JP2003092432A - Thermoelectric material and its manufacturing method - Google Patents
Thermoelectric material and its manufacturing methodInfo
- Publication number
- JP2003092432A JP2003092432A JP2001283828A JP2001283828A JP2003092432A JP 2003092432 A JP2003092432 A JP 2003092432A JP 2001283828 A JP2001283828 A JP 2001283828A JP 2001283828 A JP2001283828 A JP 2001283828A JP 2003092432 A JP2003092432 A JP 2003092432A
- Authority
- JP
- Japan
- Prior art keywords
- solidified
- thermoelectric
- group
- element selected
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 238000010791 quenching Methods 0.000 claims abstract description 10
- 230000000171 quenching effect Effects 0.000 claims abstract description 10
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 9
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 9
- 238000010030 laminating Methods 0.000 claims abstract description 8
- 238000003825 pressing Methods 0.000 claims description 15
- 238000005304 joining Methods 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 7
- 238000003826 uniaxial pressing Methods 0.000 claims description 6
- 238000007711 solidification Methods 0.000 claims description 5
- 230000008023 solidification Effects 0.000 claims description 5
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 10
- 239000000758 substrate Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- 102220253765 rs141230910 Human genes 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はペルチェモジュール
等に使用される熱電材料及びその製造方法に関し、特
に、傾斜機能材料に好適な熱電材料及びその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric material used for a Peltier module or the like and a method for manufacturing the same, and more particularly to a thermoelectric material suitable for a functionally gradient material and a method for manufacturing the same.
【0002】[0002]
【従来の技術】粉末を原料とする熱電材料の性能は異方
性を有しており、通常、固化成形時の加圧方向に対して
垂直な一方向において最も優れた熱電性能が得られる。2. Description of the Related Art The performance of thermoelectric materials made from powder is anisotropic, and the most excellent thermoelectric performance is usually obtained in one direction perpendicular to the pressing direction during solidification molding.
【0003】熱電材料の特性は、そのゼーベック係数を
α(μ・V/K)、比抵抗をρ(Ω・m)、熱伝導率を
κ(W/m・K)としたとき、下記数式1に示す性能指
数Zによって評価することができる。The characteristics of a thermoelectric material are as follows when the Seebeck coefficient is α (μ · V / K), the specific resistance is ρ (Ω · m), and the thermal conductivity is κ (W / m · K). It can be evaluated by the performance index Z shown in 1.
【0004】[0004]
【数1】Z=α2/(ρ×κ)
上記数式1に示すように、性能指数Zを大きくするため
には、比抵抗ρ及び熱伝導率κを小さくすることが効果
的である。一般的に、結晶粒の粒径が小さくなるほど熱
伝導率κが小さくなることは公知である。また、熱流及
び電流が通過する方向において、通過する結晶数を減少
させると比抵抗は小さくなる。即ち、結晶が成長する方
向に電流又は熱流方向を規定すると、その熱電材料の性
能指数Zは大きくなる。[Number 1] Z = α 2 / (ρ × κ) as shown in Equation 1, in order to increase the figure of merit Z, it is effective to reduce the specific resistance [rho and thermal conductivity kappa. It is generally known that the thermal conductivity κ decreases as the grain size of crystal grains decreases. Further, in the direction in which the heat flow and the current pass, if the number of passing crystals is reduced, the specific resistance becomes smaller. That is, when the current or heat flow direction is defined in the crystal growth direction, the figure of merit Z of the thermoelectric material increases.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、粉末か
ら高性能の傾斜機能材料を得るためには、その傾斜機能
材料を構成する各熱電材料が夫々の最も優れた熱電性能
が得られる方向に並べられている必要がある。つまり、
図5に示すように、相互に組成が異なる6種の熱電材料
から傾斜機能材料を得ようとする場合には、各熱電材料
から切り出された切断片31a乃至31fをその固化成
形時の加圧方向に対して垂直な方向に並べて接合する必
要がある。このため、このような傾斜機能材料を一体成
形により得ることは不可能である。However, in order to obtain a high-performance functionally graded material from powder, the thermoelectric materials constituting the functionally graded material are arranged in the direction in which the most excellent thermoelectric performance is obtained. Need to be. That is,
As shown in FIG. 5, when it is desired to obtain functionally graded materials from six types of thermoelectric materials having different compositions, the cut pieces 31a to 31f cut out from each thermoelectric material are pressed during solidification molding. It is necessary to arrange and join in the direction perpendicular to the direction. Therefore, it is impossible to obtain such a functionally graded material by integral molding.
【0006】また、切断片の接合に際しても種々の問題
点がある。例えば、図5に示すような円柱形状の傾斜機
能材料を得ようとする場合、断面積が切断片毎に相違し
ているため、これらの切り出し及び接合の作業が煩雑で
ある。また、図6に示すように、切断片32a乃至32
fから角柱形状の傾斜機能材料を得ようとする場合、そ
の各角部33における特性が他の領域と比較して劣って
しまう。Further, there are various problems in joining the cut pieces. For example, when a columnar functionally gradient material as shown in FIG. 5 is to be obtained, the work of cutting and joining these is complicated because the cross-sectional area differs for each cut piece. In addition, as shown in FIG. 6, the cutting pieces 32a to 32a
When an attempt is made to obtain a prismatic functionally graded material from f, the characteristics at each corner portion 33 are inferior to those in other regions.
【0007】本発明はかかる問題点に鑑みてなされたも
のであって、容易に優れた特性の傾斜機能材料を得るこ
とができる熱電材料及びその製造方法を提供することを
目的とする。The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermoelectric material capable of easily obtaining a functionally graded material having excellent characteristics and a method for producing the thermoelectric material.
【0008】[0008]
【課題を解決するための手段】本発明に係る熱電材料
は、Bi及びSbからなる群から選択された少なくとも
1種の元素と、Te及びSeからなる群から選択された
少なくとも1種の元素とからなる組成を有し、互いに熱
電特性が異なる複数の層を積み重ねて構成された熱電材
料であって、前記各層用の原料の溶融金属を液体急冷さ
せて得た凝固材を積層し、積層された凝固材に対してそ
の積層方向に一軸加圧することによって得られたもので
あることを特徴とする。The thermoelectric material according to the present invention comprises at least one element selected from the group consisting of Bi and Sb, and at least one element selected from the group consisting of Te and Se. A thermoelectric material having a composition consisting of a plurality of layers having different thermoelectric properties, the molten metal of the raw material for each layer is solidified by liquid quenching, and the solidified material is laminated and laminated. The solidified material is obtained by uniaxially pressing the solidified material in the stacking direction.
【0009】本発明に係る他の熱電材料は、Bi及びS
bからなる群から選択された少なくとも1種の元素と、
Te及びSeからなる群から選択された少なくとも1種
の元素とからなる組成を有し、互いに熱電特性が異なる
複数の層を積み重ねて構成された熱電材料であって、前
記各層用の原料の溶融金属を液体急冷させて得た凝固材
を前記各層用ごとに積層し、積層された凝固材に対して
一軸加圧することによって得られた前記各層用の固化成
形体を夫々の一軸加圧の方向に積み重ねて接合すること
により得られたものであることを特徴とする。Other thermoelectric materials according to the present invention are Bi and S
at least one element selected from the group consisting of b,
A thermoelectric material having a composition of at least one element selected from the group consisting of Te and Se, which is configured by stacking a plurality of layers having different thermoelectric properties, and melting the raw material for each layer. The solidified material obtained by liquid quenching the metal is laminated for each of the layers, and the uniaxial pressing direction of the solidified molded body for each of the layers obtained by uniaxially pressing the laminated solidified material. It is characterized in that it is obtained by stacking and joining.
【0010】本発明に係る熱電材料の製造方法は、Bi
及びSbからなる群から選択された少なくとも1種の元
素と、Te及びSeからなる群から選択された少なくと
も1種の元素とからなる組成を有する複数の層を積み重
ねて構成された熱電材料を製造する方法であって、前記
各層用の互いに組成が異なる原料の溶融金属を液体急冷
させて凝固材を得る工程と、前記凝固材を積層する工程
と、前記積層された凝固材に対してその積層方向に一軸
加圧する工程と、を有することを特徴とする。The method for producing a thermoelectric material according to the present invention is based on Bi
And a thermoelectric material composed by stacking a plurality of layers having a composition of at least one element selected from the group consisting of Sb and at least one element selected from the group consisting of Te and Se. A method for obtaining a solidified material by liquid-cooling molten metals of different raw materials for the respective layers, a step of laminating the solidified material, and a step of laminating the laminated solidified material on the laminated solidified material. Uniaxially pressurizing in a direction.
【0011】本発明に係る他の熱電材料の製造方法は、
Bi及びSbからなる群から選択された少なくとも1種
の元素と、Te及びSeからなる群から選択された少な
くとも1種の元素とからなる組成を有する複数の層を積
み重ねて構成された熱電材料を製造する方法であって、
前記各層用の互いに組成が異なる原料の溶融金属を液体
急冷させて凝固材を得る工程と、前記凝固材を前記各層
用ごとに積層する工程と、積層された凝固材に対して一
軸加圧することによって前記各層用の固化成形体を得る
工程と、前記固化成形体を夫々の一軸加圧の方向に積み
重ねて接合する工程と、を有することを特徴とする。Another method for producing a thermoelectric material according to the present invention is
A thermoelectric material formed by stacking a plurality of layers having a composition of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. A method of manufacturing,
A step of liquid-cooling molten metals of different raw materials for each of the layers to obtain a solidified material, a step of laminating the solidified material for each of the layers, and uniaxially pressing the laminated solidified material. The method comprises the steps of obtaining a solidified molded body for each layer by and a step of stacking and bonding the solidified molded bodies in respective uniaxial pressing directions.
【0012】本発明においては、各層を溶融金属の急冷
凝固による凝固材を一軸加圧することにより構成してい
るので、一体成形の場合であっても、各層を構成する固
化成形体の接合の場合であっても、各層の熱電性能は一
軸加圧の方向において最も優れたものとなる。そして、
本発明においては、このような方向に各層を積層してい
るので、その方向に通電すれば、極めて優れた熱電性能
の傾斜機能材料が得られる。In the present invention, since each layer is constituted by uniaxially pressing a solidified material obtained by rapid solidification of molten metal, even in the case of integral molding, in the case of joining solidified molded bodies constituting each layer. However, the thermoelectric performance of each layer is the best in the direction of uniaxial pressing. And
In the present invention, since the respective layers are laminated in such a direction, if a current is applied in that direction, a functionally gradient material with extremely excellent thermoelectric performance can be obtained.
【0013】なお、前記溶融金属には、I、Cl、H
g、Br、Ag及びCuからなる群から選択された少な
くとも1種の元素が添加されていてもよい。The molten metal includes I, Cl and H.
At least one element selected from the group consisting of g, Br, Ag and Cu may be added.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施例に係る熱電
材料及びその製造方法について、添付の図面を参照して
具体的に説明する。図1は本発明の第1の実施例に係る
熱電材料の製造方法を示す模式図である。BEST MODE FOR CARRYING OUT THE INVENTION A thermoelectric material and a method for manufacturing the same according to embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a method for manufacturing a thermoelectric material according to the first embodiment of the present invention.
【0015】本実施例においては、先ず、Bi及びSb
からなる群から選択された少なくとも1種の元素と、T
e及びSeからなる群から選択された少なくとも1種の
元素とからなる組成の溶融金属を液体急冷させることに
より、一方向凝固材を得る。このような一方向凝固材
は、その原料組成を変更しながら、傾斜機能材料に必要
な種類だけ作製する。このようにして得られた一方向凝
固材は、薄片又は粉末となっている。In this embodiment, first, Bi and Sb
At least one element selected from the group consisting of
A unidirectionally solidified material is obtained by rapidly quenching a molten metal having a composition containing at least one element selected from the group consisting of e and Se. Such a unidirectionally solidified material is produced only in the kind required for the functionally gradient material while changing the raw material composition. The unidirectionally solidified material thus obtained is in the form of flakes or powder.
【0016】次いで、図1に示すように、この一方向凝
固材を粉砕し、粉砕したものを傾斜機能材料の特性に合
わせて、例えば3層積層し、その積層の方向と平行な方
向から一方向凝固材の積層体を加圧することにより、固
化成形体1を得る。このようにして得られた固化成形体
1は、組成が互いに異なる3層の熱電材料層2a乃至2
cから構成され、傾斜機能材料として使用することがで
きる。Next, as shown in FIG. 1, the unidirectionally solidified material is crushed, and the crushed material is laminated, for example, in three layers in accordance with the characteristics of the functionally gradient material, and the unidirectionally solidified material is laminated in a direction parallel to the lamination direction. The solidified molded body 1 is obtained by pressing the laminate of the directionally solidified material. The solidified molded body 1 thus obtained has three thermoelectric material layers 2a to 2 having different compositions.
It is composed of c and can be used as a functionally graded material.
【0017】また、液体急冷により得られた凝固材を固
化成形した場合、その結果得られた固化成形体の熱電性
能は、固化成形時の加圧方向で最も優れたものとなる。
従って、上述のようにして製造された傾斜機能材料にお
いては、各熱電材料層2a乃至2cがいずれも液体急冷
により得られた一方向凝固材から構成されているため、
熱電材料層2a乃至2cの最も優れた熱電性能が得られ
る方向もその加圧方向、即ち積層方向となる。このた
め、この傾斜機能材料に対してその積層方向の両端から
通電すれば高い熱電性能が得られる。Further, when the solidified material obtained by liquid quenching is solidified and molded, the thermoelectric performance of the solidified molded body obtained as a result becomes the best in the pressing direction during solidification molding.
Therefore, in the functionally graded material manufactured as described above, each of the thermoelectric material layers 2a to 2c is composed of the unidirectionally solidified material obtained by liquid quenching,
The direction in which the most excellent thermoelectric performance of the thermoelectric material layers 2a to 2c is obtained is also the pressing direction, that is, the stacking direction. Therefore, if the functionally gradient material is energized from both ends in the stacking direction, high thermoelectric performance can be obtained.
【0018】なお、必ずしも一方向凝固材を粉砕する必
要はなく、一方向凝固材をそのまま積層して固化成形し
てもよい。Incidentally, the unidirectionally solidified material does not necessarily have to be crushed, and the unidirectionally solidified material may be laminated as it is and solidified and molded.
【0019】次に、本発明の第2の実施例について説明
する。図2(a)乃至(c)は本発明の第2の実施例に
係る熱電材料の製造方法を工程順に示す模式図である。Next, a second embodiment of the present invention will be described. 2A to 2C are schematic views showing a method of manufacturing a thermoelectric material according to the second embodiment of the present invention in the order of steps.
【0020】本実施例においては、第1の実施例と同様
に、組成を変更しながら、傾斜機能材料に必要な種類だ
け、例えば3種の一方向凝固材を液体急冷により作製す
る。In this embodiment, as in the first embodiment, liquid quiescent cooling is performed to change the composition and only the kind required for the functionally gradient material, for example, three kinds of unidirectionally solidified materials.
【0021】次いで、この一方向凝固材を粉砕したもの
を粉砕し、粉砕したものを同じ組成のもの同士で積層
し、その積層体を加圧することにより、図2(a)に示
すように、3種の固化成形体11乃至13を得る。この
ようにして得られた固化成形体11乃至13の各熱電性
能は、その加圧方向において最も優れている。Next, a crushed product of this unidirectionally solidified material is crushed, and the crushed products are laminated with ones having the same composition, and the laminated body is pressed, as shown in FIG. 2 (a). Three types of solidified compacts 11 to 13 are obtained. The thermoelectric performances of the solidified molded bodies 11 to 13 thus obtained are the best in the pressing direction.
【0022】続いて、各固化成形体11乃至13をその
加圧方向に垂直な面に沿って分割し、図2(b)に示す
ように、固化成形体11から複数の切断片11a乃至1
1cを得、固化成形体12から複数の切断片12a乃至
12cを得、固化成形体13から複数の切断片13a乃
至13cを得る。Subsequently, the solidified compacts 11 to 13 are divided along the plane perpendicular to the pressing direction, and as shown in FIG. 2B, the solidified compact 11 is cut into a plurality of cut pieces 11a to 1a.
1c is obtained, a plurality of cut pieces 12a to 12c are obtained from the solidified molded body 12, and a plurality of cut pieces 13a to 13c are obtained from the solidified molded body 13.
【0023】その後、図2(c)に示すように、切断片
11a、12a及び13aをホットプレス、SPS又は
はんだ付けにより互いに接合することにより、接合体1
4を得る。切断片11b、12b及び13b並びに切断
片11c、12c及び13cについても、同様に接合
し、夫々から接合体15、16を得る。このようにして
得られた接合体14乃至16は、組成が互いに異なる3
層の切断片から構成され、傾斜機能材料として使用する
ことができる。Thereafter, as shown in FIG. 2 (c), the cut pieces 11a, 12a and 13a are joined to each other by hot pressing, SPS or soldering to form the joined body 1.
Get 4. The cut pieces 11b, 12b and 13b and the cut pieces 11c, 12c and 13c are also joined in the same manner to obtain joined bodies 15 and 16, respectively. The bonded bodies 14 to 16 thus obtained have different compositions from each other.
It is composed of cut pieces of layers and can be used as functionally graded material.
【0024】なお、接合体毎に各切断片の厚さを変え
て、互いに異なる特性の接合体、即ち傾斜機能材料を作
製してもよい。The thickness of each cut piece may be changed for each bonded body to manufacture bonded bodies having different characteristics, that is, a functionally graded material.
【0025】図3は組成と熱電性能との関係を示すグラ
フ図であり、(a)は組成と絶対性能指数との関係を示
し、(b)は組成と性能指数との関係を示す。なお、図
3(a)及び(b)において同一種の曲線(実線、破
線、二点鎖線)は、同一の組成の熱電性能を示す。図3
に示すように、傾斜機能材料の組成が異なれば、各特性
のピークも相違する。従って、熱電モジュール内の温度
分布に応じて適当な組成を適用することによって、モジ
ュールの全体的な性能を向上させることができる。FIG. 3 is a graph showing the relationship between the composition and the thermoelectric performance, (a) shows the relationship between the composition and the absolute performance index, and (b) shows the relationship between the composition and the performance index. Note that, in FIGS. 3A and 3B, curves of the same type (solid line, broken line, two-dot chain line) show thermoelectric performances of the same composition. Figure 3
As shown in, when the composition of the functionally gradient material is different, the peaks of the respective characteristics are also different. Therefore, by applying an appropriate composition according to the temperature distribution in the thermoelectric module, the overall performance of the module can be improved.
【0026】[0026]
【実施例】以下、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して具体的に説明す
る。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples outside the scope of the claims.
【0027】図4は熱電モジュールの構造を示す断面図
である。図4に示すように、冷却側の絶縁基板1と放熱
側の絶縁基板2との間にp型熱電素子23及びn型熱電
素子24を介在させて熱電モジュールを作製した。p型
熱電素子23とn型熱電素子24との対は26対とし
た。p型熱電素子23は、絶縁基板1及び2の厚さ方向
に沿って組成が相違する2つのp型領域23a及び23
bから構成され、同様に、n型熱電素子24は、絶縁基
板1及び2の厚さ方向に沿って組成が相違する2つのn
型領域24a及び24bから構成されている。なお、絶
縁基板1及び2上では、p型熱電素子23とn型熱電素
子24とが、例えばCuからなる金属板25を介して接
続されている。各熱電素子の組成は、下記表1に示すと
おりである。FIG. 4 is a sectional view showing the structure of the thermoelectric module. As shown in FIG. 4, a thermoelectric module was produced by interposing a p-type thermoelectric element 23 and an n-type thermoelectric element 24 between the insulating substrate 1 on the cooling side and the insulating substrate 2 on the heat dissipation side. There were 26 pairs of the p-type thermoelectric element 23 and the n-type thermoelectric element 24. The p-type thermoelectric element 23 has two p-type regions 23a and 23 having different compositions along the thickness direction of the insulating substrates 1 and 2.
Similarly, the n-type thermoelectric element 24 includes two n-type thermoelectric elements 24 having different compositions along the thickness direction of the insulating substrates 1 and 2.
It is composed of mold regions 24a and 24b. In addition, on the insulating substrates 1 and 2, the p-type thermoelectric element 23 and the n-type thermoelectric element 24 are connected via a metal plate 25 made of, for example, Cu. The composition of each thermoelectric element is as shown in Table 1 below.
【0028】[0028]
【表1】 [Table 1]
【0029】また、各熱電素子の作製は、次のようにし
て行った。先ず、表1に示すような所定の組成に調整し
た原料を液体急冷により箔片化した。次に、箔片から固
化成形及び組成の傾斜の付与により第1の実施例のよう
な固化成形体又は第2の実施例のような接合体を作製し
た。そして、これらを所定形状に切り出すことにより、
各熱電素子を作製した。固化成形は、ホットプレス又は
静電プラズマ焼結により行い、組成の傾斜の付与は、第
1の実施例のような一体成形又は第2の実施例のような
切り出し及び接合の組み合わせにより行った。ホットプ
レス及び放電プラズマ焼結の条件を下記表2に示す。Further, each thermoelectric element was manufactured as follows. First, a raw material adjusted to a predetermined composition as shown in Table 1 was cut into foil pieces by liquid quenching. Next, a solidified molded body as in the first example or a bonded body as in the second example was produced from the foil pieces by solidifying and imparting a composition gradient. And by cutting these out into a predetermined shape,
Each thermoelectric element was produced. The solidification molding was performed by hot pressing or electrostatic plasma sintering, and the composition gradient was imparted by integral molding as in the first embodiment or a combination of cutting and joining as in the second embodiment. The conditions for hot pressing and spark plasma sintering are shown in Table 2 below.
【0030】[0030]
【表2】 [Table 2]
【0031】また、下記表3に各実施例及び比較例の製
造条件を示す。Table 3 below shows the manufacturing conditions of each Example and Comparative Example.
【0032】[0032]
【表3】 [Table 3]
【0033】放電プラズマによる接合は、温度を380
℃として10分間、2.94kN/cm2(0.3t重
/cm2)の荷重を印加しながら行った。また、はんだ
付けによる接合は、熱電素子を構成する領域となる2枚
の同じ導電型のウェハ間にAu−20質量%Sn製のは
んだシートを挟み込み、還元雰囲気中で300℃まで加
熱することにより行った。The temperature of the joining by the discharge plasma is 380.
The test was performed at 10 ° C. for 10 minutes while applying a load of 2.94 kN / cm 2 (0.3 t weight / cm 2 ). In addition, the joining by soldering is performed by sandwiching a solder sheet made of Au-20 mass% Sn between two wafers of the same conductivity type, which are regions constituting a thermoelectric element, and heating to 300 ° C. in a reducing atmosphere. went.
【0034】なお、比較例7は、夫々表1に示す冷却側
の組成を有する熱電材料のみからなる単一組成の熱電素
子を使用してモジュールを作製したものであり、比較例
8は、液体急冷による一方向凝固材ではなく、従来使用
されている粉末からモジュールを作製したものである。Comparative Example 7 is a module prepared by using a thermoelectric element having a single composition consisting of only the thermoelectric material having the composition on the cooling side shown in Table 1, and Comparative Example 8 is a liquid. The module was made from the powder that has been conventionally used, not the unidirectionally solidified material by rapid cooling.
【0035】これらのモジュールについて最大温度差Δ
Tmaxを測定した。この結果を下記表4に示す。The maximum temperature difference Δ for these modules
Tmax was measured. The results are shown in Table 4 below.
【0036】[0036]
【表4】 [Table 4]
【0037】表4に示すように、実施例No.1乃至6
においては、100℃以上の最大温度差ΔTmaxが得
られたが、比較例No.7及び8では、最大温度差ΔT
maxが100℃に満たなかった。As shown in Table 4, Example No. 1 to 6
In Comparative Example No. 3, a maximum temperature difference ΔTmax of 100 ° C. or higher was obtained. In 7 and 8, the maximum temperature difference ΔT
max was less than 100 ° C.
【0038】[0038]
【発明の効果】以上詳述したように、本発明によれば、
各層を溶融金属の急冷凝固による凝固材を一軸加圧する
ことにより構成しているので、一体成形が可能である。
また、一体成形の場合であっても、各層を構成する固化
成形体の接合の場合であっても、各層の熱電性能は一軸
加圧の方向において最も優れたものとなり、このような
方向に各層を積層しているので、その方向に通電するこ
とにより、極めて優れた熱電性能の傾斜機能材料を得る
ことができる。また、固化成形体の接合に当たっても各
層の断面積が均一であるので、その作業は高い歩留まり
で容易に行うことができる。特に、一体成形を行う場合
には、固化成形体の切り出しが不要であるため、より歩
留まりが高くなる。As described in detail above, according to the present invention,
Since each layer is configured by uniaxially pressing a solidified material obtained by rapid solidification of molten metal, it is possible to integrally mold.
Further, even in the case of integral molding, even in the case of joining the solidified molded body constituting each layer, the thermoelectric performance of each layer becomes the best in the direction of uniaxial pressing, Since they are laminated, it is possible to obtain a functionally gradient material with extremely excellent thermoelectric performance by energizing in that direction. Further, even when the solidified compacts are joined, the cross-sectional area of each layer is uniform, so that the work can be easily performed with a high yield. In particular, in the case of performing integral molding, it is not necessary to cut out the solidified molded body, so that the yield becomes higher.
【図1】本発明の第1の実施例に係る熱電材料の製造方
法を示す模式図である。FIG. 1 is a schematic diagram showing a method for manufacturing a thermoelectric material according to a first embodiment of the present invention.
【図2】(a)乃至(c)は本発明の第2の実施例に係
る熱電材料の製造方法を工程順に示す模式図である。2 (a) to 2 (c) are schematic views showing a method of manufacturing a thermoelectric material according to a second embodiment of the present invention in the order of steps.
【図3】組成と熱電性能との関係を示すグラフ図であ
る。FIG. 3 is a graph showing the relationship between composition and thermoelectric performance.
【図4】熱電モジュールの構造を示す断面図である。FIG. 4 is a sectional view showing a structure of a thermoelectric module.
【図5】従来の円柱形状の傾斜機能材料を示す斜視図で
ある。FIG. 5 is a perspective view showing a conventional columnar functionally gradient material.
【図6】従来の角柱形状の傾斜機能材料を示す斜視図で
ある。FIG. 6 is a perspective view showing a conventional prismatic functionally gradient material.
1;固化成形体
2a、2b、2c;切断片
11、12、13;固化成形体
11a〜11c、12a〜12c、13a〜13c;切
断片
14、15、16;接合体
21、22;絶縁基板
23;p型熱電素子
24;n型熱電素子
23a、23b;p型領域
24a、24b;n型領域
25;金属板1; solidified molded bodies 2a, 2b, 2c; cut pieces 11, 12, 13; solidified molded bodies 11a to 11c, 12a to 12c, 13a to 13c; cut pieces 14, 15, 16; bonded bodies 21, 22; insulating substrates 23; p-type thermoelectric element 24; n-type thermoelectric elements 23a and 23b; p-type regions 24a and 24b; n-type region 25; metal plate
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/34 H01L 35/34 // C22F 1/00 627 C22F 1/00 627 628 628 660 660Z 661 661Z 681 681 687 687 (72)発明者 林 高廣 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 Fターム(参考) 4K018 AA40 BA20 BB10 EA02 EA22 JA02 KA32 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/34 H01L 35/34 // C22F 1/00 627 C22F 1/00 627 628 628 660 660Z 661 661Z 681 681 687 687 (72) Inventor Takahiro Hayashi 10-1 Nakazawa-cho, Hamamatsu City, Shizuoka Prefecture Yamaha Stock Company F-term (reference) 4K018 AA40 BA20 BB10 EA02 EA22 JA02 KA32
Claims (5)
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有
し、互いに熱電特性が異なる複数の層を積み重ねて構成
された熱電材料であって、前記各層用の原料の溶融金属
を液体急冷させて得た凝固材を積層し、積層された凝固
材に対してその積層方向に一軸加圧することによって得
られたものであることを特徴とする熱電材料。1. A composition having at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se, and having different thermoelectric properties from each other. A thermoelectric material constituted by stacking a plurality of layers, wherein a solidified material obtained by liquid quenching a molten metal as a raw material for each layer is laminated, and uniaxially added to the laminated solidified material in the laminating direction. A thermoelectric material, which is obtained by pressing.
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有
し、互いに熱電特性が異なる複数の層を積み重ねて構成
された熱電材料であって、前記各層用の原料の溶融金属
を液体急冷させて得た凝固材を前記各層用ごとに積層
し、積層された凝固材に対して一軸加圧することによっ
て得られた前記各層用の固化成形体を夫々の一軸加圧の
方向に積み重ねて接合することにより得られたものであ
ることを特徴とする熱電材料。2. A composition having at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se, and having different thermoelectric properties from each other. A thermoelectric material constituted by stacking a plurality of layers, wherein a solidified material obtained by rapidly quenching a molten metal of a raw material for each layer is laminated for each layer, and uniaxial to the laminated solidified material. A thermoelectric material obtained by stacking and joining the solidified molded bodies for each layer obtained by pressing in the respective directions of uniaxial pressing.
r、Ag及びCuからなる群から選択された少なくとも
1種の元素が添加されていることを特徴とする請求項1
又は2に記載の熱電材料。3. The molten metal contains I, Cl, Hg, and B.
3. At least one element selected from the group consisting of r, Ag and Cu is added.
Alternatively, the thermoelectric material according to item 2.
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有す
る複数の層を積み重ねて構成された熱電材料を製造する
方法であって、前記各層用の互いに組成が異なる原料の
溶融金属を液体急冷させて凝固材を得る工程と、前記凝
固材を積層する工程と、前記積層された凝固材に対して
その積層方向に一軸加圧する工程と、を有することを特
徴とする熱電材料の製造方法。4. A stack of a plurality of layers having a composition of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. A method for producing a thermoelectric material, wherein a step of liquid-cooling molten metals of raw materials having different compositions for each layer to obtain a solidified material, a step of laminating the solidified material, and the laminated solidification A step of uniaxially pressing the material in the stacking direction thereof, the method for producing a thermoelectric material.
少なくとも1種の元素と、Te及びSeからなる群から
選択された少なくとも1種の元素とからなる組成を有す
る複数の層を積み重ねて構成された熱電材料を製造する
方法であって、前記各層用の互いに組成が異なる原料の
溶融金属を液体急冷させて凝固材を得る工程と、前記凝
固材を前記各層用ごとに積層する工程と、積層された凝
固材に対して一軸加圧することによって前記各層用の固
化成形体を得る工程と、前記固化成形体を夫々の一軸加
圧の方向に積み重ねて接合する工程と、を有することを
特徴とする熱電材料の製造方法。5. A stack of a plurality of layers having a composition of at least one element selected from the group consisting of Bi and Sb and at least one element selected from the group consisting of Te and Se. A method for producing a thermoelectric material, wherein a step of obtaining a solidified material by liquid quenching molten metal of different raw materials for the respective layers, a step of laminating the solidified material for each of the layers, A step of obtaining a solidified compact for each layer by uniaxially pressing the laminated solidified material, and a step of stacking and joining the solidified compacts in respective uniaxial pressing directions. And a method for producing a thermoelectric material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283828A JP2003092432A (en) | 2001-09-18 | 2001-09-18 | Thermoelectric material and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283828A JP2003092432A (en) | 2001-09-18 | 2001-09-18 | Thermoelectric material and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003092432A true JP2003092432A (en) | 2003-03-28 |
Family
ID=19107269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001283828A Pending JP2003092432A (en) | 2001-09-18 | 2001-09-18 | Thermoelectric material and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003092432A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005150534A (en) * | 2003-11-18 | 2005-06-09 | Ishikawajima Harima Heavy Ind Co Ltd | Thermoelectric semiconductor material, thermoelectric semiconductor element formed of the material, thermoelectric module using the thermoelectric semiconductor element and method for manufacturing these |
EP1583161A1 (en) * | 2003-01-09 | 2005-10-05 | Japan as represented by President of Kanazawa University | Structurally gradient material and functional element including the same |
US6958443B2 (en) * | 2003-05-19 | 2005-10-25 | Applied Digital Solutions | Low power thermoelectric generator |
WO2007097059A1 (en) * | 2006-02-22 | 2007-08-30 | Murata Manufacturing Co., Ltd. | Thermoelectric conversion module and method for manufacturing same |
WO2007108147A1 (en) * | 2006-03-22 | 2007-09-27 | Murata Manufacturing Co., Ltd. | Thermoelectric semiconductor, thermoelectric conversion element and thermoelectric conversion module |
JP2008147323A (en) * | 2006-12-08 | 2008-06-26 | Murata Mfg Co Ltd | Thermoelectric conversion module and manufacturing method thereof |
US7629531B2 (en) | 2003-05-19 | 2009-12-08 | Digital Angel Corporation | Low power thermoelectric generator |
US7834263B2 (en) | 2003-12-02 | 2010-11-16 | Battelle Memorial Institute | Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting |
US8455751B2 (en) | 2003-12-02 | 2013-06-04 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
US8940995B2 (en) * | 2009-07-06 | 2015-01-27 | Electronics And Telecommunications Research Institute | Thermoelectric device and method for fabricating the same |
US9281461B2 (en) | 2003-12-02 | 2016-03-08 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
KR20230066790A (en) * | 2021-11-08 | 2023-05-16 | 공주대학교 산학협력단 | Multilayer Bi-Sb-Te alloy and its manufacturing method |
-
2001
- 2001-09-18 JP JP2001283828A patent/JP2003092432A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1583161A4 (en) * | 2003-01-09 | 2008-05-28 | Japan Government | Structurally gradient material and functional element including the same |
EP1583161A1 (en) * | 2003-01-09 | 2005-10-05 | Japan as represented by President of Kanazawa University | Structurally gradient material and functional element including the same |
US6958443B2 (en) * | 2003-05-19 | 2005-10-25 | Applied Digital Solutions | Low power thermoelectric generator |
US7629531B2 (en) | 2003-05-19 | 2009-12-08 | Digital Angel Corporation | Low power thermoelectric generator |
AU2004241965B2 (en) * | 2003-05-19 | 2009-11-19 | Digital Angel Corporation | Low power thermoelectric generator |
JP4665391B2 (en) * | 2003-11-18 | 2011-04-06 | 株式会社Ihi | THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC SEMICONDUCTOR ELEMENT BY THE THERMOELECTRIC SEMICONDUCTOR MATERIAL, THERMOELECTRIC MODULE USING THE THERMOELECTRIC SEMICONDUCTOR ELEMENT, AND METHOD FOR PRODUCING THEM |
JP2005150534A (en) * | 2003-11-18 | 2005-06-09 | Ishikawajima Harima Heavy Ind Co Ltd | Thermoelectric semiconductor material, thermoelectric semiconductor element formed of the material, thermoelectric module using the thermoelectric semiconductor element and method for manufacturing these |
US7834263B2 (en) | 2003-12-02 | 2010-11-16 | Battelle Memorial Institute | Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting |
US8455751B2 (en) | 2003-12-02 | 2013-06-04 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
US9281461B2 (en) | 2003-12-02 | 2016-03-08 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
EP1988584A1 (en) * | 2006-02-22 | 2008-11-05 | Murata Manufacturing Co. Ltd. | Thermoelectric conversion module and method for manufacturing same |
WO2007097059A1 (en) * | 2006-02-22 | 2007-08-30 | Murata Manufacturing Co., Ltd. | Thermoelectric conversion module and method for manufacturing same |
EP1988584A4 (en) * | 2006-02-22 | 2011-03-09 | Murata Manufacturing Co | Thermoelectric conversion module and method for manufacturing same |
WO2007108147A1 (en) * | 2006-03-22 | 2007-09-27 | Murata Manufacturing Co., Ltd. | Thermoelectric semiconductor, thermoelectric conversion element and thermoelectric conversion module |
JP2008147323A (en) * | 2006-12-08 | 2008-06-26 | Murata Mfg Co Ltd | Thermoelectric conversion module and manufacturing method thereof |
US8940995B2 (en) * | 2009-07-06 | 2015-01-27 | Electronics And Telecommunications Research Institute | Thermoelectric device and method for fabricating the same |
KR20230066790A (en) * | 2021-11-08 | 2023-05-16 | 공주대학교 산학협력단 | Multilayer Bi-Sb-Te alloy and its manufacturing method |
KR102617203B1 (en) | 2021-11-08 | 2023-12-21 | 공주대학교 산학협력단 | Multilayer Bi-Sb-Te alloy and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7619158B2 (en) | Thermoelectric device having P-type and N-type materials | |
US4283464A (en) | Prefabricated composite metallic heat-transmitting plate unit | |
US7871847B2 (en) | System and method for high temperature compact thermoelectric generator (TEG) device construction | |
US4459428A (en) | Thermoelectric device and method of making same | |
US6232542B1 (en) | Method of fabricating thermoelectric device | |
JP2003092432A (en) | Thermoelectric material and its manufacturing method | |
US20090090409A1 (en) | System and Method for Assembling a Microthermoelectric Device | |
EP2577756B1 (en) | Thermoelectric element | |
US20080245397A1 (en) | System and Method of Manufacturing Thermoelectric Devices | |
US6271460B1 (en) | Thermo-electric element | |
US20060107989A1 (en) | High watt density thermoelectrics | |
JP2003092435A (en) | Thermoelectric module and its manufacturing method | |
KR101691724B1 (en) | Heat radiation plate for high power devices | |
JPH11121815A (en) | Thermoelectric element | |
JPH01208876A (en) | Thermoelectric device and manufacture thereof | |
CN105900230A (en) | Support for electronic power components, power module provided with such a support, and corresponding production method | |
JP6962803B2 (en) | Clad material and its manufacturing method | |
JP4284589B2 (en) | Thermoelectric semiconductor manufacturing method, thermoelectric conversion element manufacturing method, and thermoelectric conversion device manufacturing method | |
JP2003282970A (en) | Thermoelectric converter and thermoelectric conversion element and their manufacturing method | |
KR20160115430A (en) | Thermoelectric device moudule and device using the same | |
KR101945765B1 (en) | Manufacturing method for thermoelectric material having high efficiency and manufacturing method for thermoelectric module | |
JP2002076451A (en) | Thermoelectric transducing element and its manufacture | |
JP2021518669A (en) | Copper-ceramic substrate | |
JP4000023B2 (en) | Thermoelectric material molded body and method for producing thermoelectric material molded body | |
JP2004221464A (en) | Method of manufacturing thermoelectric semiconductor, method of manufacturing thermoelectric converter or conversion device, and apparatus for implementation thereof |