Nothing Special   »   [go: up one dir, main page]

JP2003151577A - Fuel-cell cell unit - Google Patents

Fuel-cell cell unit

Info

Publication number
JP2003151577A
JP2003151577A JP2001346031A JP2001346031A JP2003151577A JP 2003151577 A JP2003151577 A JP 2003151577A JP 2001346031 A JP2001346031 A JP 2001346031A JP 2001346031 A JP2001346031 A JP 2001346031A JP 2003151577 A JP2003151577 A JP 2003151577A
Authority
JP
Japan
Prior art keywords
layer
electrolyte
catalyst layer
fuel cell
cell unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001346031A
Other languages
Japanese (ja)
Inventor
Shunsuke Taniguchi
俊輔 谷口
Yoshito Konno
義人 近野
Yasuo Miyake
泰夫 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001346031A priority Critical patent/JP2003151577A/en
Publication of JP2003151577A publication Critical patent/JP2003151577A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel-cell cell unit, in which even if an electrolyte layer (film), which consists of proton-conductive gel, is created by the sol-gel processing, the pores in the catalyst layer are not buried by the electrolyte material, and the utilization factor platinum catalyst increases and a high battery performance is obtained since the reaction gas is fully supplied to the catalyst layer. SOLUTION: In the fuel-cell cell unit, which has the cell structure, in which the catalyst layer and a gas diffusion layer are arranged to this order, respectively, on both sides of the main side of the electrolyte layer, the above electrolyte layer consists of the proton-conductive gel, and an interlayer, who contains carbon particles and the electrolyte material at least between the above electrolyte layer and the catalyst layer, is formed. The porosity of the above interlayer is smaller than the porosity of the above catalyst layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プロトン伝導性ゲ
ルからなる電解質層を備えた燃料電池セルユニットに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell unit having an electrolyte layer made of a proton conductive gel.

【0002】[0002]

【従来の技術】燃料電池は、電解質層を主面両側に、燃
料極触媒層と空気極触媒層で挟み、これを2枚のガス拡
散層間に配したセル構造を持ち、燃料極側に水素を含む
反応ガス、空気極側に酸素を含む反応ガス(酸化剤ガ
ス)をそれぞれ供給し、水素と酸素を反応させて発電を
行う。空気極側に供給される反応ガスには一般的に空気
が用いられる。燃料極側に供給される反応ガスには純水
素ガスの他、天然ガスやナフサなどの軽質炭化水素など
の燃料ガスを燃料ガス改質系(改質器、CO変性器、C
O除去器など)を用いて改質し、水素リッチな改質ガス
としたものが用いられる。
2. Description of the Related Art A fuel cell has a cell structure in which an electrolyte layer is sandwiched between a fuel electrode catalyst layer and an air electrode catalyst layer on both sides of a main surface, and this is arranged between two gas diffusion layers. A reaction gas containing oxygen and a reaction gas containing oxygen (oxidant gas) are supplied to the air electrode side to react hydrogen with oxygen to generate power. Air is generally used as the reaction gas supplied to the air electrode side. As the reaction gas supplied to the fuel electrode side, in addition to pure hydrogen gas, fuel gas such as natural gas or light hydrocarbon such as naphtha is used as a fuel gas reforming system (reformer, CO modifier, C
A hydrogen-rich reformed gas that has been reformed by using an O remover or the like) is used.

【0003】電解質層にはさまざまな種類が用いられて
いるが、このうち陽イオン交換樹脂からなる固体高分子
膜を電解質に用いた固体高分子型燃料電池は、乗り物
用、携帯電話用、家庭用などの電源として広く適用され
ている。
Various types of electrolyte layers are used. Among them, a polymer electrolyte fuel cell using a solid polymer membrane made of a cation exchange resin as an electrolyte is used for vehicles, mobile phones, households. Widely applied as a power source for business.

【0004】一方近年、燃料電池用の電解質としてプロ
トン伝導性ゲルが研究されている。このプロトン伝導性
ゲルは、例えば特開平8−249923号公報、特開平
11−203936号公報に開示されているように、ゾ
ルゲル法により作成した酸化ケイ素とブレンステッド酸
(リン酸など)を主体とする化合物であって、これを電
解質に用いた燃料電池は固体高分子型燃料電池の作動温
度(約60〜100℃)よりも高い作動温度(150
℃)で発電することができる。したがって従来の固体高
分子型燃料電池のように、燃料ガス改質系からの高温の
改質ガスを、燃料電池の作動温度(約60〜100℃)
に合わせて大幅に冷却する必要がなくなり、発電にかか
る熱効率を飛躍的に改善することができる。また固体高
分子型燃料電池では、固体高分子膜を十分に湿潤させな
いと内部抵抗が上昇して発電効率が低下するが、上記プ
ロトン伝導性ゲルには発電に際して固体高分子膜よりも
水分を必要とせず、固体高分子型燃料電池より比較的高
温下でも安定した発電が可能である。このように上記プ
ロトン伝導性ゲルを電解質に用いると、固体高分子型燃
料電池の抱えていた問題の多くを改善できると考えられ
ている。
On the other hand, in recent years, a proton conductive gel has been studied as an electrolyte for fuel cells. This proton-conducting gel is mainly composed of silicon oxide and Bronsted acid (phosphoric acid, etc.) prepared by a sol-gel method, as disclosed in, for example, JP-A-8-249923 and JP-A-11-203936. The fuel cell using the compound as an electrolyte has a higher operating temperature (150 ° C) than the operating temperature (about 60 to 100 ° C) of the polymer electrolyte fuel cell.
Power can be generated at (° C). Therefore, like the conventional polymer electrolyte fuel cell, the high-temperature reformed gas from the fuel gas reforming system is supplied to the operating temperature (about 60 to 100 ° C.) of the fuel cell.
Therefore, it is not necessary to cool it significantly, and the thermal efficiency for power generation can be dramatically improved. In a polymer electrolyte fuel cell, internal resistance increases and power generation efficiency decreases if the polymer electrolyte membrane is not sufficiently wet, but the proton conductive gel requires more water than the polymer electrolyte membrane during power generation. In other words, stable power generation is possible even at relatively high temperatures compared to polymer electrolyte fuel cells. Thus, it is considered that the use of the above-mentioned proton-conducting gel in the electrolyte can solve many of the problems of the polymer electrolyte fuel cell.

