JP2003021249A - Fluid control valve - Google Patents
Fluid control valveInfo
- Publication number
- JP2003021249A JP2003021249A JP2001206054A JP2001206054A JP2003021249A JP 2003021249 A JP2003021249 A JP 2003021249A JP 2001206054 A JP2001206054 A JP 2001206054A JP 2001206054 A JP2001206054 A JP 2001206054A JP 2003021249 A JP2003021249 A JP 2003021249A
- Authority
- JP
- Japan
- Prior art keywords
- fluid control
- control valve
- floating element
- pressure
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lift Valve (AREA)
- Safety Valves (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Magnetically Actuated Valves (AREA)
- Pipeline Systems (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、液体や気体など
の流体の流れを制御する装置に関し、特に、上流側の圧
力が下流側の圧力に対して陽圧である場合において、液
流を上流側の圧力を利用して遮断する流体制御装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the flow of a fluid such as liquid or gas, and particularly when the pressure on the upstream side is positive with respect to the pressure on the downstream side. The present invention relates to a fluid control device that shuts off by using side pressure.
【0002】[0002]
【従来の技術】現在、シリコンウエハの一部を薄くし
た、いわゆるダイアフラム構造として、このダイアフラ
ムに圧電素子などの駆動素子を貼り付け、ユニモルフと
してダイアフラムを変形させることにより、流路の一部
に容量変化を起こして、流体を送流する送流装置が提案
されている。2. Description of the Related Art At present, a so-called diaphragm structure in which a part of a silicon wafer is thinned, a driving element such as a piezoelectric element is attached to this diaphragm, and the diaphragm is deformed as a unimorph to form a capacitance in a part of a channel. There has been proposed a flow sending device that sends a fluid by causing a change.
【0003】このような送液装置では、方向性のない流
体の形状変化を一方向に送流するために、図6に示すよ
うに、流路の一部に逆止弁を設けるのが普通であった。
この逆止弁は、下流側の圧力が上流側の圧力より大きく
なり、流体の逆流が起きたとき、その圧力差で閉まるも
のである。In such a liquid feeding device, a check valve is usually provided in a part of a flow passage as shown in FIG. 6 in order to feed a non-directional change in the shape of a fluid in one direction. Met.
This check valve closes due to the pressure difference when the pressure on the downstream side becomes larger than the pressure on the upstream side and a reverse flow of fluid occurs.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記送液装置
においては、逆止弁は逆流を防ぐための受動弁であるの
で、上流側の圧力が下流側の圧力に比べて大きいと常時
開放された状態となり、バルブとして機能しないという
問題点を有している。また、この問題点を解決するため
に、ノーマリークロズタイプのバルブが考案された(文
献 Masayoshi Esashi, Shuichi Shoji and Akira Naka
no, “NORMALLY CLOSEVALVE AND MICROPUMP FABRICATED
ON A SILOCON WAFER”; Proceedings of the IEEE Mi
cro Electro Mechanical Systems Workshop (MEMS’8
9), pp29-34 (1989))。このバルブは、バネ要素によっ
て上流側の圧力に抗し、流れを止めようとするものであ
るが、上流側の圧力とバルブのバネの抗力とポンプの送
流力の力関係で、送流がなされるか否かが決まる。すな
わち、上流側と下流側の圧力差をPd、ポンプの送流力
をPp、バルブのバネ力をPvとすると、送流がなされ
る条件は、これら3つの力の関係が、式(1)のように
なった場合であり、式(2)の状態では、送流は起こら
ず、バルブは閉められた状態となる。However, in the above liquid sending apparatus, since the check valve is a passive valve for preventing backflow, it is always opened when the pressure on the upstream side is higher than the pressure on the downstream side. However, it has a problem that it does not function as a valve. In order to solve this problem, a normally closed valve was devised (Reference Masayoshi Esashi, Shuichi Shoji and Akira Naka).
no, “NORMALLY CLOSEVALVE AND MICROPUMP FABRICATED
ON A SILOCON WAFER ”; Proceedings of the IEEE Mi
cro Electro Mechanical Systems Workshop (MEMS'8
9), pp29-34 (1989)). This valve tries to stop the flow against the pressure on the upstream side by a spring element, but due to the force relationship between the pressure on the upstream side, the drag force of the valve spring, and the pumping force of the pump, Whether it is done or not is decided. That is, when the pressure difference between the upstream side and the downstream side is Pd, the flow force of the pump is Pp, and the spring force of the valve is Pv, the condition for the flow is that the relationship between these three forces is expressed by equation (1). In the state of Expression (2), the flow does not occur and the valve is in the closed state.
【0005】
Pd +Pp > Pv ・・(1)
Pd +Pp < Pv ・・(2)
これら3つの力のうち、ポンプの稼働すなわち、Ppの
値を変化させることにより式(1)、(2)の状態を意
図的に作り出し、送流を行うというのが基本的な制御方
法である。ただし、Pdは、タンクなどに一定の圧力を
かけておく機構を設けておかないと、送流に伴い変化す
るので、意図に反して、送流を止めきれなかったり、逆
に、バネ要素が強すぎるとポンピングの力によるバルブ
の解放ができなくなったりするという問題を有してい
る。なお、確実に送流を止める方法としては、バルブ部
分のアクチュエータを常時稼働させる方法があるが、低
消費電力化が重要な要素である小型で持ち歩き可能案な
送流機構においては、その機構を利用できない。Pd + Pp> Pv ·· (1) Pd + Pp <Pv ·· (2) Of these three forces, the operation of the pump, that is, by changing the value of Pp, equations (1) and (2) The basic control method is to intentionally create a state and send the flow. However, unless Pd is provided with a mechanism for applying a certain pressure to a tank or the like, it changes with the flow of the air. If it is too strong, there is a problem that the valve cannot be released due to the force of pumping. There is a method of always operating the actuator of the valve part as a method of surely stopping the flow, but in the case of a compact and portable flow mechanism where low power consumption is an important factor, that mechanism should be used. Not available.
【0006】この発明は、上記問題を解決するためにな
されたものであって、上流側の圧力が下流側の圧力に比
べて大きい場合、しかもその圧力差が変化する場合にも
その圧力差を利用してポンプの停止時には確実に送流を
止め、ポンプを駆動させたときには、確実にバルブを解
放できる流体制御弁を得ることを目的とする。The present invention has been made in order to solve the above problems, and when the pressure on the upstream side is larger than the pressure on the downstream side, and when the pressure difference changes, the pressure difference is also reduced. An object of the present invention is to obtain a fluid control valve that can reliably stop the flow of water when the pump is stopped and can reliably open the valve when the pump is driven.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明に関わる流体制御弁は、バルブとして流路
の途中に穴のあいた遮断壁と浮遊子を配置し、上流側の
圧力でバルブを閉める機構を備えたものである。さら
に、圧力を効率よく受けながらバルブとしての密閉性を
よくし、しかも、バルブを開けやすくするという効果を
生じさせるために、浮遊子の形状は、上流側の面積が小
さい円錐状とし、円錐の底面の外周部分に薄膜を備えた
ものである。また、浮遊子がバルブ部から離れないよう
に、遮断壁の下流側に流路穴より大きなストッパーを配
置し流路穴を通した連結棒で浮遊子と連結されている構
造としている。この場合、ストッパーの遮断壁側には、
ストッパーが遮断壁に強く密着しても、送流を妨げない
ように、切り欠きが設けられている。なお、浮遊子が流
路穴離脱しないようにする別の手段として、円錐の側面
が接触することで動きを制限する浮遊し止めを備えると
いう方法もある。In order to achieve the above-mentioned object, a fluid control valve according to the present invention has a shutoff wall with a hole and a floating element disposed in the middle of a flow passage as a valve, and the pressure on the upstream side is It is equipped with a mechanism to close the valve. Further, in order to improve the airtightness of the valve while efficiently receiving pressure and to make it easier to open the valve, the shape of the floating element is a conical shape with a small upstream area. A thin film is provided on the outer peripheral portion of the bottom surface. Further, in order to prevent the floating element from separating from the valve portion, a stopper larger than the flow path hole is arranged on the downstream side of the blocking wall, and is connected to the floating element by a connecting rod that passes through the flow path hole. In this case, on the blocking wall side of the stopper,
Notches are provided so that the stopper does not interfere with the flow even if it comes into close contact with the blocking wall. As another means for preventing the floating element from separating from the flow path hole, there is also a method of providing a floating stopper for restricting the movement by the contact of the side surface of the cone.
【0008】[0008]
【発明の実施の形態】以下、本発明に関わる流体制御弁
の構造、製造方法、および駆動方法の実施の形態を図面
に基づいて詳細に説明する。なお、この実施の形態によ
りこの発明が限定されるものではない。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a structure, a manufacturing method and a driving method of a fluid control valve according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
【0009】(実施の形態1)図1は、この発明の第1
の実施例に関わる流体制御弁の浮遊子を示す斜視図であ
る。また、図2は、本発明の流体制御弁の断面図であ
る。さらに、図3は、本発明の浮遊子の動作状態を示す
図である。(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
FIG. 6 is a perspective view showing a floating element of the fluid control valve according to the embodiment of FIG. 2 is a sectional view of the fluid control valve of the present invention. Further, FIG. 3 is a diagram showing an operating state of the floating element of the present invention.
【0010】浮遊子101は、主柱部102と薄膜傘部
2と連結棒105とストッパー106で構成されてい
る。ここで、浮遊子は、遮断壁2にあけられた流路穴3
に通した連結棒105によって、主柱部102とストッ
パー106で遮断壁2をはさみこむ状態で設置されてい
る。The floating element 101 comprises a main pillar portion 102, a thin film umbrella portion 2, a connecting rod 105 and a stopper 106. Here, the floating element is the flow path hole 3 formed in the blocking wall 2.
The main pole 102 and the stopper 106 sandwich the blocking wall 2 by means of the connecting rod 105 that is passed through.
【0011】流体制御弁は、浮遊子101とダイアフラ
ム4とアクチュエータ5と遮断壁2とポート6で構成さ
れる。浮遊子に対して上流側の圧力が高い時には、図3
(a)に示すように、圧力が浮遊子にかかり、遮断壁に
主柱部底部103と薄膜傘部104を押しつける形とな
り、バルブが閉まった状態となる。この場合、上流側の
圧力が高くなればなるほど浮遊子を押しつける力は強く
なり、耐背圧性はきわめて高くできる。また、アクチュ
エータを作動させ連結棒105を押し上げると、図3
(b)に示すように、薄膜傘部104と主柱部底部10
3が遮断壁からはなれ、流路が開放となり、すなわち、
バルブが開いた状態となる。ここで、アクチュエータが
連結棒したがって浮遊子を上流側に押し上げるのである
が、浮遊子の主柱部が円錐状になっているため、上流側
の圧力の影響が緩和される。また、薄膜傘部2は片持ち
梁構造をしているため。浮遊子が押し上げられると下方
にたわみ、上流側の圧力の影響が緩和される。この二つ
の効果によって、アクチュエータが浮遊子を上流側に押
し上げる力は、小さくてすむようになる。The fluid control valve comprises a floating element 101, a diaphragm 4, an actuator 5, a blocking wall 2 and a port 6. When the pressure on the upstream side of the floating element is high,
As shown in (a), the pressure is applied to the floating element to push the main column bottom 103 and the thin film umbrella 104 against the blocking wall, and the valve is closed. In this case, the higher the pressure on the upstream side, the stronger the force for pressing the floating element, and the extremely high back pressure resistance can be achieved. Further, when the actuator is operated to push up the connecting rod 105, FIG.
As shown in (b), the thin film umbrella portion 104 and the main pillar bottom portion 10
3 breaks away from the barrier and the flow path is open, ie
The valve is open. Here, the actuator pushes up the connecting rod and thus the floating element to the upstream side, but since the main column portion of the floating element has a conical shape, the influence of the pressure on the upstream side is alleviated. Also, the thin film umbrella portion 2 has a cantilever structure. When the floating element is pushed up, it bends downward and the influence of the upstream pressure is mitigated. Due to these two effects, the force for the actuator to push the floating element to the upstream side is small.
【0012】次に、アクチュエータの作動を止めると、
浮遊子は上流側の圧力と送流により、再び遮断壁に押し
つけられバルブが閉じられた状態となる。Next, when the operation of the actuator is stopped,
The floating element is pressed against the blocking wall again by the pressure and the flow on the upstream side, and the valve is closed.
【0013】(実施の形態2)図3(a)に示したの
は、浮遊子が押し上げられバルブが押しつけられた状態
であるが、上流側の圧力が大きく降下して、アクチュエ
ータの力が相対的に大きくなると、浮遊子がさらに押し
上げられ、ストッパー106が遮断壁に押しつけられる
ため、バルブが閉じた状態となってしまうこともある。
そこで、ストッパーが遮断壁に押しつけられた場合に、
流路を確保する切り欠き溝7をストッパー106に設け
た。図4に、ストッパーの斜視図を示す。ここで、スト
ッパーの形状はこれに限られるものではなく、遮断壁に
ストッパーが押しつけられたときに、流路を確保できる
ような形状ならばよい。(Embodiment 2) FIG. 3 (a) shows a state in which the floating element is pushed up and the valve is pressed, but the pressure on the upstream side largely drops and the force of the actuator is relatively increased. If it becomes larger, the floating element is further pushed up and the stopper 106 is pressed against the blocking wall, so that the valve may be closed.
Therefore, when the stopper is pressed against the blocking wall,
The stopper 106 is provided with the cutout groove 7 for ensuring the flow passage. FIG. 4 shows a perspective view of the stopper. Here, the shape of the stopper is not limited to this, and may be any shape that can secure the flow path when the stopper is pressed against the blocking wall.
【0014】(実施の形態3)図5に示すのは、この発
明の第3の実施例に関わる流体制御弁の構造を示す断面
図である。組み付けのしやすさを考慮して浮遊子にスト
ッパー106をつけない場合、バルブ開閉の際に浮遊子
の連結棒105が流路穴より抜け出してしまうことがあ
る。そこで、浮遊子101の流路穴3からの脱落を防止
するために、浮遊子の上流側の管内壁に浮遊子止め8を
設けた。今回の浮遊子止めの形状は図5に示すようにポ
ート6の内径と同じ径の外径を持つ管を差し込んで形成
したが、ポート内部の所定の位置にフィルターを詰める
ことでも浮遊子止めとすることもできる。また、浮遊し
止め8に電磁石を用い、浮遊子素材として永久磁石とす
ることで、電磁石の力により浮遊子を動かして、バルブ
を解放することも可能で、この場合は、下流側のアクチ
ュエータを省略することができる。(Third Embodiment) FIG. 5 is a sectional view showing the structure of a fluid control valve according to a third embodiment of the present invention. If the stopper 106 is not attached to the float in consideration of the ease of assembly, the connecting rod 105 of the float may come out of the flow path hole when the valve is opened and closed. Therefore, in order to prevent the float 101 from falling out of the flow path hole 3, the float stopper 8 is provided on the inner wall of the tube on the upstream side of the float. The shape of the stray stop was made by inserting a tube with the same outer diameter as the inner diameter of the port 6 as shown in Fig. 5, but it can also be stopped by packing a filter at a predetermined position inside the port. You can also do it. Further, by using an electromagnet for the floating stopper 8 and using a permanent magnet as a material of the floating element, it is possible to move the floating element by the force of the electromagnet and release the valve. In this case, the actuator on the downstream side is moved. It can be omitted.
【0015】[0015]
【発明の効果】以上説明したように本発明によれば、上
流側の圧力が下流側の圧力よりも高い送流機構におい
て、遮断壁の流路穴の上流側に浮遊子を設け、上流側の
圧力で流体をせき止める形態としたので、上流側の圧力
が変化してももれることなく流体を制御することができ
る。また、浮遊子の種中部は円錐形としたので、アクチ
ュエータは僅かな力で浮遊子を押し上げることができ
る。As described above, according to the present invention, in the flow sending mechanism in which the pressure on the upstream side is higher than the pressure on the downstream side, the floating element is provided on the upstream side of the flow passage hole of the blocking wall, and the upstream side is provided. Since the fluid is dammed by the pressure of 1, the fluid can be controlled without leakage even if the pressure on the upstream side changes. Further, since the seed core of the float has a conical shape, the actuator can push up the float with a slight force.
【図1】本発明の流体制御弁浮遊子の斜視図FIG. 1 is a perspective view of a fluid control valve floating element according to the present invention.
【図2】本発明の流体制御弁の断面図FIG. 2 is a sectional view of a fluid control valve of the present invention.
【図3】本発明の浮遊子の動作状態を示す図FIG. 3 is a diagram showing an operating state of the floating element of the present invention.
【図4】本発明のストッパーの斜視図FIG. 4 is a perspective view of the stopper of the present invention.
【図5】本発明の管内壁にストッパーを形成した場合の
断面図FIG. 5 is a sectional view when a stopper is formed on the inner wall of the pipe of the present invention.
【図6】従来の逆止弁の構造を示す模式図FIG. 6 is a schematic diagram showing the structure of a conventional check valve.
101 浮遊子 102 主柱部 103 主柱部底部 104 薄膜傘部 105 連結棒 106 ストッパー 2 遮断壁 3 流路穴 4 ダイアフラム 5 アクチュエータ 6 ポート 7 切り欠き溝 8 浮遊子止め(ストッパー) 101 floating child 102 Main pillar 103 Main pillar bottom 104 Thin film umbrella 105 connecting rod 106 stopper 2 barrier 3 channel holes 4 diaphragm 5 actuators 6 ports 7 Notch groove 8 Stoppers (stoppers)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 須田 正之 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 3H052 AA01 BA02 BA25 CA01 CA15 DA01 3H060 AA04 BB08 CC04 CC15 CC22 DA01 DA15 DC09 DD02 DD12 DD13 HH02 HH05 3H062 AA02 AA15 BB28 BB30 CC08 EE06 HH02 HH03 3H106 DA03 DC02 DD02 EE23 EE34 EE39 GB06 3J071 AA01 AA11 BB14 CC12 DD36 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masayuki Suda 1-8 Nakase, Nakase, Mihama-ku, Chiba City, Chiba Prefecture Ico Instruments Co., Ltd. F-term (reference) 3H052 AA01 BA02 BA25 CA01 CA15 DA01 3H060 AA04 BB08 CC04 CC15 CC22 DA01 DA15 DC09 DD02 DD12 DD13 HH02 HH05 3H062 AA02 AA15 BB28 BB30 CC08 EE06 HH02 HH03 3H106 DA03 DC02 DD02 EE23 EE34 EE39 GB06 3J071 AA01 AA11 BB14 CC12 DD36
Claims (7)
機構を有する送流装置において、流路の一部を遮る遮断
壁と、遮断壁にあけられた流路穴と上流側からの圧力に
よってこの流路穴を塞ぐ浮遊子と上流側の圧力に抗して
浮遊子を上流側に押し戻す機構を有することを特徴とす
る流体制御弁。1. A flow sending device having a mechanism for sending a fluid such as a liquid or a gas, wherein a blocking wall blocking a part of a flow channel, a flow channel hole formed in the blocking wall, and pressure from an upstream side are used. A fluid control valve having a floating element for closing the flow path hole and a mechanism for pushing the floating element back to the upstream side against the pressure on the upstream side.
たガラスで構成され、前記流路穴に対して下流側にダイ
アフラム型バイモルフを有し、バイモルフを駆動させた
時、前記流路穴を通った浮遊子の一部が、バイモルフに
接触し、浮遊子を押し戻すことを特徴とする請求項1に
記載の流体制御弁。2. The barrier wall is made of glass bonded to a silicon wafer, has a diaphragm type bimorph downstream of the flow passage hole, and passes through the flow passage hole when the bimorph is driven. The fluid control valve according to claim 1, wherein a part of the floating element contacts the bimorph and pushes back the floating element.
柱部の底面より大きな面積を有する薄膜傘部を主柱部底
面に付加した構造を持つことを特徴とする請求項1に記
載の流体制御弁。3. The floating element has a structure in which a conical main pillar portion and a thin film umbrella portion having an area larger than the bottom surface of the main pillar portion are added to the bottom surface of the main pillar portion. The fluid control valve according to.
割されていることを特徴とする請求項1に記載の流体制
御弁。4. The fluid control valve according to claim 1, wherein the thin film umbrella portion of the floating valve is divided into a plurality of parts.
バルブの動きを規制する機構を有することを特徴とする
請求項1に記載の流体制御弁。5. The fluid control valve according to claim 1, further comprising a mechanism for restricting a movement of the floating valve in a flow path upstream of the floating element.
流路穴よりも大きな面積をもち、かつ、ガラスと接触す
る面の一部に切り欠きを有することを特徴とする請求項
1に記載の流体制御弁。6. The method according to claim 1, wherein the contact portion of the floating element with the diaphragm has a larger area than the flow path hole, and has a notch in a part of the surface in contact with the glass. Fluid control valve.
の上流側に設置された電磁石により駆動されることを特
徴とする請求項1に記載の流体制御弁。7. The fluid control valve according to claim 1, wherein the floating element is made of a magnetic material, and is driven by an electromagnet installed on the upstream side of the flow path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206054A JP4790936B2 (en) | 2001-07-06 | 2001-07-06 | Fluid control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206054A JP4790936B2 (en) | 2001-07-06 | 2001-07-06 | Fluid control valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003021249A true JP2003021249A (en) | 2003-01-24 |
JP4790936B2 JP4790936B2 (en) | 2011-10-12 |
Family
ID=19042250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001206054A Expired - Fee Related JP4790936B2 (en) | 2001-07-06 | 2001-07-06 | Fluid control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4790936B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8480057B2 (en) | 2008-06-27 | 2013-07-09 | Murata Manufacturing Co., Ltd. | Microvalve and valve seat member |
WO2022020320A1 (en) * | 2020-07-20 | 2022-01-27 | Norma U.S. Holding Llc | Fluid line quick connector with check valve |
CN114811712A (en) * | 2022-04-12 | 2022-07-29 | 中国航空国际建设投资有限公司 | Magnetic suspension floating valve radiator and temperature control device thereof |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5150424U (en) * | 1974-10-16 | 1976-04-16 | ||
JPS56133963U (en) * | 1980-03-11 | 1981-10-12 | ||
JPS5814552U (en) * | 1981-07-21 | 1983-01-29 | 三菱樹脂株式会社 | float valve |
JPS5835060U (en) * | 1981-08-31 | 1983-03-07 | 石川島播磨重工業株式会社 | Overflow check valve with forced opening mechanism |
JPS59132957U (en) * | 1983-02-25 | 1984-09-06 | 関西電力株式会社 | Excess flow prevention valve |
JPS6199768U (en) * | 1984-12-05 | 1986-06-26 | ||
JPS61142975U (en) * | 1985-02-27 | 1986-09-03 | ||
JPS61161482U (en) * | 1985-03-29 | 1986-10-06 | ||
JPS63111382A (en) * | 1986-10-29 | 1988-05-16 | Hitachi Metals Ltd | Electrostriction drive type normally closed valve |
JPS63187782U (en) * | 1987-05-26 | 1988-12-01 | ||
JPS6435269A (en) * | 1987-06-18 | 1989-02-06 | Gene Trak Systems | Signal amplification for measurement using piezo-electric oscillator |
JPH01105081A (en) * | 1987-10-16 | 1989-04-21 | Hitachi Metals Ltd | Piezoelectric flow control valve |
JPH02125309A (en) * | 1988-11-04 | 1990-05-14 | Ranco Japan Ltd | Pressure control valve |
JPH0284075U (en) * | 1988-12-19 | 1990-06-29 | ||
JPH0339693U (en) * | 1989-08-29 | 1991-04-17 | ||
JPH07158757A (en) * | 1993-12-06 | 1995-06-20 | Nippondenso Co Ltd | Micro-valve |
JPH10299922A (en) * | 1997-04-21 | 1998-11-13 | Akebono Brake Ind Co Ltd | Check valve |
JPH11257231A (en) * | 1998-03-16 | 1999-09-21 | Seiko Instruments Inc | Micro-pump and manufacture thereof |
JPH11311357A (en) * | 1998-04-28 | 1999-11-09 | Dainippon Screen Mfg Co Ltd | Flow rate control device |
WO1999063254A1 (en) * | 1998-06-02 | 1999-12-09 | Mertik Maxitrol Gmbh & Co. Kg | Gas stream monitor |
JP2002310314A (en) * | 2001-04-10 | 2002-10-23 | Hitachi Metals Ltd | Excessive flow-preventing valve |
-
2001
- 2001-07-06 JP JP2001206054A patent/JP4790936B2/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5150424U (en) * | 1974-10-16 | 1976-04-16 | ||
JPS56133963U (en) * | 1980-03-11 | 1981-10-12 | ||
JPS5814552U (en) * | 1981-07-21 | 1983-01-29 | 三菱樹脂株式会社 | float valve |
JPS5835060U (en) * | 1981-08-31 | 1983-03-07 | 石川島播磨重工業株式会社 | Overflow check valve with forced opening mechanism |
JPS59132957U (en) * | 1983-02-25 | 1984-09-06 | 関西電力株式会社 | Excess flow prevention valve |
JPS6199768U (en) * | 1984-12-05 | 1986-06-26 | ||
JPS61142975U (en) * | 1985-02-27 | 1986-09-03 | ||
JPS61161482U (en) * | 1985-03-29 | 1986-10-06 | ||
JPS63111382A (en) * | 1986-10-29 | 1988-05-16 | Hitachi Metals Ltd | Electrostriction drive type normally closed valve |
JPS63187782U (en) * | 1987-05-26 | 1988-12-01 | ||
JPS6435269A (en) * | 1987-06-18 | 1989-02-06 | Gene Trak Systems | Signal amplification for measurement using piezo-electric oscillator |
JPH01105081A (en) * | 1987-10-16 | 1989-04-21 | Hitachi Metals Ltd | Piezoelectric flow control valve |
JPH02125309A (en) * | 1988-11-04 | 1990-05-14 | Ranco Japan Ltd | Pressure control valve |
JPH0284075U (en) * | 1988-12-19 | 1990-06-29 | ||
JPH0339693U (en) * | 1989-08-29 | 1991-04-17 | ||
JPH07158757A (en) * | 1993-12-06 | 1995-06-20 | Nippondenso Co Ltd | Micro-valve |
JPH10299922A (en) * | 1997-04-21 | 1998-11-13 | Akebono Brake Ind Co Ltd | Check valve |
JPH11257231A (en) * | 1998-03-16 | 1999-09-21 | Seiko Instruments Inc | Micro-pump and manufacture thereof |
JPH11311357A (en) * | 1998-04-28 | 1999-11-09 | Dainippon Screen Mfg Co Ltd | Flow rate control device |
WO1999063254A1 (en) * | 1998-06-02 | 1999-12-09 | Mertik Maxitrol Gmbh & Co. Kg | Gas stream monitor |
JP2002310314A (en) * | 2001-04-10 | 2002-10-23 | Hitachi Metals Ltd | Excessive flow-preventing valve |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8480057B2 (en) | 2008-06-27 | 2013-07-09 | Murata Manufacturing Co., Ltd. | Microvalve and valve seat member |
WO2022020320A1 (en) * | 2020-07-20 | 2022-01-27 | Norma U.S. Holding Llc | Fluid line quick connector with check valve |
US11796107B2 (en) | 2020-07-20 | 2023-10-24 | Norma U.S. Holding Llc | Fluid line quick connector with check valve |
CN114811712A (en) * | 2022-04-12 | 2022-07-29 | 中国航空国际建设投资有限公司 | Magnetic suspension floating valve radiator and temperature control device thereof |
CN114811712B (en) * | 2022-04-12 | 2024-07-26 | 中国航空国际建设投资有限公司 | Magnetic suspension floating valve radiator and temperature control device thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4790936B2 (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102066819B (en) | Microvalve and valve seat member | |
US8585013B2 (en) | Magnetic microvalve using metal ball and method of manufacturing the same | |
EP2115336B1 (en) | Solenoid valve having a two piece moving valve element | |
Lai et al. | Design and dynamic characterization of “single-stroke” peristaltic PDMS micropumps | |
US20070251589A1 (en) | Valve mechanism and flow channel substrate | |
JP2019529775A (en) | Microvalve, fluid pump, and method of operating fluid pump | |
US9188244B2 (en) | Microfluidic device, microfluidic system and method for transporting fluids | |
JP2002071044A (en) | Bidirectional pilot type electromagnetic open/ close valve and bidirectional piping | |
JP4417334B2 (en) | valve | |
US20070090314A1 (en) | Micromachined knife gate valve for high-flow pressure regulation applications | |
Luharuka et al. | A bistable electromagnetically actuated rotary gate microvalve | |
CN103453156B (en) | The valve with pilot control of system is kept particularly for fuel vapor | |
JP2003021249A (en) | Fluid control valve | |
JP4740048B2 (en) | One-way valve and door check device | |
JP2011064245A (en) | Gas shutoff valve for fuel cell | |
US7117889B2 (en) | Three-way valve | |
JP2005141734A (en) | Modulator | |
JP2008008347A (en) | Microvalve | |
JP6440153B1 (en) | Pressure detection type check valve | |
Krusemark et al. | Micro ball valve for fluidic micropumps and gases | |
Wroblewski et al. | MEMS micro-valve arrays for fluidic control | |
JP4246088B2 (en) | On-off valve | |
Krusemark et al. | MICRO BALL VALVE FOR FLUIDIC MICROPUMPS | |
JP2010265957A (en) | Pressure regulating valve | |
JP2004069045A (en) | Solenoid valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040303 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110603 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110719 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |