Nothing Special   »   [go: up one dir, main page]

JP2003003897A - Self-ignition type engine - Google Patents

Self-ignition type engine

Info

Publication number
JP2003003897A
JP2003003897A JP2001190739A JP2001190739A JP2003003897A JP 2003003897 A JP2003003897 A JP 2003003897A JP 2001190739 A JP2001190739 A JP 2001190739A JP 2001190739 A JP2001190739 A JP 2001190739A JP 2003003897 A JP2003003897 A JP 2003003897A
Authority
JP
Japan
Prior art keywords
self
fuel
ignition
injection
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001190739A
Other languages
Japanese (ja)
Other versions
JP3975695B2 (en
Inventor
Akihiro Sakakida
明宏 榊田
Yukiyoshi Yamaguchi
幸良 山口
Hiroyuki Komatsu
浩幸 小松
Akihiro Iiyama
明裕 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001190739A priority Critical patent/JP3975695B2/en
Publication of JP2003003897A publication Critical patent/JP2003003897A/en
Application granted granted Critical
Publication of JP3975695B2 publication Critical patent/JP3975695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self-ignition type engine capable of realizing a high temperature field required for activating a fuel with a minimum amount of air and reducing occurrence of fuel loss coming up with fuel activation. SOLUTION: A fuel-air mixture injection valve 8 for injecting the high temperature mixture obtained by mixing a high temperature air and a fuel directly into a combustion chamber 4 and a spark plug 9 disposed approaching the combustion chamber 4, are arranged adjacently to each other. During an intake stroke, the high temperature fuel-air mixture is injected by the injection valve 8, and during the injection period, a supplementary spark ignition is carried out by the spark plug 9, thus activating the fuel. At least one additional injection is performed during a compression stroke according to the load of the engine, and then a self-ignition is performed by the compression action of a piston 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自己着火式エンジ
ン、例えば自動車用の4サイクル型の直噴火花点火圧縮
自己着火式ガソリンエンジンにおいて、圧縮自己着火燃
焼のために、火炎伝播には至らない火花点火により燃料
の一部を活性化(改質)することで、燃料の着火性を改
善し、所望の燃焼時期を得る技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-ignition type engine, for example, a 4-cycle direct injection spark ignition compression self-ignition type gasoline engine for automobiles, which does not lead to flame propagation due to compression self-ignition combustion. The present invention relates to a technique for improving the ignitability of a fuel and obtaining a desired combustion timing by activating (reforming) a part of the fuel by spark ignition.

【0002】[0002]

【従来の技術】圧縮自己着火による燃焼は、燃焼室の多
点で燃焼が開始されるため、通常の火花点火におけるリ
ーン限界よりもリーン側の空燃比で燃焼を行うことがで
きる利点を有する一方、着火時期を決定する燃料の予反
応の進行度合いが圧縮行程中の温度・圧力の変化履歴で
決まるため、適切な着火時期が得られる運転条件が限ら
れるという問題がある。
2. Description of the Related Art Combustion by compression self-ignition has an advantage that combustion can be performed at an air-fuel ratio on the lean side of the lean limit in normal spark ignition, since combustion is started at multiple points in a combustion chamber. However, since the progress of the pre-reaction of the fuel that determines the ignition timing is determined by the temperature / pressure change history during the compression stroke, there is a problem that the operating conditions for obtaining an appropriate ignition timing are limited.

【0003】例えば、比較的負荷の高い運転条件のとき
に圧縮上死点前後で自己着火するように設定したエンジ
ンの場合、負荷が低いときは圧縮上死点までに自己着火
が得られず、圧縮上死点後は燃焼室内の温度・圧力が低
下するので、結果的に燃焼の機会を失って失火すること
になる。このような失火の発生を回避する方法として
は、燃焼室内に供給した燃料を予め活性化しておき、圧
縮行程中の予反応の進行を速めて自己着火の準備が整う
までの時間を短縮することが考えられる。
For example, in the case of an engine which is set to self-ignite around the compression top dead center under operating conditions of relatively high load, when the load is low, self-ignition cannot be obtained by the compression top dead center. After the compression top dead center, the temperature and pressure in the combustion chamber drop, resulting in a loss of combustion opportunity and a misfire. As a method of avoiding such a misfire, the fuel supplied to the combustion chamber should be activated in advance to accelerate the progress of the pre-reaction during the compression stroke and shorten the time until preparation for self-ignition is completed. Can be considered.

【0004】例えば、特開2001−3771号公報に
は、排気弁を早期に閉じることによって前サイクルの既
燃焼ガスを燃焼室内に残留させ、このガスの熱と補助的
に行う火花点火とによって燃焼室内にラジカルを生成す
るようにしている。
For example, in Japanese Unexamined Patent Publication No. 2001-3771, the exhaust valve is closed early so that the burned gas of the previous cycle remains in the combustion chamber, and combustion is performed by the heat of this gas and auxiliary spark ignition. It is designed to generate radicals in the room.

【0005】[0005]

【発明が解決しようとする課題】燃料を改質してアルデ
ヒド等の活性種を生成しようとする場合、ある程度高温
の混合気中で火花点火を行うことが有効である。上記の
従来技術では、この高温を得るために前サイクルの既燃
焼ガスを利用するようにしているが、この場合、冷却損
失の増加による燃費の悪化が懸念される。すなわち、排
気弁を早期に閉じると、ピストンが上死点まで上昇する
間に圧縮仕事が発生する。この仕事は、ピストンが上死
点から下降するときにトルクとして回収されるが、高温
の既燃焼ガスから燃焼室壁を介して冷却水へ伝達されて
しまった熱のエネルギーまで回収することはできない。
燃料改質効果を高めようとして次サイクルへ残留させる
既燃焼ガス量を増やすと、上記の冷却損失も大きくなっ
てしまう。
When reforming a fuel to generate active species such as aldehyde, it is effective to carry out spark ignition in an air-fuel mixture having a relatively high temperature. In the above-mentioned conventional technique, the burned gas in the previous cycle is used to obtain this high temperature, but in this case, there is a concern that fuel consumption may deteriorate due to an increase in cooling loss. That is, when the exhaust valve is closed early, compression work occurs while the piston moves up to the top dead center. This work is recovered as torque when the piston descends from top dead center, but it is not possible to recover the energy of heat that has been transferred from the hot burnt gas to the cooling water through the combustion chamber wall. .
If the amount of burnt gas remaining in the next cycle is increased in order to enhance the fuel reforming effect, the above cooling loss also increases.

【0006】本発明は、かかる課題に鑑みなされたもの
で、燃料活性化のために必要な高温場をできるだけ少量
の空気で実現し、燃料活性化に伴う損失の発生を低減で
きる自己着火式エンジンを提供することを目的とする。
The present invention has been made in view of the above problems, and a self-ignition engine capable of realizing a high temperature field necessary for fuel activation with as little air as possible and reducing loss due to fuel activation. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】このため、請求項1の発
明では、高温の空気と燃料とを混合して得た高温混合気
を燃焼室内に直接噴射する混合気噴射弁と、燃焼室に臨
んで配設される火花点火栓と、を備え、前記混合気噴射
弁による高温混合気の噴射と前記火花点火栓による火花
点火との両方を吸気行程中に実行することを特徴とす
る。
Therefore, according to the invention of claim 1, in the mixture injection valve for directly injecting the high temperature mixture obtained by mixing the high temperature air and the fuel into the combustion chamber, and the combustion chamber. And a spark ignition plug arranged facing the spark ignition plug, both of the injection of the high temperature mixture by the mixture injection valve and the spark ignition by the spark ignition plug are performed during an intake stroke.

【0008】請求項2の発明では、前記混合気噴射弁と
前記火花点火栓とを互いに隣接して配置すると共に、前
記混合気噴射弁による高温混合気の噴射期間中に前記火
花点火栓による火花点火を実行することを特徴とする。
請求項3の発明では、前記混合気噴射弁による吸気行程
中の噴射の他に、エンジン負荷に応じて圧縮行程中に少
なくとも1回の追加の噴射を行うことを特徴とする。
According to a second aspect of the present invention, the mixture injection valve and the spark ignition plug are arranged adjacent to each other, and the spark produced by the spark ignition plug is provided during the injection period of the high temperature mixture produced by the mixture injection valve. It is characterized by performing ignition.
According to the invention of claim 3, in addition to the injection during the intake stroke by the mixture injection valve, at least one additional injection is performed during the compression stroke according to the engine load.

【0009】請求項4の発明では、全噴射量に対する吸
気行程中の噴射量の割合を、エンジン負荷が大きい程小
さくすることを特徴とする。請求項5の発明では、全噴
射量に対する吸気行程中の噴射量の割合を、エンジン回
転速度が大きい程大きくすることを特徴とする。請求項
6の発明では、前記火花点火の時期は、エンジン負荷が
大きい程遅角することを特徴とする。
The invention of claim 4 is characterized in that the ratio of the injection amount during the intake stroke to the total injection amount is made smaller as the engine load is larger. The invention of claim 5 is characterized in that the ratio of the injection amount during the intake stroke to the total injection amount is increased as the engine rotation speed is increased. The invention of claim 6 is characterized in that the timing of the spark ignition is retarded as the engine load increases.

【0010】請求項7の発明では、前記火花点火の時期
は、エンジン回転速度が大きい程進角することを特徴と
する。請求項8の発明では、ノッキング検出手段を備
え、該ノッキング検出手段がノッキングを検出した場合
に、前記吸気行程中の噴射量の割合を減少させることを
特徴とする。
According to a seventh aspect of the present invention, the spark ignition timing is advanced as the engine speed increases. The invention of claim 8 is characterized by comprising knocking detection means, and when the knocking detection means detects knocking, the ratio of the injection amount during the intake stroke is reduced.

【0011】請求項9の発明では、ノッキング検出手段
を備え、該ノッキング検出手段がノッキングを検出した
場合に、前記火花点火の時期を遅角させることを特徴と
する。請求項10の発明では、燃焼安定度検出手段を備
え、該燃焼安定度検出手段が燃焼不安定を検出した場合
に、前記吸気行程中の噴射量の割合を増加させることを
特徴とする。
According to a ninth aspect of the present invention, there is provided knocking detection means, and the spark ignition timing is retarded when the knocking detection means detects knocking. According to a tenth aspect of the present invention, the combustion stability detecting means is provided, and when the combustion stability detecting means detects combustion instability, the ratio of the injection amount during the intake stroke is increased.

【0012】請求項11の発明では、燃焼安定度検出手
段を備え、該燃焼安定度検出手段が燃焼不安定を検出し
た場合に、前記火花点火の時期を進角させることを特徴
とする。
According to an eleventh aspect of the present invention, there is provided combustion stability detecting means, and when the combustion stability detecting means detects combustion instability, the spark ignition timing is advanced.

【0013】[0013]

【発明の効果】請求項1の発明によれば、吸気行程中
に、高温の空気と燃料とを混合して得た高温混合気を燃
焼室内に噴射すると共に、この高温混合気に対し補助的
な火花点火を行うことで、燃料を活性化し、活性化され
た燃料を筒内に十分拡散させることによって、その後の
ピストンの圧縮作用による自己着火燃焼時の着火性を大
幅に改善できる一方、混合気噴射弁内で混合気を形成す
るのに必要な空気だけを高温とすればよいので、燃料活
性化に伴う損失の発生を低減できるという効果が得られ
る。
According to the first aspect of the present invention, during the intake stroke, the high temperature mixture obtained by mixing the high temperature air and the fuel is injected into the combustion chamber, and the high temperature mixture is supplemented to the high temperature mixture. It is possible to significantly improve the ignitability at the time of self-ignition combustion by the subsequent compression action of the piston by activating the fuel by igniting spark ignition and sufficiently diffusing the activated fuel in the cylinder. Since only the air necessary for forming the air-fuel mixture in the air injection valve needs to be heated to a high temperature, it is possible to obtain an effect that it is possible to reduce the loss caused by the fuel activation.

【0014】請求項2の発明によれば、混合気噴射弁と
火花点火栓とを互いに隣接して配置し、混合気噴射弁に
よる高温混合気の噴射期間中に火花点火栓による火花点
火を行うことで、高温混合気の温度が低下する前に良好
な燃料改質を行うことができる。すなわち、燃焼室内に
噴射された高温混合気は、燃焼室内に広く拡散していく
過程で徐々に温度が低下することになるので、燃料改質
のための火花点火は高温混合気の噴射と同時に行うのが
よいのである。また、早期に活性種を生成することで、
活性種を燃焼室内に広く拡散させることができる。
According to the second aspect of the present invention, the mixture injection valve and the spark ignition plug are arranged adjacent to each other, and the spark ignition is performed by the spark ignition plug during the injection period of the high temperature mixture by the mixture injection valve. As a result, good fuel reforming can be performed before the temperature of the high temperature mixture decreases. In other words, the temperature of the hot air-fuel mixture injected into the combustion chamber gradually decreases in the process of widely diffusing into the combustion chamber, so spark ignition for fuel reforming is performed simultaneously with injection of the hot air-fuel mixture. It is good to do it. Also, by generating active species early,
The active species can be diffused widely in the combustion chamber.

【0015】尚、混合気噴射弁の場合はその内部で燃料
の気化及び空気との混合が進んでいるため、噴射された
混合気は既に十分均質な混合気となっている。このた
め、噴射された混合気に直接火花点火を行っても、ここ
で生じる燃料の酸化反応はほとんど部分酸化反応(改質
反応)までとなる。これに対し、高温の燃焼室内へ液体
燃料を噴射した場合、噴射直後の燃料噴霧内には燃料の
疎密が存在しており、燃料密度が局所的に高くなってい
る部分(例えば燃料液滴の周囲)では酸化反応が改質反
応に止まらず完全酸化(燃焼)にまで至ってしまう恐れ
がある。
In the case of the air-fuel mixture injection valve, the vaporization of the fuel and the mixing with air are progressing inside the air-fuel mixture injection valve, so the injected air-fuel mixture is already a sufficiently homogeneous air-fuel mixture. Therefore, even if the injected mixture is directly ignited by spark ignition, the oxidation reaction of the fuel generated here is almost up to the partial oxidation reaction (reforming reaction). On the other hand, when the liquid fuel is injected into the high temperature combustion chamber, the fuel spray immediately after the injection has the fuel density and the fuel density is locally high (for example, fuel droplets In the surroundings, the oxidation reaction may not stop at the reforming reaction and may even reach complete oxidation (combustion).

【0016】請求項3の発明によれば、混合気噴射弁に
よる吸気行程中の噴射の他に、エンジン負荷に応じて圧
縮行程中に少なくとも1回の追加の噴射を行うことで、
自己着火燃焼の運転領域を高負荷まで広げることができ
る。請求項4の発明によれば、全噴射量に対する吸気行
程中の噴射量の割合を、エンジン負荷が大きい程小さく
することで、ノッキングしやすい高負荷時は、吸気行程
中に噴射し補助点火を行うことで活性化させる燃料の割
合を少なくし、自己着火を比較的起こしにくくして、ノ
ッキングを回避することができる。
According to the invention of claim 3, in addition to the injection during the intake stroke by the mixture injection valve, at least one additional injection is performed during the compression stroke according to the engine load,
The operating range of self-ignition combustion can be expanded to high loads. According to the invention of claim 4, by making the ratio of the injection amount during the intake stroke to the total injection amount smaller as the engine load is larger, the injection is performed during the intake stroke and the auxiliary ignition is performed when the engine is easily knocked at a high load. By doing so, the proportion of fuel to be activated can be reduced, self-ignition can be made relatively difficult to occur, and knocking can be avoided.

【0017】請求項5の発明によれば、全噴射量に対す
る吸気行程中の噴射量の割合を、エンジン回転速度が大
きい程大きくすることで、自己着火しにくい高回転時
は、吸気行程中に噴射し補助点火を行うことで活性化さ
せる燃料の割合を多くし、自己着火し易くして、安定し
た自己着火を行うことができる。請求項6の発明によれ
ば、火花点火の時期は、エンジン負荷が大きい程遅角す
ることで、ノッキングしやすい高負荷時は、燃料の活性
化の時間を短くすることにより活性化燃料の割合を少な
くし、自己着火を比較的起こしにくくして、ノッキング
を回避することができる。
According to the fifth aspect of the present invention, the ratio of the injection amount during the intake stroke to the total injection amount is increased as the engine rotation speed increases, so that during high intake rotation during which high self-ignition is difficult to occur. By injecting and performing auxiliary ignition, the proportion of fuel to be activated is increased, self-ignition is facilitated, and stable self-ignition can be performed. According to the invention of claim 6, the spark ignition timing is retarded as the engine load is larger, and when the engine is easily knocked at a high load, the activation time of the fuel is shortened to reduce the proportion of the activated fuel. However, self-ignition is relatively unlikely to occur, and knocking can be avoided.

【0018】請求項7の発明によれば、火花点火の時期
は、エンジン回転速度が大きい程進角することで、自己
着火しにくい高回転時は、燃料活性化の時間を長くする
ことにより活性化燃料の割合を多くし、自己着火し易く
して、安定した自己着火を行うことができる。請求項8
の発明によれば、ノッキングを検出した場合に、吸気行
程中の噴射量の割合を減少させることで、次サイクルか
ら比較的自己着火しにくくなり、ノッキングを回避でき
る。
According to the seventh aspect of the present invention, the spark ignition timing is advanced as the engine rotational speed is higher, and the fuel activation time is lengthened to increase the activated fuel during high rotational speed at which self-ignition is difficult. The ratio can be increased to facilitate self-ignition, and stable self-ignition can be performed. Claim 8
According to the invention, when knocking is detected, the ratio of the injection amount during the intake stroke is reduced, whereby self-ignition becomes relatively difficult from the next cycle, and knocking can be avoided.

【0019】請求項9の発明によれば、ノッキングを検
出した場合に、火花点火の時期を遅角させることで、次
サイクルから比較的自己着火しにくくなり、ノッキング
を回避できる。請求項10の発明によれば、燃焼不安定
を検出した場合に、吸気行程中の噴射量の割合を増加さ
せることで、次サイクルから自己着火し易くなり、燃焼
不安定を回避できる。
According to the ninth aspect of the present invention, when knocking is detected, the spark ignition timing is retarded, whereby self-ignition becomes relatively difficult from the next cycle, and knocking can be avoided. According to the tenth aspect of the present invention, when combustion instability is detected, by increasing the ratio of the injection amount during the intake stroke, self-ignition becomes easier from the next cycle, and combustion instability can be avoided.

【0020】請求項11の発明によれば、燃焼不安定を
検出した場合に、火花点火の時期を進角させることで、
次サイクルから自己着火し易くなり、燃焼不安定を回避
できる。
According to the invention of claim 11, when the combustion instability is detected, the spark ignition timing is advanced,
From the next cycle, self-ignition becomes easier and combustion instability can be avoided.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1は本発明の一実施形態を示す
直噴火花点火圧縮自己着火式ガソリンエンジンのシステ
ム図である。シリンダ1、シリンダヘッド2及びピスト
ン3により画成される燃焼室4には、図示しないスロッ
トル弁の制御を受けた空気が、吸気通路を構成する吸気
マニフォルド5及び吸気ポート6より、吸気弁7の開時
に吸入される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a direct injection spark ignition compression self-ignition type gasoline engine showing an embodiment of the present invention. In the combustion chamber 4 defined by the cylinder 1, the cylinder head 2 and the piston 3, air under the control of a throttle valve (not shown) is supplied to the intake valve 7 through the intake manifold 5 and the intake port 6 forming the intake passage. Inhaled when opened.

【0022】シリンダヘッド2には、その中央部付近
に、高温の空気と燃料とを混合して得た高温混合気を燃
焼室4内に直接噴射することのできる混合気噴射弁8が
取付けられると共に、この混合気噴射弁8に隣接して燃
焼室4に臨む火花点火栓9が取付けられている。ここ
で、混合気噴射弁8に対しては、吸気通路のスロットル
弁上流側からエアポンプ10により加圧して導いた空気
をヒータ11により電気加熱して得た高温の空気を供給
する空気配管12が接続されると共に、図示しない燃料
タンクから燃料ポンプ13により加圧して導いた燃料を
供給する燃料配管14が接続されている。
A mixture injection valve 8 capable of directly injecting a high temperature mixture obtained by mixing high temperature air and fuel into the combustion chamber 4 is attached to the cylinder head 2 near the center thereof. At the same time, a spark ignition plug 9 facing the combustion chamber 4 is attached adjacent to the mixture injection valve 8. Here, to the mixture injection valve 8, an air pipe 12 for supplying high-temperature air obtained by electrically heating the air pressurized by the air pump 10 from the upstream side of the throttle valve in the intake passage by the heater 11 is supplied. In addition to being connected, a fuel pipe 14 for supplying fuel pressurized and guided by a fuel pump 13 from a fuel tank (not shown) is connected.

【0023】混合気噴射弁8は、図2に概略構造図を示
すように、前記空気配管12が接続される混合気噴射弁
本体8aと、これに対し斜めに取付けられて前記燃料配
管14が接続される燃料噴射弁8bとを備え、前記本体
8aの混合室8cに高温の空気を導入すると共に、燃料
噴射弁8bより燃料を噴射して、混合室8c内で高温の
空気と燃料とを混合し、同時に燃料を気化させる。この
ようにして得た高温混合気はノズル部8dより燃焼室内
に噴射供給する。
As shown in the schematic structural view of FIG. 2, the mixture injection valve 8 has a mixture injection valve body 8a to which the air pipe 12 is connected, and a fuel pipe 14 which is obliquely attached thereto. And a fuel injection valve 8b connected to the main body 8a. In addition to introducing high temperature air into the mixing chamber 8c of the main body 8a, fuel is injected from the fuel injection valve 8b to generate high temperature air and fuel in the mixing chamber 8c. Mix and vaporize the fuel at the same time. The high temperature mixture thus obtained is injected and supplied from the nozzle portion 8d into the combustion chamber.

【0024】図1に戻って、燃焼後の排気は、排気弁1
5の開時に、排気通路を構成する排気ポート16及び排
気マニフォルド17より排出される。また、排気マニフ
ォルド17より排気の一部を吸気マニフォルド5に還流
するEGR通路18が設けられ、このEGR通路18に
はEGR量(EGR率)を調整可能なEGR制御弁19
が介装されている。
Returning to FIG. 1, the exhaust gas after combustion is the exhaust valve 1
When the valve 5 is opened, the exhaust gas is discharged from the exhaust port 16 and the exhaust manifold 17 which form the exhaust passage. Further, an EGR passage 18 for returning a part of the exhaust gas from the exhaust manifold 17 to the intake manifold 5 is provided, and the EGR passage 18 has an EGR control valve 19 capable of adjusting an EGR amount (EGR rate).
Is installed.

【0025】エンジン制御用の電子制御装置(エンジン
コントロールユニット;以下ECUという)20は、マ
イクロコンピュータを内蔵しており、これには、クラン
ク角センサ31からのクランク角信号(これによりエン
ジン回転速度Nを検出可能)、アクセル開度センサ32
からのアクセル開度信号(これによりエンジン負荷Tを
検出可能)、排気温度センサ33からの排気温度信号、
ノッキングセンサ34からのノッキング検出信号などが
入力されている。
An electronic control unit (engine control unit; hereinafter referred to as ECU) 20 for controlling the engine has a built-in microcomputer, in which a crank angle signal from a crank angle sensor 31 (the engine rotation speed N is thereby generated). Can be detected), accelerator opening sensor 32
An accelerator opening signal from the exhaust gas (from which the engine load T can be detected), an exhaust temperature signal from an exhaust temperature sensor 33,
A knocking detection signal or the like from the knocking sensor 34 is input.

【0026】ECU20は、これらの入力信号に基づい
て、混合気噴射弁8、火花点火栓9、EGR制御弁19
の作動を制御する。特に、このエンジンでは、運転条件
に応じた燃焼制御を行うため、ECU20は、運転条件
に応じて火花点火燃焼と圧縮自己着火燃焼とのいずれの
燃焼形態で運転を行うかを判断する燃焼形態判断部21
を備えると共に、その判断結果に従って燃焼パラメータ
を各燃焼形態にて最適となるように制御する燃料噴射量
制御部22、燃料噴射時期制御部23、点火時期制御部
24、筒内温度制御のためのEGR率制御部25を備え
ている。但し、これらはマイクロコンピュータのプログ
ラムとして実現される。
Based on these input signals, the ECU 20 controls the mixture injection valve 8, the spark ignition plug 9, and the EGR control valve 19
Control the operation of. In particular, in this engine, the combustion control according to the operating condition is performed, so that the ECU 20 determines the combustion mode, which is the combustion mode, that is, the spark ignition combustion or the compression self-ignition combustion, according to the operating condition. Part 21
And a fuel injection amount control unit 22, a fuel injection timing control unit 23, an ignition timing control unit 24, for controlling the combustion temperature according to the determination result so as to optimize the combustion parameter in each combustion mode. The EGR rate controller 25 is provided. However, these are realized as a program of a microcomputer.

【0027】次に、本実施形態での燃焼制御について説
明する。前記構成のもと、本実施形態では、エンジン回
転速度、負荷の運転条件に応じて、火花点火燃焼と圧縮
自己着火燃焼とを切換可能となっており、図3に示すよ
うに、エンジン回転速度Nと負荷Tとによる特定の運転
領域(低中回転・低中負荷領域)において圧縮自己着火
燃焼を行い、それ以外の運転領域においては火花点火燃
焼を行う。
Next, the combustion control in this embodiment will be described. Based on the above configuration, in the present embodiment, spark ignition combustion and compression self-ignition combustion can be switched according to the engine rotation speed and the operating conditions of the load, and as shown in FIG. Compressed self-ignition combustion is performed in a specific operating region (low and medium rotation / low and medium load region) by N and load T, and spark ignition combustion is performed in other operating regions.

【0028】図4に圧縮自己着火燃焼時のクランク角度
に対する噴射時期及び点火時期と筒内圧及び熱発生率の
変化とを示す。また、図5に図4中の各タイミングでの
エンジンの状態を模式的に示す。圧縮自着火燃焼時に
は、吸気行程において、詳しくは吸気弁7の開弁時期I
VOから吸気下死点BDCまでの間に、混合気噴射弁8
から高温の空気と燃料とを混合して得た高温混合気を噴
射し(吸気行程噴射)、この噴射期間中に、噴射された
高温混合気に対し火花点火栓9により比較的弱い点火エ
ネルギーで補助的な火花点火(補助点火)を行う(図5
(A)参照)。
FIG. 4 shows changes in injection timing and ignition timing, in-cylinder pressure and heat generation rate with respect to crank angle during compression self-ignition combustion. Further, FIG. 5 schematically shows the state of the engine at each timing in FIG. During the compression ignition combustion, in the intake stroke, specifically, the opening timing I of the intake valve 7
Between the VO and the intake bottom dead center BDC, the mixture injection valve 8
A high-temperature air-fuel mixture obtained by mixing high-temperature air and fuel is injected (intake stroke injection), and during this injection period, a relatively low ignition energy is applied to the injected high-temperature air-fuel mixture by the spark ignition plug 9. Auxiliary spark ignition (auxiliary ignition) is performed (Fig. 5
(See (A)).

【0029】このような補助点火により燃料の一部を活
性化(燃料改質)するが、火炎伝播には至らせない。混
合気噴射弁8の場合はその内部で燃料の気化及び空気と
の混合が進んでいるため、噴射された混合気は既に十分
均質な混合気となっている。このため、噴射された混合
気に直接火花点火を行っても、ここで生じる燃料の酸化
反応はほとんど部分酸化反応(改質反応)までとなる。
Although a part of the fuel is activated (fuel reforming) by such auxiliary ignition, it does not lead to flame propagation. In the case of the mixture injection valve 8, vaporization of fuel and mixing with air are progressing inside the mixture injection valve 8, so that the injected mixture is already a sufficiently homogeneous mixture. Therefore, even if the injected mixture is directly ignited by spark ignition, the oxidation reaction of the fuel generated here is almost up to the partial oxidation reaction (reforming reaction).

【0030】このようにして活性化された燃料は、吸気
行程の進行と共に、筒内に拡散する(図5(B)参
照)。圧縮行程においては、混合気噴射弁8より、エン
ジン負荷に応じて少なくとも1回の追加の噴射(圧縮行
程噴射)を行う(図5(C)参照)。圧縮行程中に噴射
された燃料は、吸気行程中に噴射されて活性化し筒内に
拡散している燃料と混合し、ピストン3の圧縮作用によ
り、圧縮上死点TDC近傍で、自己着火に至り、燃焼を
開始する(図5(D)参照)。
The fuel thus activated diffuses into the cylinder as the intake stroke proceeds (see FIG. 5 (B)). In the compression stroke, the mixture injection valve 8 performs at least one additional injection (compression stroke injection) according to the engine load (see FIG. 5C). The fuel injected during the compression stroke mixes with the fuel that is injected and activated during the intake stroke and diffused in the cylinder, and the compression action of the piston 3 causes self-ignition in the vicinity of the compression top dead center TDC. , Start burning (see FIG. 5 (D)).

【0031】燃料の活性化により自己着火し易い燃料成
分を多く含むため、燃料の着火性が向上し、自己着火燃
焼の運転領域を広げることができる。また、混合気噴射
弁8内で混合気を形成するのに必要な空気だけをヒータ
11などを用いて高温とすればよいので、燃料活性化に
伴う損失の発生を低減できる。ここで、圧縮自己着火燃
焼においては、エンジン回転が高い程、また負荷が小さ
い程自己着火しにくい。従って、図6に示すように、エ
ンジン回転速度Nが大きい程、また負荷Tが小さい程、
全噴射量に対する吸気行程噴射量(活性化燃料)の割合
を大きくして、自己着火を起こし易くする。
Since a large amount of fuel components that are easily self-ignited by activation of the fuel are included, the ignitability of the fuel is improved, and the operating range of self-ignition combustion can be expanded. Further, since only the air necessary for forming the air-fuel mixture in the air-fuel mixture injection valve 8 needs to be heated to a high temperature by using the heater 11 or the like, it is possible to reduce the loss caused by the fuel activation. Here, in the compression self-ignition combustion, the higher the engine speed and the smaller the load, the more difficult the self-ignition occurs. Therefore, as shown in FIG. 6, as the engine speed N is higher and the load T is smaller,
The ratio of the intake stroke injection amount (activated fuel) to the total injection amount is increased to facilitate self-ignition.

【0032】また、補助点火時期IGTは、進角側で点
火した方が、燃料活性化の時間が長くなり、自己着火し
易くなる。従って、図7に示すように、エンジン回転速
度Nが大きい程、また負荷Tが小さい程、補助点火時期
IGTを進角し、自己着火を起こし易くする。この場
合、混合気噴射弁8による高温混合気の噴射期間中に火
花点火を行うことが望ましいので、補助点火時期IGT
の変更に合わせて、吸気行程噴射時期を変更するのが望
ましい。
Further, when the auxiliary ignition timing IGT is ignited on the advance side, the time for fuel activation becomes longer and the self-ignition becomes easier. Therefore, as shown in FIG. 7, as the engine speed N is higher and the load T is smaller, the auxiliary ignition timing IGT is advanced to facilitate self-ignition. In this case, since it is desirable to perform spark ignition during the injection period of the high temperature mixture by the mixture injection valve 8, the auxiliary ignition timing IGT
It is desirable to change the intake stroke injection timing according to the change of.

【0033】以上に基づいて行われる本発明での燃焼制
御の流れを図8のフローチャートにより説明する。S1
では、エンジン回転速度N、負荷Tを検出する。S2で
は、図3のマップに基づき、エンジン回転速度Nと負荷
Tとから、火花点火燃焼運転領域であるか、圧縮自己着
火燃焼運転領域であるか、燃焼形態を判断する。火花点
火燃焼を行うと判断された場合は、S3に進み、通常の
火花点火燃焼の制御を行う。
The flow of combustion control in the present invention performed based on the above will be described with reference to the flowchart of FIG. S1
Then, the engine speed N and the load T are detected. In S2, the combustion mode is determined from the engine speed N and the load T based on the map of FIG. 3 whether it is in the spark ignition combustion operation region or the compression self-ignition combustion operation region. When it is determined that spark ignition combustion is to be performed, the routine proceeds to S3, where normal spark ignition combustion control is performed.

【0034】一方、圧縮自己着火燃焼を行うと判断され
た場合は、S4〜S14に示す圧縮自己着火燃焼の制御
を行う。以下、この圧縮自己着火燃焼の制御について説
明する。S4では、マップ(図示せず)に基づき、エン
ジン回転速度Nと負荷Tとから、EGRガスにより筒内
温度を適度に昇温させるためのEGR率を算出する。
On the other hand, when it is determined that the compression self-ignition combustion is to be performed, the compression self-ignition combustion control is performed in S4 to S14. The control of the compression self-ignition combustion will be described below. In S4, the EGR rate for appropriately increasing the in-cylinder temperature by the EGR gas is calculated from the engine rotation speed N and the load T based on a map (not shown).

【0035】S5では、マップ(図示せず)に基づき、
EGR率と、実際に検出した排気温度とから、EGR制
御弁開度を算出し、制御する。ここで、目標とするEG
R率が大きくなるほど、EGR制御弁開度を大きくする
ことは当然であるが、排気温度により筒内温度を間接的
に検出し、排気温度が低くなるに従って、筒内温度上昇
のためEGR制御弁開度を大側に補正する。但し、EG
R率による燃焼時期制御を行わない場合はこれらS4、
S5は省略される。
At S5, based on a map (not shown),
The EGR control valve opening is calculated and controlled from the EGR rate and the actually detected exhaust temperature. Here, the target EG
It is natural that the opening degree of the EGR control valve is increased as the R rate is increased. Correct the opening to the larger side. However, EG
If the combustion timing control based on the R rate is not performed, these S4,
S5 is omitted.

【0036】S6では、吸気行程噴射量q1及び圧縮行
程噴射量q2を算出する。詳しくは、先ず、図6のマッ
プに基づき、エンジン回転速度Nと負荷Tとから、全噴
射量qに対する吸気行程噴射量の割合Mを算出する。こ
こで、吸気行程噴射量の割合Mは、高回転、低負荷にな
るにつれて大きく設定される。そして、吸気行程噴射量
q1=全噴射量q×M、圧縮行程噴射量q2=全噴射量
q×(1−M)として、算出する。尚、全噴射量qは吸
入空気量、エンジン回転速度、目標空燃比等から周知の
方法で算出される。
At S6, the intake stroke injection quantity q1 and the compression stroke injection quantity q2 are calculated. Specifically, first, based on the map of FIG. 6, the ratio M of the intake stroke injection amount to the total injection amount q is calculated from the engine rotation speed N and the load T. Here, the ratio M of the intake stroke injection amount is set to be larger as the rotation speed becomes higher and the load becomes lower. Then, the intake stroke injection amount q1 = total injection amount q × M, and the compression stroke injection amount q2 = total injection amount q × (1-M) are calculated. The total injection amount q is calculated by a known method from the intake air amount, the engine rotation speed, the target air-fuel ratio and the like.

【0037】但し、前サイクルのルーチンにおいて、後
述するS12又はS14にて吸気行程噴射量の割合を減
少又は増加すべきとの指令がある場合は、前記割合Mは
マップ値を補正して用いる。S7では、図7のマップに
基づき、エンジン回転速度Nと負荷Tとから、補助点火
時期IGTを算出する。ここで、補助点火時期IGT
は、高回転、低負荷になるにつれて進角側に設定され
る。
However, in the routine of the previous cycle, if there is a command to reduce or increase the ratio of the intake stroke injection amount in S12 or S14 described later, the ratio M is used after correcting the map value. In S7, the auxiliary ignition timing IGT is calculated from the engine speed N and the load T based on the map of FIG. Here, the auxiliary ignition timing IGT
Is set to the advanced side as the rotation speed becomes high and the load becomes low.

【0038】但し、前サイクルのルーチンにおいて、後
述するS12又はS14にて補助点火時期を遅角又は進
角すべきとの指令がある場合は、補助点火時期IGTの
補正を行う。S8では、吸気行程噴射を実行する。すな
わち、吸気行程中の所定の噴射時期又は補助点火時期I
GTに合わせて設定された噴射時期において、混合気噴
射弁8により、S6で設定された吸気行程噴射量q1分
の燃料噴射(混合気噴射)を行う。
However, in the routine of the previous cycle, when there is a command to retard or advance the auxiliary ignition timing in S12 or S14 described later, the auxiliary ignition timing IGT is corrected. In S8, intake stroke injection is executed. That is, a predetermined injection timing or auxiliary ignition timing I during the intake stroke
At the injection timing set according to GT, the mixture injection valve 8 performs fuel injection (mixture mixture injection) for the intake stroke injection amount q1 set in S6.

【0039】S9では、吸気行程中の補助点火を実行す
る。すなわち、吸気行程中、特に混合気噴射弁8による
吸気行程噴射中に、S7で設定された補助点火時期IG
Tにおいて、火花点火栓9により、火花点火を行う。S
10では、圧縮行程噴射を実行する。すなわち、圧縮行
程中の所定の噴射時期において、混合気噴射弁8によ
り、S6で設定された圧縮行程噴射量q2分の燃料噴射
(混合気噴射)を行う。
At S9, auxiliary ignition during the intake stroke is executed. That is, during the intake stroke, especially during the intake stroke injection by the mixture injection valve 8, the auxiliary ignition timing IG set in S7 is set.
At T, spark ignition is performed by the spark ignition plug 9. S
At 10, the compression stroke injection is executed. That is, at a predetermined injection timing during the compression stroke, the mixture injection valve 8 performs fuel injection (mixture injection) for the compression stroke injection amount q2 set in S6.

【0040】S11では、ノッキングセンサの信号に基
づいて、ノッキングの有無を判定する(この部分がノッ
キング検出手段に相当する)。ノッキングを検出した場
合は、S12へ進み、次サイクルでの吸気行程噴射量の
割合Mを減少させるか、次サイクルでの補助点火時期I
GTを遅角させるか、少なくとも一方を行うようにし、
自己着火を比較的起こしにくくして、ノッキングを回避
する。
In S11, the presence or absence of knocking is determined based on the signal from the knocking sensor (this portion corresponds to knocking detecting means). If knocking is detected, the routine proceeds to S12, where the ratio M of the intake stroke injection amount in the next cycle is decreased, or the auxiliary ignition timing I in the next cycle is set.
Retard GT or at least do one
Avoids knocking by making self-ignition relatively difficult to occur.

【0041】ノッキング無しの場合は、S13へ進む。
S13では、クランク角センサの信号より回転変動を検
出し、これに基づいて燃焼安定性を判定する(この部分
が燃焼安定度検出手段に相当する)。燃焼不安定を検出
した場合は、S14へ進み、次サイクルでの吸気行程噴
射量の割合Mを増加させるか、次サイクルでの補助点火
時期IGTを進角させるか、少なくとも一方を行うよう
にし、自己着火を起こし易くして、燃焼不安定を回避す
る。
If there is no knocking, the process proceeds to S13.
In S13, the rotation fluctuation is detected from the signal of the crank angle sensor, and the combustion stability is determined based on the fluctuation (this portion corresponds to the combustion stability detecting means). When combustion instability is detected, the process proceeds to S14, at least one of increasing the ratio M of the intake stroke injection amount in the next cycle, advancing the auxiliary ignition timing IGT in the next cycle, It facilitates self-ignition and avoids combustion instability.

【0042】このように制御することで、ノッキングの
発生や燃焼安定性の悪化を防止しつつ、安定した自己着
火燃焼を実現できる。尚、本実施形態では、混合気噴射
弁8への空気配管12に電気ヒータを装着することによ
り高温の空気を得ているが、高温の空気を得る方法はこ
れに限るものではなく、電気ヒータ以外の他の加熱手段
を用いてもよいし、加熱位置も混合気噴射弁8により近
づけるなどしてもよい。
By controlling in this way, stable self-ignition combustion can be realized while preventing knocking and deterioration of combustion stability. In the present embodiment, the high temperature air is obtained by mounting the electric heater on the air pipe 12 to the mixture injection valve 8. However, the method for obtaining the high temperature air is not limited to this, and the electric heater is not limited to this. Other heating means other than the above may be used, and the heating position may be brought closer to the mixture injection valve 8.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態を示すエンジンのシステ
ム図
FIG. 1 is a system diagram of an engine showing an embodiment of the present invention.

【図2】 混合気噴射弁の概略構造図FIG. 2 is a schematic structural diagram of a mixture injection valve.

【図3】 圧縮自己着火燃焼を行う運転領域を示す図FIG. 3 is a diagram showing an operating region in which compression self-ignition combustion is performed.

【図4】 圧縮自己着火燃焼の制御の説明図FIG. 4 is an explanatory diagram of control of compression self-ignition combustion.

【図5】 図4中の各タイミングでのエンジンの状態を
示す模式図
5 is a schematic diagram showing the state of the engine at each timing in FIG.

【図6】 回転速度及び負荷に対する吸気行程噴射量の
割合の特性図
FIG. 6 is a characteristic diagram of the ratio of the intake stroke injection amount to the rotation speed and the load.

【図7】 回転速度及び負荷に対する補助点火時期の特
性図
FIG. 7 is a characteristic diagram of auxiliary ignition timing with respect to rotation speed and load.

【図8】 燃焼制御のフローチャートFIG. 8: Combustion control flowchart

【符号の説明】[Explanation of symbols]

4 燃焼室 7 吸気弁 8 混合気噴射弁 8a 混合気噴射弁本体 8b 燃料噴射弁 8c 混合室 8d ノズル部 9 火花点火栓 10 エアポンプ 11 ヒータ 12 空気配管 13 燃料ポンプ 14 燃料配管 20 ECU 4 Combustion chamber 7 intake valve 8 Mixture injection valve 8a Mixture injection valve body 8b fuel injection valve 8c mixing chamber 8d nozzle part 9 Spark spark plug 10 Air pump 11 heater 12 Air piping 13 Fuel pump 14 Fuel piping 20 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/38 F02D 41/38 D 45/00 362 45/00 362J 368 368A F02M 45/02 F02M 45/02 53/00 53/00 J 61/14 310 61/14 310S 67/02 67/02 69/04 69/04 G F02P 5/15 F02P 5/15 D 5/152 C 5/153 (72)発明者 小松 浩幸 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 飯山 明裕 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G022 CA09 DA01 DA02 EA02 EA07 FA06 GA01 GA05 GA08 GA10 3G023 AA00 AA02 AB06 AC01 AD03 AF01 AG01 AG03 AG05 3G066 AA02 AA07 AB02 AD12 BA01 BA14 BA21 BA22 CC46 CC63 CD22 CD25 CD26 DA01 DA04 DA09 DB09 DB13 DC00 DC01 DC04 DC05 DC09 DC13 3G084 AA01 BA13 BA15 BA17 BA20 CA09 DA00 DA02 DA11 EB08 EB11 FA10 FA25 FA27 FA34 FA37 FA38 3G301 HA01 HA02 HA04 HA16 JA02 JA04 JA22 KA06 KA08 KA09 KA23 KA24 KA25 LA00 LA01 LB04 LB11 MA11 MA15 MA18 MA23 NA08 NC02 ND01 NE01 NE06 NE11 NE12 PC08A PC08Z PD11Z PD15A PD15Z PE01Z PE03Z PE09A PF03Z─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F02D 41/38 F02D 41/38 D 45/00 362 45/00 362J 368 368A F02M 45/02 F02M 45/02 53/00 53/00 J 61/14 310 61/14 310S 67/02 67/02 69/04 69/04 G F02P 5/15 F02P 5/15 D 5/152 C 5/153 (72) Inventor Komatsu Hiroyuki 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Inventor Akihiro Iiyama 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. F-term (reference) 3G022 CA09 DA01 DA02 EA02 EA07 FA06 GA01 GA05 GA08 GA10 3G023 AA00 AA02 AB06 AC01 AD03 AF01 AG01 AG03 AG05 3G066 AA02 AA07 AB02 AD12 BA01 BA14 BA21 BA22 CC46 CC63 CD22 CD25 CD26 DA01 DA04 DA09 DB09 DB13 DC00 DC01 DC04 DC05 DC09 DC13 3G084 AA01 BA13 BA15 BA17 BA20 CA09 DA00 DA02 DA11 EB08 EB11 FA10 FA25 FA27 FA34 FA37 FA38 3G301 HA01 HA02 HA04 HA16 JA02 JA04 JA22 KA06 KA08 KA09 KA23 KA24 KA25 LA00 LA01 NE01 NC11 MA11 NE11 NC01 MA12 MA11 NE11 NC02 MA11 MA01 MA12 MA01 NA01 NE11 PD15A PD15Z PE01Z PE03Z PE09A PF03Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】高温の空気と燃料とを混合して得た高温混
合気を燃焼室内に直接噴射する混合気噴射弁と、燃焼室
に臨んで配設される火花点火栓と、を備え、 前記混合気噴射弁による高温混合気の噴射と前記火花点
火栓による火花点火との両方を吸気行程中に実行するこ
とを特徴とする自己着火式エンジン。
1. A mixture injection valve for directly injecting a high-temperature mixture obtained by mixing high-temperature air and fuel into a combustion chamber, and a spark ignition plug arranged facing the combustion chamber, A self-ignition engine, wherein both injection of a high temperature mixture by the mixture injection valve and spark ignition by the spark ignition plug are executed during an intake stroke.
【請求項2】前記混合気噴射弁と前記火花点火栓とを互
いに隣接して配置すると共に、前記混合気噴射弁による
高温混合気の噴射期間中に前記火花点火栓による火花点
火を実行することを特徴とする請求項1記載の自己着火
式エンジン。
2. The mixture injection valve and the spark ignition plug are arranged adjacent to each other, and spark ignition by the spark ignition plug is executed during injection of a high temperature mixture by the mixture injection valve. The self-ignition type engine according to claim 1.
【請求項3】前記混合気噴射弁による吸気行程中の噴射
の他に、エンジン負荷に応じて圧縮行程中に少なくとも
1回の追加の噴射を行うことを特徴とする請求項1又は
請求項2記載の自己着火式エンジン。
3. In addition to the injection during the intake stroke by the mixture injection valve, at least one additional injection is performed during the compression stroke according to the engine load. The self-igniting engine described.
【請求項4】全噴射量に対する吸気行程中の噴射量の割
合を、エンジン負荷が大きい程小さくすることを特徴と
する請求項3記載の自己着火式エンジン。
4. A self-ignition engine according to claim 3, wherein the ratio of the injection amount during the intake stroke to the total injection amount is made smaller as the engine load is larger.
【請求項5】全噴射量に対する吸気行程中の噴射量の割
合を、エンジン回転速度が大きい程大きくすることを特
徴とする請求項3又は請求項4記載の自己着火式エンジ
ン。
5. The self-ignition engine according to claim 3, wherein the ratio of the injection amount during the intake stroke to the total injection amount is increased as the engine speed increases.
【請求項6】前記火花点火の時期は、エンジン負荷が大
きい程遅角することを特徴とする請求項1〜請求項5の
いずれか1つに記載の自己着火式エンジン。
6. The self-ignition engine according to any one of claims 1 to 5, wherein the spark ignition timing is retarded as the engine load increases.
【請求項7】前記火花点火の時期は、エンジン回転速度
が大きい程進角することを特徴とする請求項1〜請求項
6のいずれか1つに記載の自己着火式エンジン。
7. The self-ignition engine according to claim 1, wherein the spark ignition timing advances as the engine speed increases.
【請求項8】ノッキング検出手段を備え、該ノッキング
検出手段がノッキングを検出した場合に、前記吸気行程
中の噴射量の割合を減少させることを特徴とする請求項
3〜請求項5のいずれか1つに記載の自己着火式エンジ
ン。
8. A knocking detection means is provided, and when the knocking detection means detects knocking, the ratio of the injection amount during the intake stroke is reduced. The self-igniting engine described in 1.
【請求項9】ノッキング検出手段を備え、該ノッキング
検出手段がノッキングを検出した場合に、前記火花点火
の時期を遅角させることを特徴とする請求項1〜請求項
8のいずれか1つに記載の自己着火式エンジン。
9. A knocking detection means is provided, and when the knocking detection means detects knocking, the spark ignition timing is retarded. The self-igniting engine described.
【請求項10】燃焼安定度検出手段を備え、該燃焼安定
度検出手段が燃焼不安定を検出した場合に、前記吸気行
程中の噴射量の割合を増加させることを特徴とする請求
項3〜請求項5のいずれか1つに記載の自己着火式エン
ジン。
10. The method according to claim 3, further comprising combustion stability detecting means, wherein when the combustion stability detecting means detects combustion instability, the ratio of the injection amount during the intake stroke is increased. The self-igniting engine according to claim 5.
【請求項11】燃焼安定度検出手段を備え、該燃焼安定
度検出手段が燃焼不安定を検出した場合に、前記火花点
火の時期を進角させることを特徴とする請求項1〜請求
項10のいずれか1つに記載の自己着火式エンジン。
11. The method according to claim 1, further comprising combustion stability detecting means, wherein the spark ignition timing is advanced when the combustion stability detecting means detects combustion instability. The self-ignition engine according to any one of 1.
JP2001190739A 2001-06-25 2001-06-25 Self-igniting engine Expired - Fee Related JP3975695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001190739A JP3975695B2 (en) 2001-06-25 2001-06-25 Self-igniting engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001190739A JP3975695B2 (en) 2001-06-25 2001-06-25 Self-igniting engine

Publications (2)

Publication Number Publication Date
JP2003003897A true JP2003003897A (en) 2003-01-08
JP3975695B2 JP3975695B2 (en) 2007-09-12

Family

ID=19029471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001190739A Expired - Fee Related JP3975695B2 (en) 2001-06-25 2001-06-25 Self-igniting engine

Country Status (1)

Country Link
JP (1) JP3975695B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine
JP2007154859A (en) * 2005-12-08 2007-06-21 Mazda Motor Corp Controller for spark ignition type gasoline engine
JP2015057543A (en) * 2013-09-16 2015-03-26 ダイヤモンド電機株式会社 Combustion controller for gasoline engine
JP2015511293A (en) * 2012-02-21 2015-04-16 アカーテース パワー,インク. Exhaust management strategy for opposed piston two-stroke engines
JP2015161195A (en) * 2014-02-26 2015-09-07 マツダ株式会社 direct-injection gasoline engine
JPWO2014080455A1 (en) * 2012-11-20 2017-01-05 トヨタ自動車株式会社 Diesel engine control device
WO2019211996A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212009A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212015A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019211995A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212010A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212014A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212012A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
JP2021092158A (en) * 2019-12-06 2021-06-17 株式会社デンソー Ignition device for internal combustion engine
US11326543B2 (en) 2018-05-02 2022-05-10 Mazda Motor Corporation Control apparatus for compression-ignition type engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233749A (en) * 1994-02-22 1995-09-05 Nippondenso Co Ltd Fuel supply quantity correcting device for internal combustion engine
JPH08193536A (en) * 1995-01-18 1996-07-30 Toyota Motor Corp Fuel injection controller of cylinder injection type internal combustion engine
JP2001012337A (en) * 1998-10-23 2001-01-16 Nippon Soken Inc Spark ignition device
JP2001123925A (en) * 1999-10-25 2001-05-08 Mitsubishi Motors Corp Control device for internal combustion engine
JP2001152919A (en) * 1999-09-14 2001-06-05 Nissan Motor Co Ltd Compressed self-ignition gasoline engine
JP2001152854A (en) * 1999-11-24 2001-06-05 Nissan Motor Co Ltd Direct cylinder injection of fuel type compression ignition engine
JP2001512208A (en) * 1997-08-01 2001-08-21 フォード、グローバル、テクノロジーズ、インコーポレーテッド Gasoline internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233749A (en) * 1994-02-22 1995-09-05 Nippondenso Co Ltd Fuel supply quantity correcting device for internal combustion engine
JPH08193536A (en) * 1995-01-18 1996-07-30 Toyota Motor Corp Fuel injection controller of cylinder injection type internal combustion engine
JP2001512208A (en) * 1997-08-01 2001-08-21 フォード、グローバル、テクノロジーズ、インコーポレーテッド Gasoline internal combustion engine
JP2001012337A (en) * 1998-10-23 2001-01-16 Nippon Soken Inc Spark ignition device
JP2001152919A (en) * 1999-09-14 2001-06-05 Nissan Motor Co Ltd Compressed self-ignition gasoline engine
JP2001123925A (en) * 1999-10-25 2001-05-08 Mitsubishi Motors Corp Control device for internal combustion engine
JP2001152854A (en) * 1999-11-24 2001-06-05 Nissan Motor Co Ltd Direct cylinder injection of fuel type compression ignition engine

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329158A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Controller for spark ignition type cylinder injection type internal combustion engine
JP2007154859A (en) * 2005-12-08 2007-06-21 Mazda Motor Corp Controller for spark ignition type gasoline engine
JP2015511293A (en) * 2012-02-21 2015-04-16 アカーテース パワー,インク. Exhaust management strategy for opposed piston two-stroke engines
US10119444B2 (en) 2012-02-21 2018-11-06 Achates Power, Inc. Exhaust management strategies for opposed-piston, two-stroke engines
JPWO2014080455A1 (en) * 2012-11-20 2017-01-05 トヨタ自動車株式会社 Diesel engine control device
JP2015057543A (en) * 2013-09-16 2015-03-26 ダイヤモンド電機株式会社 Combustion controller for gasoline engine
JP2015161195A (en) * 2014-02-26 2015-09-07 マツダ株式会社 direct-injection gasoline engine
WO2019211995A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
US11203969B2 (en) 2018-05-02 2021-12-21 Mazda Motor Corporation Control apparatus for compression-ignition type engine
WO2019212015A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019211996A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212010A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212014A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
WO2019212012A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
US11448156B2 (en) 2018-05-02 2022-09-20 Mazda Motor Corporation Control apparatus for compression-ignition type engine
US11168639B2 (en) 2018-05-02 2021-11-09 Mazda Motor Corporation Control apparatus for compression-ignition type engine
US11187179B2 (en) 2018-05-02 2021-11-30 Mazda Motor Corporation Control apparatus for compression-ignition type engine
WO2019212009A1 (en) * 2018-05-02 2019-11-07 マツダ株式会社 Control device for compression ignition type engine
US11220971B2 (en) 2018-05-02 2022-01-11 Mazda Motor Corporation Control apparatus for compression-ignition type engine
US11220972B2 (en) 2018-05-02 2022-01-11 Mazda Motor Corporation Control apparatus for compression-ignition type engine
US11326508B2 (en) 2018-05-02 2022-05-10 Mazda Motor Corporation Control apparatus for compression-ignition type engine
US11326543B2 (en) 2018-05-02 2022-05-10 Mazda Motor Corporation Control apparatus for compression-ignition type engine
JP2021092158A (en) * 2019-12-06 2021-06-17 株式会社デンソー Ignition device for internal combustion engine

Also Published As

Publication number Publication date
JP3975695B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
US7769525B2 (en) Apparatus and method for controlling a homogeneous charge compression-ignited internal-combustion engine
EP1267070B1 (en) Spark ignition stratified combustion internal combustion engine
JP3975702B2 (en) Control device for self-igniting engine
JP3325230B2 (en) Method and apparatus for warming up a catalyst in a direct injection engine
US6840211B2 (en) Diesel engine
US6745743B2 (en) Control apparatus for a direct injection engine
US7051701B2 (en) Direct fuel injection/spark ignition engine control device
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JPH04183922A (en) Direct cylinder injection spark ignition engine
JP2002155780A (en) Combustion control device of internal combustion engine
JP2002004913A (en) Compression self-ignition type internal combustion engine
JP2003003897A (en) Self-ignition type engine
JP2001342883A (en) Compression self-ignition type gasoline internal combustion engine
JPH11236848A (en) Compression ignition type internal combustion engine
JP5453942B2 (en) Fuel injection control device for spark ignition direct injection engine
JP2010285906A5 (en)
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP3945174B2 (en) Combustion control device for internal combustion engine
JP3257430B2 (en) Exhaust heating device
JP4274063B2 (en) Control device for internal combustion engine
JPH11280522A (en) Start control device for cylinder injection engine
JPH10274086A (en) Fuel injection control device for diesel engine
JP2010265814A (en) Control device of internal combustion engine
JPH07293304A (en) Tumble control device for fuel injection type engine
JP3763177B2 (en) Diesel engine control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees