Nothing Special   »   [go: up one dir, main page]

JP2003003324A - Method for producing polyester fiber - Google Patents

Method for producing polyester fiber

Info

Publication number
JP2003003324A
JP2003003324A JP2001182823A JP2001182823A JP2003003324A JP 2003003324 A JP2003003324 A JP 2003003324A JP 2001182823 A JP2001182823 A JP 2001182823A JP 2001182823 A JP2001182823 A JP 2001182823A JP 2003003324 A JP2003003324 A JP 2003003324A
Authority
JP
Japan
Prior art keywords
polyester
fluid
polyester fiber
fiber
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001182823A
Other languages
Japanese (ja)
Inventor
Hirokazu Nishimura
浩和 西村
Yasuo Ota
康雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2001182823A priority Critical patent/JP2003003324A/en
Publication of JP2003003324A publication Critical patent/JP2003003324A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyester fiber having high strength, high elastic modulus and low shrinkage by compatibilizing high strength, high elastic modulus and low shrinkage which are unattainable by conventional polyester fiber. SOLUTION: The polyester fiber is produced by extruding a molten polyester from a spinneret, taking up the extruded fiber at a speed of 1,500-4,000 m/min and drawing the fiber in or after the treatment with a supercritical fluid or a fluid similar to the supercritical fluid at 20-100 deg.C under a pressure of 7-25 MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業資材用に適し
たポリエステル繊維及びその製造方法に関するものであ
り、特に高強度、高弾性率、低収縮を有するポリエステ
ル繊維及びその繊維を製造する方法を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester fiber suitable for industrial materials and a method for producing the same, and more particularly to a polyester fiber having high strength, high elastic modulus and low shrinkage and a method for producing the fiber. It is provided.

【0002】[0002]

【従来の技術】ポリエステルタイヤコードに代表される
ポリエステル高強力糸は物性面、コスト面でのバランス
に優れた有機繊維であり、産業資材用繊維として広くか
つ大量に使用されている。中でも、自動車タイヤ特に乗
用車用タイヤは、タイヤ構造のラジアル化が進み、高速
走行時の乗り心地や操縦安定性が優れ、かつ、燃費節約
のため、軽量であることが要求されており、そのため、
タイヤ補強用繊維としては、高強力で高弾性率かつ低収
縮性繊維が強く求められている。また、大型タイヤに使
用する場合には、耐疲労性の向上が要望される。
2. Description of the Related Art A polyester high-strength yarn represented by a polyester tire cord is an organic fiber having an excellent balance in physical properties and cost, and is widely and widely used as a fiber for industrial materials. Among them, automobile tires, particularly passenger car tires, are required to be lightweight in order to improve the ride comfort and steering stability during high-speed traveling, and to save fuel consumption, because the tire structure is becoming more radial.
As a fiber for reinforcing a tire, a fiber having high strength, high elastic modulus and low shrinkage is strongly demanded. Further, when used for a large tire, improvement in fatigue resistance is required.

【0003】このような市場の要求に対して、たとえ
ば、特公昭58−4089号公報や特公昭63−528
号公報に見られるような高速紡糸による高張力により高
配向未延伸糸を得、これを延伸することで、寸法安定性
に優れ、弾性率も高いポリエステル繊維が提案されてい
る。また、特公平1−27164号公報には紡糸速度2
000〜5500m/分で引き取った複屈折率Δnが
0.113に至るような、さらに高配向の未延伸糸を延
伸することで優れた高弾性率、低収縮率繊維を得る方法
が提案されている。
In order to meet such market demands, for example, Japanese Patent Publication No. 58-4089 and Japanese Patent Publication No. 63-528.
A polyester fiber having excellent dimensional stability and a high elastic modulus has been proposed by obtaining a highly oriented undrawn yarn by high tension by high speed spinning as seen in Japanese Patent Laid-Open Publication No. JP-A No. 2003-242242 and drawing it. Further, Japanese Patent Publication No. 1-276164 discloses a spinning speed of 2
There has been proposed a method for obtaining an excellent high elastic modulus and low shrinkage ratio fiber by drawing a highly oriented undrawn yarn having a birefringence Δn of 0.113 of 2,000 to 5,500 m / min. There is.

【0004】このように、より高速紡糸化することでよ
り高弾性率、低収縮なポリエステル繊維が得られること
が知られているものの、同時に繊維の強度低下が起こ
り、産業資材用繊維として好ましくない。この強度低下
の原因は、紡糸の高速化による単糸間もしくは単糸内の
糸斑が原因と考えられており、特に単糸内の糸表面部と
中心部の配向或いは構造差に起因する欠陥構造の凝集が
主要な原因であると考えられている。
As described above, it is known that a polyester fiber having a higher elastic modulus and a lower shrinkage can be obtained by spinning at a higher speed, but at the same time, the strength of the fiber is lowered, which is not preferable as a fiber for industrial materials. . It is considered that the cause of this decrease in strength is yarn unevenness between single yarns or within single yarns due to high-speed spinning, and in particular, the defect structure due to the orientation or structural difference between the yarn surface portion and the central portion within the single yarn. Is believed to be the main cause.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は十分な
強度を持つ低収縮、高弾性率ポリエステル繊維およびそ
の製造方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a low shrinkage, high elastic modulus polyester fiber having sufficient strength and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】即ち本発明は、ポリエス
テルを紡糸口金から溶融吐出した後、1500〜400
0m/分の引き取り速度で引き取り、次いで超臨界流体
またはそれに類する流体で処理する際にもしくはその後
に延伸することにより達成される。具体的には引き取っ
た後のポリエステル繊維の複屈折率Δnが0.8以上で
あることを特徴とする上記記載のポリエステル繊維の製
造方法。超臨界流体またはそれに類する流体の主成分が
二酸化炭素で有ることを特徴とする上記記載のポリエス
テル繊維の製造方法。超臨界流体またはそれに類する流
体での処理温度が20℃以上100℃以下であることを
特徴とする上記記載のポリエステル繊維の製造方法。超
臨界流体またはそれに類する流体での処理圧力が7MP
a以上25MPa以下であることを特徴とする上記記載の
ポリエステル繊維の製造方法。超臨界流体またはそれに
類する流体での処理時間Tが以下の関係式の範囲内であ
ることを特徴とする上記記載のポリエステル繊維の製造
方法。0.3×D<T<1.5×D T:処理時間(分)
D:単糸繊度(dtex)延伸倍率が2倍〜5倍であること
を特徴とする上記記載のポリエステル繊維の製造方法。
That is, according to the present invention, after polyester is melted and discharged from a spinneret, 1500 to 400
This is achieved by drawing at a drawing speed of 0 m / min and then stretching during or after treatment with a supercritical fluid or a similar fluid. Specifically, the birefringence Δn of the polyester fiber after being taken out is 0.8 or more, and the method for producing a polyester fiber as described above. The main component of a supercritical fluid or a fluid similar thereto is carbon dioxide, wherein the method for producing a polyester fiber as described above. The method for producing a polyester fiber as described above, wherein the treatment temperature with the supercritical fluid or a fluid similar thereto is 20 ° C. or higher and 100 ° C. or lower. Processing pressure of supercritical fluid or similar fluid is 7MP
The method for producing a polyester fiber as described above, which is a or more and 25 MPa or less. The method for producing a polyester fiber as described above, wherein the treatment time T with the supercritical fluid or a fluid similar thereto is within the range of the following relational expression. 0.3 × D <T <1.5 × D T: Processing time (minutes)
D: Single yarn fineness (dtex) draw ratio is 2 to 5 times, The method for producing polyester fiber as described above, wherein

【0007】以下本発明を詳細に述べる。本発明におい
てポリエステルとは、テレフタル酸を主たる酸成分と
し、少なくとも一種のグリコール、好ましくはエチレン
グリコール、トリメチレングリコール、テトラメチレン
グリコールから選ばれた少なくとも一種のアルキレング
リコールを主たるグリコール成分とするポリエステルを
対象とする。また、テレフタル酸成分の一部を他の二官
能性カルボン酸成分で置き換えたポリエステルであって
もよく、および/またはグリコール成分の一部を主成分
以外の上記グリコールもしくは他のジオール成分で置き
換えたポリエステルであってもよい。ここで使用される
テレフタル酸以外の二官能性カルボン酸としては、例え
ばイソフタル酸、ナフタレンジカルボン酸、ジフェニル
ジカルボン酸、ジフェノキシエタンジカルボン酸、β−
ヒドロキシエトキシ安息香酸、p−オキシ安息香酸、ア
ジピン酸、セバシン酸、1,4−シクロヘキサンジカル
ボン酸の如き芳香族、脂肪族、脂環族の二官能性カルボ
ン酸を挙げることができる。また上記グリコール以外の
ジオール成分としては、例えばシクロヘキサン−1,4
−ジメタノール、ネオペンチルグリコールビスフェノー
ルA、ビスフェノールSの如き脂肪族、脂環族、芳香族
のジオール化合物およびポリオキシアルキレングリコー
ル等を挙げることができる。さらに、ポリエステルが実
質的に線状である範囲でトリメリット酸、ピロメリット
酸の如きポリカルボン酸、グリセリン、トリメチロール
プロパン、ペンタエリスリトールの如きポリオール、5
−ヒドロキシイソフタル酸、3,5−ジヒドロキシ安息
香酸の如き三官能以上のエステル形成基を有するモノマ
ーを使用することができる。
The present invention will be described in detail below. The polyester in the present invention is a polyester having terephthalic acid as a main acid component and at least one glycol, preferably at least one alkylene glycol selected from ethylene glycol, trimethylene glycol and tetramethylene glycol as a main glycol component. And Further, it may be a polyester in which a part of the terephthalic acid component is replaced with other difunctional carboxylic acid component, and / or a part of the glycol component is replaced with the above-mentioned glycol or other diol component other than the main component. It may be polyester. Examples of the bifunctional carboxylic acid other than terephthalic acid used here include isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid, β-
Examples thereof include aromatic, aliphatic and alicyclic bifunctional carboxylic acids such as hydroxyethoxybenzoic acid, p-oxybenzoic acid, adipic acid, sebacic acid and 1,4-cyclohexanedicarboxylic acid. Examples of the diol component other than the glycol include cyclohexane-1,4
Examples thereof include aliphatic, alicyclic and aromatic diol compounds such as dimethanol, neopentyl glycol bisphenol A and bisphenol S, and polyoxyalkylene glycol. Further, polycarboxylic acids such as trimellitic acid and pyromellitic acid, polyols such as glycerin, trimethylolpropane and pentaerythritol, and 5 in the range where the polyester is substantially linear.
A monomer having a trifunctional or higher functional ester-forming group such as hydroxyisophthalic acid or 3,5-dihydroxybenzoic acid can be used.

【0008】本発明においては、上記のジカルボン酸成
分とジオール成分から構成されるポリエステル繊維は、
その繰り返し単位の80モル%以上がエチレンテレフタ
レート単位であることが特に好ましい。
In the present invention, the polyester fiber composed of the above dicarboxylic acid component and diol component is
It is particularly preferable that 80 mol% or more of the repeating units are ethylene terephthalate units.

【0009】さらに、前記ポリエステル中には少量の他
の任意の重合体や酸化防止剤、制電剤、染色改良剤、染
料、顔料、艶消剤、蛍光増白剤、不活性微粒子その他の
添加剤が含有されていてもよい。特に不活性微粒子を添
加する場合は外部析出法および内部析出法のいずれも採
用可能である。
Further, a small amount of any other polymer, an antioxidant, an antistatic agent, a dye improving agent, a dye, a pigment, a matting agent, an optical brightening agent, inert fine particles and the like are added to the polyester. The agent may be contained. In particular, when adding inert fine particles, either the external precipitation method or the internal precipitation method can be adopted.

【0010】かかるポリエステルを得る方法としては、
特別な重合条件を採用する必要はなく、ジカルボン酸お
よび/またはそのエステル形成性誘導体とグリコールと
の反応生成物を重縮合して、ポリエステルにする際に採
用される任意の方法で合成することができる。
As a method of obtaining such polyester,
It is not necessary to employ special polymerization conditions, and the reaction product of a dicarboxylic acid and / or its ester-forming derivative and a glycol can be polycondensed to be synthesized by any method adopted for producing a polyester. it can.

【0011】本発明のポリエステル繊維の製造において
は、常法の製糸条件を採用できるが、紡糸速度は150
0〜4000m/分、好ましくは2000〜4000m
/分で紡糸される。1500m/分以下の紡糸速度では
本発明の改質ポリエステルをもってしても、通常の紡糸
条件では、紡糸時の配向結晶化を進行せしめるのに十分
な紡糸応力を与えることができない。ポリマーの重合度
を上げ、溶融粘度をあげることで、1500m/分以下
の紡糸速度でも、配向結晶化を生じさせることは可能で
はあるが、固相重合のコストが大きくなり、かつ生産性
も低くコストの高いものとなってしまい、実用的でな
い。
In the production of the polyester fiber of the present invention, conventional spinning conditions can be adopted, but the spinning speed is 150.
0 to 4000 m / min, preferably 2000 to 4000 m
Spinned at a speed of 1 / min. Even with the modified polyester of the present invention at a spinning speed of 1500 m / min or less, under ordinary spinning conditions, sufficient spinning stress for promoting oriented crystallization during spinning cannot be imparted. It is possible to induce oriented crystallization even at a spinning speed of 1500 m / min or less by increasing the degree of polymerization of the polymer and increasing the melt viscosity, but the cost of solid phase polymerization increases and the productivity is low. It is expensive and impractical.

【0012】また、4000m/分以上の紡糸すること
は、理論的な生産性を考えると好ましいが、紡糸時に発
生する、随伴流の制御など工学的に解決しなければなら
ない問題が大きくなり、紡糸装置などの改造を実施しな
ければ、紡糸での糸切れが多発し、好ましくない。
Spinning at a speed of 4000 m / min or more is preferable in view of theoretical productivity, but the problems that must be solved engineeringly, such as the control of the accompanying flow that occurs during spinning, become large, and spinning Unless the device is modified, yarn breakage during spinning occurs frequently, which is not preferable.

【0013】上記のように高速で引き取られ、配向が高
い繊維は一般に糸断面方向に構造差が生じており、スキ
ンすなわち繊維外層側は高配向度かつ結晶化しており、
コアすなわち内層部分は配向度が低い状態にある。
As described above, the fibers that are drawn at a high speed and have a high orientation generally have a structural difference in the yarn cross-sectional direction, and the skin, that is, the fiber outer layer side, has a high degree of orientation and is crystallized.
The core, that is, the inner layer portion has a low degree of orientation.

【0014】本発明において超臨界流体とは、臨界温度
および臨界圧力を超えた温度および圧力下の流動体をい
う。この状態は気相および液相のどちらに属するともい
えない状態であり、密度は液体と同程度であるにもかか
わらず、気体と同程度の運動性を持つ。このため、超臨
界流体には繊維構造物の細部まで浸透しポリエステルを
可塑化するという利点がある。
In the present invention, the supercritical fluid means a fluid at a temperature and pressure exceeding the critical temperature and the critical pressure. This state is a state in which it cannot be said that it belongs to either the gas phase or the liquid phase, and has the same degree of mobility as that of gas, although the density is about the same as that of liquid. Therefore, the supercritical fluid has the advantage that it permeates even the details of the fiber structure and plasticizes the polyester.

【0015】この超臨界流体の浸透、およびそれによる
可塑化は従来の可塑剤等による可塑化とは異なり、ポリ
エステル結晶内部にまで浸透し、結晶自体を可塑化する
効果がある。またこの超臨界流体により処理されたポリ
エステルは処理後もその構造をある程度保ち、可塑化さ
れた状態を保っている。なお、二酸化炭素の臨界温度は
31.1℃、臨界圧力は7.2MPaである。
The permeation of the supercritical fluid and the plasticization by it have the effect of permeating even into the inside of the polyester crystal and plasticizing the crystal itself unlike the conventional plasticization by a plasticizer or the like. Further, the polyester treated with this supercritical fluid retains its structure to some extent and retains its plasticized state even after the treatment. The carbon dioxide has a critical temperature of 31.1 ° C. and a critical pressure of 7.2 MPa.

【0016】また、本発明でいう超臨界流体に類する流
体とは上記のようにポリエステルに対し可塑化する効果
を有する流体であり、具体的には亜臨界状態にある流体
のことを言う。亜臨界状態にある流体とは、臨界温度或
いは臨界圧力以上である流体を指し、本発明では特に臨
界圧力以上である流体を指す。高圧状態にある流体は超
臨界状態と同様に繊維構造物の細部まで浸透しポリエス
テルを可塑化するため、本発明において超臨界状態と同
様の作用を有する。
The fluid similar to the supercritical fluid in the present invention is a fluid having the effect of plasticizing the polyester as described above, and specifically refers to a fluid in a subcritical state. The fluid in the subcritical state refers to a fluid having a critical temperature or a critical pressure or higher, and particularly a fluid having a critical pressure or higher in the present invention. Since the fluid in the high pressure state penetrates into the details of the fiber structure and plasticizes the polyester as in the supercritical state, it has the same effect as in the supercritical state in the present invention.

【0017】上記のように超臨界もしくは亜臨界状態に
ある二酸化炭素は高分子を可塑化する効果があり、内部
まで超臨界もしくは亜臨界流体が浸透しない短時間で処
理した場合、繊維外層の配向のみが緩和されるため糸の
外層と内層の配向差が減少するため延伸倍率が飛躍的に
向上し、高強度、高弾性率、低収縮のポリエステル繊維
が得られることとなる。
As described above, carbon dioxide in the supercritical or subcritical state has the effect of plasticizing the polymer, and when treated for a short time so that the supercritical or subcritical fluid does not penetrate into the interior, the orientation of the fiber outer layer Since only this is relaxed, the orientation difference between the outer layer and the inner layer of the yarn is reduced, the draw ratio is dramatically improved, and a polyester fiber having high strength, high elastic modulus, and low shrinkage can be obtained.

【0018】本発明における超臨界もしくは亜臨界流体
の主成分としては二酸化炭素が好ましい。二酸化炭素は
比較的低温、低圧力から超臨界状態となり、超臨界流体
として扱いやすく、基本的に不活性で有るため処理中の
ポリエステルとの反応がないため処理を行いやすい。
Carbon dioxide is preferred as the main component of the supercritical or subcritical fluid in the present invention. Carbon dioxide enters a supercritical state from a relatively low temperature and a low pressure, is easy to handle as a supercritical fluid, and is basically inert, so that it does not react with the polyester being processed, and thus is easy to process.

【0019】本発明における超臨界もしくは亜臨界流体
によるポリエステル繊維の処理温度は20℃以上、10
0℃以下さらに好ましくは20℃以上80℃以下であ
る。処理温度が低すぎると繊維外層の緩和が行えず、処
理温度が高いと繊維内層の結晶化を誘因するため、延伸
倍率低下につながるからである。
The treatment temperature of the polyester fiber with the supercritical or subcritical fluid in the present invention is 20 ° C. or higher and 10
It is 0 ° C. or lower, more preferably 20 ° C. or higher and 80 ° C. or lower. This is because if the treatment temperature is too low, the fiber outer layer cannot be relaxed, and if the treatment temperature is high, crystallization of the fiber inner layer is induced, leading to a reduction in the draw ratio.

【0020】処理圧力は好ましくは7MPa以上25M
Pa以下、さらに好ましくは15MPa以上20MPa以
下である。処理圧力が低すぎると外層の緩和が行えない
ため好ましくない。外層の緩和を進める観点からは処理
圧力は高い方が好ましいが装置の能力或いはコスト的な
観点から実質的に25MPa以上の圧力は製造上困難が
伴い実用的ではない。
The processing pressure is preferably 7 MPa or more and 25 M
Pa or less, more preferably 15 MPa or more and 20 MPa or less. If the treatment pressure is too low, the outer layer cannot be relaxed, which is not preferable. From the viewpoint of promoting the relaxation of the outer layer, it is preferable that the treatment pressure is high, but from the viewpoint of the capacity of the apparatus or the cost, a pressure of 25 MPa or more is not practical because it is difficult to manufacture.

【0021】処理時間Tは以下の関係式の範囲内である
ことが好ましい。 0.3×D<T<1.5×D T:処理時間(分)D:単
糸繊度(dtex) 処理慈顔が短ければ外層の緩和が十分に進まないため好
ましくない。長すぎれば内層まで超臨界二酸化炭素の影
響が及び、内層がさらに緩和するもしくは結晶化し、延
伸倍率が低下するため好ましくない。超臨界流体または
それに類する流体が内層まで到達する時間は当然単糸繊
度に依存し、上記式の範囲内で有れば内層までの浸透を
防ぎ且つ外装部分の緩和を進めることが可能である。
The processing time T is preferably within the range of the following relational expression. 0.3 × D <T <1.5 × D T: Treatment time (minutes) D: Single yarn fineness (dtex) If the treated face is short, the relaxation of the outer layer does not proceed sufficiently, which is not preferable. If it is too long, the influence of supercritical carbon dioxide extends to the inner layer, the inner layer is further relaxed or crystallized, and the draw ratio decreases, which is not preferable. The time required for the supercritical fluid or a similar fluid to reach the inner layer naturally depends on the fineness of the single yarn, and if it is within the range of the above formula, it is possible to prevent the penetration to the inner layer and promote the relaxation of the exterior portion.

【0022】本発明では超臨界もしくは亜臨界流体よる
ポリエステル繊維の処理中または処理後、定法に従い延
伸を行う。延伸方法は特に限定されておらず、例えばホ
ットローラー延伸、スチームジェット延伸、ピン延伸な
どの方法で延伸が可能である。
In the present invention, stretching is performed according to a standard method during or after the treatment of the polyester fiber with the supercritical or subcritical fluid. The stretching method is not particularly limited, and for example, hot roller stretching, steam jet stretching, pin stretching and the like can be used for stretching.

【0023】延伸温度は該ポリエステルのガラス転移点
以上、融点-20℃以下が好ましい。ガラス転移点以下
では糸斑などの原因となり強度が低下し、融点−20℃
以上では糸が融着するため強度低下の原因となる。
The stretching temperature is preferably above the glass transition point of the polyester and below the melting point of -20 ° C. Below the glass transition point, the strength decreases due to thread unevenness, and the melting point is -20 ° C.
The above causes the yarn to be fused, which causes a decrease in strength.

【0024】延伸倍率は超臨界もしくは亜臨界状態にあ
る二酸化炭素による処理前のポリエステル繊維の配向に
もよるが1.2倍以上5倍以下が好ましい。延伸倍率が
低ければ十分な強度が発現せず、本発明の目的を達成で
きない。延伸倍率が高ければ糸切れが多発し毛羽などの
原因となるばかりか強度低下の原因にもなり好ましくな
い。
The stretching ratio depends on the orientation of the polyester fiber before treatment with carbon dioxide in the supercritical or subcritical state, but is preferably 1.2 times or more and 5 times or less. If the stretching ratio is low, sufficient strength is not exhibited and the object of the present invention cannot be achieved. If the draw ratio is high, yarn breakage will occur frequently, causing not only fluff but also a decrease in strength.

【0025】[0025]

【実施例】以下、実施例で本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。なお各
種特性の評価方法は下記の方法に従った。固有粘度:ポ
リマーを0.4g/dlの濃度でパラクロロフェノール
/テトラクロロエタン=3/1混合溶媒に溶解し、30
℃において測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. The evaluation methods of various properties were according to the following methods. Intrinsic viscosity: The polymer was dissolved in a mixed solvent of parachlorophenol / tetrachloroethane = 3/1 at a concentration of 0.4 g / dl, and 30
It was measured at ° C.

【0026】強伸度:JIS−L1017の定義によ
り、20℃、65%RHの温湿度管理された部屋で24
時間放置後、引張試験機により、破断強度、破断伸度、
初期弾性率を得た。
Strength / elongation: According to the definition of JIS-L1017, 24 in a room temperature and humidity controlled at 20 ° C. and 65% RH.
After leaving for a period of time, a tensile strength tester, a breaking elongation,
The initial elastic modulus was obtained.

【0027】乾熱収縮率:試料をかせ状にとり、20
℃、65%RHの温調室に24時間以上放置したのち、
試料の0.1g/dに相当する荷重をかけて測定された
長さl0の試料を無張力状態で160℃のオーブン中に3
0分放置した後、オーブンから取り出して前記温調室で
4時間放置し、再び上記荷重をかけて測定した長さl1か
ら次式により算出した。 乾熱収縮率={(l0−l1)/l0}×100(%)
Dry heat shrinkage: Take a sample in a skein shape, and
After leaving it in the temperature control room at ℃ and 65% RH for more than 24 hours,
A sample with a length of l0 measured under a load equivalent to 0.1 g / d of the sample was placed in an oven at 160 ° C in a tensionless state for 3 hours.
After leaving it for 0 minutes, it was taken out from the oven, left for 4 hours in the temperature control room, and again calculated from the length l1 measured by applying the above load. Dry heat shrinkage = {(l0-l1) / l0} × 100 (%)

【0028】複屈折率Δn:偏光顕微鏡を用い、ベレッ
クコンペンセーター法により測定した。
Birefringence Δn: Measured by a Berek compensator method using a polarizing microscope.

【0029】(実施例1)反応器にテレフタル酸100
モル部、エチレングリコール200モル部、三酸化アン
チモン0.025モル部、安定剤としてトリエチルアミ
ン0.3モル部、をとり250℃、内圧2.5kg/c
m2で150分間脱水反応を行った。その後、徐々に昇
温および減圧し275℃、0.1mmHgにて所定トル
クまで重縮合反応を行った。反応終了後ポリマーを常法
に従ってチップ化し、さらに230℃、0.01mmHg
の真空下で固相重合を実施し、固有粘度1.0のポリエ
ステルチップを得た。これを紡糸温度310℃、巻取り
速度4000m/minで紡糸し巻き取った。得られた繊維
はΔn=0.110単糸繊度10dtexであった。得られ
た繊維を温度40℃、圧力20MPaの超臨界二酸化炭
素で10分間処理した後、スリットヒータでヒーター温
度120℃にて3倍延伸した。延伸した糸は強度10c
N/dtex、初期弾性率140cN/dtex、乾熱収縮率2.8
%であり、高強度、高弾性率、低収縮率なポリエステル
繊維であった。 (比較例1)実施例1と同様にしてポリマーを得、同様
に製糸したのち、スリットヒーターにてヒーター温度1
20℃にて1.7倍延伸を行った。得られた繊維は強度
6.5cN/dtex、初期弾性率140cN/dtex、乾熱収縮
率2.8%であり、高弾性率、低収縮であるものの強度
に劣る物であった。
(Example 1) 100 terephthalic acid was added to a reactor.
Take 250 parts by mole, ethylene glycol 200 parts by mole, antimony trioxide 0.025 parts by mole, and triethylamine 0.3 parts by mole as a stabilizer at an internal pressure of 2.5 kg / c.
The dehydration reaction was performed for 150 minutes at m2. Then, the temperature was gradually raised and the pressure was reduced to carry out a polycondensation reaction at 275 ° C. and 0.1 mmHg up to a predetermined torque. After the reaction is completed, the polymer is made into chips by a conventional method, and further 230 ° C, 0.01 mmHg
Solid phase polymerization was performed under vacuum to obtain a polyester chip having an intrinsic viscosity of 1.0. This was spun and wound at a spinning temperature of 310 ° C. and a winding speed of 4000 m / min. The obtained fiber had Δn = 0.110 single yarn fineness of 10 dtex. The obtained fiber was treated with supercritical carbon dioxide at a temperature of 40 ° C. and a pressure of 20 MPa for 10 minutes and then stretched 3 times at a heater temperature of 120 ° C. with a slit heater. Stretched yarn has a strength of 10c
N / dtex, initial elastic modulus 140 cN / dtex, dry heat shrinkage 2.8
%, And the polyester fiber had high strength, high elastic modulus, and low shrinkage. (Comparative Example 1) A polymer was obtained in the same manner as in Example 1 and, after spinning in the same manner, a heater temperature of 1 was obtained using a slit heater.
The film was stretched 1.7 times at 20 ° C. The obtained fiber had a strength of 6.5 cN / dtex, an initial elastic modulus of 140 cN / dtex and a dry heat shrinkage of 2.8%, and although it had a high elastic modulus and low shrinkage, it was inferior in strength.

【0030】[0030]

【発明の効果】従来のポリエステル繊維では両立できな
かった高強度化と高弾性率、低収縮化を両立し、強度、
弾性率、低収縮すべてに優れたポリエステル繊維を提供
可能になった。
[Effects of the Invention] High strength, high elastic modulus, and low shrinkage, which were not compatible with conventional polyester fibers, are achieved.
We are now able to provide polyester fibers with excellent elasticity and low shrinkage.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ポリエステルを紡糸口金から溶融吐出した
後、1500〜4000m/分の引き取り速度で引き取
り、次いで超臨界流体またはそれに類する流体で処理す
る際にもしくはその後に延伸することを特徴とするポリ
エステル繊維の製造方法。
1. A polyester characterized in that after the polyester is melted and discharged from a spinneret, the polyester is drawn at a drawing speed of 1500 to 4000 m / min, and then stretched when or after being treated with a supercritical fluid or a similar fluid. Fiber manufacturing method.
【請求項2】引き取った後のポリエステル繊維の複屈折
率Δnが0.8以上であることを特徴とする請求項1記
載のポリエステル繊維の製造方法。
2. The method for producing a polyester fiber according to claim 1, wherein the birefringence Δn of the polyester fiber after being taken out is 0.8 or more.
【請求項3】超臨界流体またはそれに類する流体の主成
分が二酸化炭素で有ることを特徴とする請求項1または
2記載のポリエステル繊維の製造方法。
3. The method for producing a polyester fiber according to claim 1, wherein the main component of the supercritical fluid or a fluid similar thereto is carbon dioxide.
【請求項4】超臨界流体またはそれに類する流体での処
理温度が20℃以上100℃以下であることを特徴とす
る請求項1〜3のいずれかに記載のポリエステル繊維の
製造方法。
4. The method for producing a polyester fiber according to claim 1, wherein the treatment temperature with the supercritical fluid or a fluid similar thereto is 20 ° C. or higher and 100 ° C. or lower.
【請求項5】超臨界流体またはそれに類する流体での処
理圧力が7MPa以上25MPa以下であることを特徴と
する請求項1〜4のいずれかに記載のポリエステル繊維
の製造方法。
5. The method for producing a polyester fiber according to claim 1, wherein the treatment pressure of the supercritical fluid or a fluid similar thereto is 7 MPa or more and 25 MPa or less.
【請求項6】超臨界流体またはそれに類する流体での処
理時間Tが以下の関係式の範囲内であることを特徴とす
る請求項1〜5のいずれかに記載のポリエステル繊維の
製造方法。 0.3×D<T<1.5×D T:処理時間(分)D:単
糸繊度(dtex)
6. The method for producing a polyester fiber according to claim 1, wherein the treatment time T with the supercritical fluid or a fluid similar thereto is within the range of the following relational expression. 0.3 × D <T <1.5 × D T: Processing time (min) D: Single yarn fineness (dtex)
【請求項7】延伸倍率が2倍〜5倍であることを特徴と
する請求項1〜6のいずれかに記載のポリエステル繊維
の製造方法。
7. The method for producing a polyester fiber according to claim 1, wherein the draw ratio is 2 to 5 times.
JP2001182823A 2001-06-18 2001-06-18 Method for producing polyester fiber Withdrawn JP2003003324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182823A JP2003003324A (en) 2001-06-18 2001-06-18 Method for producing polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182823A JP2003003324A (en) 2001-06-18 2001-06-18 Method for producing polyester fiber

Publications (1)

Publication Number Publication Date
JP2003003324A true JP2003003324A (en) 2003-01-08

Family

ID=19022847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182823A Withdrawn JP2003003324A (en) 2001-06-18 2001-06-18 Method for producing polyester fiber

Country Status (1)

Country Link
JP (1) JP2003003324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328613A (en) * 2005-05-30 2006-12-07 Tokyo Institute Of Technology Polyester fiber
JP2006328612A (en) * 2005-05-30 2006-12-07 Tokyo Institute Of Technology Method for producing polyester fiber
EP1690881A4 (en) * 2003-12-04 2007-09-12 Teijin Fibers Ltd Polyester, process for producing the same, fiber, and polymerization catalyst for polyester
CN109537088A (en) * 2018-11-24 2019-03-29 开氏石化股份有限公司 A kind of manufacturing method of different contraction terylene low stretch yarn

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1690881A4 (en) * 2003-12-04 2007-09-12 Teijin Fibers Ltd Polyester, process for producing the same, fiber, and polymerization catalyst for polyester
JP2006328613A (en) * 2005-05-30 2006-12-07 Tokyo Institute Of Technology Polyester fiber
JP2006328612A (en) * 2005-05-30 2006-12-07 Tokyo Institute Of Technology Method for producing polyester fiber
JP4588538B2 (en) * 2005-05-30 2010-12-01 旭化成せんい株式会社 Method for producing polyester fiber
CN109537088A (en) * 2018-11-24 2019-03-29 开氏石化股份有限公司 A kind of manufacturing method of different contraction terylene low stretch yarn
CN109537088B (en) * 2018-11-24 2021-03-23 开氏石化股份有限公司 Method for manufacturing different-shrinkage polyester low-stretch yarns

Similar Documents

Publication Publication Date Title
KR101238983B1 (en) Polyester fiber, process for producing the polyester fiber, and tire code, tire, fiber material for reinforcing belt and belt each comprising the polyester fiber
JP4928308B2 (en) Polyethylene naphthalate fiber for industrial materials and production method thereof
KR101734892B1 (en) Process for preparing polyethylene terephthalate filament having excellent dimensional stability
KR20200120225A (en) High thermostable Polyethylene terephthalate cord and its manufacturing method
JP2011058116A (en) Tire cord and tire produced by using the same
JP2005023505A (en) High tenacity polyethylene-2,6-naphthalate fiber excellent in spinnability
JPH06511293A (en) High modulus polyester yarn for tire cord and composites
KR101878787B1 (en) Dimensionally stable polyethyleneterephthalate tire cord, method of manufacturing the same and tire including the same
JP2003003324A (en) Method for producing polyester fiber
KR100235758B1 (en) High modulous polyester yarn for tire cord and composites and the manufacture method
JP7498264B2 (en) Polyester tire cord with excellent heat resistance and tire including same
KR101968993B1 (en) Dimensionally stable polyethyleneterephthalate tire cord, method of manufacturing the same and tire including the same
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR20070059609A (en) Method for manufacturing polyethylene-2,6-naphthalate fibers having improved indexes of evenness
KR102166025B1 (en) Process for manufacturing high modulus low shrinkage polyethylene terephthalate fiber and the polyethylene terephthalate fiber manufactured thereby
JP4319468B2 (en) Polyester fiber and method for producing the same
KR100630269B1 (en) High performance radial tire
JPS62276016A (en) Production of polyester yarn
KR100618397B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100488605B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100618398B1 (en) High tenacity polyethylene naphthalate tire cord, and high performance tire producted by the same
JPH0532491B2 (en)
JP2002061038A (en) Polytrimethylene terephthalate fiber
KR100505016B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and process for preparing the same
JPS591713A (en) Production of polyethylene terephthalate fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100121