L to 1.8 mol / L. When the concentration of the lithium salt is less than 0.1 mol / L, the ionic conductivity as the electrolytic solution cannot be sufficiently obtained, and when the concentration of the lithium salt exceeds 2 mol / L, the viscosity of the electrolytic solution increases. 3.
It becomes difficult to achieve a low viscosity of 0 cps or less.
【0021】本発明では、さらに正極塗工物層中の導電
材として、粒径が4〜8μmの範囲内にある大径成分お
よび粒径が0.1μm以下の小径成分を主成分とし、か
つ、大径成分と小径成分の重量比が1:0.01〜1:
1である導電材を、使用することが重要である。ここ
で、粒径が4〜8μmの範囲内にある大径成分および粒
径が0.1μm以下の小径成分を主成分とするとは、こ
れら両成分の合計量が導電材全体の70重量%以上、好
ましくは80重量%以上、さらに好ましくは90重量%
以上であることを意味する。なお、導電材はその粒径が
かかる大径成分と小径成分の間にある粒子を含んでいて
もよく、また、このような粒子とともに、その粒径が大
径成分のそれよりも大きい粒子をさらに含んでいてもよ
いが、これらの粒子を含む場合、その量は全体の30重
量%未満である。また、小径成分の下限は特に限定され
ないが、好ましくは0.001μm以上である。In the present invention, further, as the conductive material in the positive electrode coating layer, a large-diameter component having a particle diameter in the range of 4 to 8 μm and a small-diameter component having a particle diameter of 0.1 μm or less are used as main components, and , The weight ratio of the large-diameter component and the small-diameter component is 1: 0.01 to 1:
It is important to use a conductive material that is 1. Here, when the main component is a large-diameter component having a particle diameter in the range of 4 to 8 μm and a small-diameter component having a particle diameter of 0.1 μm or less, the total amount of these two components is 70% by weight or more of the entire conductive material. , Preferably 80% by weight or more, more preferably 90% by weight
It means that it is above. The conductive material may include particles between the large-diameter component and the small-diameter component, the particle size of which is large, and, in addition to such particles, the particles whose particle size is larger than that of the large-diameter component. When these particles are contained, the amount thereof is less than 30% by weight based on the whole, though they may be contained further. The lower limit of the small diameter component is not particularly limited, but is preferably 0.001 μm or more.
【0022】本発明においては、正極の塗工物層中に上
記の粒径が4〜8μmの範囲内にある大径成分および粒
径が0.1μm以下の小径成分を主成分とし、かつ、大
径成分と小径成分の重量比が1:0.01〜1:1の特
定の粒状の導電材を存在させることにより、空孔率が大
きい塗工物層(隙間が多く存在する塗工物層)内におけ
る活物質(粒子)と活物質(粒子)間の隙間を主に大径
成分の粒子が埋め、0.1μm以下の小径成分の粒子が
主に活物質の表面を覆い、正極の導電性を十分に高く確
保できる。当該導電材において、大径成分と小径成分の
重量比が上記範囲を外れて、大径成分の量が多過ぎる場
合や小径成分の量が多すぎる場合、正極の十分に高い導
電性が得られず、また特に大径成分の量が多すぎる場合
は放電初期の急激な放電降下を助長させることがあり、
また特に小径成分の量が多すぎる場合は、安全性が低下
する傾向となる。当該導電材における好ましい大径成分
と小径成分の重量比は1:0.1〜1:0.5である。In the present invention, the main component of the positive electrode coating layer is a large-diameter component having a particle diameter of 4 to 8 μm and a small-diameter component having a particle diameter of 0.1 μm or less, and The presence of a specific granular conductive material having a weight ratio of the large-diameter component to the small-diameter component of 1: 0.01 to 1: 1 allows for a coating layer having a large porosity (a coating having a large number of gaps). Layers) between the active material (particles) and the active material (particles) are mainly filled with large-diameter component particles, and small-diameter component particles of 0.1 μm or less mainly cover the surface of the active material. The conductivity can be secured sufficiently high. In the conductive material, if the weight ratio of the large-diameter component and the small-diameter component is out of the above range and the amount of the large-diameter component is too large or the amount of the small-diameter component is too large, sufficiently high conductivity of the positive electrode can be obtained. If the amount of the large-diameter component is too large, it may promote a rapid discharge drop at the beginning of discharge.
Further, especially when the amount of the small diameter component is too large, the safety tends to decrease. The weight ratio of the large diameter component and the small diameter component in the conductive material is preferably 1: 0.1 to 1: 0.5.
【0023】なお、粒状の導電材が、大径成分および小
径成分以外の粒子を全体の30重量%以上含むようなも
のである場合、正極板(塗工物層)の導電性が低下し
て、電池性能(特に、ハイレート放電特性、低温特性)
が低下してしまう。When the granular conductive material contains particles other than the large-diameter component and the small-diameter component in an amount of 30% by weight or more of the whole, the conductivity of the positive electrode plate (coating layer) decreases. , Battery performance (especially high rate discharge characteristics, low temperature characteristics)
Will decrease.
【0024】粒状の導電材における「粒状」には、鱗片
状、球状、擬似球状、塊状、ウィスカー状などが含ま
れ、2種以上の形状の異なる粒子が混在していてもよ
い。粒状の導電材には、通常、炭素材料が使用され、該
炭素材料としては、人造あるいは天然の黒鉛類(黒鉛化
炭素)、ケッチェンブラック、アセチレンブラック、オ
イルファーネスブラック、イクストラコンダクティブフ
ァーネスブラックなどのカーボンブラック類などが挙げ
られる。これらの炭素材料はいずれか1種または2種以
上の材料を混合してもよく、特に大径成分が黒鉛類から
なり、かつ、小径成分がカーボンブラックからなる態様
が好ましい。また、かかる好ましい態様の場合、大径成
分の黒鉛類が、結晶格子の面間距離(d002)が0.
34nm以下、c軸方向の結晶子寸法(Lc)が10n
m以上の黒鉛化炭素であるのがより好ましく、小径成分
のカーボンブラックがオイルファーネスブラックである
のがより好ましい。The "granular" in the granular conductive material includes scales, spheres, pseudo spheres, lumps, whiskers, and the like, and two or more kinds of particles having different shapes may be mixed. A carbon material is usually used as the granular conductive material, and examples of the carbon material include artificial or natural graphites (graphitized carbon), Ketjen black, acetylene black, oil furnace black, and ixtra conductive furnace black. Carbon blacks of Any one of these carbon materials may be used alone or two or more of them may be mixed, and it is particularly preferred that the large diameter component is made of graphite and the small diameter component is made of carbon black. In addition, in the case of such a preferred embodiment, the graphite having a large diameter component has an interplanar distance (d002) of the crystal lattice of 0.
34 nm or less, the crystallite size (Lc) in the c-axis direction is 10 n
More preferably, it is m or more graphitized carbon, and the carbon black of the small diameter component is more preferably oil furnace black.
【0025】本発明において、正極の活物質には、Li
−Co系複合酸化物が用いられる。該Li−Co系複合
酸化物の例としては、LiCoO2や、LiACo1-XM
eXO 2で示されるものが挙げられる。なお、後者におい
て、Aは0.05〜1.5、特には0.1〜1.1とす
るのが好ましい。Xは0.01〜0.5、特には0.0
2〜0.2とするのが好ましい。元素Meとしては、Z
r、V、Cr、Mo、Mn、Fe、Niなどの周期律表
の3〜10族元素や、B、Al、Ge、Pb、Sn、S
bなどの13〜15族元素が挙げられる。In the present invention, the positive electrode active material is Li
-Co-based composite oxide is used. The Li-Co based composite
As an example of the oxide, LiCoO 22Or LiACo1-XM
eXO 2The items shown in are listed. The latter smell
And A is 0.05 to 1.5, particularly 0.1 to 1.1.
Is preferred. X is 0.01 to 0.5, especially 0.0
It is preferably 2 to 0.2. As the element Me, Z
Periodic table of r, V, Cr, Mo, Mn, Fe, Ni, etc.
Group 3 to 10 elements, B, Al, Ge, Pb, Sn, S
Examples of the elements include Group 13 to Group 15 elements such as b.
【0026】Li−Co系複合酸化物は、通常、粒状で
あり、異常な電池反応の防止(安全性の確保)の点およ
び塗工物層における空孔形成性の点から、平均粒径が1
0μm以上のもの、好ましくは平均粒径が17μm以上
のものが使用される。また、活物質の電気抵抗が高くな
り過ぎないように、平均粒径の上限は、好ましくは25
μm以下、より好ましくは23μm以下である。The Li-Co type composite oxide is usually granular and has an average particle size of from the viewpoints of preventing abnormal battery reaction (securing safety) and forming pores in the coating layer. 1
Those having an average particle diameter of 17 μm or more are used. The upper limit of the average particle size is preferably 25 so that the electric resistance of the active material does not become too high.
It is less than or equal to μm, more preferably less than or equal to 23 μm.
【0027】また、上記Li−Co系複合酸化物は、平
均粒径が10μm以上であって、平均粒径[μm]と比
表面積[m2/g]との積で20を割って得られる値が
7〜9となる、即ち、下記の式(I)を満たすものがと
りわけ好ましい。
7≦〔20/(比表面積[m2/g]×平均粒径[μm])〕≦9 (I)The Li-Co type composite oxide has an average particle size of 10 μm or more, and is obtained by dividing 20 by the product of the average particle size [μm] and the specific surface area [m 2 / g]. Those having a value of 7 to 9, that is, those satisfying the following formula (I) are particularly preferable. 7 ≦ [20 / (specific surface area [m 2 / g] × average particle size [μm])] ≦ 9 (I)
【0028】該20/(比表面積[m2/g]×平均粒
径[μm])の値が、7〜9の範囲であると、正極活物
質自体の抵抗成分が減少して、サイクル特性、低温特
性、さらにはハイレート放電特性がより向上する。な
お、当該20/(比表面積[m2/g]×平均粒径[μ
m])の値は、7.5〜8.5であるのがより好まし
い。When the value of 20 / (specific surface area [m 2 / g] × average particle size [μm]) is in the range of 7 to 9, the resistance component of the positive electrode active material itself is reduced, and the cycle characteristics are reduced. Further, the low temperature characteristic and the high rate discharge characteristic are further improved. 20 / (specific surface area [m 2 / g] × average particle size [μ
The value of m]) is more preferably 7.5 to 8.5.
【0029】このような平均粒径[μm]と比表面積
[m2/g]との積で20を割って得られる値が7〜9
となるLi−Co系複合酸化物は以下の方法で作製され
る。The value obtained by dividing 20 by the product of the average particle size [μm] and the specific surface area [m 2 / g] is 7 to 9
The Li-Co-based composite oxide that becomes is produced by the following method.
【0030】例えば、出発原料となるリチウム化合物と
コバルト化合物とを、コバルトとリチウムとの原子比が
1:1〜0.8:1となるように混合し、その混合物を
温度700℃〜1200℃の大気雰囲気下で、3時間〜
50時間加熱するなどして反応させ、さらに反応して出
来たものを粉砕して粒状物とし、その中からたとえば平
均粒径が10μm以上であって上記の式(I)を満たす
もののみを採取するといった方法が挙げられる。For example, a lithium compound as a starting material and a cobalt compound are mixed so that the atomic ratio of cobalt and lithium is 1: 1 to 0.8: 1, and the mixture is heated at a temperature of 700 ° C to 1200 ° C. 3 hours in the atmosphere of
The reaction is carried out by heating for 50 hours, etc., and the resulting reaction product is pulverized into particles, and only those having an average particle size of 10 μm or more and satisfying the above formula (I) are collected. There is a method of doing.
【0031】また、他の例としては、上記の粉砕して得
られた粒状物をさらに熱処理する方法、たとえば、この
粉砕して得られた粒状物を400℃〜750℃、特には
450℃〜700℃程度の温度下で0.5時間〜50時
間、特には1時間〜20時間程度加熱する方法が挙げら
れる。なお、このとき粒状物としては上述したように平
均粒径が10μm〜25μmの範囲内にあるものを用い
るのが好ましい。このように粒状物に熱処理を行なった
場合は、粒状物の平均粒径を殆ど変化させずに比表面積
を減少させることができるので、たとえば上記の式
(I)を満たすLi−Co系複合酸化物を容易に得るこ
とができる。Further, as another example, a method of further heat-treating the granules obtained by the above-mentioned pulverization, for example, the granules obtained by the pulverization are 400 ° C. to 750 ° C., particularly 450 ° C. Examples include a method of heating at a temperature of about 700 ° C. for 0.5 hours to 50 hours, particularly about 1 hour to 20 hours. At this time, it is preferable to use particles having an average particle diameter within the range of 10 μm to 25 μm as described above as the granular material. When the granular material is heat-treated in this manner, the specific surface area can be reduced without substantially changing the average particle diameter of the granular material. Therefore, for example, a Li—Co-based composite oxide satisfying the above formula (I) can be obtained. You can get things easily.
【0032】また、この粉砕して得られた粒状物の熱処
理は、たとえば、大気雰囲気下や、窒素またはアルゴン
といった不活性ガス雰囲気下で行うことができる。但
し、雰囲気中に炭酸ガスが存在すると、炭酸リチウムが
生じて不純物の含有量が増大するおそれがあるため、炭
酸ガスの分圧が10mmHg程度以下の雰囲気下で行う
のが好ましい。Further, the heat treatment of the granules obtained by the pulverization can be carried out, for example, in an air atmosphere or an atmosphere of an inert gas such as nitrogen or argon. However, if carbon dioxide is present in the atmosphere, lithium carbonate may be generated and the content of impurities may increase, so it is preferable to carry out the atmosphere in which the partial pressure of carbon dioxide is about 10 mmHg or less.
【0033】上記の出発原料となるリチウム化合物とし
ては、酸化リチウム、水酸化リチウム、ハロゲン化リチ
ウム、硝酸リチウム、シュウ酸リチウム、炭酸リチウム
などや、これらの混合物が挙げられる。コバルト化合物
としては、酸化コバルト、水酸化コバルト、ハロゲン化
コバルト、硝酸コバルト、シュウ酸コバルト、炭酸コバ
ルトなどや、これらの混合物が挙げられる。なお、Li
ACo1-XMeXO2で示されるLi−Co系複合酸化物を
製造するのであれば、リチウム化合物とコバルト化合物
との混合物に、置換元素の化合物を必要量添加すれば良
い。Examples of the lithium compound as the starting material include lithium oxide, lithium hydroxide, lithium halide, lithium nitrate, lithium oxalate, lithium carbonate and the like, and mixtures thereof. Examples of the cobalt compound include cobalt oxide, cobalt hydroxide, cobalt halide, cobalt nitrate, cobalt oxalate, cobalt carbonate and the like, and mixtures thereof. In addition, Li
In the case of producing a Li—Co-based composite oxide represented by A Co 1-X Me X O 2 , the compound of the substitution element may be added to the mixture of the lithium compound and the cobalt compound in the required amount.
【0034】本発明において、正極塗工物層は、少なく
とも、上記の活物質、導電材およびポリフッ化ビニリデ
ンを含んで構成されるが、活物質100重量部に対し
て、導電材の量は3〜15重量部が好ましく、3.5〜
12重量部がより好ましく、とりわけ好ましくは4〜8
重量部である。また、ポリフッ化ビニリデンの量は活物
質100重量部に対して、1重量部〜10重量部が好ま
しく、2重量部〜7重量部がより好ましく、とりわけ好
ましくは3〜6重量部である。In the present invention, the positive electrode coating layer contains at least the above-mentioned active material, conductive material and polyvinylidene fluoride, and the amount of the conductive material is 3 with respect to 100 parts by weight of the active material. ~ 15 parts by weight is preferred, 3.5 ~
12 parts by weight is more preferable, and particularly preferably 4 to 8
Parts by weight. The amount of polyvinylidene fluoride is preferably 1 part by weight to 10 parts by weight, more preferably 2 parts by weight to 7 parts by weight, and particularly preferably 3 to 6 parts by weight, based on 100 parts by weight of the active material.
【0035】導電材の量が3重量部未満の場合、正極の
導電性が十分に高くならず、15重量部を超える場合に
は、活物質の充填量が低下し、目標とする容量が得られ
にくくなり、好ましくない。また、ポリフッ化ビニリデ
ンの量が1重量部未満である場合、塗工物層を構成する
材料間の結合が不十分となり、活物質の剥がれが生じや
すくなり、その結果、サイクル特性の低下をきたす。ま
た、ポリフッ化ビニリデンの量が10重量部を超える場
合、塗工物層(正極)の十分に高い導電性が得られなく
なり、特にハイレート放電特性、低温特性が低下してし
まう。When the amount of the conductive material is less than 3 parts by weight, the conductivity of the positive electrode is not sufficiently high, and when it exceeds 15 parts by weight, the filling amount of the active material is reduced to obtain the target capacity. It is difficult to get rid of, and it is not preferable. Further, when the amount of polyvinylidene fluoride is less than 1 part by weight, the bond between the materials constituting the coating layer becomes insufficient and the active material is easily peeled off, resulting in deterioration of cycle characteristics. . Further, when the amount of polyvinylidene fluoride exceeds 10 parts by weight, sufficiently high conductivity of the coating layer (positive electrode) cannot be obtained, and particularly high rate discharge characteristics and low temperature characteristics deteriorate.
【0036】本発明において、正極板に用いられる集電
体としては、たとえばアルミニウム、アルミニウム合
金、チタンなどで形成された箔やエキスパンドメタルな
ど従来と同様のものが利用できる。なお、集電体が箔や
穴あき箔の場合は、その厚みは通常10〜100μm程
度であり、好ましくは15〜50μm程度である。集電
体がエキスパンドメタルの場合は、その厚みは通常25
〜300μm程度、好ましくは30〜150μm程度で
ある。In the present invention, the current collector used for the positive electrode plate may be the same as the conventional one such as foil or expanded metal formed of aluminum, aluminum alloy, titanium or the like. When the current collector is a foil or a perforated foil, its thickness is usually about 10 to 100 μm, preferably about 15 to 50 μm. If the current collector is expanded metal, its thickness is usually 25
Is about 300 μm, preferably about 30 to 150 μm.
【0037】本発明における正極板は、上記の活物質、
導電材および高分子バインダーであるポリフッ化ビニリ
デンを少なくとも含むスラリーを調製し、該スラリーを
集電体上に塗工、乾燥し、得られた塗工物層にさらに圧
延処理を施すことにより作製される。The positive electrode plate in the present invention comprises the above active material,
Prepared by preparing a slurry containing at least polyvinylidene fluoride, which is a conductive material and a polymer binder, coating the slurry on a current collector, drying, and subjecting the obtained coating layer to a rolling treatment. It
【0038】スラリーの調製は、通常、活物質、導電材
およびポリフッ化ビニリデンを適当な溶媒とともに混練
することで行われる。溶媒は特に限定されないが、N−
メチルピロリドンが好ましい。また、混練は、例えば、
プラネタリディスパ混練装置(浅田鉄工所製)などの従
来公知の混練装置を用いて行うことができる。The slurry is usually prepared by kneading the active material, the conductive material and polyvinylidene fluoride with a suitable solvent. The solvent is not particularly limited, but N-
Methylpyrrolidone is preferred. Also, kneading, for example,
It can be carried out using a conventionally known kneading device such as a planetary spa kneading device (manufactured by Asada Iron Works).
【0039】スラリーの集電体上への塗工は、コンマロ
ールタイプあるいはダイコートタイプの塗工機などの従
来公知の塗工機により行われ、スラリーの乾燥は、集電
体上に塗工されたスラリーを、集電体とともに温風乾燥
炉などの乾燥装置を使用して、80〜200℃、好まし
くは、100〜180℃の温度範囲で、5〜20分間乾
燥させる。The coating of the slurry on the current collector is carried out by a conventionally known coating machine such as a comma roll type or die coat type coating machine, and the drying of the slurry is carried out on the current collector. The slurry is dried with a current collector using a drying device such as a hot air drying oven at a temperature range of 80 to 200 ° C, preferably 100 to 180 ° C for 5 to 20 minutes.
【0040】なお、スラリーの塗工量は、集電体上にお
ける乾燥後の付着物の量を、活物質の量で示すとして、
当該活物質の量が好ましくは1〜100mg/cm2程
度である。The coating amount of the slurry is expressed by the amount of the active material, which is the amount of the deposits on the current collector after drying.
The amount of the active material is preferably about 1 to 100 mg / cm 2 .
【0041】塗工物層の圧延処理は、圧延プレス機など
を用いて、正極板(集電体+塗工物層)全体を圧延する
ことで行われる。この圧延処理は、圧延温度を好ましく
は20℃〜100℃、より好ましくは25℃〜50℃、
特に好ましくは20〜35℃とし、かつ、圧延率が好ま
しくは10%〜40%、より好ましくは20%〜40
%、特に好ましくは25〜35%となるように行うのが
よい。ここで、圧延温度は塗工物層の温度であり、圧延
率とは、圧下率などとも呼ばれる圧延の加工度を表す尺
度であり、圧延前の正極板(集電体+塗工物層)の厚み
をh1、圧延後の正極板(集電体+塗工物層)の厚みを
h2、集電体の厚みをh3とするとき、下記式(II)
で算出される。
圧延率(%)=(h1−h2)×100/(h1−h3) (II)The rolling treatment of the coating layer is carried out by rolling the entire positive electrode plate (current collector + coating layer) using a rolling press or the like. In this rolling treatment, the rolling temperature is preferably 20 ° C to 100 ° C, more preferably 25 ° C to 50 ° C.
It is particularly preferably 20 to 35 ° C., and the rolling ratio is preferably 10% to 40%, more preferably 20% to 40%.
%, And particularly preferably 25 to 35%. Here, the rolling temperature is the temperature of the coating layer, and the rolling rate is a scale representing the workability of rolling, which is also called the rolling reduction, and the positive electrode plate (current collector + coating layer) before rolling. Where h1 is the thickness of the positive electrode plate (current collector + coating layer) after rolling, and h2 is the thickness of the current collector, the following formula (II)
It is calculated by. Rolling rate (%) = (h1-h2) × 100 / (h1-h3) (II)
【0042】本発明のリチウムイオン二次電池における
負極板は、特に限定されず、この種の電池における公知
の負極を使用できるが、以下に記載のものが好適であ
る。The negative electrode plate in the lithium ion secondary battery of the present invention is not particularly limited, and a known negative electrode in this type of battery can be used, but the following ones are preferable.
【0043】負極活物質としては、炭素材料が用いら
れ、そのうちでも、比表面積が好ましくは2.0m2/
g以下、より好ましくは0.5m2/g〜1.5m2/g
で、結晶格子の面間距離(d002)が好ましくは0.
3380nm以下、より好ましくは0.3355nm〜
0.3370nmで、c軸方向の結晶子寸法(Lc)が
好ましくは30nm以上、より好ましくは40nm〜7
0nmである黒鉛化炭素が好適であり、このような黒鉛
化炭素の具体例としてはメソフェーズ系黒鉛化炭素が挙
げられる。A carbon material is used as the negative electrode active material, and among them, the specific surface area is preferably 2.0 m 2 /
g or less, more preferably 0.5m 2 /g~1.5m 2 / g
The interplanar distance (d002) of the crystal lattice is preferably 0.
3380 nm or less, more preferably 0.3355 nm-
The crystallite size (Lc) in the c-axis direction at 0.3370 nm is preferably 30 nm or more, more preferably 40 nm to 7
Graphitized carbon having a thickness of 0 nm is suitable, and a specific example of such graphitized carbon is mesophase-based graphitized carbon.
【0044】上記の比表面積を有することで、電解液が
プロピレンカーボネートを含む場合に、充電時のプロピ
レンカーボネートの分解反応による電池容量の低下を防
止できる。また、上記の結晶格子の面間距離(d00
2)およびc軸方向の結晶子寸法(Lc)を有すること
で、負極板の電位上昇を抑制でき、電池の平均放電電位
がより安定化する。By having the above specific surface area, when the electrolytic solution contains propylene carbonate, it is possible to prevent a decrease in battery capacity due to a decomposition reaction of propylene carbonate during charging. In addition, the inter-plane distance (d00
By having 2) and the crystallite size (Lc) in the c-axis direction, the potential rise of the negative electrode plate can be suppressed, and the average discharge potential of the battery becomes more stable.
【0045】上記黒鉛化炭素は通常粒状であるが、その
粒子形状は特に限定されず、例えば、鱗片状、繊維状、
球状、擬似球状、塊状、ウィスカー状などが挙げられ
る。但し、集電体への塗布が容易であり、塗布後の粒子
の配向を制御できる点から、繊維状であるのが好まし
い。よって、本発明においては、負極の活物質は繊維状
のメソフェーズ系黒鉛化炭素(即ちメソフェーズ系黒鉛
化炭素繊維)が特に好適である。メソフェーズ系黒鉛化
炭素繊維の製造方法の好ましい一例を以下に示す。The above graphitized carbon is usually granular, but the particle shape is not particularly limited, and for example, scale-like, fibrous,
Examples thereof include spherical shape, pseudo spherical shape, lump shape, and whisker shape. However, the fibrous shape is preferable because it can be easily applied to the current collector and the orientation of the particles after application can be controlled. Therefore, in the present invention, fibrous mesophase-based graphitized carbon (that is, mesophase-based graphitized carbon fiber) is particularly suitable as the active material of the negative electrode. A preferred example of the method for producing the mesophase-based graphitized carbon fiber is shown below.
【0046】最初に、石油ピッチ、コールタールピッチ
などのピッチ類を溶融ブロー法により長さ200μm〜
300μm程度の繊維に紡糸する。該ピッチ類として
は、メソフェーズの含有量が70体積%以上のメソフェ
ーズピッチを用いるのが特に好ましい。次に、この繊維
を800℃〜1500℃で炭素化し、ついで適当な大き
さたとえば平均繊維長1μm〜100μm程度、平均繊
維径1μm〜15μm程度に粉砕する。続いて、この粉
砕された繊維を2500℃〜3200℃、好ましくは2
800℃〜3200℃で加熱して黒鉛化することでメソ
フェーズ系黒鉛化炭素繊維が得られる。First, pitches such as petroleum pitch and coal tar pitch having a length of 200 μm
The fibers are spun into fibers of about 300 μm. As the pitches, it is particularly preferable to use mesophase pitch having a mesophase content of 70% by volume or more. Next, this fiber is carbonized at 800 ° C. to 1500 ° C., and then crushed to an appropriate size, for example, an average fiber length of about 1 μm to 100 μm and an average fiber diameter of about 1 μm to 15 μm. Subsequently, the crushed fiber is treated at 2500 ° C to 3200 ° C, preferably 2 ° C.
The mesophase-based graphitized carbon fiber is obtained by heating at 800 ° C to 3200 ° C to graphitize.
【0047】但し、後述するスラリーの集電体への塗工
性を良好とする点からは、上記の粉砕は平均繊維長が好
ましくは1μm〜100μm、より好ましくは2μm〜
50μm、とりわけ好ましくは3μm〜25μmとなる
ように、また平均繊維径が好ましくは0.5μm〜15
μm、より好ましくは1μm〜15μm、とりわけ好ま
しくは5μm〜10μmとなるように行うのが好まし
い。この時、アスペクト比(平均繊維径に対する平均繊
維長の比)は、1〜5となるのが好ましい。However, the average fiber length of the above-mentioned pulverization is preferably 1 μm to 100 μm, more preferably 2 μm to improve the coatability of the slurry described below to the current collector.
50 μm, particularly preferably 3 μm to 25 μm, and the average fiber diameter is preferably 0.5 μm to 15
μm, more preferably 1 μm to 15 μm, and particularly preferably 5 μm to 10 μm. At this time, the aspect ratio (ratio of average fiber length to average fiber diameter) is preferably 1 to 5.
【0048】負極板の作製方法は、特には限定されず、
当分野での一般的な方法を適用できるが、負極活物質と
高分子バインダーを含むスラリーを調製し、該スラリー
を集電体上に塗工、乾燥し(塗工物層を形成し)、必要
に応じて圧延処理を施して作製する方法が好ましい。こ
こでの、高分子バインダーとしては、特に限定はされな
いが、ポリテトラフルオロエチレン、ポリフッ化ビニリ
デン、ポリエチレン、エチレン−プロピレン−ジエン系
ポリマー等が好適である。The method for producing the negative electrode plate is not particularly limited,
Although a general method in this field can be applied, a slurry containing a negative electrode active material and a polymer binder is prepared, and the slurry is coated on a current collector and dried (to form a coating layer), A method in which rolling treatment is performed as necessary is preferable. The polymer binder here is not particularly limited, but polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, ethylene-propylene-diene-based polymer and the like are preferable.
【0049】また、本発明において、負極板には、活物
質とともに導電材を配合してもよい。この場合、導電材
としては、平均粒径が5μm以下の天然黒鉛、人造黒
鉛、カーボンブラックなどが好ましい。また、負極板に
用いる集電体としては、従来と同様のものが利用でき、
銅、ニッケル、銀、ステンレスなどで形成された箔やエ
キスパンドメタルが挙げられる。In the present invention, the negative electrode plate may be mixed with a conductive material together with the active material. In this case, the conductive material is preferably natural graphite, artificial graphite, carbon black or the like having an average particle size of 5 μm or less. Further, as the current collector used for the negative electrode plate, the same one as the conventional one can be used,
Examples include foils and expanded metals formed of copper, nickel, silver, stainless steel and the like.
【0050】通常、正極板と負極板の間にセパレータを
介在させるが、当該セパレータには、ポリオレフィンセ
パレータ等の従来からリチウムイオン二次電池で使用さ
れている公知のセパレータが使用される。ここで、セパ
レータは多孔質状のものでも、実質的に孔形成を行って
いない、中実のセパレータでもよい。また、ポリオレフ
ィンセパレータはポリエチレン層単体やポリプロピレン
層単体のものでもよいが、ポリエチレン層とポリプロピ
レン層とを積層したタイプが好ましく、特に安全性の点
からPP/PE/PPの3層タイプが好ましい。Usually, a separator is interposed between the positive electrode plate and the negative electrode plate. As the separator, a known separator such as a polyolefin separator which has been conventionally used in lithium ion secondary batteries is used. Here, the separator may be a porous separator or a solid separator in which substantially no pores are formed. The polyolefin separator may be a single polyethylene layer or a single polypropylene layer, but a type in which a polyethylene layer and a polypropylene layer are laminated is preferable, and a three-layer type of PP / PE / PP is particularly preferable from the viewpoint of safety.
【0051】本発明において、電池の形態は特に限定さ
れない。従来からリチウムイオン二次電池で使用されて
いる公知のものを使用でき、例えば、Fe、Fe(Ni
メッキ)、SUS、アルミ、アルミ合金等の金属からな
る円筒缶、角筒缶、ボタン状缶等や、ラミネートフィル
ム等のシート状の外装材が使用される。ラミネートフィ
ルムとしては、銅、アルミニウム等の金属箔の少なくと
も片面にポリエステル、ポリプロピレン等の熱可塑性樹
脂ラミネート層が形成されたものが好ましい。In the present invention, the form of the battery is not particularly limited. Known materials that have been conventionally used in lithium ion secondary batteries can be used. For example, Fe, Fe (Ni
A cylindrical can, a square can, a button can, etc. made of a metal such as plating), SUS, aluminum, an aluminum alloy, etc., and a sheet-shaped exterior material such as a laminated film are used. As the laminate film, one having a thermoplastic resin laminate layer such as polyester or polypropylene formed on at least one surface of a metal foil such as copper or aluminum is preferable.
【0052】以下に、本明細書中における特性(物性)
の測定方法を記載する。
正極板の塗工物層の空孔率
水銀を用いたポロシメータ法で測定した。
ポリフッ化ビニリデンの融点
DSC(示唆走査熱量計)で測定した。昇温速度を5℃
/minとして、室温(20℃)より300℃までの範
囲にて測定を行った。
ポリフッ化ビニリデンの溶融粘度(232℃)
東洋精器社製、キャピログラフにて測定した。
電解液の粘度(23℃)
ウベローデ型粘計にて測定した。
Li−Co系複合酸化物および正極板用の導電材の粒
径(平均粒径)
マイクロトラック粒度分析計(島津製作所(株)、SA
LD−3000J)を使用した。手順は、最初に、測定
対象となる粒状物を、水やエタノールなどの有機液体に
投入し、35kHz〜40kHz程度の超音波を付与し
て約2分間分散処理を行う。ここで、測定対象となる粒
状物の量は、分散処理後の分散液のレーザ透過率(入射
光量に対する出力光量の比)が70%〜95%となる量
とする。次に、この分散液をマイクロトラック粒度分析
計にかけ、レーザー光の散乱により個々の粒状物の粒径
(D1、D2、D3・・)、および各粒径毎の存在個数
(N1、N2、N3・・・)を計測した。この粒径分布
の計測は、観測された散乱強度分布に最も近い理論強度
になる球形粒子群の粒径分布として算出される(粒子
は、レーザー光の照射によって得られる投影像と同面積
の断面円を持つ球体と想定され、この断面円の直径(球
相当径)が粒径として計測される)。平均粒径(μm)
は、個々の粒子の粒径(D)と各粒径毎の存在個数
(N)とから、下記式により算出される。
平均粒径(μm)=(ΣND3/ΣN)1/3
なお、粒径が0.1μm以下の粒子は分散液中で凝集す
る場合があり、このような凝集が生じる場合には、電子
顕微鏡を用いて測定した。すなわち、最初に視野に粒子
が20個以上入るよう倍率を設定して電子顕微鏡写真を
撮影し、次に、写真に写った各粒子の像の面積を算出
し、さらにこの算出された面積から同面積を持つ円の直
径を算出し(この直径の断面円をもつ球体と想定す
る)、この直径を粒径とする。
Li−Co系複合酸化物および負極板用の活物質(黒
鉛化炭素)の比表面積
比表面積計モノソーブ(クアンタクロム社製)を使用
し、窒素を吸着体とする気相吸着法(一点法)により測
定した。
正極板用の導電材(黒鉛化炭素)および負極板用の活
物質(黒鉛化炭素)の結晶格子の面間距離(d002)
とc軸方向の結晶子寸法(Lc)
日本学術振興会法により、以下の手順で測定した。最初
に、X線標準用高純度シリコンをメノウ乳鉢で325メ
ッシュ標準篩以下に粉砕して標準物質を作製し、この標
準物質と被測定試料の黒鉛化炭素とをメノウ乳鉢で混合
(黒鉛化炭素100重量%に対して標準物質10重量
%)してX線用試料を作製し、次に、このX線用試料
を、たとえばX線回析装置RINT2000(理学電機
社製、X線源:CuKα線)の試料板に均一に充填す
る。次に、X線管球への印加電圧を40kV、印加電流
を50mAに設定し、更に走査範囲を2θ=23.5度
〜29.5度、スキャンスピードを0.25度/min
として、炭素の002ピークおよび標準物質の111ピ
ークを測定する。続いて、得られたピーク位置およびそ
の半値幅から、上記のX線回析装置に付属の黒鉛化度計
算用ソフトを用いて、結晶格子の面間距離(d002)
およびc軸方向の結晶子寸法(Lc)を算出する。The characteristics (physical properties) in this specification are as follows.
Describe the measurement method of. The porosity of the coating layer of the positive electrode plate was measured by the porosimeter method using mercury. The melting point of polyvinylidene fluoride was measured by DSC (indicative scanning calorimeter). Temperature rising rate is 5 ° C
/ Min, the measurement was performed in the range from room temperature (20 ° C) to 300 ° C. Melt viscosity of polyvinylidene fluoride (232 ° C.) It was measured with a Capillograph manufactured by Toyo Seiki. Viscosity of electrolyte (23 ° C.) Measured with an Ubbelohde viscometer. Particle size (average particle size) of Li-Co composite oxide and conductive material for positive electrode plate Microtrac particle size analyzer (Shimadzu Corporation, SA
LD-3000J) was used. In the procedure, first, the granular material to be measured is put into an organic liquid such as water or ethanol, ultrasonic waves of about 35 kHz to 40 kHz are applied, and a dispersion treatment is performed for about 2 minutes. Here, the amount of the particulate matter to be measured is such that the laser transmittance (ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion process is 70% to 95%. Next, this dispersion is applied to a Microtrac particle size analyzer to measure the particle size (D1, D2, D3 ...) Of the individual particles due to laser light scattering, and the number of existing particles (N1, N2, N3) for each particle size. ...) was measured. The measurement of this particle size distribution is calculated as the particle size distribution of the spherical particle group having the theoretical intensity that is the closest to the observed scattering intensity distribution (particles have a cross section of the same area as the projected image obtained by laser light irradiation). It is assumed to be a sphere with a circle, and the diameter of this cross-section circle (sphere equivalent diameter) is measured as the particle size). Average particle size (μm)
Is calculated from the particle size (D) of each particle and the number of existing particles (N) for each particle size according to the following formula. Average particle size (μm) = (ΣND 3 / ΣN) 1/3 Particles having a particle size of 0.1 μm or less may aggregate in the dispersion liquid. If such aggregation occurs, an electron microscope may be used. Was measured using. That is, first, a magnification is set so that 20 or more particles are included in the field of view, an electron micrograph is taken, then the area of the image of each particle shown in the photograph is calculated, and the same area is calculated from the calculated area. Calculate the diameter of a circle with an area (assuming a sphere with a cross-section circle of this diameter) and use this diameter as the particle size. Gas phase adsorption method (single-point method) using a specific surface area meter, Monosorb (produced by Quantachrome Co., Ltd.) of the active material (graphitized carbon) for the Li-Co composite oxide and the negative electrode plate, using nitrogen as an adsorbent. It was measured by. Interplanar distance (d002) between crystal lattices of a conductive material (graphitized carbon) for the positive electrode plate and an active material (graphitized carbon) for the negative electrode plate
And the crystallite size (Lc) in the c-axis direction were measured by the following method according to the Japan Society for the Promotion of Science. First, high-purity silicon for X-ray standard is ground in an agate mortar to a size below 325 mesh standard sieve to prepare a standard substance, and this standard substance and graphitized carbon of the sample to be measured are mixed in an agate mortar (graphitized carbon. An X-ray sample is prepared with 100% by weight of a standard substance relative to 100% by weight, and this X-ray sample is then subjected to, for example, an X-ray diffraction apparatus RINT2000 (Rigaku Denki Co., Ltd., X-ray source: CuKα). Line) to the sample plate uniformly. Next, the applied voltage to the X-ray tube is set to 40 kV and the applied current is set to 50 mA, the scanning range is 2θ = 23.5 degrees to 29.5 degrees, and the scanning speed is 0.25 degrees / min.
As for, the 002 peak of carbon and the 111 peak of the standard substance are measured. Then, from the obtained peak position and the half width thereof, the interplanar distance (d002) of the crystal lattice was calculated using the graphitization degree calculation software attached to the X-ray diffraction apparatus.
And the crystallite size (Lc) in the c-axis direction is calculated.
【0053】[0053]
【実施例】以下、実施例を挙げて本発明を具体的に示
す。EXAMPLES The present invention will be specifically described below with reference to examples.
【0054】実施例1
〔正極板の作製〕正極活物質としてのLiCoO2(平
均粒径:20μm、20/(平均粒径×比表面積):
8.3)91重量部と、導電材としての球状黒鉛化炭素
(平均粒径:6μm、結晶格子の面間距離:0.336
0nm、c軸方向の結晶子寸法:60nm)5重量部
と、同じく導電材としてのオイルファーネスブラック
(平均粒径:0.01μm)1重量部と、高分子バイン
ダーとしての融点が160℃のポリフッ化ビニリデン
(PVdF)(アウジモント社製、ハイラー301F)
3重量部とを、N−メチルピロリドン中に均一に分散し
てなる正極活物質組成物を、混練してスラリーとした。
ここで、球状黒鉛化炭素とオイルファーネスブラックか
らなる導電材全体における大径成分(粒径が4〜8μm
の範囲の粒子)の割合は72重量%で、小径成分(0.
1μm以下の粒子)の割合は18重量%で、これら以外
の粒径の粒子の割合は10重量%であった。Example 1 [Production of Positive Electrode Plate] LiCoO 2 as a positive electrode active material (average particle size: 20 μm, 20 / (average particle size × specific surface area):
8.3) 91 parts by weight, and spherical graphitized carbon as a conductive material (average particle size: 6 μm, interplanar distance of crystal lattice: 0.336)
0 nm, crystallite size in the c-axis direction: 60 nm) 5 parts by weight, oil furnace black (average particle size: 0.01 μm) 1 part by weight as a conductive material, and polyfluoride having a melting point of 160 ° C. as a polymer binder. Vinylidene chloride (PVdF) (Hailer 301F, manufactured by Ausimont)
A positive electrode active material composition obtained by uniformly dispersing 3 parts by weight in N-methylpyrrolidone was kneaded into a slurry.
Here, a large-diameter component (particle size is 4 to 8 μm) in the entire conductive material composed of spherical graphitized carbon and oil furnace black
The ratio of particles in the range is 72% by weight, and the small diameter component (0.
The ratio of particles having a size of 1 μm or less) was 18% by weight, and the ratio of particles having a particle size other than these was 10% by weight.
【0055】上記スラリーを集電体となるアルミニウム
箔(厚さ20μm)の両面上に塗布し、140℃で、5
分乾燥させ、ついで圧延温度が30℃、圧延率が30%
の圧延条件で圧延処理して集電体上に塗工物層を形成
し、アルミニウム箔の片面あたり20mg/cm2のL
iCoO2を有する正極板とした。スラリーの塗工直前
の粘度は10000cpsであった。また、塗工物層の
空孔率は0.11CC/gであった。The above slurry was applied on both sides of an aluminum foil (thickness 20 μm) to be a current collector, and at 5 ° C. at 5 ° C.
Minute drying, then rolling temperature is 30 ℃, rolling rate is 30%
The coating layer is formed on the current collector by rolling under the rolling conditions of No. 20 and L of 20 mg / cm 2 is applied to one side of the aluminum foil.
A positive electrode plate having iCoO 2 was used. The viscosity of the slurry immediately before coating was 10,000 cps. The porosity of the coating layer was 0.11 CC / g.
【0056】〔負極板の作製〕負極活物質となる黒鉛化
炭素メルブロンメルド FM−14(比表面積:1.3
2m2/g、結晶格子の面間距離:0.3364nm、
c軸方向の結晶子寸法:50nm)95重量部と、バイ
ンダーとなるポリフッ化ビニリデン(PVdF)5重量
部と、N−メチルピロリドン50重量部とを混合してス
ラリー化し、このスラリーを集電体となる銅箔(厚み1
4μm)の両面に塗布し、乾燥させた。なお負極活物質
の結晶格子の面間距離およびc軸方向の結晶子寸法につ
いては、上記の球状黒鉛化炭素と同様に測定を行った。
次に、この銅箔に当業者が一般に行う圧延条件(圧延温
度:120℃、圧延率:20%)によって圧延処理を行
い、負極板を得た。[Preparation of Negative Electrode Plate] Graphitized carbon Melbronn Meld FM-14 (specific surface area: 1.3
2 m 2 / g, interplanar distance of crystal lattice: 0.3364 nm,
95 parts by weight of crystallite size in the c-axis direction: 50 nm, 5 parts by weight of polyvinylidene fluoride (PVdF) serving as a binder, and 50 parts by weight of N-methylpyrrolidone are mixed to form a slurry, and the slurry is a current collector. Copper foil (thickness 1
4 μm) on both sides and dried. The interplanar distance of the crystal lattice of the negative electrode active material and the crystallite size in the c-axis direction were measured in the same manner as in the above-mentioned spherical graphitized carbon.