【0005】[0005]

【発明が解決しようとする課題】図4は従来の燃料電池
セルユニットの断面を模式的に示す説明図である。従来
の燃料電池セルユニット20は、電解質層21の主面両
側に、それぞれ燃料極触媒層22と燃料極ガス拡散層2
3および空気極触媒層24と空気極ガス拡散層25をこ
の順に配したセル構造を有している。
FIG. 4 is an explanatory view schematically showing a cross section of a conventional fuel cell unit. The conventional fuel cell unit 20 includes a fuel electrode catalyst layer 22 and a fuel electrode gas diffusion layer 2 on both sides of the main surface of an electrolyte layer 21, respectively.
3 and the air electrode catalyst layer 24 and the air electrode gas diffusion layer 25 are arranged in this order to have a cell structure.

【0006】電解質層21(膜)をゾルゲル法により作
成するには、例えば、ガス拡散層23(例えば、カーボ
ンペーパーにカーボン粉末およびポリテトラフルオロエ
チレン粉末を充填したもの)を接合、積層した燃料極触
媒層22(例えば、白金担持カーボン粒子とポリテトラ
フルオロエチレン(PTFE)を混合したシート)とガ
ス拡散層25(例えば、カーボンペーパーにカーボン粉
末およびポリテトラフルオロエチレン粉末を充填したも
の)を接合、積層した空気極触媒層24(例えば、白金
担持カーボン粒子とポリテトラフルオロエチレン(PT
FE)を混合したシート)の間にゾルを流し込み、そし
て大気中で溶媒を自然乾燥させるなどしてゲル化させて
プロトン伝導性ゲルとすることにより作製されている。
To form the electrolyte layer 21 (membrane) by the sol-gel method, for example, a gas diffusion layer 23 (for example, carbon paper filled with carbon powder and polytetrafluoroethylene powder) is joined and laminated. A catalyst layer 22 (for example, a sheet in which carbon particles carrying platinum and polytetrafluoroethylene (PTFE) are mixed) and a gas diffusion layer 25 (for example, carbon paper filled with carbon powder and polytetrafluoroethylene powder) are joined, Laminated air electrode catalyst layer 24 (for example, platinum supporting carbon particles and polytetrafluoroethylene (PT
It is produced by pouring a sol between (sheets mixed with FE) and gelating the solvent by naturally drying the solvent in the air to obtain a proton conductive gel.

【0007】しかしこのようなセル構造を有する従来の
燃料電池セルユニット20は、触媒層22、24内の気
孔が電解質材料により埋められてしまい、反応ガスの拡
散性が低下し、電極反応サイト(電解質/触媒/反応ガ
ス相の三相界面)が減少し、白金触媒の利用率が低下す
るので、電池性能が低下する問題があった。
However, in the conventional fuel cell unit 20 having such a cell structure, the pores in the catalyst layers 22 and 24 are filled with the electrolyte material, the diffusivity of the reaction gas is lowered, and the electrode reaction site ( Since the electrolyte / catalyst / reaction gas phase (three-phase interface) is reduced and the utilization rate of the platinum catalyst is reduced, there is a problem that the battery performance is reduced.

【0008】本発明の目的は、従来の上記問題を解決
し、ゾルゲル法によりプロトン伝導性ゲルからなる電解
質層(膜)を作成しても、触媒層内の気孔が電解質材料
により埋められることがないので、触媒層へ反応ガスが
充分に供給されて白金触媒の利用率(電極反応に利用さ
れる率)が高まり、高い電池性能が得られるので白金触
媒量を低減できる効果があり、かつ触媒層と電解質層と
の密着性が良好に維持されるので、例え外部から応力が
かかっても触媒層と電解質層とのミクロな接触点の破壊
が防止され高い電池性能が維持できる燃料電池セルユニ
ットを提供することである。
The object of the present invention is to solve the above problems of the prior art, and even if an electrolyte layer (membrane) made of a proton conductive gel is prepared by the sol-gel method, the pores in the catalyst layer can be filled with the electrolyte material. Since the reaction gas is sufficiently supplied to the catalyst layer, the utilization rate of the platinum catalyst (the rate used for the electrode reaction) is increased, and high battery performance can be obtained. Since the adhesion between the electrolyte layer and the electrolyte layer is maintained well, even if stress is applied from the outside, destruction of micro contact points between the catalyst layer and the electrolyte layer is prevented, and high battery performance can be maintained. Is to provide.

【0009】[0009]

【課題を解決するための手段】本発明者等は従来の問題
を解決するために鋭意研究した結果、電解質層と触媒層
との間に、少なくともカーボン粒子と電解質材料とを含
み、特定の気孔率を有する中間層を存在させることによ
り解決できることを見いだし、本発明を成すに到った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors to solve the conventional problems, as a result, at least carbon particles and an electrolyte material are contained between the electrolyte layer and the catalyst layer, and specific pores are contained. It has been found that the problem can be solved by the presence of an intermediate layer having a ratio, and the present invention has been accomplished.

【0010】すなわち、前記課題を解決するための本発
明の請求項1記載の燃料電池セルユニットは、電解質層
の主面両側に、それぞれ触媒層とガス拡散層をこの順に
配したセル構造を有する燃料電池セルユニットにおい
て、前記電解質層はプロトン伝導性ゲルからなり、前記
電解質層と触媒層との間に、少なくともカーボン粒子と
電解質材料とを含む中間層が形成されており、前記中間
層の気孔率は、前記触媒層の気孔率より小さいことを特
徴とする。
That is, the fuel cell unit according to claim 1 of the present invention for solving the above problem has a cell structure in which a catalyst layer and a gas diffusion layer are arranged in this order on both sides of the main surface of the electrolyte layer. In the fuel cell unit, the electrolyte layer is made of a proton conductive gel, an intermediate layer containing at least carbon particles and an electrolyte material is formed between the electrolyte layer and the catalyst layer, and the pores of the intermediate layer are formed. The porosity is smaller than the porosity of the catalyst layer.

【0011】本発明の請求項2記載の燃料電池セルユニ
ットは、請求項1記載の燃料電池セルユニットにおい
て、前記プロトン伝導性ゲルは、SiO2 、Al2
3 、TiO2 、V25 、ZrO2 の中から選ばれた材
料とリン酸、過塩素酸、ホウ酸、ケイ酸の中から選ばれ
た材料とを含んでなることを特徴とする。
A fuel cell unit according to a second aspect of the present invention is the fuel cell unit according to the first aspect, wherein the proton conductive gel is SiO 2 , Al 2 O.
3 , a material selected from TiO 2 , V 2 O 5 , and ZrO 2 and a material selected from phosphoric acid, perchloric acid, boric acid, and silicic acid.

【0012】本発明の燃料電池セルユニットは、電解質
層と触媒層との間に、少なくともカーボン粒子と電解質
材料とを含み、特定の気孔率を有する中間層を存在させ
ることによりゾルゲル法によりプロトン伝導性ゲルから
なる電解質層を作成しても、触媒層内の気孔が電解質材
料により埋められることがないので、触媒層へ反応ガス
が充分に供給されて白金触媒の利用率が高まり、高い電
池性能が得られるので、白金触媒量を低減できる効果が
あり、かつ中間層内のカーボン粒子が触媒層と電解質層
との密着性を高める働きをするため触媒層と電解質層と
の密着性が良好に維持されるので、例え外部から応力が
かかっても触媒層と電解質層とのミクロな接触点の破壊
が防止され高い電池性能が維持できる。
In the fuel cell unit of the present invention, a proton conductive layer is formed by the sol-gel method by providing an intermediate layer containing at least carbon particles and an electrolyte material and having a specific porosity between the electrolyte layer and the catalyst layer. Even if an electrolyte layer made of a hydrophobic gel is created, the pores in the catalyst layer are not filled with the electrolyte material, so that the reaction gas is sufficiently supplied to the catalyst layer, the utilization rate of the platinum catalyst is increased, and high battery performance is achieved. Therefore, there is an effect that the amount of platinum catalyst can be reduced, and because the carbon particles in the intermediate layer act to enhance the adhesion between the catalyst layer and the electrolyte layer, the adhesion between the catalyst layer and the electrolyte layer is improved. Since it is maintained, even if stress is applied from the outside, destruction of micro contact points between the catalyst layer and the electrolyte layer is prevented, and high battery performance can be maintained.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて詳細に説明する。図1は、本発明の燃料電池セ
ルユニットの断面を模式的に示す説明図である。図2
は、図1に示した燃料電池セルユニットを用いて組み立
てた燃料電池セルユニット積層体の組立説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory view schematically showing a cross section of a fuel cell unit of the present invention. Figure 2
[Fig. 2] is an assembly explanatory diagram of a fuel cell unit laminate formed by using the fuel cell unit shown in Fig. 1.

【0014】図1に示すように、本発明の燃料電池セル
ユニット1は、電解質層2の主面両側に、それぞれ燃料
極触媒層3と燃料極ガス拡散層4および空気極触媒層5
と空気極ガス拡散層6をこの順に配したセル構造を有し
ており、電解質層2と触媒層3の間および電解質層2と
触媒層5の間に少なくともカーボン粒子7と電解質材料
8とを含む中間層9がそれぞれ形成されている。中間層
9の気孔率は、触媒層3、5の気孔率より小さい。触媒
層3、5内においては気孔10が電解質材料8により埋
められることがないので、触媒層3、5へ反応ガスが充
分に供給され、白金触媒の利用率が高まるので、高い電
池性能が得られる。中間層9内のカーボン粒子7が触媒
層3、5と電解質層2との密着性を高める働きをするた
め触媒層3、5と電解質層2との密着性が良好に維持さ
れるので、例え燃料電池セルユニット1に外部から応力
がかかっても触媒層3、5と電解質層2とのミクロな接
触点の破壊が防止され高い電池性能が維持できる。
As shown in FIG. 1, the fuel cell unit 1 of the present invention has a fuel electrode catalyst layer 3, a fuel electrode gas diffusion layer 4, and an air electrode catalyst layer 5 on both sides of the main surface of an electrolyte layer 2.
And an air electrode gas diffusion layer 6 are arranged in this order, and at least carbon particles 7 and an electrolyte material 8 are provided between the electrolyte layer 2 and the catalyst layer 3 and between the electrolyte layer 2 and the catalyst layer 5. The intermediate layers 9 including each are formed. The porosity of the mid layer 9 is smaller than that of the catalyst layers 3 and 5. Since the pores 10 are not filled with the electrolyte material 8 in the catalyst layers 3 and 5, the reaction gas is sufficiently supplied to the catalyst layers 3 and 5, and the utilization rate of the platinum catalyst is increased, so that high battery performance is obtained. To be Since the carbon particles 7 in the intermediate layer 9 serve to enhance the adhesiveness between the catalyst layers 3 and 5 and the electrolyte layer 2, the adhesiveness between the catalyst layers 3 and 5 and the electrolyte layer 2 is maintained well. Even if stress is applied to the fuel cell unit 1 from the outside, destruction of micro contact points between the catalyst layers 3 and 5 and the electrolyte layer 2 is prevented, and high battery performance can be maintained.

【0015】本発明における気孔率は下記の方法で測定
した。島津製作所製ポアサイザ9310を用い、水銀圧
入法により全気孔の体積を測定し、その測定結果から気
孔率(体積%)を算出する。
The porosity in the present invention was measured by the following method. The volume of all pores is measured by the mercury porosimetry using a pore sizer 9310 manufactured by Shimadzu Corporation, and the porosity (volume%) is calculated from the measurement result.

【0016】図2に示すように、燃料電池セルユニット
積層体30は、空気極側チャネルプレート15と燃料極
側チャネルプレート16との間に燃料電池セルユニット
1を積層した構成となっている。燃料電池セルユニット
1は電解質層2の一方の面に中間層9、空気極触媒層
5、ガス拡散層6、他方の面に中間層9、燃料極触媒層
3、ガス拡散層4を順次接合し積層した構成となってい
る。高出力の電力が取り出せるように燃料電池は積層体
30を複数個積層し、その両端が一対の端板で固定され
た構成(セルスタック)に組み上げられる。空気極触媒
層5と燃料極触媒層3は、例えば触媒担持粒子(白金担
持カーボン粒子とポリテトラフルオロエチレン(PTF
E)を混合したものから形成されている。
As shown in FIG. 2, the fuel cell unit laminate 30 has a structure in which the fuel cell unit 1 is laminated between the air electrode side channel plate 15 and the fuel electrode side channel plate 16. In the fuel cell unit 1, the intermediate layer 9, the air electrode catalyst layer 5, and the gas diffusion layer 6 are sequentially bonded to one surface of the electrolyte layer 2, and the intermediate layer 9, the fuel electrode catalyst layer 3, and the gas diffusion layer 4 are sequentially bonded to the other surface. It has a laminated structure. The fuel cell is assembled in a structure (cell stack) in which a plurality of stacks 30 are stacked and both ends thereof are fixed by a pair of end plates so that high output power can be taken out. The air electrode catalyst layer 5 and the fuel electrode catalyst layer 3 are formed of, for example, catalyst-supporting particles (platinum-supporting carbon particles and polytetrafluoroethylene (PTF).
It is formed from a mixture of E).

【0017】本発明で用いるガス拡散層4、6は具体的
には、例えば、厚み約200μmの基材(カーボンペー
パー)に撥水性樹脂(例えば、PTFE)とカーボン粉
末の混合スラリーを塗布、充填して形成される。ガス拡
散層4、6は集電体とも称され、空気極触媒層5と燃料
極触媒層3とチャネルプレート15、16との電流の流
れを確保する。
For the gas diffusion layers 4 and 6 used in the present invention, specifically, for example, a base material (carbon paper) having a thickness of about 200 μm is coated and filled with a mixed slurry of a water-repellent resin (for example, PTFE) and carbon powder. Formed. The gas diffusion layers 4 and 6 are also called current collectors, and ensure the flow of current between the air electrode catalyst layer 5, the fuel electrode catalyst layer 3, and the channel plates 15 and 16.

【0018】燃料極側チャネルプレート16は、フェノ
ール樹脂などの樹脂材料にカーボン粉末を混合したもの
を射出成形してなる部材であって、燃料極側ガス拡散層
4と対向する面に、x方向を長手方向としてy方向に一
定間隔毎にリブ166が並設され、これにより同方向に
燃料ガス(水素または水素リッチな改質ガス)を流通さ
せるチャネル165が形成されている。
The fuel electrode side channel plate 16 is a member formed by injection-molding a resin material such as phenol resin mixed with carbon powder, and is formed on the surface facing the fuel electrode side gas diffusion layer 4 in the x direction. The ribs 166 are juxtaposed at regular intervals in the y direction with the longitudinal direction as the longitudinal direction, thereby forming a channel 165 through which the fuel gas (hydrogen or hydrogen-rich reformed gas) flows.

【0019】空気極側チャネルプレート15は、燃料極
側チャネルプレート16とほぼ同様の部材であり、空気
極側ガス拡散層6と対向する面に、y方向を長手方向と
してx方向に一定間隔毎に図示しないリブが並設され、
これにより同方向に酸化剤ガス(空気などの酸化剤)を
流通させるチャネルが形成されている。
The air electrode side channel plate 15 is a member substantially similar to the fuel electrode side channel plate 16, and is arranged on the surface facing the air electrode side gas diffusion layer 6 at regular intervals in the x direction with the y direction as the longitudinal direction. Ribs (not shown) are installed side by side,
As a result, channels are formed to allow the oxidant gas (oxidant such as air) to flow in the same direction.

【0020】これら1〜16の構成要素には内部マニホ
ールドを形成するために各主面の4隅に開孔部(131
〜134、151〜154、161〜163のみを図示
した)が設けてあり、このうち開孔部161、131、
151を含んでz方向に連なる開孔部により燃料極側チ
ャネルプレート16のチャネル165に反応ガス(燃料
ガス)が供給され、開孔部163、133、153を含
んでz方向に連なる開孔部により空気極側チャネルプレ
ート15の図示しないチャネルに反応ガス(空気などの
酸化剤ガス)が供給され、開孔部132、162、15
2を含んでz方向に連なる開孔部により排出される。
In order to form the internal manifold, these components 1 to 16 have openings (131) at the four corners of each main surface.
~ 134, 151-154, 161-163 are shown), of which the openings 161, 131,
Reactant gas (fuel gas) is supplied to the channel 165 of the fuel electrode side channel plate 16 by the opening portion including 151 and extending in the z direction, and the opening portion including the opening portions 163, 133 and 153 and extending in the z direction. Thereby supplying a reaction gas (oxidant gas such as air) to a channel (not shown) of the air electrode side channel plate 15, and the openings 132, 162, 15 are formed.
It is discharged through the open hole portion including 2 in the z direction.

【0021】このような燃料電池の稼働時には燃料極側
に水素ガス(水素リッチな改質ガス)、空気極側に空気
を供給する。これにより水素は燃料極においてプロトン
(H 2 →2H+ +2e- )となり、電解質層2のゲル中
を空気極側へと移動する。一方空気中の酸素は移動して
きたプロトンと反応して水を生じる(2H+ +2e-
1/2O2 →H2 O)。電解質層2中にはわずかしか水
が含まれていなくても、プロトン伝導性ゲルによってプ
ロトンが伝導され発電反応がなされる。
During operation of such a fuel cell, the fuel electrode side
Hydrogen gas (hydrogen-rich reformed gas), air on the air electrode side
To supply. This causes hydrogen to become a proton at the fuel electrode.
(H 2 → 2H+ + 2e- ), In the gel of the electrolyte layer 2
To the air electrode side. On the other hand, oxygen in the air moves
Reacts with incoming protons to produce water (2H+ + 2e-+
1 / 2O2 → H2 O). Little water in the electrolyte layer 2
Even if it contains no
The roton is conducted and the power generation reaction is performed.

【0022】電解質層2は、プロトン伝導性ゲルからな
り、SiO2 、Al23 、TiO 2 、V25 、Zr
2 の中から選ばれた材料(プロトン伝導性を示す化合
物)とブレンステッド酸(リン酸、過塩素酸、ホウ酸、
ケイ酸などのプロトン供与体として作用する化合物)の
中から選ばれた材料とを含んでなり、ブレンステッド酸
に保持された酸化ケイ素などの末端表面に水酸基が高濃
度で結合した化学構造となっている。
The electrolyte layer 2 is made of a proton conductive gel.
SiO2 , Al2 O3 , TiO 2 , V2 OFive , Zr
O2 Materials selected from among
Substance) and Bronsted acid (phosphoric acid, perchloric acid, boric acid,
Of compounds that act as proton donors such as silicic acid)
Bronsted acid comprising a material selected from
High concentration of hydroxyl groups on the terminal surface of silicon oxide etc.
It has a chemical structure that is bound in degrees.

【0023】電解質層2はゾルゲル法で作製される。先
ず、プロトン伝導性材料(電解質材料)の溶液(ゾル)
(例えば、ケイ酸エチルSi(OC254 +リン
酸トリメチルPO(OCH33 +水+エタノールC2
5 OH+塩酸HClをモル比1:0.04:1:1:
0.0027の割合で混合(加水分解)し、この溶液
に水+エタノールC25 OH+塩酸HClを、のケ
イ酸エチル1モルに対してモル比4:1:0.011の
割合で混合し、1時間攪拌しゾルを作製する)を作製
し、大気中でゾル中の溶媒を自然乾燥させて重縮合反応
によりゲル化させる。
The electrolyte layer 2 is produced by the sol-gel method. First, a solution (sol) of a proton conductive material (electrolyte material)
(For example, ethyl silicate Si (OC 2 H 5 ) 4 + trimethyl phosphate PO (OCH 3 ) 3 + water + ethanol C 2
H 5 OH + HCl HCl molar ratio 1: 0.04: 1: 1:
Mix (hydrolyze) in a ratio of 0.0027, and mix this solution with water + ethanol C 2 H 5 OH + hydrochloric acid HCl in a molar ratio of 4: 1: 0.011 to 1 mol of ethyl silicate. Then, the mixture is stirred for 1 hour to prepare a sol), and the solvent in the sol is naturally dried in the air to cause gelation by a polycondensation reaction.

【0024】なお、上記実施形態の説明は、本発明を説
明するためのものであって、特許請求の範囲に記載の発
明を限定し、或は範囲を減縮するものではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能である。
The above description of the embodiments is for explaining the present invention and does not limit the invention described in the claims or reduce the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, but various modifications can be made within the technical scope described in the claims.

【0025】[0025]

【実施例】以下、実施例および比較例により本発明の内
容をさらに具体的に説明するが、本発明の主旨を逸脱し
ない限り本発明はこれらの実施例に何ら限定されるもの
ではない。 (実施例1) (電解質材料を含むゾルの作製) ケイ酸エチルSi(OC254 +リン酸トリメチ
ルPO(OCH33 +水+エタノールC25 OH+
塩酸HClをモル比1:0.04:1:1:0.002
7の割合で混合(加水分解)した。 この溶液に水+エタノールC25 OH+塩酸HCl
を、のケイ酸エチル1モルに対してモル比4:1:
0.011の割合で混合し、さらに1時間以上攪拌し加
水分解、重縮合反応を進行させ粘度を高めた電解質材料
を含むゾルを作製した。
EXAMPLES The contents of the present invention will be described more specifically below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples without departing from the gist of the present invention. (Example 1) (electrolyte material for manufacturing a sol containing) ethyl silicate Si (OC 2 H 5) 4 + trimethyl phosphate PO (OCH 3) 3 + water + ethanol C 2 H 5 OH +
HCl with a molar ratio of 1: 0.04: 1: 1: 0.002
Mixed (hydrolyzed) at a ratio of 7. Water + ethanol C 2 H 5 OH + hydrochloric acid HCl
In a molar ratio of 4: 1 to 1 mol of ethyl silicate.
The mixture was mixed at a ratio of 0.011 and further stirred for 1 hour or more to proceed with hydrolysis and polycondensation reaction to prepare a sol containing an electrolyte material having an increased viscosity.

【0026】(ガス拡散層の作製)カーボンペーパーに
テトラフルオロエチレン−ヘキサフルオロプロピレン共
重合体(FEP)を16質量%含浸後、380℃で1時
間熱処理した。このカーボンペーパーの両面からカーボ
ン粉末とPTFE粉末を質量比60:40で混合したス
ラリーを塗りこみ、カーボンペーパー中に充填した。そ
の後、380℃で2時間熱処理した。
(Preparation of Gas Diffusion Layer) Carbon paper was impregnated with 16% by mass of tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and then heat-treated at 380 ° C. for 1 hour. A slurry in which carbon powder and PTFE powder were mixed at a mass ratio of 60:40 was applied from both sides of this carbon paper and filled into the carbon paper. Then, it heat-processed at 380 degreeC for 2 hours.

【0027】(触媒層シートの作製)白金担持カーボン
粉末とPTFE粉末(質量比70:30)との混合物を
厚み40μmにシート成形したもの、および厚み80μ
mにシート成形したものを作製した。なお、単位面積当
たりの白金量は、厚み40μmの触媒層シートの場合
0.6mg/cm2 、厚み80μmの触媒層シートの場
合1.2mg/cm2 であった。 (中間層前駆体シートの作製)カーボン粉末とPTFE
粉末(質量比70:30)との混合物を厚み40μmに
シート成形したものを作製した。これを中間層前駆体と
した。
(Preparation of catalyst layer sheet) A mixture of platinum-supporting carbon powder and PTFE powder (mass ratio 70:30) was formed into a sheet having a thickness of 40 μm, and a thickness of 80 μm.
A sheet molded into m was prepared. Incidentally, the amount of platinum per unit area, when the thickness 40μm of the catalyst layer sheet 0.6 mg / cm 2, when the thickness 80μm of the catalyst layer sheet was 1.2 mg / cm 2. (Preparation of intermediate layer precursor sheet) Carbon powder and PTFE
A mixture with powder (mass ratio 70:30) was formed into a sheet having a thickness of 40 μm to prepare a sheet. This was used as the intermediate layer precursor.

【0028】(本発明の燃料電池セルユニットAの作
製)ガス拡散層、厚み40μmの触媒層シート、中間層
前駆体シートをこの順に重ね、150℃、20kgf/
cm2 で30秒間ホットプレスにより接合した。このよ
うに作製したもの2枚(燃料極側と空気極側)を中間層
前駆体シート側を対向させた間に、電解質材料を含む前
記ゾルを挟んだ状態で、大気中でゾル中の溶媒を自然乾
燥させて重縮合反応によりゲル化を進行させて接合し、
図1に断面を模式的に示す本発明の燃料電池セルユニッ
トAを作製した。中間層前駆体シート中には電解質材料
が侵入して中間層が形成されたが、触媒層シート中には
電解質材料があまり侵入しなかったので中間層の気孔率
は、触媒層の気孔率より小さかった。このようにして形
成された電解質層の厚みは100μmであった。
(Preparation of Fuel Cell Unit A of the Present Invention) A gas diffusion layer, a catalyst layer sheet having a thickness of 40 μm, and an intermediate layer precursor sheet are stacked in this order, and the temperature is 150 ° C. and 20 kgf /
Bonding was performed by hot pressing at 30 cm 2 for 30 seconds. The solvent in the sol was placed in the atmosphere in the state where the sol containing the electrolyte material was sandwiched between the two sheets (fuel electrode side and air electrode side) thus prepared with the intermediate layer precursor sheet side facing each other. Air-drying, polycondensation reaction progresses gelation and bonding,
A fuel cell unit A of the present invention whose cross section is schematically shown in FIG. 1 was produced. The electrolyte material penetrated into the intermediate layer precursor sheet to form the intermediate layer, but the electrolyte material did not penetrate much into the catalyst layer sheet, so that the porosity of the intermediate layer was higher than that of the catalyst layer. It was small. The thickness of the electrolyte layer thus formed was 100 μm.

【0029】(比較例1)ガス拡散層、厚み40μmの
触媒層シートをこの順に重ね、150℃、20kgf/
cm2 で30秒間ホットプレスにより接合した。このよ
うに作製したもの2枚(燃料極側と空気極側)を触媒層
シート側を対向させた間に、電解質材料を含む前記ゾル
を挟んだ状態で、大気中でゾル中の溶媒を自然乾燥させ
て重縮合反応によりゲル化を進行させて接合し、図4に
断面を模式的に示す比較の燃料電池セルユニットXを作
製した。触媒層シート厚さのほぼ全体に電解質材料が侵
入した。このようにして形成された電解質層の厚みは1
00μmであった。
(Comparative Example 1) A gas diffusion layer and a catalyst layer sheet having a thickness of 40 μm were stacked in this order, and the temperature was 150 ° C. and 20 kgf /
Bonding was performed by hot pressing at 30 cm 2 for 30 seconds. With the sol containing the electrolyte material sandwiched between the two sheets (fuel electrode side and air electrode side) thus prepared, the catalyst layer sheet side facing each other, the solvent in the sol was naturally dissolved in the atmosphere. A fuel cell unit X for comparison having a cross section schematically shown in FIG. 4 was manufactured by drying and advancing gelation by a polycondensation reaction. The electrolyte material penetrated almost the entire thickness of the catalyst layer sheet. The thickness of the electrolyte layer thus formed is 1
It was 00 μm.

【0030】(比較例2)厚み80μmの触媒層シート
を用いた以外は比較例1と同様にして、図4に断面を模
式的に示す比較の燃料電池セルユニットYを作製した。
触媒層シート厚さのほぼ半分に電解質材料が侵入した。
このようにして形成された電解質層の厚みは100μm
であった。
Comparative Example 2 A comparative fuel cell unit Y whose cross section is schematically shown in FIG. 4 was prepared in the same manner as in Comparative Example 1 except that a catalyst layer sheet having a thickness of 80 μm was used.
The electrolyte material penetrated almost half of the thickness of the catalyst layer sheet.
The thickness of the electrolyte layer thus formed is 100 μm
Met.

【0031】(セル特性試験)作動温度120℃、水素
(無加湿)を燃料とし、空気(無加湿)を酸化剤ガスと
して用い、電極面積25cm2 の本発明の燃料電池セル
ユニットAおよび比較の燃料電池セルユニットXおよび
Yのセル電圧−電流特性を試験した結果を図3に示す。
(Cell characteristic test) Operating temperature of 120 ° C., hydrogen (non-humidified) as a fuel, air (non-humidified) as an oxidant gas, and a fuel cell unit A of the present invention having an electrode area of 25 cm 2 and a comparative example. The results of testing the cell voltage-current characteristics of the fuel cell units X and Y are shown in FIG.

【0032】図3から、本発明の燃料電池セルユニット
Aは比較の燃料電池セルユニットXより高い発電特性を
示すことが判る。比較の燃料電池セルユニットXの発電
特性が低いのは、触媒層に電解質材料が侵入し、触媒層
内の気孔が電解質材料により埋められ、電極反応サイト
が減少したことによる。一方、比較の燃料電池セルユニ
ットYは本発明の燃料電池セルユニットAに近い発電特
性を示すが、これは比較の燃料電池セルユニットYは厚
み80μmの触媒層シートを用いたため、白金触媒量が
多いためであり、高コストになるので実用性がないもの
である。
From FIG. 3, it can be seen that the fuel cell unit A of the present invention exhibits higher power generation characteristics than the comparative fuel cell unit X. The power generation characteristics of the comparative fuel cell unit X are low because the electrolyte material invades the catalyst layer, the pores in the catalyst layer are filled with the electrolyte material, and the electrode reaction sites are reduced. On the other hand, the comparative fuel cell unit Y exhibits power generation characteristics close to those of the fuel cell unit A of the present invention. This is because the comparative fuel cell unit Y uses a catalyst layer sheet with a thickness of 80 μm, This is because there are many, and the cost is high, so that it is not practical.

【0033】[0033]

【発明の効果】本発明の請求項1記載の燃料電池セルユ
ニットは、電解質層の主面両側に、それぞれ触媒層とガ
ス拡散層をこの順に配したセル構造を有する燃料電池セ
ルユニットにおいて、前記電解質層はプロトン伝導性ゲ
ルからなり、前記電解質層と触媒層との間に、少なくと
もカーボン粒子と電解質材料とを含む中間層が形成され
ており、前記中間層の気孔率は、前記触媒層の気孔率よ
り小さいので、ゾルゲル法によりプロトン伝導性ゲルか
らなる電解質層を作成しても、触媒層内の気孔が電解質
材料により埋められることがなく、触媒層へ反応ガスが
充分に供給されて白金触媒の利用率が高まり、高い電池
性能が得られるという顕著な効果を奏する上、高い電池
性能が得られるので白金触媒量を低減できる効果があ
り、かつ中間層内のカーボン粒子が触媒層と電解質層と
の密着性を高める働きをするため触媒層と電解質層との
密着性が良好に維持されるので、例え外部から応力がか
かっても触媒層と電解質層とのミクロな接触点の破壊が
防止され高い電池性能が維持できるという顕著な効果を
奏する。
The fuel cell unit according to claim 1 of the present invention is a fuel cell unit having a cell structure in which a catalyst layer and a gas diffusion layer are arranged in this order on both sides of the main surface of an electrolyte layer. The electrolyte layer is made of a proton conductive gel, an intermediate layer containing at least carbon particles and an electrolyte material is formed between the electrolyte layer and the catalyst layer, and the porosity of the intermediate layer is equal to that of the catalyst layer. Since the porosity is smaller than the porosity, even if an electrolyte layer made of a proton-conductive gel is prepared by the sol-gel method, the pores in the catalyst layer are not filled with the electrolyte material, and the reaction gas is sufficiently supplied to the catalyst layer and the platinum In addition to the remarkable effect that the utilization rate of the catalyst is increased and high battery performance is obtained, since high battery performance is obtained, the platinum catalyst amount can be reduced, and Since the carbon particles function to enhance the adhesion between the catalyst layer and the electrolyte layer, the adhesion between the catalyst layer and the electrolyte layer is maintained well, so that even if external stress is applied, the catalyst layer and the electrolyte layer The remarkable effect that the destruction of micro contact points is prevented and high battery performance can be maintained.

【0034】本発明の請求項2記載の燃料電池セルユニ
ットは、請求項1記載の燃料電池セルユニットにおい
て、前記プロトン伝導性ゲルは、SiO2 、Al2
3 、TiO2 、V25 、ZrO2 の中から選ばれた材
料とリン酸、過塩素酸、ホウ酸、ケイ酸の中から選ばれ
た材料とを含んでなるので、請求項1記載の燃料電池セ
ルユニットと同じ効果を奏する上、プロトン伝導性によ
り優れるというさらなる顕著な効果を奏する。
The fuel cell unit according to claim 2 of the present invention is the fuel cell unit according to claim 1, wherein the proton conductive gel is SiO 2 , Al 2 O.
3. A material selected from the group consisting of 3 , TiO 2 , V 2 O 5 and ZrO 2 and a material selected from phosphoric acid, perchloric acid, boric acid and silicic acid. In addition to the same effect as that of the fuel cell unit of No. 3, it has a further remarkable effect of being superior in proton conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃料電池セルユニットの断面を模式的
に説明する説明図である。
FIG. 1 is an explanatory diagram schematically illustrating a cross section of a fuel cell unit of the present invention.

【図2】図1に示した燃料電池セルユニットを用いて組
み立てた燃料電池セルユニット積層体の組立説明図であ
る。
FIG. 2 is an assembly explanatory diagram of a fuel cell unit laminated body assembled using the fuel cell unit shown in FIG.

【図3】セル電圧−電流特性を示すグラフである。FIG. 3 is a graph showing cell voltage-current characteristics.

【図4】従来の燃料電池セルユニットの断面を模式的に
説明する説明図である。
FIG. 4 is an explanatory diagram schematically illustrating a cross section of a conventional fuel cell unit.

【符号の説明】[Explanation of symbols]

1、20 燃料電池セルユニット 2、21 電解質層 4、6、23、25 ガス拡散層 3、22 燃料極触媒層 5、24 空気極触媒層 7 カーボン粒子 8 電解質材料 9 中間層 1, 20 Fuel cell unit 2,21 Electrolyte layer 4, 6, 23, 25 Gas diffusion layer 3.22 Fuel electrode catalyst layer 5, 24 Air electrode catalyst layer 7 carbon particles 8 Electrolyte material 9 Middle class

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 泰夫 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H018 AA06 AS01 BB01 BB06 BB08 BB09 BB12 BB16 CC06 DD06 EE03 EE11 EE12 EE17 EE19 HH04 5H026 AA06 EE05 EE12 HH04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuo Miyake             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5H018 AA06 AS01 BB01 BB06 BB08                       BB09 BB12 BB16 CC06 DD06                       EE03 EE11 EE12 EE17 EE19                       HH04                 5H026 AA06 EE05 EE12 HH04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解質層の主面両側に、それぞれ触媒層
とガス拡散層をこの順に配したセル構造を有する燃料電
池セルユニットにおいて、前記電解質層はプロトン伝導
性ゲルからなり、前記電解質層と触媒層との間に、少な
くともカーボン粒子と電解質材料とを含む中間層が形成
されており、前記中間層の気孔率は、前記触媒層の気孔
率より小さいことを特徴とする燃料電池セルユニット。
1. A fuel cell unit having a cell structure in which a catalyst layer and a gas diffusion layer are arranged in this order on both sides of a main surface of an electrolyte layer, wherein the electrolyte layer is made of a proton conductive gel, An intermediate layer including at least carbon particles and an electrolyte material is formed between the catalyst layer and the catalyst layer, and the porosity of the intermediate layer is smaller than that of the catalyst layer.
【請求項2】 前記プロトン伝導性ゲルは、SiO2
Al23 、TiO 2 、V25 、ZrO2 の中から選
ばれた材料とリン酸、過塩素酸、ホウ酸、ケイ酸の中か
ら選ばれた材料とを含んでなることを特徴とする請求項
1記載の燃料電池セルユニット。
2. The proton conductive gel is SiO2 ,
Al2 O3 , TiO 2 , V2 OFive , ZrO2 Select from
Whether the material is exposed to phosphoric acid, perchloric acid, boric acid or silicic acid
A material selected from the group consisting of:
1. The fuel cell unit according to 1.
JP2001346031A 2001-11-12 2001-11-12 Fuel-cell cell unit Pending JP2003151577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346031A JP2003151577A (en) 2001-11-12 2001-11-12 Fuel-cell cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346031A JP2003151577A (en) 2001-11-12 2001-11-12 Fuel-cell cell unit

Publications (1)

Publication Number Publication Date
JP2003151577A true JP2003151577A (en) 2003-05-23

Family

ID=19159269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346031A Pending JP2003151577A (en) 2001-11-12 2001-11-12 Fuel-cell cell unit

Country Status (1)

Country Link
JP (1) JP2003151577A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069738A1 (en) * 2003-02-06 2004-08-19 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
JP2005332672A (en) * 2004-05-19 2005-12-02 Aisin Seiki Co Ltd Membrane electrode assembly and polymer electrolyte fuel cell
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
CN110492109A (en) * 2019-07-30 2019-11-22 同济大学 A kind of fuel battery gas diffusion layer that wide cut humidity is adaptive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004069738A1 (en) * 2003-02-06 2004-08-19 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
US7803328B2 (en) 2003-02-06 2010-09-28 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
US8123825B2 (en) 2003-02-06 2012-02-28 Dai Nippon Printing Co., Ltd. Microreactor and production method thereof
JP2005332672A (en) * 2004-05-19 2005-12-02 Aisin Seiki Co Ltd Membrane electrode assembly and polymer electrolyte fuel cell
JP2010192350A (en) * 2009-02-20 2010-09-02 Japan Vilene Co Ltd Gas diffusion layer, membrane-electrode assembly, and fuel cell
CN110492109A (en) * 2019-07-30 2019-11-22 同济大学 A kind of fuel battery gas diffusion layer that wide cut humidity is adaptive

Similar Documents

Publication Publication Date Title
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
JP4044026B2 (en) Fuel cell
CN103000917B (en) Hydrocarbon composite electrolyte membrane for fuel cell
JP3459615B2 (en) Electrode for fuel cell and fuel cell
US20020197524A1 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP3813419B2 (en) Fuel cell
JP6573242B2 (en) Polymer electrolyte membrane, membrane electrode assembly including the same, and fuel cell including the membrane electrode assembly
JP4566995B2 (en) Apparatus comprising a membrane electrode assembly and method for preparing the apparatus
JP4349826B2 (en) Fuel cell and fuel cell
KR20020064305A (en) Fuel Cell Unit and Its Manufacturing Method
JP2002313371A (en) Cell unit of fuel cell
JP2006294603A (en) Direct type fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2003151577A (en) Fuel-cell cell unit
JP4129366B2 (en) Proton conductor manufacturing method and fuel cell manufacturing method
JP2002075406A (en) Fuel battery cell unit and manufacturing method
JP2003178770A (en) Film-electrode junction, its manufacturing method, and polymer electrolyte type or direct methanol type fuel cell using the same
WO2003043029A1 (en) Electrolyte film and fuel cell
JP2005026207A (en) Electrode for solid polymer type fuel cell, and its manufacturing method
CN100334767C (en) Liquid fuel supply type of fuel cell
JP2003178773A (en) Fuel-cell unit
JP3495668B2 (en) Fuel cell manufacturing method
JP2001338656A (en) Fuel cell
JP2009032414A (en) Electrolyte membrane and electrolyte membrane-catalyst layer assembly for solid polymer fuel cell, fuel cell using the same electrolyte membrane-catalyst layer assembly, and laminated body for forming electrode catalyst layer of solid polymer fuel cell
JP2004207082A (en) Fuel cell and separator for fuel cell