Nothing Special   »   [go: up one dir, main page]

JP2003002632A - Ultrafine silica particle having uniform diameter, and method for manufacturing the same - Google Patents

Ultrafine silica particle having uniform diameter, and method for manufacturing the same

Info

Publication number
JP2003002632A
JP2003002632A JP2001178013A JP2001178013A JP2003002632A JP 2003002632 A JP2003002632 A JP 2003002632A JP 2001178013 A JP2001178013 A JP 2001178013A JP 2001178013 A JP2001178013 A JP 2001178013A JP 2003002632 A JP2003002632 A JP 2003002632A
Authority
JP
Japan
Prior art keywords
dendrimer
ultrafine
alkoxysilane
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001178013A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsutani
寛 松谷
Yutaka Honda
裕 本田
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001178013A priority Critical patent/JP2003002632A/en
Publication of JP2003002632A publication Critical patent/JP2003002632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ultrafine silica particles having 1-100 nm average particle diameter distribution of which is simple dispersing type. SOLUTION: The ultrafine silica particles are manufactured by the following processes (a), (b), and (c); the process (a): a dendorimer having a reactive functional group, which reacts with isocyanates, at a branch terminal and an alkoxysilane as a reaction reagent having isocyanate group are reacted together to obtain a dendorimer having an alkoxysilyl group at the branch terminal (silyl dendorimer), a process (b): an alkoxysilane at the branch terminal (surface layer) of the dendorimer having the alkoxysilyl group at the branch terminal (silyl dendorimer) is hydrolyzed and dehydrated and condensated to obtain a precursor of the ultrafine silica particles, a process (c): the precursor is added with an alkoxysilane and reacted to laminate a silica layer on the surface layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリカ超微粒子と
その製造法に関するものである。更に詳しくは、高性能
触媒、研磨剤、光学材料、半導体材料、あるいはナノテ
クノロジー分野に好適に使用される粒揃いのシリカ被覆
超微粒子、及びその製造法に関するものである。
TECHNICAL FIELD The present invention relates to ultrafine silica particles and a method for producing the same. More specifically, the present invention relates to a high performance catalyst, an abrasive, an optical material, a semiconductor material, or silica particles coated with silica, which are suitable for use in the field of nanotechnology, and a method for producing the same.

【0002】[0002]

【従来の技術】粒径が概ね0.1〜10μmの微粒子
は、古くから、セメント、化粧品、電子コピー用トナー
等の構成材料として用いられている。粒径が0.1μm
(100nm)以下の微粒子(以下、超微粒子ともい
う。)も知られていて、これらは、セラミックス、磁気
テープ、超LSI素子等の分野で用いられている。
2. Description of the Related Art Fine particles having a particle size of approximately 0.1 to 10 μm have been used as a constituent material for cement, cosmetics, toner for electronic copying, etc. for a long time. Particle size is 0.1 μm
Fine particles of 100 nm or less (hereinafter, also referred to as ultrafine particles) are also known, and these are used in the fields of ceramics, magnetic tapes, VLSI elements, and the like.

【0003】この0.1μm(100nm)以下の超微
粒子の製造法としては、金属アルコキシド加水分解法、
共沈法、無機塩加水分解法、噴霧乾燥法、プラズマ法、
レーザー法等の方法が知られていて、nmオーダーの超
微粒子を得ることも可能である。また、上記製造法のう
ち、金属アルコキシド加水分解法は広く使われる方法
で、金属アルコキシドとしてアルコキシシランを用いた
場合にはアルコキシシランの(酸又は塩基触媒による)
加水分解と、それに続く脱水縮合反応とを利用する方法
である(日本化学会編、超微粒子−科学と応用−、化学
総説No.48、学会出版センター(1985);下
平、石島:日化誌、1981、1503−1505)。
As a method for producing ultrafine particles of 0.1 μm (100 nm) or less, a metal alkoxide hydrolysis method,
Coprecipitation method, inorganic salt hydrolysis method, spray drying method, plasma method,
A method such as a laser method is known, and it is possible to obtain ultrafine particles of nm order. Further, among the above-mentioned production methods, the metal alkoxide hydrolysis method is a widely used method. When alkoxysilane is used as the metal alkoxide, the alkoxysilane is converted to an alkoxysilane (by an acid or base catalyst).
It is a method of utilizing hydrolysis and subsequent dehydration condensation reaction (edited by the Chemical Society of Japan, ultrafine particles-science and application-, Chemistry Review No. 48, Academic Publishing Center (1985); Shimohira, Ishijima: Nikkashi. , 1981, 1503-1505).

【0004】[0004]

【本発明が解決しようとする課題】しかし、上記金属ア
ルコキシド加水分解法は、nmオーダーの超微粒子を製
造できるものの、得られる超微粒子の粒径分布は通常、
多分散型(粒径分布のピークが二つ以上)を示す。本発
明の目的は、超微粒子の粒径分布が単分散型(粒径分布
のピークは一つ)で、粒径の揃ったシリカ超微粒子の製
造法、及びその製造法により得られる粒揃いのシリカ超
微粒子を提供することである。
However, although the above metal alkoxide hydrolysis method can produce ultrafine particles on the order of nm, the obtained ultrafine particles generally have a particle size distribution.
It shows a polydisperse type (two or more peaks in the particle size distribution). The object of the present invention is to provide a method for producing silica ultrafine particles having a monodisperse type particle size distribution (there is one peak in the particle size distribution), and a silica particle having a uniform particle size obtained by the production method. It is to provide ultrafine particles.

【0005】[0005]

【課題を解決するための手段】本発明者らは、粒径分布
が単分散型(粒径分布のピークが一つ)で粒径分布が狭
いシリカ超微粒子を得るため、種々検討している過程
で、(アルコキシシリル基をもたない)有機成分のデン
トリマーの末端にアルコキシシリル基を容易に導入する
方法を見出し、これを発展させて本発明を完成するに至
った。
Means for Solving the Problems The present inventors have conducted various studies to obtain ultrafine silica particles having a monodispersed particle size distribution (one peak in the particle size distribution) and a narrow particle size distribution. In the process, a method for easily introducing an alkoxysilyl group at the terminal of a dentrimer of an organic component (having no alkoxysilyl group) was found, and this method was developed to complete the present invention.

【0006】すなわち、本発明は、次の(b)及び
(c)の工程を含んでなるシリカ超微粒子の製造法であ
る。 工程(b):「分枝末端にアルコキシシリル基をもつデ
ンドリマー」(シリル化デンドリマー)の分枝末端(表
層)のアルコキシシランを加水分解し、脱水縮合し、シ
リカ超微粒子前駆体とする工程; 工程(c):前記前駆体に、新たにアルコキシシランを
加えて反応させ、その表層にシリカ層を積層させる工
程。
That is, the present invention is a method for producing ultrafine silica particles, which comprises the following steps (b) and (c). Step (b): a step of hydrolyzing the alkoxysilane at the branched end (surface layer) of the "dendrimer having an alkoxysilyl group at the branched end" (silylated dendrimer), dehydration-condensation to give a silica ultrafine particle precursor; Step (c): a step of newly adding an alkoxysilane to the precursor and causing the precursor to react, and laminating a silica layer on the surface layer thereof.

【0007】ここで、上記製造法において、工程(b)
の前に、次の工程(a)を行うことができる。 工程(a):イソシアナートと反応できる官能基を分枝
末端にもつデンドリマーと、イソシアナート基をもつア
ルコキシシラン(反応試薬)とを反応させて、「分枝末
端にアルコキシシリル基をもつデンドリマー」(シリル
化デンドリマー)とする工程;
Here, in the above manufacturing method, step (b)
The following step (a) can be carried out before. Step (a): A dendrimer having a functional group capable of reacting with an isocyanate at a branched end is reacted with an alkoxysilane having an isocyanate group (reaction reagent) to give a “dendrimer having an alkoxysilyl group at a branched end”. (Silylated dendrimer);

【0008】本発明は、また、上記製造法により得られ
るシリカ超微粒子である。その超微粒子の粒径分布は単
分散型で、その平均粒径は1nm〜100nmの範囲内
にあるシリカ超微粒子である。シリカ超微粒子の平均粒
径は、通常は1nm〜100nm(好ましくは5nm〜
100nm、更に好ましくは5nm〜50nm)で、そ
の粒径分布は単分散型を示し、また粒揃いである。な
お、シリカ超微粒子の粒径は、製造条件を変えることで
適宜に調整できる。
The present invention is also ultrafine silica particles obtained by the above production method. The particle size distribution of the ultrafine particles is monodisperse type, and the average particle size is silica ultrafine particles in the range of 1 nm to 100 nm. The average particle diameter of the ultrafine silica particles is usually 1 nm to 100 nm (preferably 5 nm to
100 nm, more preferably 5 nm to 50 nm), the particle size distribution shows a monodisperse type, and the particles are even. The particle size of the ultrafine silica particles can be appropriately adjusted by changing the production conditions.

【0009】なお、ここで、粒径分布は動的光散乱測定
法又は光子相関分光法(具体的には、コールターカウン
ター)によって求めた値とする。上記動的光散乱測定法
又は光子相関分光法に代えて他の方法、例えば、電子顕
微鏡、沈降法、X−線回折法などによっても求めてもよ
い。また、本発明の「シリカ超微粒子」とは、主たる構
成成分が組成式SiOで示されるもので、厳密には
「シリカ被覆超微粒子」と呼ぶほうが適当かも知れな
い。しかし、超微粒子の特性は、その内部の性質に余り
影響されず、粒子表面付近の性質に左右されるので、
「シリカ被覆超微粒子」を単に「シリカ超微粒子」と呼
ぶことにする。また、「デンドリマー」とは、三次元的
に分岐した多分枝化合物を意味し、規則性が高く分子量
分布の狭い多分枝化合物を意味する。図1に、デンドリ
マー(第3世代デンドリマーの例)の模式図を示した。
The particle size distribution is a value obtained by a dynamic light scattering measurement method or a photon correlation spectroscopy method (specifically, Coulter counter). Instead of the above dynamic light scattering measurement method or photon correlation spectroscopy, other methods such as electron microscope, sedimentation method, X-ray diffraction method and the like may be used. The “silica ultrafine particles” of the present invention are those whose main constituent component is represented by the composition formula SiO 2 , and strictly speaking, it may be more appropriate to call them “silica-coated ultrafine particles”. However, the properties of ultrafine particles are not so much influenced by the properties inside the particles, and depend on the properties near the particle surface.
The “silica-coated ultrafine particles” will be simply referred to as “silica ultrafine particles”. Further, the “dendrimer” means a three-dimensionally branched multibranched compound, which means a multibranched compound having high regularity and a narrow molecular weight distribution. FIG. 1 shows a schematic diagram of a dendrimer (an example of a third generation dendrimer).

【0010】[0010]

【発明の実施の形態】以下、本発明を更に詳細に説明す
る。本発明のシリカ超微粒子の製造法の概要を図2に示
す。以下、工程の順に説明する。 <工程(a)>イソシアナートと反応できる官能基を分
枝末端にもつデンドリマー(基質デンドリマー)と、イ
ソシアナート基をもつアルコキシシラン(反応試薬)と
を反応させて、「分枝末端にアルコキシシリル基をもつ
デンドリマー」(シリル化デンドリマー)をつくる工
程:
The present invention will be described in more detail below. An outline of the method for producing ultrafine silica particles of the present invention is shown in FIG. Hereinafter, the steps will be described in order. <Step (a)> A dendrimer having a functional group capable of reacting with an isocyanate at a branched end (substrate dendrimer) is reacted with an alkoxysilane having an isocyanate group (reaction reagent) to produce “alkoxysilyl at a branched end”. To create a dendrimer with groups "(silylated dendrimer):

【0011】(デンドリマー)デンドリマーの分枝末端
の官能基は、イソシアナートと反応できる官能基であ
り、そのような基としては、水酸基(−OH;フェノー
ル性又はアルコール性)、一級アミノ基(−NH)、
二級アミノ基、カルボキシル基(−COOH)、チオー
ル基(−SH)等であり、いずれも活性水素を含有する
基である。これらのうち、一級アミノ基又は水酸基は、
反応試薬のイソシアナート基との反応性に優れ、多くの
アルコキシシリル基を導入できるので好ましい。デンド
リマーの末端分枝の数又は活性水素の数は、通常、4個
以上であり、その上限はデンドリマーの世代数により定
まってくる。
(Dendrimer) The functional group at the branched end of the dendrimer is a functional group capable of reacting with an isocyanate, and examples of such a group include a hydroxyl group (--OH; phenolic or alcoholic), a primary amino group (-). NH 2 ),
A secondary amino group, a carboxyl group (—COOH), a thiol group (—SH), and the like, all of which are groups containing active hydrogen. Of these, primary amino groups or hydroxyl groups are
It is preferable because it has excellent reactivity with the isocyanate group of the reaction reagent and can introduce many alkoxysilyl groups. The number of terminal branches or the number of active hydrogens of the dendrimer is usually 4 or more, and the upper limit thereof is determined by the number of generations of the dendrimer.

【0012】デンドリマーの具体的なものとしては、ポ
リアミドアミン系デンドリマー、プロピレンイミン系デ
ンドリマー(特公平7−330631号公報)、Che
m.Rev.,97,1681(1997)やPoly
m.Prep.,40(2),978(1999))、
あるいは特開2000−73055号公報、特開200
0−26597号公報等で示されたデンドリマーがあ
る。これらの中には、市販品として入手できるものもあ
る。デンドリマーの一例の構造式を図3に示した。用い
るデンドリマーの大きさは、目的のシリカ超微粒子の大
きさを考慮して決めればよい。世代数で表すと概ね3〜
10世代の中から選ぶことになる。
Specific examples of the dendrimer include polyamidoamine-based dendrimers, propyleneimine-based dendrimers (Japanese Patent Publication No. 7-330631), and Che.
m. Rev. , 97, 1681 (1997) and Poly
m. Prep. , 40 (2), 978 (1999)),
Alternatively, JP-A-2000-73055 and JP-A-200
There is a dendrimer disclosed in JP-A No. 0-26597. Some of these are commercially available. The structural formula of an example of the dendrimer is shown in FIG. The size of the dendrimer used may be determined in consideration of the size of the target ultrafine silica particles. Generally expressed in terms of the number of generations
You will have to choose from 10 generations.

【0013】(反応試薬)上記デンドリマーと反応させ
る「イソシアナート基をもつアルコキシシラン」(反応
試薬)としては、次の式(1)〔化1〕で示す化合物が
好適に用いられる。
(Reaction Reagent) As the "alkoxysilane having an isocyanate group" (reaction reagent) which is reacted with the dendrimer, a compound represented by the following formula (1) [Chemical Formula 1] is preferably used.

【0014】[0014]

【化1】 (式中、nは0又は1であり、Gは2価の有機基であ
り、Rは置換されていてもよい炭素数1〜8のアルキ
ル基又はフェニル基であり、Rは置換されていてもよ
い炭素数1〜8のアルキル基又はフェニル基である。) 2価の有機基であるGは、更に具体的には、置換されて
いてもよい炭素数1〜6の飽和又は不飽和のアルキレン
基やアリーレン基である。
[Chemical 1] (In the formula, n is 0 or 1, G is a divalent organic group, R 1 is an optionally substituted alkyl group having 1 to 8 carbon atoms or a phenyl group, and R 2 is substituted. Which is an optionally substituted alkyl group having 1 to 8 carbon atoms or a phenyl group.) More specifically, G, which is a divalent organic group, is an optionally substituted saturated or unsaturated group having 1 to 6 carbon atoms. It is a saturated alkylene group or an arylene group.

【0015】このような反応試薬としては、例えば、3
−(トリエトキシシリル)プロピルイソシアナートをは
じめとする、(ω−イソシアナートアルキル)トリエト
キシシランがあり、これは市販品を入手できる。
As such a reaction reagent, for example, 3
There are (ω-isocyanatoalkyl) triethoxysilanes, including-(triethoxysilyl) propylisocyanate, which are commercially available.

【0016】反応試薬の使用量は、デンドリマーの活性
水素1モル等量に対して0.1モル等量〜2.0モル等
量、好ましくは、0.2モル等量〜1.8モル等量、更
に好ましくは、1.0モル等量〜1.5モル等量であ
る。
The amount of the reaction reagent used is 0.1 mol equivalent to 2.0 mol equivalent, preferably 0.2 mol equivalent to 1.8 mol equivalent to 1 mol equivalent of active hydrogen of the dendrimer. Amount, more preferably 1.0 molar equivalent to 1.5 molar equivalents.

【0017】(溶媒ほか)また、本発明における反応で
は、原料であるデンドリマー及び反応試薬がそれぞれ低
粘度の液体であれば、溶媒を用いることなく行わせるこ
とができる。しかし、反応液の流動性を保つためには、
好ましくは、溶媒を適量用いる。溶媒としては、反応を
阻害したり、副反応を進行させない溶媒を選ぶ。例え
ば、ペンタン、シクロペンタン、ヘキサン、シクロヘキ
サン、ヘプタン、オクタン、ベンゼン、トルエン、キシ
レン、ジクロロメタン、ジクロロエタン、クロロホル
ム、四塩化炭素、ジクロロベンゼン、アセトン、メチル
エチルケトン、酢酸エチル、酢酸ブチル、ジエチルエー
テル、テトラヒドロフラン、ジオキサン、エチルセロソ
ルブアセテート、ジエチレングリコールジメチルエーテ
ル、N,N−ジメチルホルムアミド、N,N−ジメチル
アセトアミド、N−メチルピロリドン、ジメチルスルホ
キシド、ジメチルスルホンなどである。これらは2種類
以上を組み合わせて使用してもよい。
(Solvent, etc.) In addition, the reaction in the present invention can be carried out without using a solvent if the dendrimer as a raw material and the reaction reagent are liquids each having a low viscosity. However, in order to maintain the fluidity of the reaction solution,
Preferably, a proper amount of solvent is used. As the solvent, a solvent that does not inhibit the reaction or promote the side reaction is selected. For example, pentane, cyclopentane, hexane, cyclohexane, heptane, octane, benzene, toluene, xylene, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, dichlorobenzene, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, diethyl ether, tetrahydrofuran, dioxane. , Ethyl cellosolve acetate, diethylene glycol dimethyl ether, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, dimethyl sulfone and the like. You may use these in combination of 2 or more types.

【0018】(その他の反応条件)本発明の「分枝末端
にアルコキシシリル基をもつデンドリマー」(シリル化
デンドリマー)を製造する際のデンドリマー、反応試薬
又は溶媒等はどんな順序で加えてもよい。反応は、通
常、大気圧中で撹拌混合しながら行う。水分由来の副反
応を抑えるためには、好ましくは乾燥気流下で行い、更
に好ましくは乾燥窒素や乾燥アルゴン下で行う。また、
反応促進のため加圧又は減圧下に行ってもよい。
(Other Reaction Conditions) The dendrimer, the reaction reagent, the solvent and the like for producing the "dendrimer having an alkoxysilyl group at the branched end" (silylated dendrimer) of the present invention may be added in any order. The reaction is usually carried out at atmospheric pressure with stirring and mixing. In order to suppress side reactions derived from water, the reaction is preferably carried out under a dry air flow, more preferably under dry nitrogen or dry argon. Also,
It may be carried out under pressure or under reduced pressure to accelerate the reaction.

【0019】反応温度は、反応を進行させるため、−1
00℃〜200℃(又は溶媒還流温度)、好ましくは−
30℃〜150℃、更に好ましくは0℃〜100℃とす
る。200℃を越えると副生成物が生じやすい。0℃〜
100℃の範囲であれば水での加熱又は冷却が可能であ
り、危険が少なく、汎用の設備で合成でき、エネルギー
消費量も低減できる。
The reaction temperature is -1 in order to allow the reaction to proceed.
00 ° C to 200 ° C (or solvent reflux temperature), preferably-
The temperature is 30 ° C to 150 ° C, more preferably 0 ° C to 100 ° C. If the temperature exceeds 200 ° C, by-products are likely to occur. 0 ℃ ~
If it is in the range of 100 ° C., it can be heated or cooled with water, is less dangerous, can be synthesized by general-purpose equipment, and energy consumption can be reduced.

【0020】反応時間は、十分な反応率を考慮すると、
通常5分〜72時間、好ましくは1時間〜24時間、更
に好ましく1時間〜12時間である。5分未満では十分
に反応しない場合がある。
Considering a sufficient reaction rate, the reaction time is
It is usually 5 minutes to 72 hours, preferably 1 hour to 24 hours, and more preferably 1 hour to 12 hours. If it is less than 5 minutes, it may not react sufficiently.

【0021】反応の終点は、ガスクロマトグラフィー、
高速液体クロマトグラフィー、薄相クロマトグラフィ
ー、核磁気共鳴スペクトル、及び赤外吸収スペクトル等
によって確認できる。
The end point of the reaction is gas chromatography,
It can be confirmed by high performance liquid chromatography, thin phase chromatography, nuclear magnetic resonance spectrum, infrared absorption spectrum and the like.

【0022】反応終了後、生成物を反応容器から取り出
し、そのまま目的のデンドリマー(粗精製物)としても
よい。これを更に、蒸留や再結晶の精製操作により、反
応に用いた溶媒や反応試薬を除去すれば、更に純度の良
いシリル化デンドリマーが得られる。反応液を水中に分
散させ、ペンタン、ヘキサン、ヘプタン、ベンゼン、ト
ルエン、ジエチルエーテル、酢酸エチル、ジクロロメタ
ン、ジクロロエタン、クロロホルム、ブタノール等の有
機溶媒で抽出し、抽出液は硫酸ナトリウム、硫酸マグネ
シウム、塩化カルシウム等で乾燥した後、濃縮して溶媒
等を留去し、反応試薬を除去し、純度の高いシリル化デ
ンドリマーを得ることもできる。以上の操作によって得
られたシリル化デンドリマーを、蒸留、再結晶、再沈
殿、カラムクロマトグラフィー、ゲルパーミエーション
クロマトグラフィー(GPC)、分取HPLC等を組み
合わせて更に精製してもよい。
After completion of the reaction, the product may be taken out from the reaction vessel and used as it is as a target dendrimer (crude product). By further removing the solvent and the reaction reagent used in the reaction by a purification operation such as distillation or recrystallization, a silylated dendrimer with higher purity can be obtained. The reaction solution is dispersed in water and extracted with an organic solvent such as pentane, hexane, heptane, benzene, toluene, diethyl ether, ethyl acetate, dichloromethane, dichloroethane, chloroform, butanol, and the extract solution is sodium sulfate, magnesium sulfate, calcium chloride. It is also possible to obtain a highly pure silylated dendrimer by removing the reaction reagent by concentrating the solvent and the like by distilling it off after drying with etc. The silylated dendrimer obtained by the above operation may be further purified by combining distillation, recrystallization, reprecipitation, column chromatography, gel permeation chromatography (GPC), preparative HPLC and the like.

【0023】このようにして得られるシリル化デンドリ
マーの末端部(アルコキシシリル基)は、次の式(2)
〔化2〕で表される。
The terminal portion (alkoxysilyl group) of the silylated dendrimer thus obtained has the following formula (2).
It is represented by [Chemical Formula 2].

【化2】 (式中、n、G、R、Rは、前記式(1)中におけ
る意味と同じ。)。
[Chemical 2] (In the formula, n, G, R 1 and R 2 have the same meaning as in the formula (1)).

【0024】なお、上記(a)の工程を行うことなく、
公知のシリル化デンドリマーを用いてもよい。そのよう
なシリル化デンドリマーとしては、特開平2000−4
4579号公報に記載されたカルボシロキサンデンドリ
マーや、Macromolecules,33,356
6−3578(2000)又は特開平11−26383
7号公報に記載されたポリ(アミドアミン−オルガノシ
リコン)デンドリマーなどがある。
It should be noted that, without carrying out the step (a),
Known silylated dendrimers may be used. As such a silylated dendrimer, JP-A 2000-4 is known.
Carbosiloxane dendrimers described in Japanese Patent No. 4579 and Macromolecules, 33, 356.
6-3578 (2000) or JP-A-11-26383.
There are poly (amidoamine-organosilicon) dendrimers described in Japanese Patent No.

【0025】<工程(b)>前記シリル化デンドリマー
の分枝末端(表層)のアルコキシシランを加水分解し、
脱水縮合し、「シリカ超微粒子前駆体」とする工程:先
ず、シリル化デンドリマーを溶媒で溶かし、水および触
媒を加えて、シリル化デンドリマーの末端アルコキシシ
リル基を加水分解する。 (溶媒、水、触媒など)用いる溶媒は、反応液の流動性
を保つため、あるいはシリル化デンドリマー同士の凝集
を防ぐためである。溶媒としては、シリル化デンドリマ
ーの溶解性が高く、アルコキシシリル基の加水分解・縮
合に影響のないものを選択する。例えば、ペンタン、シ
クロペンタン、ヘキサン、シクロヘキサン、ヘプタン、
オクタン、ベンゼン、トルエン、キシレン、ジクロロメ
タン、ジクロロエタン、クロロホルム、四塩化炭素、ジ
クロロベンゼン、アセトン、メチルエチルケトン、酢酸
エチル、酢酸ブチル、ジエチルエーテル、テトラヒドロ
フラン、ジオキサン、エチルセロソルブアセテート、ジ
エチレングリコールジメチルエーテル、N,N−ジメチ
ルホルムアミド、N,N−ジメチルアセトアミド、N−
メチルピロリドン、ジメチルスルホキシド、ジメチルス
ルホン、プロピレングリコールモノプロピルエーテルな
どである。これらは2種類以上を組み合わせて使用して
もよい。
<Step (b)> The alkoxysilane at the branched end (surface layer) of the silylated dendrimer is hydrolyzed,
Step of dehydration condensation to obtain “silica ultrafine particle precursor”: First, the silylated dendrimer is dissolved in a solvent, water and a catalyst are added, and the terminal alkoxysilyl group of the silylated dendrimer is hydrolyzed. The solvent (solvent, water, catalyst, etc.) is used to maintain the fluidity of the reaction solution or to prevent aggregation of silylated dendrimers. As the solvent, a solvent having a high solubility of the silylated dendrimer and having no influence on the hydrolysis / condensation of the alkoxysilyl group is selected. For example, pentane, cyclopentane, hexane, cyclohexane, heptane,
Octane, benzene, toluene, xylene, dichloromethane, dichloroethane, chloroform, carbon tetrachloride, dichlorobenzene, acetone, methyl ethyl ketone, ethyl acetate, butyl acetate, diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve acetate, diethylene glycol dimethyl ether, N, N-dimethyl. Formamide, N, N-dimethylacetamide, N-
Examples include methylpyrrolidone, dimethyl sulfoxide, dimethyl sulfone and propylene glycol monopropyl ether. You may use these in combination of 2 or more types.

【0026】用いる水は不純物を除去した水(蒸留水、
イオン交換水、限外濾過水など)を用いる。その使用量
は、少なすぎると加水分解が進行せず、多すぎると以降
の製造プロセスにおいて副反応が起きやすい。シリル化
デンドリマーのシリル基1モルに対して、1〜5モル程
度が好ましい。
The water used is water from which impurities have been removed (distilled water,
Ion exchange water, ultrafiltered water, etc.) is used. If the amount used is too small, hydrolysis will not proceed, and if it is too large, side reactions will easily occur in the subsequent manufacturing process. About 1 to 5 mol is preferable for 1 mol of the silyl group of the silylated dendrimer.

【0027】触媒は、アルコキシシラン類の加水分解・
縮合反応(他の金属アルコキシドの反応に比べて一般に
遅い)を促進するために用いる。触媒としては、アンモ
ニア水、アミン類、アルカリ金属の水酸化物、アルカリ
金属の炭酸塩などの塩基類、あるいは、塩酸、硫酸、硝
酸、シュウ酸、マレイン酸、p−トルエンスルホン酸、
トリフルオロメタンスルホン酸などの酸類を用いる。触
媒の使用量は、シリル化デンドリマーのシリル基1モル
に対して、0.01〜1モル程度が好ましい。なお、水
と触媒とは別々に加えるよりも、水と触媒との混合液を
加えるほうが好ましい。末端アルコキシシリル基の加水
分解・縮合反応に際し、凝集などの副反応を抑制できる
からである。
The catalyst is used for hydrolysis of alkoxysilanes.
Used to accelerate the condensation reaction (generally slower than other metal alkoxide reactions). As the catalyst, bases such as aqueous ammonia, amines, alkali metal hydroxides and alkali metal carbonates, or hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, maleic acid, p-toluenesulfonic acid,
Acids such as trifluoromethanesulfonic acid are used. The amount of the catalyst used is preferably about 0.01 to 1 mol with respect to 1 mol of the silyl group of the silylated dendrimer. It should be noted that it is preferable to add a mixed solution of water and the catalyst, rather than adding the water and the catalyst separately. This is because side reactions such as aggregation can be suppressed during the hydrolysis / condensation reaction of the terminal alkoxysilyl group.

【0028】反応は、通常、大気圧中で撹拌混合しなが
ら行う。また、窒素やアルゴン下で行ってもよい。さら
に、反応促進のため加圧又は減圧下に行ってもよい。反
応温度は、反応を進行させるため、−100℃〜200
℃(又は溶媒還流温度)、好ましくは−30℃〜150
℃、更に好ましくは0℃〜100℃とする。200℃を
越えると多分散型の粒径分布となりやすい。0℃〜10
0℃の範囲であれば水での加熱又は冷却が可能であり、
危険が少なく、汎用の設備で合成でき、エネルギー消費
量も低減できる。
The reaction is usually carried out at atmospheric pressure with stirring and mixing. Alternatively, it may be performed under nitrogen or argon. Further, it may be carried out under pressure or under reduced pressure to accelerate the reaction. The reaction temperature is −100 ° C. to 200 ° C. for the reaction to proceed.
C (or solvent reflux temperature), preferably -30 to 150
C., more preferably 0 to 100.degree. If it exceeds 200 ° C., a polydisperse type particle size distribution tends to be obtained. 0 ℃ ~ 10
Heating or cooling with water is possible within the range of 0 ° C,
It is less dangerous, can be synthesized with general-purpose equipment, and can reduce energy consumption.

【0029】反応時間は、十分な反応率を考慮すると、
通常5分〜72時間、好ましくは1時間〜24時間、更
に好ましく1時間〜12時間である。5分未満では十分
に反応しない場合がある。
Considering a sufficient reaction rate, the reaction time is
It is usually 5 minutes to 72 hours, preferably 1 hour to 24 hours, and more preferably 1 hour to 12 hours. If it is less than 5 minutes, it may not react sufficiently.

【0030】反応の終点は、ガスクロマトグラフィー、
高速液体クロマトグラフィー、薄相クロマトグラフィ
ー、核磁気共鳴スペクトル、あるいは赤外吸収スペクト
ル等によって確認できる。
The end point of the reaction is gas chromatography,
It can be confirmed by high performance liquid chromatography, thin phase chromatography, nuclear magnetic resonance spectrum, infrared absorption spectrum or the like.

【0031】以上の操作によって、初めに用いたデンド
リマーを核として、その表面側にアルコキシシリル基由
来のシリカ薄膜を形成した「シリカ超微粒子前駆体」を
得る。この場合、反応液は前記超微粒子前駆体、溶媒、
触媒及び過剰の水を含む混合物である。前記超微粒子前
駆体を分離することなく、そのまま次の工程へ移ること
ができる。
By the above operation, a "silica ultrafine particle precursor" having a silica thin film derived from an alkoxysilyl group formed on the surface side of the dendrimer initially used as a nucleus is obtained. In this case, the reaction liquid is the ultrafine particle precursor, a solvent,
A mixture containing a catalyst and excess water. The ultrafine particle precursor can be directly transferred to the next step without being separated.

【0032】<工程(c)>「シリカ超微粒子前駆体」
に、新たにアルコキシシランを加えて反応させ、その表
層にシリカ層を積層させる工程:引き続いて、シリカ超
微粒子前駆体の表面に更にシリカ層を積層する。まず、
前述の混合液中に式(3)〔化3〕で表されるアルコキ
シシランを加える。
<Step (c)>"Silica ultrafine particle precursor"
Then, a step of newly adding and reacting the alkoxysilane and laminating a silica layer on the surface layer thereof: subsequently, further laminating a silica layer on the surface of the silica ultrafine particle precursor. First,
An alkoxysilane represented by the formula (3) [Chemical Formula 3] is added to the above-mentioned mixed liquid.

【0033】[0033]

【化3】 (式中、R,R,R,Rは、それぞれ独立に、
水素原子、炭素数1〜8のアルキル基、フェニル基、ビ
ニル基および炭素数1〜6までのアルコキシル基から選
ばれ、少なくとも1つは炭素数1〜6のアルコキシル基
である。)
[Chemical 3] (In the formula, R 3 , R 4 , R 5 , and R 6 are each independently
It is selected from a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a phenyl group, a vinyl group and an alkoxyl group having 1 to 6 carbon atoms, and at least one is an alkoxyl group having 1 to 6 carbon atoms. )

【0034】このようなアルコキシシランは、具体的に
は、テトラメトキシシラン、トリメトキシメチルシラ
ン、ジメトキシジメチルシラン、メトキシトリメチルシ
ラン、テトラエトキシシラン、トリエトキシメチルシラ
ン、ジエトキシジメチルシラン、エトキシトリメチルシ
ランなどがある。これらは2種類以上を組み合わせて使
用してもよい。
Specific examples of such alkoxysilanes include tetramethoxysilane, trimethoxymethylsilane, dimethoxydimethylsilane, methoxytrimethylsilane, tetraethoxysilane, triethoxymethylsilane, diethoxydimethylsilane and ethoxytrimethylsilane. There is. You may use these in combination of 2 or more types.

【0035】アルコキシシランの使用量は、少なすぎる
とシリカ超微粒子前駆体の表面上にシリカが積層せず、
多すぎると過剰のアルコキシシランが単独で粒子を形成
して多分散型の粒径分布となりやすい。シリル化デンド
リマーのシリル基1モルに対して、1〜10モル程度が
好ましい。
If the amount of alkoxysilane used is too small, silica will not be laminated on the surface of the silica ultrafine particle precursor,
If the amount is too large, the excess alkoxysilane alone forms particles, and a polydispersed particle size distribution tends to occur. About 1 to 10 mol is preferable for 1 mol of the silyl group of the silylated dendrimer.

【0036】アルコキシシランを加え、撹拌し、必要が
あれば溶媒(前記したものから選ぶ)で希釈しながら、
0.5時間〜6時間程度、撹拌する。撹拌時の反応液の
温度は概ね−100℃〜200℃(又は溶媒還流温度)
である。
While adding the alkoxysilane, stirring, and if necessary diluting with a solvent (selected from the above),
Stir for about 0.5 to 6 hours. The temperature of the reaction liquid at the time of stirring is generally -100 ° C to 200 ° C (or solvent reflux temperature).
Is.

【0037】次に、水および触媒(水と触媒との混合液
が好ましい)を加え、シリカ超微粒子前駆体の表面上で
アルコキシシランの加水分解・縮合を行う。加える水の
量は、アルコキシシラン1モルに対して1〜5モル程度
が好ましく、触媒の量はアルコキシシラン1モルに対し
て0.01〜1モル程度が好ましい。
Next, water and a catalyst (preferably a mixed solution of water and a catalyst) are added to carry out hydrolysis / condensation of alkoxysilane on the surface of the silica ultrafine particle precursor. The amount of water added is preferably about 1 to 5 mol per mol of alkoxysilane, and the amount of the catalyst is preferably about 0.01 to 1 mol per mol of alkoxysilane.

【0038】このアルコキシシランの加水分解・縮合に
おける、水、触媒、反応温度、反応時間等の反応条件
は、先の工程(b)における「シリル化デンドリマーの
加水分解と縮合」の反応条件と同様である。
In the hydrolysis / condensation of this alkoxysilane, the reaction conditions such as water, catalyst, reaction temperature and reaction time are the same as the reaction conditions of "hydrolysis and condensation of silylated dendrimer" in the above step (b). Is.

【0039】更に粒子径の大きなシリカ超微粒子とする
ためには、アルコキシシランの添加、及びその加水分解
・縮合を繰り返せばよい。
In order to obtain ultrafine silica particles having a larger particle size, addition of alkoxysilane and its hydrolysis / condensation may be repeated.

【0040】(ターミネーション)得られたシリカ超微
粒子が微粒子同士で凝集するのを防ぐため、好ましく
は、粒子表面に存在するシラノール残基をクロロシラン
で保護する(ターミネーション)。そのようなクロロシ
ランとしては、トリメチルクロロシラン、トリエチルク
ロロシラン、tert−ブチルジメチルクロロシランな
どが挙げられる。クロロシランの添加量は、アルコキシ
シラン総量(100重量部)に対して10〜1000重
量部程度が好ましい。また、ターミネーションに要する
時間は、0.5時間〜24時間程度である。また、ター
ミネーション時の反応液の温度は概ね−100℃〜20
0℃(又は溶媒還流温度)である。
(Termination) In order to prevent the obtained ultrafine silica particles from aggregating with each other, preferably, silanol residues present on the particle surface are protected with chlorosilane (termination). Examples of such chlorosilanes include trimethylchlorosilane, triethylchlorosilane, and tert-butyldimethylchlorosilane. The addition amount of chlorosilane is preferably about 10 to 1000 parts by weight with respect to the total amount of alkoxysilane (100 parts by weight). The time required for termination is about 0.5 to 24 hours. In addition, the temperature of the reaction liquid at the time of termination is approximately −100 ° C. to 20 ° C.
0 ° C. (or solvent reflux temperature).

【0041】その後、シリカ超微粒子の粒径分布を動的
光散乱測定法又は光子相関分光法(コールターカウンタ
ー)によって測定する。粒径のそろったシリカ超微粒子
が得られる。このシリカ超微粒子を基板等に塗布する場
合、溶媒を含んだまま塗布してもよい。また、溶媒を緩
やかに留去して乾燥粉体としたのち、(適当な溶媒を用
いて再度懸濁させたのち)塗布してもよい。
Thereafter, the particle size distribution of the ultrafine silica particles is measured by a dynamic light scattering measuring method or a photon correlation spectroscopy (Coulter counter). Ultrafine silica particles of uniform particle size are obtained. When the silica ultrafine particles are applied to a substrate or the like, they may be applied while containing the solvent. Alternatively, the solvent may be gently distilled off to give a dry powder, and then the powder may be applied (after resuspending with a suitable solvent).

【0042】このようにして得られたシリカ超微粒子
は、粒径分布は単分散型を示し、その平均粒径は1nm
〜100nm(好ましくは5nm〜100nm、更に好
ましくは5nm〜50nm)の範囲内にある。また、シ
リカ超微粒子の粒径の分布は、概ね正規分布しており、
そのバラツキは平均粒径10nmのとき約5nm又はそ
れ以下(変動係数で表現すれば、50%又はそれ以
下。)である。
The ultrafine silica particles thus obtained show a monodisperse particle size distribution, and the average particle size is 1 nm.
To 100 nm (preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm). In addition, the particle size distribution of the ultrafine silica particles is generally a normal distribution,
The variation is about 5 nm or less when the average particle diameter is 10 nm (50% or less if expressed by a coefficient of variation).

【0043】[0043]

【実施例】実施例1 (I) 末端シリル化デンドリマーの合成(工程a) 図3に示した構造式の第4世代ポリアミドアミン型デン
ドリマー(PAMAM−OH、分子量14,279、末
端水酸基64個含有(Aldrich社より購入))1
08mg(7.6×10−3mmol)のジメチルスル
ホキシド(5ml)溶液に、3−(トリエトキシシリ
ル)プロピル イソシアナート143mg(0.58m
mol)のジメチルスルホキシド(1ml)溶液を加
え、50℃で2時間撹拌した。反応終了後、減圧下に溶
媒および小過剰の3−(トリエトキシシリル)プロピル
イソシアナートを留去し、末端シリル化デンドリマー
225mg(収率:100%)を得た。
EXAMPLES Example 1 (I) Synthesis of terminal silylated dendrimer (step a) Fourth generation polyamidoamine type dendrimer (PAMAM-OH, molecular weight 14,279, containing 64 terminal hydroxyl groups) having the structural formula shown in FIG. (Purchased from Aldrich)) 1
To a solution of 08 mg (7.6 × 10 −3 mmol) in dimethyl sulfoxide (5 ml), 143 mg (0.58 m) of 3- (triethoxysilyl) propyl isocyanate
A dimethylsulfoxide (1 ml) solution of (mol) was added, and the mixture was stirred at 50 ° C. for 2 hours. After completion of the reaction, the solvent and a small excess of 3- (triethoxysilyl) propyl isocyanate were distilled off under reduced pressure to obtain 225 mg of terminal silylated dendrimer (yield: 100%).

【0044】IR:3400(br),2970
(w),1650(s),1570(s),1260
(w),1080(m),950(w)cm−1 H NMR:δ0.41−0.61(m,128
H),1.14(t,J=7.0Hz,576H),
1.30−1.55(m,128H),1.90−3.
25(m,996H),3.31−3.47(br,1
28H),3.73(q,J=7.0Hz,384
H),5.76−6.10+7.65−8.10(b
r,188H)13 C NMR:δ7,18,23,33,37,4
2,50,52,58,158,171,172
IR: 3400 (br), 2970
(W), 1650 (s), 1570 (s), 1260
(W), 1080 (m) , 950 (w) cm -1 1 H NMR: δ0.41-0.61 (m, 128
H), 1.14 (t, J = 7.0 Hz, 576H),
1.30-1.55 (m, 128H), 1.90-3.
25 (m, 996H), 3.31 to 3.47 (br, 1
28H), 3.73 (q, J = 7.0Hz, 384)
H), 5.76-6.10 + 7.65-8.10 (b
r, 188H) 13 C NMR: δ7,18,23,33,37,4
2,50,52,58,158,171,172

【0045】得られた末端シリル化デンドリマーの粒径
分布(ジメチルスルホキシド溶液)をCoulter
Counter N−4−SDで測定した(図4)。粒
径分布は単分散型を示し、平均粒径は7.8nmであっ
た。
The particle size distribution (dimethyl sulfoxide solution) of the obtained terminal silylated dendrimer was measured by Coulter.
It was measured by Counter N-4-SD (Fig. 4). The particle size distribution was monodisperse, and the average particle size was 7.8 nm.

【0046】(II) シリカ超微粒子の作製(工程b
及び工程c) 得られた末端シリル化デンドリマー376mg(1.3
×10−2mmol、約0.8mmolシリル基含有)
のジメチルスルホキシド(2.5ml)溶液に水32m
g(1.8mmol)とアンモニア水(29%)7mg
(0.12mmol)の混合液を加え、50℃で3時間
撹拌した。次にテトラメトキシシラン304mg(2.
0mmol)を加え、50℃で1時間撹拌した。反応液
をジメチルスルホキシド2mlで希釈した後、水81m
g(4.5mmol)とアンモニア水(29%)18m
g(0.3mmol)の混合液を加え、50℃で3時間
撹拌した。さらに、テトラメトキシシラン304mg
(2.0mmol)を加え、50℃で1時間撹拌した。
反応液をジメチルスルホキシド2mlで希釈した後、水
81mg(4.5mmol)とアンモニア水(29%)
18mg(0.3mmol)の混合液を加え、50℃で
3時間撹拌した。反応後、クロロトリメチルシラン17
4mg(1.6mmol)を加え、室温で一晩撹拌し
た。
(II) Preparation of ultrafine silica particles (step b)
And step c) 376 mg (1.3%) of the obtained terminal silylated dendrimer.
× 10 -2 mmol, containing about 0.8 mmol silyl group)
32m of water in dimethylsulfoxide (2.5ml) solution of
g (1.8 mmol) and aqueous ammonia (29%) 7 mg
A mixed solution of (0.12 mmol) was added, and the mixture was stirred at 50 ° C. for 3 hours. Next, 304 mg of tetramethoxysilane (2.
0 mmol) was added and the mixture was stirred at 50 ° C. for 1 hour. 81 ml of water after diluting the reaction solution with 2 ml of dimethyl sulfoxide
g (4.5 mmol) and ammonia water (29%) 18 m
A mixed solution of g (0.3 mmol) was added, and the mixture was stirred at 50 ° C. for 3 hours. Furthermore, 304 mg of tetramethoxysilane
(2.0 mmol) was added, and the mixture was stirred at 50 ° C. for 1 hr.
The reaction solution was diluted with 2 ml of dimethyl sulfoxide, and then 81 mg (4.5 mmol) of water and aqueous ammonia (29%)
A mixed solution of 18 mg (0.3 mmol) was added, and the mixture was stirred at 50 ° C. for 3 hours. After the reaction, chlorotrimethylsilane 17
4 mg (1.6 mmol) was added, and the mixture was stirred at room temperature overnight.

【0047】得られたシリカ超微粒子の粒径分布(ジメ
チルスルホキシド溶液)をCoulter Count
er N−4−SDで測定した(図5)。粒径分布は単
分散型で、平均粒径は11.7nm、標準偏差は4.8
nmであった。
The particle size distribution (dimethylsulfoxide solution) of the obtained silica ultrafine particles was measured by Coulter Count.
er N-4-SD (FIG. 5). The particle size distribution is monodisperse, the average particle size is 11.7 nm, and the standard deviation is 4.8.
was nm.

【0048】[0048]

【発明の効果】近年のエレクトロニクス技術の目覚しい
発展・進歩に伴い、エレクトロニクス技術分野への超微
粒子の応用(例えば、エレクトロニクス関連のナノサイ
ズデバイス向け絶縁材料、光導波路、フォトニック結
晶、発光材料、カラーフィルタ、太陽電池材料への応
用)及び期待が高まっている。本発明のシリカ超微粒子
は、単分散型で粒揃いの超微粒子であり、このような超
微粒子は従来得られていなかった。本発明のシリカ超微
粒子は、エレクトロニクス関連のナノサイズデバイス向
け絶縁材料、光導波路、フォトニック結晶、発光材料、
カラーフィルタ、太陽電池材料へ好適に使用され、ま
た、高性能触媒、研磨剤等にも好適に使用されうる。本
発明の製造法により、単分散型、粒揃いのシリカ超微粒
子を容易に製造することができる。
Industrial Applicability With the remarkable development and progress of electronics technology in recent years, application of ultrafine particles to the field of electronics technology (for example, insulating materials for nano-sized devices related to electronics, optical waveguides, photonic crystals, light emitting materials, color Applications to filters and solar cell materials) and expectations are increasing. The silica ultrafine particles of the present invention are monodisperse type and uniform particles, and such ultrafine particles have not been obtained hitherto. The silica ultrafine particles of the present invention are insulating materials for nano-sized devices related to electronics, optical waveguides, photonic crystals, light emitting materials,
It can be suitably used for color filters and solar cell materials, and can also be suitably used for high performance catalysts, abrasives and the like. By the production method of the present invention, it is possible to easily produce monodisperse type, uniform-particle silica ultrafine particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】デンドリマー(第3世代デンドリマー)の模式
図。
FIG. 1 is a schematic diagram of a dendrimer (third generation dendrimer).

【図2】シリカ超微粒子の製造法の概要。FIG. 2 is an outline of a method for producing ultrafine silica particles.

【図3】用いたデンドリマーの一例(PAMAM−O
H、分子量14,279)の構造式。
FIG. 3 is an example of a dendrimer used (PAMAM-O
H, molecular weight 14,279).

【図4】得られたシリル化デンドリマーの粒径分布。FIG. 4 is a particle size distribution of the obtained silylated dendrimer.

【図5】得られたシリカ超微粒子の粒径分布。FIG. 5 is a particle size distribution of the obtained ultrafine silica particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須佐 憲三 茨城県つくば市和台48 日立化成工業株式 会社総合研究所内 Fターム(参考) 4G072 AA25 BB05 DD06 DD07 GG01 GG03 HH30 MM01 RR05 TT01 TT02 UU01 UU15 UU30 4J031 CA07 CD26    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kenzo Susa             48 Wadai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd.             Company Research Institute F term (reference) 4G072 AA25 BB05 DD06 DD07 GG01                       GG03 HH30 MM01 RR05 TT01                       TT02 UU01 UU15 UU30                 4J031 CA07 CD26

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】次の(b)及び(c)の工程を含んでなる
シリカ超微粒子の製造法: (b)「分枝末端にアルコキシシリル基をもつデンドリ
マー」(シリル化デンドリマー)の分枝末端のアルコキ
シシランを加水分解し、脱水縮合し、シリカ超微粒子前
駆体とする工程; (c)前記前駆体に、新たにアルコキシシランを加えて
反応させ、その表層にシリカ層を積層させる工程。
1. A method for producing ultrafine silica particles comprising the following steps (b) and (c): (b) Branching of a "dendrimer having an alkoxysilyl group at a branched end" (silylated dendrimer) A step of hydrolyzing the terminal alkoxysilane and dehydrating and condensing it to obtain a silica ultrafine particle precursor; (c) A step of adding a new alkoxysilane to the precursor and reacting it, and laminating a silica layer on the surface layer.
【請求項2】シリル化デンドリマーとして、次の工程
(a)により得られるものを用いる、請求項1の製造
法: (a)イソシアナートと反応できる官能基を分枝末端に
もつデンドリマーと、イソシアナート基をもつアルコキ
シシラン(反応試薬)とを反応させて、「分枝末端にア
ルコキシシリル基をもつデンドリマー」(シリル化デン
ドリマー)とする工程;
2. The production method according to claim 1, wherein a silylated dendrimer obtained by the following step (a) is used: (a) a dendrimer having a functional group capable of reacting with an isocyanate at a branched end, and an isocyanate. A step of reacting with an alkoxysilane having a nato group (reaction reagent) to form a "dendrimer having an alkoxysilyl group at a branched end" (silylated dendrimer);
【請求項3】請求項1又は2の製造法により得られるシ
リカ超微粒子であって、その超微粒子の粒径分布は単分
散型で、その平均粒径は1nm〜100nmの範囲内に
あるシリカ超微粒子。
3. Ultrafine silica particles obtained by the method according to claim 1 or 2, wherein the ultrafine particles have a monodisperse particle size distribution and the average particle size is in the range of 1 nm to 100 nm. Ultra fine particles.
JP2001178013A 2001-06-13 2001-06-13 Ultrafine silica particle having uniform diameter, and method for manufacturing the same Pending JP2003002632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178013A JP2003002632A (en) 2001-06-13 2001-06-13 Ultrafine silica particle having uniform diameter, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178013A JP2003002632A (en) 2001-06-13 2001-06-13 Ultrafine silica particle having uniform diameter, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003002632A true JP2003002632A (en) 2003-01-08

Family

ID=19018774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178013A Pending JP2003002632A (en) 2001-06-13 2001-06-13 Ultrafine silica particle having uniform diameter, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003002632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085135A1 (en) * 2004-03-08 2005-09-15 Merck Patent Gmbh Method for the production of mono-dispersed sio2 particles
JP2006248845A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Regularly arrayed nanoparticle silica, and its manufacturing method
CN113000340A (en) * 2021-03-01 2021-06-22 陕西科技大学 Optically variable coating and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085135A1 (en) * 2004-03-08 2005-09-15 Merck Patent Gmbh Method for the production of mono-dispersed sio2 particles
US8163260B2 (en) 2004-03-08 2012-04-24 Merck Patent Gmbh Process for the production of monodisperse SiO2 particles
JP2006248845A (en) * 2005-03-10 2006-09-21 Japan Science & Technology Agency Regularly arrayed nanoparticle silica, and its manufacturing method
JP4643314B2 (en) * 2005-03-10 2011-03-02 独立行政法人科学技術振興機構 Regularly arranged nanoparticulate silica and method for producing the same
CN113000340A (en) * 2021-03-01 2021-06-22 陕西科技大学 Optically variable coating and preparation method thereof
CN113000340B (en) * 2021-03-01 2022-09-23 陕西科技大学 Optically variable coating and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4615214B2 (en) Well-defined nano-sized building blocks for organic / inorganic nanocomposites
US6927301B2 (en) Well-defined nanosized building blocks for organic/inorganic nanocomposites
JP2003523423A (en) Polyorganosilsesquioxane and method for producing the same
US7935425B2 (en) Insulating film material containing organic silane or organic siloxane compound, method for producing same, and semiconductor device
JPH069659A (en) Formation of siloxane bond
US11192085B2 (en) Block copolymer, and method for preparing graphene using same
JP2005248082A (en) Manufacturing process of polybenzoxazole resin precursor and manufacturing process of polybenzoxazole resin
CN101475179B (en) Preparation of organic-inorganic hybridization silicon oxide nanosphere
US8426614B2 (en) Epoxy compound and process for producing the epoxy compound
WO2019035417A1 (en) Silanol composition, cured product, adhesive, and method for curing silanol composition
JP2003002632A (en) Ultrafine silica particle having uniform diameter, and method for manufacturing the same
Giamberini et al. Hybrid organic–inorganic UV-cured films containing liquid-crystalline units
WO2004113407A1 (en) Novel polymer and production of nano-porous low dielectric polymer composite film using the same
JP4655790B2 (en) Silicon compounds
RU2451636C2 (en) Nanosized modified molecular silica sols and production method thereof
EP1539771A1 (en) Silyl alkyl esters of anthracene- and phenanthrene carboxylic acids
JP2932143B2 (en) Method for producing polysilane
JP4743467B2 (en) Dendrimers with alkoxysilyl groups at the branch ends
JP4655789B2 (en) Silicon compounds
CN114561015A (en) Dual-functional group T containing tetraene hexaphenyl10Cage-like silsesquioxane and preparation method thereof
JP2007211138A (en) Alicyclic polyether, its production method, and its use
JPH05310942A (en) Silsequioxane ladder polymer and its production
Liu et al. Tricyclic 6–8–6 laddersiloxanes derived from all-cis-tetravinylcyclotetrasiloxanolate: Synthesis, characterization and reactivity
JP2000133648A (en) Coating liquid for insulating film formation
JP2003531942A (en) Curable silicone resin composition and reactive silicon compound