Next, this copper foil was subjected to a rolling treatment under rolling conditions (rolling temperature: 120 ° C., rolling rate: 20%) generally used by those skilled in the art to obtain a negative electrode plate.
【0057】〔電解液の調製〕ジエチルカーボネート4
体積%と、エチルメチルカーボネート29体積%と、エ
チレンカーボネート11体積%と、プロピレンカーボネ
ート9体積%と、ジメチルカーボネート47体積%との
混合溶媒に、LiPF6を、その濃度が1.0モル/L
(調製後の電解液に対し)となるように溶解させて電解
液を調製した。該電解液の粘度(23℃)は、1.9c
psであった。[Preparation of Electrolyte Solution] Diethyl carbonate 4
In a mixed solvent of vol%, ethyl methyl carbonate 29 vol%, ethylene carbonate 11 vol%, propylene carbonate 9 vol%, and dimethyl carbonate 47 vol%, LiPF 6 was added at a concentration of 1.0 mol / L.
An electrolytic solution was prepared by dissolving it so that (to the prepared electrolytic solution). The viscosity of the electrolytic solution (23 ° C.) is 1.9 c
It was ps.
【0058】〔リチウムイオン二次電池の組立〕上記で
作製した正極板と負極板とを、多孔質のポリエチレン−
ポリプロピレン複合セパレータを介して捲巻し、これを
円筒型の電池缶(外径18mm、高さ650mm)に収
容した。さらに、上記で得た電解液をセパレータに含浸
させ、本発明のリチウムイオン二次電池を得た。[Assembly of Lithium Ion Secondary Battery] The positive electrode plate and the negative electrode plate prepared above were made of porous polyethylene.
It was wound through a polypropylene composite separator and housed in a cylindrical battery can (outer diameter 18 mm, height 650 mm). Further, the electrolytic solution obtained above was impregnated into a separator to obtain a lithium ion secondary battery of the present invention.
【0059】実施例2
導電材として、5重量部の鱗片状黒鉛(平均粒径:6μ
m、結晶格子の面間距離:0.34nm、c軸方向の結
晶子寸法:25nm)と、オイルファーネスブラック
(平均粒径:0.01μm)1重量部(導電材全体にお
ける大径成分(粒径が4〜8μmの範囲の粒子)の割合
は72重量%、小径成分(0.1μm以下の粒子)の割
合は18重量%、これら以外の粒径の粒子の割合は10
重量%)を用いた以外は実施例1と同様にして正極板を
作製した。正極の塗工物層の空孔率は0.10CC/g
であった。この後、該正極板を使用し、正極板以外の構
成は実施例1と同様にしてリチウムイオン二次電池を組
み立てた。Example 2 As a conductive material, 5 parts by weight of flake graphite (average particle size: 6 μm)
m, interplanar distance of crystal lattice: 0.34 nm, crystallite size in c-axis direction: 25 nm, and 1 part by weight of oil furnace black (average particle size: 0.01 μm) The proportion of particles having a diameter in the range of 4 to 8 μm) is 72% by weight, the proportion of small-diameter components (particles having a diameter of 0.1 μm or less) is 18% by weight, and the proportion of particles having other particle diameters is 10%.
A positive electrode plate was produced in the same manner as in Example 1 except that (% by weight) was used. Porosity of positive electrode coating layer is 0.10 CC / g
Met. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0060】実施例3
実施例1で用いたスラリーと同じものを使用し、このス
ラリーを集電体となるアルミニウム箔(厚さ20μm)
の両面上に塗布し、150℃で、4分乾燥させ、ついで
圧延温度が35℃、圧延率が25%の圧延条件で圧延処
理して集電体上に塗工物層を形成し、アルミニウム箔の
片面あたり20mg/cm2のLiCoO2を有する正極
板とした。正極塗工物層の空孔率を測定したところ、
0.12CC/gであった。この後、該正極板を使用
し、正極板以外の構成は実施例1と同様にしてリチウム
イオン二次電池を組み立てた。Example 3 The same slurry as that used in Example 1 was used, and this slurry was used as an aluminum foil (thickness 20 μm) as a current collector.
On both sides, dried at 150 ° C. for 4 minutes, and then rolled under the rolling conditions of a rolling temperature of 35 ° C. and a rolling rate of 25% to form a coating layer on the current collector. The positive electrode plate had 20 mg / cm 2 of LiCoO 2 on each side of the foil. When the porosity of the positive electrode coating layer was measured,
It was 0.12 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0061】実施例4
正極活物質として、平均粒径が18μm、20/(平均
粒径×比表面積)が8.5のLiCoO2を91重量部
使用した以外は実施例1と同様にして正極板を作製し
た。正極の塗工物層の空孔率は0.14CC/gであっ
た。この後、該正極板を使用し、正極板以外の構成は実
施例1と同様にしてリチウムイオン二次電池を組み立て
た。Example 4 A positive electrode was prepared in the same manner as in Example 1 except that 91 parts by weight of LiCoO 2 having an average particle size of 18 μm and 20 / (average particle size × specific surface area) of 8.5 was used as the positive electrode active material. A plate was made. The porosity of the positive electrode coating layer was 0.14 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0062】実施例5
高分子バインダーとして、融点が162℃のPVdF
(呉羽化学社製、KF−1300)を3重量部使用した
以外は、実施例1と同様にして正極板を作製した。正極
の塗工物層の空孔率は0.08CC/gであった。この
後、該正極板を使用し、正極板以外の構成は実施例1と
同様にしてリチウムイオン二次電池を組み立てた。Example 5 PVdF having a melting point of 162 ° C. as a polymer binder
A positive electrode plate was produced in the same manner as in Example 1 except that 3 parts by weight of (KF-1300 manufactured by Kureha Chemical Co., Ltd.) was used. The porosity of the positive electrode coating layer was 0.08 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0063】実施例6
電解液に粘度(23℃)が2.4cpsの電解液(組
成:エチレンカーボネート(11体積%)、プロピレン
カーボネート(11体積%)、ジメチルカーボネート
(44体積%)、ジエチルカーボネート(5体積%)、
エチルメチルカーボネート(29体積%))を使用した
以外は、実施例1と同様にして、リチウムイオン二次電
池を作製した。Example 6 An electrolytic solution having a viscosity (23 ° C.) of 2.4 cps (composition: ethylene carbonate (11 vol%), propylene carbonate (11 vol%), dimethyl carbonate (44 vol%), diethyl carbonate (5% by volume),
A lithium ion secondary battery was produced in the same manner as in Example 1 except that ethyl methyl carbonate (29% by volume) was used.
【0064】実施例7
電解液に粘度(23℃)が2.8cpsの電解液(組
成:エチレンカーボネート(12体積%)、プロピレン
カーボネート(12体積%)、ジメチルカーボネート
(43体積%)、ジエチルカーボネート(4体積%)、
エチルメチルカーボネート(29体積%))を使用した
以外は、実施例1と同様にして、リチウムイオン二次電
池を作製した。Example 7 An electrolytic solution having a viscosity (23 ° C.) of 2.8 cps (composition: ethylene carbonate (12 vol%), propylene carbonate (12 vol%), dimethyl carbonate (43 vol%), diethyl carbonate (4% by volume),
A lithium ion secondary battery was produced in the same manner as in Example 1 except that ethyl methyl carbonate (29% by volume) was used.
【0065】比較例1
塗工物層の圧延温度を120℃、圧延率を45%の圧延
条件に変更した以外は実施例1と同様にして正極板を作
製した。正極塗工物層の空孔率は0.06CC/gであ
った。この後、該正極板を使用し、正極板以外の構成は
実施例1と同様にしてリチウムイオン二次電池を組み立
てた。Comparative Example 1 A positive electrode plate was produced in the same manner as in Example 1 except that the rolling temperature of the coating layer was changed to 120 ° C. and the rolling ratio was changed to 45%. The porosity of the positive electrode coating layer was 0.06 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0066】比較例2
塗工物層の圧延温度を30℃、圧延率を12%に変更し
た以外は実施例1と同様にして正極板を作製した。正極
塗工物層の空孔率は0.16CC/gであった。この
後、該正極板を使用し、正極板以外の構成は実施例1と
同様にしてリチウムイオン二次電池を組み立てた。Comparative Example 2 A positive electrode plate was produced in the same manner as in Example 1 except that the rolling temperature of the coating layer was changed to 30 ° C. and the rolling rate was changed to 12%. The porosity of the positive electrode coating layer was 0.16 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0067】比較例3
導電材として、1重量部の球状黒鉛化炭素(平均粒径:
6μm、結晶格子の面間距離:0.3360nm、c軸
方向の結晶子寸法:60nm)のみ(導電材全体におけ
る大径成分(粒径が4〜8μmの範囲の粒子)の割合は
90重量%、小径成分(0.1μm以下の粒子)の割合
は0重量%、これら以外の粒径の割合は10重量%)を
使用し、その他は実施例1と同様にして正極板を作製し
た。正極塗工物層の空孔率は0.14CC/gであっ
た。この後、該正極板を使用し、正極板以外の構成は実
施例1と同様にしてリチウムイオン二次電池を組み立て
た。Comparative Example 3 As a conductive material, 1 part by weight of spherical graphitized carbon (average particle size:
6 μm, inter-plane distance of crystal lattice: 0.3360 nm, crystallite size in c-axis direction: 60 nm) (ratio of large-diameter component (particles having particle size in the range of 4 to 8 μm) in the entire conductive material) is 90% by weight The proportion of the small-diameter component (particles of 0.1 μm or less) was 0% by weight, and the proportion of the particle diameter other than these was 10% by weight), and the other conditions were the same as in Example 1 to prepare a positive electrode plate. The porosity of the positive electrode coating layer was 0.14 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0068】比較例4
導電材として、3重量部のオイルファーネスブラック
(平均粒径:0.01μm)のみ(導電材全体における
大径成分(粒径が4〜8μmの範囲の粒子)の割合は0
重量%、小径成分(0.1μm以下の粒子)の割合は9
5重量%、これら以外の粒径の粒子の割合は5重量%)
を使用し、その他は実施例1と同様にして正極板を作製
した。正極塗工物層の空孔率は0.11CC/gであっ
た。この後、該正極板を使用し、正極板以外の構成は実
施例1と同様にしてリチウムイオン二次電池を組み立て
た。Comparative Example 4 Only 3 parts by weight of oil furnace black (average particle diameter: 0.01 μm) as a conductive material (the proportion of the large-diameter component (particles having a particle diameter in the range of 4 to 8 μm) in the entire conductive material) was used. 0
% By weight, the proportion of small-diameter components (particles of 0.1 μm or less) is 9
5% by weight, and the proportion of particles having a particle size other than these is 5% by weight)
A positive electrode plate was produced in the same manner as in Example 1 except that. The porosity of the positive electrode coating layer was 0.11 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0069】比較例5
導電材として、15重量部の球状黒鉛化炭素(平均粒
径:6μm、結晶格子の面間距離:0.3360nm、
c軸方向の結晶子寸法:60nm)と、0.08重量部
のオイルファーネスブラック(平均粒径:0.01μ
m)を使用した以外は、実施例1と同様にして正極板を
作製した。導電材全体における大径成分(粒径が4〜8
μmの範囲の粒子)の割合は99.4重量%、小径成分
(0.1μm以下の粒子)の割合は0.5重量%で、こ
れら以外の粒径の粒子の割合は0.1重量%であった。
また、正極塗工物層の空孔率は0.11CC/gであっ
た。この後、該正極板を使用し、正極板以外の構成は実
施例1と同様にしてリチウムイオン二次電池を組み立て
た。Comparative Example 5 As a conductive material, 15 parts by weight of spherical graphitized carbon (average particle diameter: 6 μm, interplanar distance of crystal lattice: 0.3360 nm,
Crystallite size in the c-axis direction: 60 nm) and 0.08 part by weight of oil furnace black (average particle size: 0.01 μ)
A positive electrode plate was produced in the same manner as in Example 1 except that m) was used. Large-diameter component (particle size is 4-8 in the entire conductive material
The proportion of particles in the range of μm) is 99.4% by weight, the proportion of small-diameter components (particles of 0.1 μm or less) is 0.5% by weight, and the proportion of particles having other particle diameters is 0.1% by weight. Met.
The porosity of the positive electrode coating layer was 0.11 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0070】比較例6
導電材として、4重量部の球状黒鉛化炭素(平均粒径:
6μm、結晶格子の面間距離:0.3360nm、c軸
方向の結晶子寸法:60nm)と、6重量部のオイルフ
ァーネスブラック(平均粒径:0.01μm)を使用し
た以外は、実施例1と同様にして正極板を作製した。導
電材全体における大径成分(粒径が4〜8μmの範囲の
粒子)の割合は34重量%、小径成分(0.1μm以下
の粒子)の割合は51重量%、これら以外の粒径の粒子
の割合は15重量%であった。また、正極塗工物層の空
孔率は0.11CC/gであった。この後、該正極板を
使用し、正極板以外の構成は実施例1と同様にしてリチ
ウムイオン二次電池を組み立てた。Comparative Example 6 As a conductive material, 4 parts by weight of spherical graphitized carbon (average particle size:
Example 1 except that 6 μm, interplanar distance of crystal lattice: 0.3360 nm, crystallite size in c-axis direction: 60 nm) and 6 parts by weight of oil furnace black (average particle size: 0.01 μm) were used. A positive electrode plate was produced in the same manner as in. The proportion of the large-diameter component (particles having a particle diameter in the range of 4 to 8 μm) in the entire conductive material is 34% by weight, the proportion of the small-diameter component (particles having a diameter of 0.1 μm or less) is 51% by weight, and particles having other diameters Was 15% by weight. The porosity of the positive electrode coating layer was 0.11 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0071】比較例7
電解液に粘度(23℃)が3.3cpsの電解液(組
成:エチレンカーボネート(20体積%)、プロピレン
カーボネート(20体積%)、ジメチルカーボネート
(10体積%)、ジエチルカーボネート(10体積
%)、エチルメチルカーボネート(40体積%))を使
用した以外は、実施例1と同様にして、リチウムイオン
二次電池を作製した。Comparative Example 7 An electrolytic solution having a viscosity (23 ° C.) of 3.3 cps (composition: ethylene carbonate (20 vol%), propylene carbonate (20 vol%), dimethyl carbonate (10 vol%), diethyl carbonate A lithium ion secondary battery was produced in the same manner as in Example 1 except that (10% by volume) and ethylmethyl carbonate (40% by volume) were used.
【0072】比較例8
高分子バインダーを、融点が175℃のポリフッ化ビニ
リデンに変更した以外は実施例1と同様にして正極板を
作製した。正極塗工物層の空孔率は0.05CC/gで
あった。この後、該正極板を使用し、正極板以外の構成
は実施例1と同様にしてリチウムイオン二次電池を組み
立てた。Comparative Example 8 A positive electrode plate was prepared in the same manner as in Example 1 except that the polymer binder was changed to polyvinylidene fluoride having a melting point of 175 ° C. The porosity of the positive electrode coating layer was 0.05 CC / g. Thereafter, the positive electrode plate was used, and a lithium ion secondary battery was assembled in the same manner as in Example 1 except for the positive electrode plate.
【0073】上記のように各々作製した実施例1〜7お
よび比較例1〜8の各リチウムイオン二次電池につい
て、以下の手順で低温特性試験、ハイレート放電試験お
よびサイクル特性試験を行った。For each of the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 8 produced as described above, a low temperature characteristic test, a high rate discharge test and a cycle characteristic test were conducted in the following procedure.
【0074】〔低温特性試験〕上記で得られたリチウム
イオン二次電池について室温で充電を行なった後、これ
を−20℃の大気雰囲気中に24時間放置する。なお、
充電は、1C(1600mA)定電流で電圧が4.2V
となるまで電流を流した後、続いて全充電時間が2.5
時間となるまで4.2V定電圧で電流を流して行なっ
た。次に、この−20℃の大気雰囲気中で0.5C(8
00mAh)/2.5Vカットオフで放電を行い、その
時の放電容量〔mA・H〕を求める。また、室温(20
℃)でも同様の条件で充電と放電とを行い、放電容量
〔mA・H〕を求める。さらに、−20℃下での放電容
量を室温下での放電容量で割って放電容量変化率〔%〕
を求めた。[Low Temperature Characteristic Test] The lithium ion secondary battery obtained above is charged at room temperature, and then left in an atmosphere of −20 ° C. for 24 hours. In addition,
Charged at a constant current of 1C (1600mA) and a voltage of 4.2V
After flowing the current until, the total charging time is 2.5
The current was passed at a constant voltage of 4.2 V until the time was reached. Next, 0.5 C (8
(00 mAh) /2.5 V cutoff is performed, and the discharge capacity [mA · H] at that time is obtained. At room temperature (20
Even at (° C.), charging and discharging are performed under the same conditions to obtain the discharge capacity [mA · H]. Further, the discharge capacity at −20 ° C. is divided by the discharge capacity at room temperature to change the discharge capacity [%].
I asked.
【0075】〔ハイレート放電試験〕室温(20℃)下
で、2C(3600mAの定電流)放電を行い、その放
電容量の0.2C(360mAの定電流)放電時の放電
容量に対する割合(容量維持率)を算出した。[High Rate Discharge Test] 2 C (constant current of 3600 mA) was discharged at room temperature (20 ° C.), and the ratio of the discharge capacity to the discharge capacity at 0.2 C (constant current of 360 mA) (capacity maintenance) Rate) was calculated.
【0076】〔サイクル特性試験〕上記で得られたリチ
ウムイオン二次電池について1C/1Cの充放電を室温
(20℃)下で500サイクル行い、1サイクル時と5
00サイクル時について、放電電流値と放電時間とから
放電容量〔mA・H〕を算出する。次に、500サイク
ル時の放電容量〔mA・H〕を1サイクル目の放電容量
〔mA・H〕で割って放電容量変化率〔%〕を求めた。
上記の試験結果を表1に示す。[Cycling Characteristic Test] The lithium ion secondary battery obtained above was charged and discharged at 1 C / 1 C for 500 cycles at room temperature (20 ° C.), and at 1 cycle and 5 cycles.
For 00 cycles, the discharge capacity [mA · H] is calculated from the discharge current value and the discharge time. Then, the discharge capacity [mA · H] at 500 cycles was divided by the discharge capacity [mA · H] at the first cycle to obtain the discharge capacity change rate [%].
The test results are shown in Table 1.
【0077】[0077]
【表1】 [Table 1]
【0078】[0078]
【発明の効果】以上の説明で明らかなように、本発明に
よれば、従来よりも、低温特性、サイクル特性およびハ
イレート放電特性のいずれもが大きく改善されたリチウ
ムイオン二次電池を提供することができる。従って、観
測機器や通信機器、さらには電気自動車や電力貯蔵機器
といった、低温下で使用が想定され、かつ、大電流放電
も必要とされる機器にも、好適に用いることができる。As is apparent from the above description, according to the present invention, there is provided a lithium ion secondary battery in which all of the low temperature characteristics, the cycle characteristics and the high rate discharge characteristics are greatly improved as compared with the prior art. You can Therefore, it can be suitably used for observation equipment, communication equipment, electric vehicles, power storage equipment, and other equipment that is expected to be used at low temperatures and that requires large-current discharge.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 木津 賢一 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 (72)発明者 森内 健 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5H029 AJ02 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 DJ08 DJ16 EJ04 EJ12 HJ01 HJ05 HJ09 HJ14 5H050 AA02 AA06 AA07 BA17 CA08 CB07 CB08 DA10 DA11 EA09 EA10 EA24 FA17 GA22 HA01 HA05 HA09 HA10 HA14 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Kenichi Kizu 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Electric Cable Industrial Co., Ltd. Itami Works (72) Inventor Ken Moriuchi 4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Electric Cable Industrial Co., Ltd. Itami Works F term (reference) 5H029 AJ02 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 DJ08 DJ16 EJ04 EJ12 HJ01 HJ05 HJ09 HJ14 5H050 AA02 AA06 AA07 BA17 CA08 CB07 CB08 DA10 DA11 EA09 EA10 EA24 FA17 GA22 HA01 HA05 HA09 HA10 HA14
Claims (2)
も含んでなるリチウムイオン二次電池であって、 正極板が、 Li−Co系複合酸化物からなる活物質と、 粒径が4〜8μmの範囲内にある大径成分および粒径が
0.1μm以下の小径成分の合計量が全体の70重量%
以上であり、かつ、大径成分と小径成分の重量比が1:
0.01〜1:1である粒状の導電材と、 融点が165℃以下のポリフッ化ビニリデンとを含む塗
工物層を集電体上に形成し、該塗工物層の空孔率を0.
08〜0.14CC/gの範囲に設定したものであり、 電解液の粘度(23℃)が3.0cps以下であること
を特徴とするリチウムイオン二次電池。1. A lithium ion secondary battery comprising at least a positive electrode plate, a negative electrode plate and an electrolytic solution, wherein the positive electrode plate comprises an active material composed of a Li—Co based complex oxide, and a particle size of 4 to 8 μm. 70% by weight of the total amount of the large-diameter component and the small-diameter component having a particle diameter of 0.1 μm or less within the range of
Above, and the weight ratio of the large diameter component and the small diameter component is 1:
A coating layer containing a granular conductive material of 0.01 to 1: 1 and polyvinylidene fluoride having a melting point of 165 ° C. or lower is formed on the current collector, and the porosity of the coating layer is adjusted. 0.
The lithium ion secondary battery is set in a range of 08 to 0.14 CC / g, and the viscosity (23 ° C.) of the electrolytic solution is 3.0 cps or less.
径が10μm以上である、請求項1記載のリチウムイオ
ン二次電池。2. The lithium ion secondary battery according to claim 1, wherein the granular Li—Co-based composite oxide has an average particle size of 10 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001356217A JP4053763B2 (en) | 2001-11-21 | 2001-11-21 | Lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001356217A JP4053763B2 (en) | 2001-11-21 | 2001-11-21 | Lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003157830A true JP2003157830A (en) | 2003-05-30 |
JP4053763B2 JP4053763B2 (en) | 2008-02-27 |
Family
ID=19167779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001356217A Expired - Fee Related JP4053763B2 (en) | 2001-11-21 | 2001-11-21 | Lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4053763B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006294393A (en) * | 2005-04-11 | 2006-10-26 | Hitachi Maxell Ltd | Lithium ion secondary battery |
JP2012064571A (en) * | 2010-08-19 | 2012-03-29 | Semiconductor Energy Lab Co Ltd | Electrical device |
WO2019107049A1 (en) * | 2017-11-30 | 2019-06-06 | パナソニックIpマネジメント株式会社 | Cylindrical secondary battery |
WO2019208806A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社村田製作所 | Battery |
CN113394455B (en) * | 2021-06-10 | 2022-07-29 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
CN115312701A (en) * | 2022-09-29 | 2022-11-08 | 比亚迪股份有限公司 | Positive plate and lithium ion battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020059806A1 (en) | 2018-09-19 | 2020-03-26 | 株式会社村田製作所 | Secondary battery |
-
2001
- 2001-11-21 JP JP2001356217A patent/JP4053763B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006294393A (en) * | 2005-04-11 | 2006-10-26 | Hitachi Maxell Ltd | Lithium ion secondary battery |
JP4743752B2 (en) * | 2005-04-11 | 2011-08-10 | 日立マクセル株式会社 | Lithium ion secondary battery |
JP2012064571A (en) * | 2010-08-19 | 2012-03-29 | Semiconductor Energy Lab Co Ltd | Electrical device |
US10044027B2 (en) | 2010-08-19 | 2018-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Electrical appliance |
WO2019107049A1 (en) * | 2017-11-30 | 2019-06-06 | パナソニックIpマネジメント株式会社 | Cylindrical secondary battery |
JPWO2019107049A1 (en) * | 2017-11-30 | 2020-11-26 | パナソニックIpマネジメント株式会社 | Cylindrical secondary battery |
US11502337B2 (en) | 2017-11-30 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Cylindrical secondary battery |
WO2019208806A1 (en) * | 2018-04-27 | 2019-10-31 | 株式会社村田製作所 | Battery |
CN113394455B (en) * | 2021-06-10 | 2022-07-29 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
CN115312701A (en) * | 2022-09-29 | 2022-11-08 | 比亚迪股份有限公司 | Positive plate and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP4053763B2 (en) | 2008-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101649808B1 (en) | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery | |
US8748036B2 (en) | Non-aqueous secondary battery | |
US20140377653A1 (en) | Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same | |
KR20120099108A (en) | Active material particles and use of same | |
WO2001091211A1 (en) | Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them | |
TWI586024B (en) | A negative electrode active material for lithium secondary battery, and a lithium secondary battery | |
JP2016024879A (en) | Nonaqueous electrolyte secondary battery positive electrode, nonaqueous electrolyte secondary battery and system thereof | |
JP2017097952A (en) | Negative electrode active substance, mixed negative electrode active substance material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery | |
JP2009245940A (en) | Nonaqueous electrolyte secondary battery | |
JP2017147054A (en) | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP4021652B2 (en) | Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate | |
JP2015133320A (en) | Negative electrode material for secondary battery, and secondary battery using the same | |
JP4354723B2 (en) | Method for producing graphite particles | |
WO2015015894A1 (en) | Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP2017050204A (en) | Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery | |
KR101893272B1 (en) | Negative electrode material for secondary battery, and secondary battery using same | |
JP4053763B2 (en) | Lithium ion secondary battery | |
JP3273438B2 (en) | Lithium ion secondary battery | |
US20180069238A1 (en) | Porous silicon based negative electrode active material, method for manufacturing the same, and rechargeable lithium battery including the same | |
WO2020213628A1 (en) | Composite carbon particles, method for manufacturing same and use thereof | |
Johnson et al. | Synthesis, characterisation and electrochemical evaluation of lithium titanate anode for lithium ion cells | |
JP2014120204A (en) | Nonaqueous secondary battery | |
JP2013191484A (en) | Negative electrode active material layer, manufacturing method therefor and nonaqueous electrolyte secondary cell | |
JPWO2018087928A1 (en) | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP4021651B2 (en) | Positive electrode plate for lithium ion secondary battery and lithium ion secondary battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |