JP2003000569A - Robot for aiding finger locomotion function recovery - Google Patents
Robot for aiding finger locomotion function recoveryInfo
- Publication number
- JP2003000569A JP2003000569A JP2001182912A JP2001182912A JP2003000569A JP 2003000569 A JP2003000569 A JP 2003000569A JP 2001182912 A JP2001182912 A JP 2001182912A JP 2001182912 A JP2001182912 A JP 2001182912A JP 2003000569 A JP2003000569 A JP 2003000569A
- Authority
- JP
- Japan
- Prior art keywords
- robot
- finger
- movement
- electrode
- artificial joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 68
- 238000011084 recovery Methods 0.000 title claims abstract description 32
- 230000006854 communication Effects 0.000 claims abstract description 15
- 238000004891 communication Methods 0.000 claims abstract description 15
- 210000004556 brain Anatomy 0.000 claims description 31
- 230000005057 finger movement Effects 0.000 claims description 12
- 238000010586 diagram Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 8
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000003086 colorant Substances 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 210000000707 wrist Anatomy 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 230000036541 health Effects 0.000 abstract description 4
- 208000029028 brain injury Diseases 0.000 abstract description 3
- 208000014674 injury Diseases 0.000 abstract description 3
- 208000027418 Wounds and injury Diseases 0.000 abstract description 2
- 230000006931 brain damage Effects 0.000 abstract description 2
- 231100000874 brain damage Toxicity 0.000 abstract description 2
- 230000006378 damage Effects 0.000 abstract description 2
- 230000000747 cardiac effect Effects 0.000 abstract 3
- 238000003745 diagnosis Methods 0.000 abstract 1
- 210000003811 finger Anatomy 0.000 description 29
- 238000012549 training Methods 0.000 description 19
- 230000006870 function Effects 0.000 description 17
- 230000007659 motor function Effects 0.000 description 6
- 208000014644 Brain disease Diseases 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 210000003813 thumb Anatomy 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 210000004720 cerebrum Anatomy 0.000 description 3
- 210000000337 motor cortex Anatomy 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000003925 brain function Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 210000004126 nerve fiber Anatomy 0.000 description 2
- 238000001584 occupational therapy Methods 0.000 description 2
- 238000000554 physical therapy Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 206010061296 Motor dysfunction Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000037147 athletic performance Effects 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 206010008118 cerebral infarction Diseases 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 210000004932 little finger Anatomy 0.000 description 1
- 238000011866 long-term treatment Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 210000004092 somatosensory cortex Anatomy 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Rehabilitation Tools (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ヒト手指1の運動
機能(能力)が脳機能の健全性と密接に関係している事
を基礎に、ヒト手指1の五指(親指21、人差し指2
2、中指23、環指24、小指25)の運動を計測し、
それを軌跡として空間表示し、且つ、脳の運動野の機能
低下あるいは機能喪失を検出する事を目的として、脳波
をFFT(高速フーリエ)周波数解析した結果を軌跡図
と同時にウインドウ枠として並べて表示することによ
り、手指の運動機能低下の計測、あるいは運動機能喪失
を回復するための自己訓練、あるいは人工関節親ロボッ
トハンド16の遠隔操作により人工関節子ロボットハン
ド3の運動の補助を受け訓練指導が可能な装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on the fact that the motor function (ability) of the human hand 1 is closely related to the soundness of brain function, and the five fingers of the human hand 1 (thumb 21, index finger 2).
2, the movement of the middle finger 23, the ring finger 24, the little finger 25) is measured,
This is displayed spatially as a locus, and the results of FFT (Fast Fourier) frequency analysis of the electroencephalogram are displayed side by side as a window frame together with the locus diagram for the purpose of detecting functional deterioration or loss of function of the brain motor cortex. By doing so, it is possible to measure the deterioration of the motor function of the fingers, perform self-training for recovering the loss of the motor function, or receive the assistance of the motion of the artificial joint child robot hand 3 by remote control of the artificial joint parent robot hand 16 to provide training guidance. Related equipment.
【0002】さらに、脳障害を受けた事のある被験者は
心臓など循環器系の異常が見られることが多く、本装置
には画像による顔色、目の動き、会話時の上下唇の動
き、心拍数、心拍間隔などの情報が双方向通信により医
師や療法士へモニターが可能な機能を含めた装置に関す
る。[0002] In addition, subjects who have had brain disorders often have abnormalities in the circulatory system such as the heart, and this device displays complexion, eye movements, movements of the upper and lower lips during conversation, and heartbeat. The present invention relates to a device including a function capable of monitoring information such as number and heartbeat interval by a two-way communication to a doctor or a therapist.
【0003】[0003]
【従来の技術】手指の運動機能低下や喪失は、靱帯、筋
肉、筋肉の運動を制御する脳における運動野、皮膚感覚
と深部知覚をつかさどる体性知覚野、脳と手指間のシグ
ナル伝達神経線維などが関連し、これらのいずれかに問
題が起こると現れる症状である。最も多いのは、運動野
に関連した脳疾患(脳梗塞、脳出血など)による障害で
あり、第三者による介護が必要となる場合が多い。その
ため、手指運動機能回復法としては理学療法、作業療法
に基づく医師や各療法士のマンツーマン指導による長期
間の治療がなされるのが現状である。2. Description of the Related Art Deterioration or loss of motor function of the fingers is caused by a motor area in the brain that controls the movements of the ligaments, muscles, and muscles, a somatosensory area that controls the cutaneous sensation and deep perception, and signaling nerve fibers between the brain and fingers. It is a symptom that appears when problems with any of these are related. The most common are disorders caused by brain diseases related to the motor cortex (cerebral infarction, cerebral hemorrhage, etc.), and often require care by a third party. Therefore, in the present situation, as a method for recovering finger movement function, long-term treatment is provided by one-on-one guidance of doctors and therapists based on physical therapy and occupational therapy.
【0004】本疾患は担当医や療法士の不足という現
状、本人や家族の負担も大きく、わが国の医療費負担増
をまねく一因となっている。このような状況において、
理学療法、作業療法と同等の効果があり、被験者ごとに
回復訓練プログラムの作成、且つ、訓練回復を補助する
ロボットの開発が望まれていた。また、脳障害の経験者
に対する機能回復訓練者の循環器系の検診を在宅で可能
とする計測器もなかった。[0004] The present condition, which is a shortage of doctors and therapists in charge, puts a heavy burden on the patient and his / her family, which is one of the causes of increasing the burden of medical expenses in Japan. In this situation,
It was desired to develop a recovery training program for each subject and to develop a robot that assists in training recovery, as it has the same effect as physical therapy and occupational therapy. In addition, there was no measuring instrument that could allow the functional recovery trainees to check the circulatory system at home for those who had experienced brain damage.
【0005】[0005]
【発明が解決しようとする課題】本発明は、まず手指の
運動能力の計測をするために、被験者に繰り返しの手指
の運動を行ってもらい、運動軌跡を表示部に重ねて色分
表示する機能を有する。本表示の運動軌跡曲線の時間変
化図、同時に計測される左右の脳機能の活動に関連した
脳波データが、運動軌跡曲線と並べて表示する機能を有
する。このようにして記録されたデータは、運動能力、
あるいは、障害度や訓練の回復度、を定量的に検討する
ために供され、被験者ごとに回復訓練プログラムを作成
できる機能をもつ。さらに、担当医や療法士の指導のも
とで、人工関節親ロボットハンド16が、双方向通信シ
ステム17を利用して運動命令を与える事、人工関節子
ロボットハンド3からの運動軌跡表示部5の信号を受け
取る事ができる機能を備え、在宅回復訓練および自習回
復訓練ができる事を目的とした手指運動機能回復支援ロ
ボットである。SUMMARY OF THE INVENTION According to the present invention, first, in order to measure the motor performance of a finger, a subject is made to repeatedly perform a finger motion, and a motion locus is displayed on the display unit in different colors. Have. It has a function of displaying the temporal change diagram of the movement trajectory curve in this display and the electroencephalogram data related to the activities of the left and right brain functions measured at the same time side by side with the movement trajectory curve. The data recorded in this way is
Alternatively, it is used to quantitatively examine the degree of disability and the degree of recovery of training, and has the function of creating a recovery training program for each subject. Furthermore, the artificial joint parent robot hand 16 gives a motion command using the two-way communication system 17 under the guidance of the attending doctor or therapist, and the motion trajectory display unit 5 from the artificial joint child robot hand 3 It is a robot for recovery of finger movement function, which has the function of receiving the signal of "," and aims to perform home-based recovery training and self-study recovery training.
【0006】さらに、脳卒中や外傷性脳障害を経験した
被験者は、心臓など循環器系の異常が見られることが多
いので、本装置には画像による顔色、目の動き、会話時
の唇の動き、心拍数、心拍間隔などの情報が双方向通信
により医師や療法士側からモニターが可能な機能を持た
せる。[0006] Further, since a subject who has suffered a stroke or a traumatic brain disorder often has an abnormality of the circulatory system such as the heart, this device causes complexion of the image, movement of eyes, movement of lips during conversation. Information such as heart rate and heartbeat interval can be monitored by a doctor or therapist by bidirectional communication.
【0007】[0007]
【課題を解決するための手段】前記の目的を達成するた
めに、本発明の請求項1に記載の装置は、図1に示すよ
うに、たとえば光ファイバー方式で、ヒト手指1の運動
と連動する3次元位置検出装置2と一体になった内蔵駆
動モータなどにより関節が動く事ができる人工関節子ロ
ボットハンド3の一定時間内の動きが運動軌跡表示部5
に示される。この図は手指1の五指についてそれぞれ曲
げや回転運動軌跡が描かれる。In order to achieve the above-mentioned object, the device according to claim 1 of the present invention, as shown in FIG. 1, is interlocked with the movement of the human finger 1 by, for example, an optical fiber method. The movement of the artificial joint robot hand 3 in which the joint can be moved by a built-in drive motor or the like integrated with the three-dimensional position detection device within a predetermined time is the movement trajectory display unit 5
Shown in. In this figure, the loci of bending and rotating motions are drawn for the five fingers of the finger 1.
【0008】一方、ハチマキ帯7に付けられた5個の電
極において、電極8(左脳電極A)、電極9(左脳電極
B)を左脳側に、電極10(基準電極)は左右大脳半球
の境界部(ヒタイ13の中心部)に、電極11(右脳電
極A)、電極12(右脳電極B)を右脳に、接触させて電
位変化を検出して増幅回路14、FFT解析回路15を
用い処理する事により(図2)、前頭葉や関連の大脳の
活性状態をリアルタイムで運動軌跡表示部5の画面に、
各関節運動軌跡ウインドウ枠と同時に並べて表示する。
これを正常な人の場合、あるいは本人が障害後の機能訓
練を行った場合、についての計測データなどと比較する
ことにより、被験者の手指1の運動機能障害や回復度を
定量的に評価する事ができる。次に、これらの計測結果
から専門医により運動機能回復プログラムの作成に用い
る。On the other hand, of the five electrodes attached to the bee-belt 7, the electrode 8 (left brain electrode A) and the electrode 9 (left brain electrode A)
B) on the left side of the brain, electrode 10 (reference electrode) on the boundary between the left and right cerebral hemispheres (center of the left eye 13), electrode 11 (right brain electrode A) and electrode 12 (right brain electrode B) on the right brain. By detecting a potential change and processing it using the amplification circuit 14 and the FFT analysis circuit 15 (FIG. 2), the activation state of the frontal lobe and related cerebrum is displayed in real time on the screen of the movement trajectory display unit 5.
The joint motion locus window frames are displayed side by side at the same time.
Quantitatively evaluate the motor dysfunction and recovery of the subject's finger 1 by comparing this with the measurement data, etc. of a normal person or when the person has performed functional training after the disability. You can Next, it is used by a specialist to create a motor function recovery program from these measurement results.
【0009】作成された運動機能回復プログラムに基づ
き、人工関節親ロボットハンド16の親ロボット運動軌
跡表示部18に示される運動軌跡と同じ動きをする人工
関節子ロボットハンド3がヒト手指1に付けられ、担当
医や療法士の指導のもとで、ヒト手指1の運動を補助し
ながら手指運動機能回復を支援する装置である。この種
の回復訓練は長期にわたる時間を必要とする場合が多
く、特許請求の範囲第2項に示される双方向通信システ
ム17を利用して回復訓練の状況や運動命令を与える事
により、在宅回復訓練や自習回復訓練を可能とする装置
である。Based on the created motor function recovery program, an artificial joint child robot hand 3 having the same movement as the movement locus shown on the parent robot movement locus display portion 18 of the artificial joint parent robot hand 16 is attached to the human finger 1. Under the guidance of a medical doctor or a therapist, the device assists the movement of the human finger 1 while supporting the recovery of the finger movement function. This type of recovery training often requires a long period of time, and at-home recovery can be performed by using the interactive communication system 17 shown in claim 2 to give recovery training status and exercise commands. It is a device that enables training and self-study recovery training.
【0010】さらに、運動軌跡表示部5および親ロボッ
ト運動表示部18に、それぞれ小型カメラ19,マイク
ロフォン20を設置し、また人工関節子ロボットハンド
3の手首部分に心音計測器21を取り付け、被験者の顔
全体の画像、音声、および心臓に関する心拍数、時間間
隔などの情報が、双方向通信システム17を利用して対
話形式で被験者の医学的健全性を検出できるようにし
て、在宅における検診を可能とした。Further, a small camera 19 and a microphone 20 are installed on the motion locus display unit 5 and the parent robot motion display unit 18, respectively, and a heart sound measuring device 21 is attached to the wrist portion of the artificial joint robot hand 3 to detect the subject. Images of the entire face, voice, and information such as heart rate and time intervals related to the heart can be used to interactively detect the medical health of the subject using the two-way communication system 17, enabling medical examination at home. And
【0011】[0011]
【実施例】図1の左枠内には、ヒト手指1の五指のそれ
ぞれ関節の動きを計測する3次元位置検出装置2と、ヒ
ト手指1と等価な形状サイズの人工関節子ロボットハン
ド3が一体となり、当該人工関節子ロボットハンド3を
ヒト手指1に固定する手袋4があり、検出装置2からの
関節の動きを示す運動軌跡表示部5からなるヒト手指運
動機能計測装置6で、さらに、ハチマキ帯7に位置が固
定された5個の電極8(左脳電極A)、電極9(左脳電
極B)、電極10(基準電極)、電極11(脳電極A)、
電極12(左脳電極B)をヒトのヒタイ13に接触させ
て、右脳27と左脳28からそれぞれ検出される装置の
概念を示す。電極からの二種類の生体電気信号は、増幅
回路14とFFT周波数解析回路15で処理され、その
リアルタイム波形像(図2:任意の意識を強くした時の
脳波記録例)は、運動軌跡表示部5に別のウインドー枠
として表示できる機能を持つ手指運動機能回復支援ロボ
ットである(請求鋼項1)。EXAMPLE A three-dimensional position detecting device 2 for measuring the movement of each joint of the five fingers of a human hand 1 and an artificial joint robot hand 3 having a shape size equivalent to that of the human hand 1 are shown in the left frame of FIG. There is a glove 4 that integrally fixes the artificial joint robot hand 3 to the human finger 1, and a human hand movement function measuring device 6 including a movement locus display unit 5 that indicates the movement of the joint from the detection device 2. Five electrodes 8 (left brain electrode A), electrode 9 (left brain electrode B), electrode 10 (reference electrode), electrode 11 (brain electrode A), whose positions are fixed on the bee-belt 7.
The concept of a device in which the electrode 12 (left brain electrode B) is brought into contact with a human fly 13 and detected from the right brain 27 and the left brain 28, respectively, is shown. The two types of bioelectric signals from the electrodes are processed by the amplification circuit 14 and the FFT frequency analysis circuit 15, and the real-time waveform image (FIG. 2: EEG recording example when an arbitrary consciousness is strengthened) shows a motion locus display unit. It is a robot for recovery function of finger movement function which has a function of being able to be displayed as another window frame on Claim 5 (claim steel claim 1).
【0012】外傷性あるいは循環器系脳障害により手指
の運動能力に異常がある被験者について、図1に示す手
指運動機能回復支援ロボットを手袋4により取り付け、
手指の曲げや回転など日常に行う運動をしてもらい、運
動能力が計測・記録される。さらに、右脳と左脳を分離
して脳波記録する五個の電極がついたハチマキ帯7を被
験者に付けてもらい計測する。[0012] For a subject with abnormal motor ability of fingers due to traumatic injury or circulatory system brain injury, a robot for recovery of finger movement function shown in Fig. 1 is attached with gloves 4.
Ask them to perform daily exercises such as bending and rotating their fingers, and measure and record their athletic performance. Further, the subject is attached with a Hachimaki band 7 with five electrodes for separating the right and left brains and recording the electroencephalogram.
【0013】計測結果は、リアルタイムで運動軌跡表示
部5に、運動軌跡図と並べて表示されるので、被験者の
手指運動能力の判定をするために専門医へ供される。本
発明による運動計測法は、手指の動きがリアルタイムで
三次元空間座標系として示されるので、ヒトの目からは
判断しにくい微妙動きも区別可能となる。このような、
計測後に専門医や理学、作業療法士により機能回復訓練
プログラムを作成して、その運動指導を人工関節親ロボ
ットハンド16、双方向通信システム17,親ロボット
運動表示部18(図1の右枠内)を利用して、被験者に
取り付けられた人工関節子ロボットハンド3に内蔵され
ているモータ駆動により作動するので(請求鋼項2)、
機能回復訓練の方法を指導、また被験者の訓練回復状態
を確認する事ができる。この種の回復訓練は長期にわた
る場合が多いので、双方向通信システム17を利用する
ことにより、在宅のままでの指導、且つ、自習による訓
練が実施できる特長がある。The measurement results are displayed in real time on the movement locus display unit 5 side by side with the movement locus diagram, so that they are provided to a specialist for judging the finger movement ability of the subject. In the motion measuring method according to the present invention, since the movements of the fingers are shown in real time as a three-dimensional spatial coordinate system, it is possible to distinguish even subtle movements that are difficult for the human eye to judge. like this,
After measurement, a functional recovery training program is created by specialists, physics, and occupational therapists, and exercise guidance is provided for artificial joint parent robot hand 16, two-way communication system 17, parent robot movement display unit 18 (in the right frame of FIG. 1). Since it operates by a motor built in the artificial joint robot hand 3 attached to the subject (claim steel claim 2),
You can teach the method of functional recovery training and check the training recovery status of the subject. Since this kind of recovery training often lasts for a long period of time, the use of the two-way communication system 17 has a feature that the training at home and the training by self-study can be carried out.
【0014】前記の実施にあたり、図3、4は、親指1
9について、それぞれ曲げ運動、回転運動した時の表示
例で、三次元空間に座標値と共に示すことができる。し
たがって、被験者の指の運動能力の計測用として、ある
いは正常な人と被験者の手指1の運動軌跡と重ねて描く
事で両者が比較図として示されるので、障害の程度を定
量的に理解するのに役立つ。これは、ある一定時間(た
とえば,0.2秒)ごとの運動軌跡を色分けして表示する事
ができる(請求項3)。これらのデータは明確な手指1
の異常運動の特定、また脳波データと共に比較する事
で、専門医から見た障害の原因特定(たとえば靱帯、筋
肉、脳における運動野、体性知覚野、脳と手指間のシグ
ナル伝達神経線維脳の部分など)に供される。このよう
な計測を五指について行う事により、被験者ごとに回復
訓練プログラム作成に供す。In implementing the above, FIGS.
No. 9 is a display example of bending motion and rotation motion, respectively, and can be shown together with coordinate values in a three-dimensional space. Therefore, both of them are shown as a comparative diagram for measuring the motor performance of the subject's fingers or by drawing the motion loci of the normal person and the subject's finger 1 so as to be able to quantitatively understand the degree of disability. To help. This can display the motion locus for each certain time (for example, 0.2 seconds) in different colors (claim 3). These data are clear finger 1
Of abnormal movements of the brain and comparison with EEG data to identify the cause of the disorder from the viewpoint of specialists (eg, ligaments, muscles, motor cortex in the brain, somatosensory cortex, signaling between the brain and fingers, nerve fibers Part) etc. By performing such measurement on five fingers, each subject is provided with a recovery training program.
【0015】さらに、本装置は運動軌跡表示部5および
親ロボット運動表示部18に、それぞれ小型カメラ1
9,マイクロフォン20を設置し、また人工関節子ロボ
ットハンド3の手首部分に心音計測器21を取り付け、
被験者の顔全体の画像、音声、および心臓に関する心拍
数、時間間隔などの情報が、双方向通信システム17を
利用して対話形式で被験者の医学的健全性を検出できる
ようにして、在宅における検診を可能としている(請求
項4)。Further, in the present apparatus, the motion locus display unit 5 and the parent robot motion display unit 18 are provided with a small camera 1 respectively.
9, the microphone 20 is installed, the heart sound measuring device 21 is attached to the wrist part of the artificial joint robot hand 3,
An image of the entire subject's face, voice, and information such as the heart rate and time interval regarding the heart can be used to interactively detect the medical health of the subject by using the two-way communication system 17, and a medical examination at home can be performed. Is possible (Claim 4).
【0016】図5は、双方向通信システム7を利用して
在宅のまま医師による指導、自習による訓練をしている
実施例を示す。FIG. 5 shows an embodiment in which the interactive communication system 7 is used to provide guidance by a doctor and self-study while staying at home.
【0017】[0017]
【発明の効果】上記に説明したように、怪我や脳障害な
どによる手指運動機能の低下の計測・評価、ならびに回
復訓練プログラムの作成、双方向通信システムを利用し
た在宅回復訓練や自習回復訓練、健康診断を可能とする
装置を提供した。As described above, measurement / evaluation of deterioration of finger movement function due to injury or brain disorder, and creation of recovery training program, home-based recovery training and self-study recovery training using a two-way communication system, Provided a device that enables health checkups.
【図1】本発明の構成図:リアルタイムで計測される脳
波計測部、画像、音声、心音データ計測部、と各関節を
モータにより駆動する機構を内蔵した人工関節子ロボッ
トハンド(左枠)、および遠隔操作が可能な人工関節親
ロボットハンド(右枠)からなる手指運動機能回復支援
ロボットFIG. 1 is a block diagram of the present invention: an artificial joint robot hand (left frame) having a brain wave measuring unit that is measured in real time, an image, voice, and heart sound data measuring unit, and a mechanism that drives each joint by a motor. Robot for recovery of finger movement function consisting of artificial robot parent robot hand (right frame) that can be remotely controlled
【図2】リアルタイム簡易脳波計測部の構成[Fig. 2] Configuration of real-time simple EEG measurement unit
【図3】ある時間間隔ごとに色分けされた親指の、曲げ
に関する運動軌跡図(例)FIG. 3 is a motion locus diagram regarding bending of a thumb colored by a certain time interval (example)
【図4】ある時間間隔ごとに色分けされた親指の回転に
関する運動軌跡図(例)FIG. 4 is a motion locus diagram relating to rotation of a thumb color-coded by a certain time interval (example)
【図5】本特許を利用した家庭と病院の双方通信システ
ムを利用した機能回復訓練についての実施例FIG. 5: Example of function recovery training using both home and hospital communication systems using this patent
1 ヒト手指 2 3次元位置検出装置 3 人工関節子ロボットハンド 4 手袋 5 運動軌跡表示部 6 ヒト手指運動機能計測装置 7 ハチマキ帯 8 電極(左脳電極A) 9 電極(左脳電極B) 10 電極(基準電極) 11 電極(右脳電極A) 12 電極(右脳電極B) 13 ヒタイ 14 増幅回路 15 FFT(高速フーリエ)周波数解析回路 16 人工関節親ロボットハンド 17 双方向通信システム 18 親ロボット運動表示部 19 小型カメラ 20 マイクロフォン 21 心音計測器 22 親指 23 人差し指 24 中指 25 環指 26 小指 27 右脳 28 左脳 29 上唇 30 下唇 31 顎 1 human fingers 2 3D position detector 3 Artificial joint robot hand 4 gloves 5 Motion locus display 6 Human hand movement function measuring device 7 Hachimaki belt 8 electrodes (left brain electrode A) 9 electrodes (left brain electrode B) 10 electrodes (reference electrode) 11 electrodes (right brain electrode A) 12 electrodes (right brain electrode B) 13 Hitai 14 Amplification circuit 15 FFT (Fast Fourier) frequency analysis circuit 16 artificial joint parent robot hand 17 Two-way communication system 18 Parent robot movement display 19 small cameras 20 microphones 21 Heart Sound Measuring Instrument 22 thumb 23 Index finger 24 Middle finger 25 ring finger 26 pinky 27 right brain 28 Left brain 29 upper lip 30 Lower lip 31 jaw
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C017 AA02 AB02 BD01 CC06 EE15 4C027 AA03 DD07 GG11 JJ01 4C038 VA04 VB13 VC20 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 4C017 AA02 AB02 BD01 CC06 EE15 4C027 AA03 DD07 GG11 JJ01 4C038 VA04 VB13 VC20
Claims (4)
を計測する3次元位置検出装置2と、ヒト手指1と等価
な形状サイズの人工関節子ロボットハンド3が一体とな
り、当該人工関節子ロボットハンド3をヒト手指1に固
定する手袋4があり、前記、関節の動きを運動軌跡表示
部5に示すヒト手指運動機能計測装置6と、ハチマキ帯
7に位置が固定された5個の電極8(左脳電極A)、電
極9(左脳電極B)、電極10(基準電極)、電極11
(右脳電極A)、電極12(左脳電極B)をヒトのヒタイ
13に接触させて、右脳側と左脳側からそれぞれ検出さ
れる二種類の生体電気信号を増幅回路14とFFT(高
速フーリエ)周波数解析回路15で処理して、その波形
をリアルタイムで、運動軌跡表示部5に別のウインドウ
枠として、前記、計測された関節運動軌跡の図と同時に
表示する事を特長とする手指運動機能回復支援ロボッ
ト。1. A three-dimensional position detecting device 2 for measuring the movements of the joints of the five fingers of a human hand 1 and an artificial joint robot hand 3 having a shape size equivalent to that of the human finger 1 are integrated to form the artificial joint robot. There is a glove 4 for fixing the hand 3 to the human finger 1, the above-mentioned human hand movement function measuring device 6 which shows the movement of the joint in the movement locus display section 5, and the five electrodes 8 whose positions are fixed on the bee-belt 7. (Left brain electrode A), electrode 9 (left brain electrode B), electrode 10 (reference electrode), electrode 11
(Right brain electrode A) and electrode 12 (left brain electrode B) are brought into contact with a human fly 13, and two kinds of bioelectric signals detected respectively from the right and left brain sides are amplified by an amplifier circuit 14 and FFT (fast Fourier) frequency. Support for recovery of finger movement function, which is characterized by being processed by the analysis circuit 15 and displaying the waveform in real time as a separate window frame on the movement locus display unit 5 simultaneously with the diagram of the measured joint movement locus. robot.
節子ロボットハンド3の各関節をモータにより駆動する
機構を内蔵し、この駆動制御が、人工関節親ロボットハ
ンド16の動きにより、双方向通信システム17を利用
して運動命令を与える事、人工関節子ロボットハンド3
からの運動軌跡表示部5の信号を受け取る事、ができる
機能を備えた手指運動機能回復支援ロボット。2. The mechanism according to claim 1, wherein a mechanism for driving each joint of the artificial joint robot hand 3 by a motor is built in, and this drive control is bidirectional by the movement of the artificial joint parent robot hand 16. Using the communication system 17 to give a motion command, the artificial joint robot hand 3
A robot for recovering finger movement function, which is capable of receiving a signal from the movement locus display unit 5 from.
節親ロボット16の各関節の親ロボット運動軌跡表示部
18、および人工関節子ロボットハンド3の各関節の運
動軌跡表示部5において、過去において計測記録された
運動軌跡を含めて、2種以上のデータが比較する形で重
ねて表示できること、また計測中の関節の動きが一定時
間間隔ごとに色分け表示する事により、ヒト手指1の時
間的運動能力、回復、低下が定量的に区別できるように
表示されることを特長とする手指運動機能回復支援ロボ
ット。3. The method according to claim 1, wherein the parent robot movement locus display unit 18 of each joint of the artificial joint parent robot 16 and the movement locus display unit 5 of each joint of the artificial joint child robot hand 3 The time of the human finger 1 can be displayed by including two or more types of data, including the motion locus measured and recorded in the above, in a form of comparison, and by displaying the movement of the joint during measurement in different colors at regular time intervals. A robot for recovery of finger movement function, which is characterized by quantitatively distinguishing physical exercise ability, recovery, and decline.
跡表示部5および親ロボット運動表示部18に、それぞ
れ小型カメラ19,マイクロフォン20が設置され、さ
らに人工関節子ロボットハンド3の手首部分に心音計測
器21を取り付け、これらから被験者の画像、音声、お
よび心臓に関する心拍数、心拍間隔などの情報が、双方
向通信システム17を利用して検出できる事を特長とす
る手指運動機能回復支援ロボット。4. In claim 1, a small camera 19 and a microphone 20 are installed on the motion locus display unit 5 and the parent robot motion display unit 18, respectively, and further on the wrist part of the artificial joint robot hand 3. A robot for recovering finger movement function characterized in that a heart sound measuring device 21 is attached, and information such as a subject's image, voice, and heart rate and heartbeat interval related to the heart can be detected using the two-way communication system 17. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001182912A JP2003000569A (en) | 2001-06-18 | 2001-06-18 | Robot for aiding finger locomotion function recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001182912A JP2003000569A (en) | 2001-06-18 | 2001-06-18 | Robot for aiding finger locomotion function recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003000569A true JP2003000569A (en) | 2003-01-07 |
Family
ID=19022926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001182912A Pending JP2003000569A (en) | 2001-06-18 | 2001-06-18 | Robot for aiding finger locomotion function recovery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003000569A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263460A (en) * | 2005-02-25 | 2006-10-05 | Advanced Telecommunication Research Institute International | Rehabilitation support apparatus |
JP2007020835A (en) * | 2005-07-15 | 2007-02-01 | National Institute Of Advanced Industrial & Technology | Rehabilitation apparatus |
KR101219990B1 (en) | 2011-11-18 | 2013-01-09 | 재단법인대구경북과학기술원 | Portable occupational therapy apparatus and method for hand rehabitation, apparatus including smart phone application for the occupational therapy |
CN103558786A (en) * | 2013-10-31 | 2014-02-05 | 哈尔滨工业大学 | Human-computer interaction control system, embedded in Android mobile terminal and FPGA, of hand function rehabilitation robot |
KR101367801B1 (en) | 2011-05-31 | 2014-02-27 | 주식회사 네오펙트 | Finger exercising apparatus and method for assisting exercise of finger |
CN105640742A (en) * | 2016-04-01 | 2016-06-08 | 北京所乐思国际商务有限公司 | Joint follow-up assisting device |
CN106074089A (en) * | 2016-07-14 | 2016-11-09 | 南昌大学 | A kind of both hands tracking mode finger gymnastic robot system |
CN107432816A (en) * | 2017-09-21 | 2017-12-05 | 哈尔滨工业大学 | A kind of exoskeleton robot of thumb functional rehabilitation |
CN107440887A (en) * | 2017-09-21 | 2017-12-08 | 臧大维 | Complete bionical class brain intelligent hand electric mechanical ectoskeleton and its complex control system |
CN108214521A (en) * | 2017-12-26 | 2018-06-29 | 北京邮电大学 | Can autonomous even contact power soft robot |
CN108871321A (en) * | 2017-05-09 | 2018-11-23 | 南京大学 | A kind of detecting and positioning method of moving target |
CN112891133A (en) * | 2021-01-19 | 2021-06-04 | 上海司羿智能科技有限公司 | Upper limb joint rehabilitation training method and device |
CN114504468A (en) * | 2022-01-30 | 2022-05-17 | 天津大学 | Hand all-finger rehabilitation training and evaluation system based on artificial intelligence technology |
CN117159336A (en) * | 2023-11-03 | 2023-12-05 | 首都医科大学宣武医院 | Rehabilitation training method and device and electronic equipment |
-
2001
- 2001-06-18 JP JP2001182912A patent/JP2003000569A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4505617B2 (en) * | 2005-02-25 | 2010-07-21 | 株式会社国際電気通信基礎技術研究所 | Rehabilitation support device |
JP2006263460A (en) * | 2005-02-25 | 2006-10-05 | Advanced Telecommunication Research Institute International | Rehabilitation support apparatus |
JP2007020835A (en) * | 2005-07-15 | 2007-02-01 | National Institute Of Advanced Industrial & Technology | Rehabilitation apparatus |
JP4618795B2 (en) * | 2005-07-15 | 2011-01-26 | 独立行政法人産業技術総合研究所 | Rehabilitation equipment |
KR101367801B1 (en) | 2011-05-31 | 2014-02-27 | 주식회사 네오펙트 | Finger exercising apparatus and method for assisting exercise of finger |
KR101219990B1 (en) | 2011-11-18 | 2013-01-09 | 재단법인대구경북과학기술원 | Portable occupational therapy apparatus and method for hand rehabitation, apparatus including smart phone application for the occupational therapy |
CN103558786A (en) * | 2013-10-31 | 2014-02-05 | 哈尔滨工业大学 | Human-computer interaction control system, embedded in Android mobile terminal and FPGA, of hand function rehabilitation robot |
CN103558786B (en) * | 2013-10-31 | 2016-01-13 | 哈尔滨工业大学 | Based on the hand function healing robot human-computer interactive control system embedding Android mobile terminal and FPGA |
CN105640742A (en) * | 2016-04-01 | 2016-06-08 | 北京所乐思国际商务有限公司 | Joint follow-up assisting device |
CN106074089A (en) * | 2016-07-14 | 2016-11-09 | 南昌大学 | A kind of both hands tracking mode finger gymnastic robot system |
CN108871321A (en) * | 2017-05-09 | 2018-11-23 | 南京大学 | A kind of detecting and positioning method of moving target |
CN108871321B (en) * | 2017-05-09 | 2022-02-08 | 南京大学 | Detection positioning method for moving target |
CN107432816A (en) * | 2017-09-21 | 2017-12-05 | 哈尔滨工业大学 | A kind of exoskeleton robot of thumb functional rehabilitation |
CN107432816B (en) * | 2017-09-21 | 2019-07-16 | 哈尔滨工业大学 | A kind of exoskeleton robot of thumb functional rehabilitation |
CN107440887A (en) * | 2017-09-21 | 2017-12-08 | 臧大维 | Complete bionical class brain intelligent hand electric mechanical ectoskeleton and its complex control system |
CN107440887B (en) * | 2017-09-21 | 2023-09-22 | 臧大维 | Full-bionic brain-like intelligent hand electromechanical exoskeleton and comprehensive control system thereof |
CN108214521A (en) * | 2017-12-26 | 2018-06-29 | 北京邮电大学 | Can autonomous even contact power soft robot |
CN108214521B (en) * | 2017-12-26 | 2019-08-09 | 北京邮电大学 | Can autonomous even contact power soft robot |
CN112891133A (en) * | 2021-01-19 | 2021-06-04 | 上海司羿智能科技有限公司 | Upper limb joint rehabilitation training method and device |
CN114504468A (en) * | 2022-01-30 | 2022-05-17 | 天津大学 | Hand all-finger rehabilitation training and evaluation system based on artificial intelligence technology |
CN114504468B (en) * | 2022-01-30 | 2023-08-08 | 天津大学 | Hand full-fingered rehabilitation training and evaluation system based on artificial intelligence technology |
CN117159336A (en) * | 2023-11-03 | 2023-12-05 | 首都医科大学宣武医院 | Rehabilitation training method and device and electronic equipment |
CN117159336B (en) * | 2023-11-03 | 2024-02-02 | 首都医科大学宣武医院 | Rehabilitation training method and device and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11195340B2 (en) | Systems and methods for rendering immersive environments | |
Velana et al. | The senseemotion database: A multimodal database for the development and systematic validation of an automatic pain-and emotion-recognition system | |
CN109875501B (en) | Physiological parameter measurement and feedback system | |
US8834169B2 (en) | Method and apparatus for automating arm and grasping movement training for rehabilitation of patients with motor impairment | |
US20190286234A1 (en) | System and method for synchronized neural marketing in a virtual environment | |
EP3264977A2 (en) | Brain activity measurement and feedback system | |
JP2003000569A (en) | Robot for aiding finger locomotion function recovery | |
CN108140421A (en) | Training | |
CN113611388B (en) | Intelligent sports rehabilitation and training system based on exoskeleton | |
CN104983426A (en) | Virtual reality bedside rehabilitation training system and method | |
CN110853753A (en) | Cognitive dysfunction old man rehabilitation and nursing system at home | |
RU2741215C1 (en) | Neurorehabilitation system and neurorehabilitation method | |
Aung et al. | Augmented reality-based RehaBio system for shoulder rehabilitation | |
Casas et al. | Human-robot interaction for rehabilitation scenarios | |
KR20220072026A (en) | Rehabilitation Training Method and System Using Rehabilitation Robot | |
Szczurek et al. | Enhanced human–robot interface with operator physiological parameters monitoring and 3d mixed reality | |
Hidayat et al. | LOVETT scalling with MYO armband for monitoring finger muscles therapy of post-stroke people | |
JP2013128642A (en) | Brain computer interface and control method of object in the same | |
CN215689579U (en) | Hand function rehabilitation training system based on brain-computer interface | |
CN115671706A (en) | VR game training system for cognitive impairment | |
JP2000356942A (en) | Device and method for teaching motion, and recording medium where motion teaching program is recorded | |
US20220386953A1 (en) | Impairement screening system and method | |
Munih et al. | MIMICS: Multimodal immersive motion rehabilitation of upper and lower extremities by exploiting biocooperation principles | |
WO2020003130A1 (en) | System and methods for quantifying manual therapy | |
RU2798703C1 (en) | Method of social adaptation of patients with cognitive and speech disorders |