JP2003043429A - Method for setting operating condition and method for detecting operating condition of cross phase modulation type entire optical wavelength transducer - Google Patents
Method for setting operating condition and method for detecting operating condition of cross phase modulation type entire optical wavelength transducerInfo
- Publication number
- JP2003043429A JP2003043429A JP2001231046A JP2001231046A JP2003043429A JP 2003043429 A JP2003043429 A JP 2003043429A JP 2001231046 A JP2001231046 A JP 2001231046A JP 2001231046 A JP2001231046 A JP 2001231046A JP 2003043429 A JP2003043429 A JP 2003043429A
- Authority
- JP
- Japan
- Prior art keywords
- signal light
- power
- wavelength
- light
- input signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、相互位相変調型全
光波長変換器の動作条件設定方法および動作条件検出方
法に関し、相互位相変調型全光波長変換器において、半
導体光増幅器の駆動電流及び動作光パワー(入力信号光
パワーと出力連続光パワー)の最適動作条件を設定した
り最適動作条件を検出する方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating condition setting method and an operating condition detecting method for a cross-phase modulation type all-optical wavelength converter. The present invention relates to a method for setting and detecting the optimum operating conditions of operating light power (input signal light power and output continuous light power).
【0002】[0002]
【従来の技術】光通信ネットワークの大容量化のため、
近年、波長多重(WDM:WavelengthDivision Multipl
exing)通信方式の開発が進んでいる。例えば、一本の
光ファイバで異なる32波長の信号伝送が可能であり、
この場合、総伝送容量を信号ビットレートの32倍にす
ることができる。このようなWDMネットワークの構築
に用いられる光ファイバの種類が異なると、そこで使用
される波長群も異なる。例えば、一般的なシングルモー
ドファイバで用いられる波長群は波長間隔が等間隔であ
るが、分散シフトファイバでは波長間の干渉による信号
波形の劣化を回避するため、波長間隔を不等間隔として
いる。このため、異なるWDMネットワーク間の相互接
続の接続ポイントにおいて、一方のネットワークで用い
る波長群から、他方のネットワークで用いる波長群への
波長変換が必須となる。2. Description of the Related Art In order to increase the capacity of optical communication networks,
In recent years, WDM (Wavelength Division Multipl)
exing) The development of communication methods is progressing. For example, it is possible to transmit signals of 32 different wavelengths with one optical fiber,
In this case, the total transmission capacity can be 32 times the signal bit rate. When the type of optical fiber used for constructing such a WDM network is different, the wavelength group used there is also different. For example, the wavelength groups used in a general single mode fiber have equal wavelength intervals, but in the dispersion shift fiber, the wavelength intervals are unequal intervals in order to avoid deterioration of the signal waveform due to interference between wavelengths. Therefore, at the connection point of interconnection between different WDM networks, wavelength conversion from the wavelength group used in one network to the wavelength group used in the other network is essential.
【0003】光電変換することなく信号光を光のまま波
長変換する全光波長変換器の変換方式として次のような
方式がある。
(1)相互位相変調(XPM:Cross Phase Modulatio
n)
(2)相互利得変調(XGM:Cross Gain Modulation)
(3)四光波混合(FWM:Four Wave Mixing)There is the following method as a conversion method of the all-optical wavelength converter that converts the wavelength of the signal light as it is without photoelectric conversion. (1) Cross Phase Modulatio (XPM)
n) (2) Cross Gain Modulation (XGM) (3) Four Wave Mixing (FWM)
【0004】上記波長変換方式の内、四光波混合は高速
応答が可能であるが変換効率が低い。相互利得変調は出
力消光比がゲイン変動すなわちキャリア変動そのもので
あるため、伝送時にチャーピングによる波形歪みが生じ
やすい。一方、相互位相変調方式は、3〜4dBという
比較的小さいゲイン変動で高出力消光比が得られ、ま
た、そのため伝送時の波形ひずみが抑制されるといった
長所を有する。Of the above wavelength conversion systems, four-wave mixing is capable of high-speed response, but its conversion efficiency is low. In the mutual gain modulation, the output extinction ratio is a gain variation, that is, a carrier variation itself, and therefore waveform distortion due to chirping is likely to occur during transmission. On the other hand, the cross-phase modulation method has an advantage that a high output extinction ratio can be obtained with a relatively small gain variation of 3 to 4 dB, and therefore waveform distortion during transmission is suppressed.
【0005】上記相互位相変調型の波長変換器の動作原
理について、図1のハイブリッド集積型回路を例にとり
説明する。尚、同様の構成で半導体光増幅器と受動、ま
たは能動導波路が同一基板上に一体的に集積されたモノ
リシック集積型においても同様の原理で動作する。The operating principle of the above-mentioned cross-phase modulation type wavelength converter will be described by taking the hybrid integrated circuit of FIG. 1 as an example. A monolithic integrated type in which a semiconductor optical amplifier and a passive or active waveguide are integrally integrated on the same substrate with the same configuration also operates on the same principle.
【0006】図1において、1は連続光(CW)入力用
のポート、2は出力用のポート、3は信号光入力用のポ
ート、4,5,6は光合分波器、7,8はアーム導波路
に介装された半導体光増幅器(semiconductor optical
amplifier:SOA)、9は光フィルタ、10は平面光波
回路(PLC)プラットフォ−ムである。In FIG. 1, 1 is a continuous light (CW) input port, 2 is an output port, 3 is a signal light input port, 4, 5 and 6 are optical multiplexer / demultiplexers, and 7 and 8 are A semiconductor optical amplifier (semiconductor optical) interposed in an arm waveguide.
amplifier: SOA), 9 is an optical filter, and 10 is a planar lightwave circuit (PLC) platform.
【0007】図1においては、半導体光増幅器(semico
nductor optical amplifier:SOA)7,8を、平面光
波回路(PLC)プラットフォ−ム10上に搭載しマッ
ハツェンダ型の光干渉回路を構成している。波長λc の
CW光(連続光)はポート1から入力し、第一の光合分
波器4で2分岐され、2本のアーム導波路に入射する。
アーム導波路に入ったCW光は各々半導体光増幅器7,
8に入力する。半導体光増幅器7,8からの出力光は第
二の光合分波器5によって合波され干渉出力光がポート
2から出力される。In FIG. 1, a semiconductor optical amplifier (semico
nductor optical amplifier (SOA) 7 and 8 are mounted on a planar lightwave circuit (PLC) platform 10 to form a Mach-Zehnder type optical interference circuit. CW light (continuous light) of wavelength λc is input from the port 1, is branched into two by the first optical multiplexer / demultiplexer 4, and is incident on the two arm waveguides.
The CW light entering the arm waveguides is the semiconductor optical amplifier 7,
Enter in 8. The output light from the semiconductor optical amplifiers 7 and 8 is multiplexed by the second optical multiplexer / demultiplexer 5, and the interference output light is output from the port 2.
【0008】一方、波長λs の信号光がポート3から入
力し、光合分波器6を介して片側の半導体増幅器7(S
OAmod)へ入射する。すると半導体光増幅器7の飽
和現象によってキャリア密度が減少し、これによって屈
折率変化が生じ、半導体光増幅器7を通過するCW光の
位相変調を引き起こす。これが、他方の半導体光増幅器
8(SOApc)を通過し位相変調を受けなかったCW
光と干渉することによって、ポート2から光フィルタ9
を通り出力される波長λc の光の強度変調となる。この
結果、入力信号光の波長λs がCW光の波長λc に乗り
移り波長変換が行われる。この時、信号光入射側の半導
体光増幅器7をSOAmod、その駆動電流をImo
d、他方の半導体光増幅器8をSOApcとし、その駆
動電流をIpcとする。On the other hand, a signal light of wavelength λs is input from the port 3 and is passed through the optical multiplexer / demultiplexer 6 to the semiconductor amplifier 7 (S
OA mod). Then, the carrier density decreases due to the saturation phenomenon of the semiconductor optical amplifier 7, which causes a change in the refractive index and causes the phase modulation of the CW light passing through the semiconductor optical amplifier 7. This is a CW that has passed through the other semiconductor optical amplifier 8 (SOApc) and has not undergone phase modulation.
By interfering with the light, the optical filter 9 from the port 2
Intensity modulation of the light of wavelength λc is output. As a result, the wavelength λs of the input signal light is transferred to the wavelength λc of the CW light and wavelength conversion is performed. At this time, the semiconductor optical amplifier 7 on the signal light incident side is SOAmod, and its drive current is Imo.
d, the other semiconductor optical amplifier 8 is SOApc, and its drive current is Ipc.
【0009】図1に示すように、一般的に相互位相変調
型光波長変換回路は少なくとも2個のSOAを有し、入
力信号光パワーPs-inに対して、入力CW光パワーPc-
in、Imod、Ipcの3つの動作パラメータを持つ。
通常、伝送ビットレート10Gb/s程度の場合、信号
光入射側の半導体光増幅器の駆動電流Imodを200
mA程度の高注入一定値とし、残り2個の動作パラメー
タ、IpcとPc-inを次のように決定する。As shown in FIG. 1, generally, a cross-phase modulation type optical wavelength conversion circuit has at least two SOAs, and the input CW optical power Pc- with respect to the input signal optical power Ps-in.
It has three operation parameters of in, Imod, and Ipc.
Normally, when the transmission bit rate is about 10 Gb / s, the drive current Imod of the semiconductor optical amplifier on the signal light incident side is 200
With a high injection constant value of approximately mA, the remaining two operating parameters, Ipc and Pc-in, are determined as follows.
【0010】図2(a)はImod一定のとき、反転出
力モードの場合のIpcの変化に対するCW光出力Pc-
out の変化を示す。信号光未入射時(実線)、Ipcの
増加に対しPc-out は極大と極小を繰り返しながらその
出力振幅は増加する。IpcがImodにほぼ等しい点
で振幅は最大となり最大出力が得られる。この点を動作
点a(Ipc=a)とする。このような状態に信号光を
入射するとPc-out 曲線は徐々にシフトして、ある入力
パワーPs-in(s)の時に点線で示した曲線へと変化す
る。このときIpc=aにおけるPc-out は最小値Pc-
out (min)となる。FIG. 2A shows the CW optical output Pc- with respect to the change of Ipc in the inverting output mode when Imod is constant.
Indicates a change in out. When the signal light is not incident (solid line), the output amplitude increases while Pc-out repeats the maximum and minimum with respect to the increase of Ipc. At the point where Ipc is almost equal to Imod, the amplitude becomes maximum and the maximum output is obtained. This point is defined as an operating point a (Ipc = a). When the signal light is incident in such a state, the Pc-out curve is gradually shifted and changes to a curve shown by a dotted line at a certain input power Ps-in (s). At this time, Pc-out at Ipc = a is the minimum value Pc-
out (min).
【0011】図2(b)に、Ipc=aにおける、入力
信号光パワーPs-inに対するPc-out の変化を示す。P
s-inの増加に伴いPc-out が最大値から最小値へと変化
し、動作点aにおいて最大出力消光比ER(max)が
得られる。FIG. 2B shows a change in Pc-out with respect to the input signal light power Ps-in when Ipc = a. P
Pc-out changes from the maximum value to the minimum value as s-in increases, and the maximum output extinction ratio ER (max) is obtained at the operating point a.
【0012】[0012]
【発明が解決しようとする課題】しかしながら、上記波
長変換器は実用上次のような課題がある。図3に一括波
長変換装置の構成例を示す。波長多重された信号光がポ
ート31から波長合分波器32に入射し分波された各波
長の信号光は波長変換器列33に入力し、各々波長変換
され、再び波長合分波器34に入射し合波された信号光
がポート35に出力する。これによって波長群λ1〜λ
nから波長群λ1′〜λn′へ一括波長変換が行われ
る。However, the above wavelength converter has the following problems in practical use. FIG. 3 shows a configuration example of the collective wavelength conversion device. The wavelength-division-multiplexed signal light enters the wavelength multiplexer / demultiplexer 32 from the port 31 and the demultiplexed signal light of each wavelength is input to the wavelength converter array 33, each wavelength is converted, and the wavelength multiplexer / demultiplexer 34 is again used. The signal light that is incident on and combined with is output to the port 35. Thereby, the wavelength groups λ1 to λ
A collective wavelength conversion from n to wavelength groups λ1 ′ to λn ′ is performed.
【0013】このように、一括波長変換を行う場合、使
用波長の数だけ波長変換器を多チャネル化する必要が生
じる。このため1チャネルあたりの消費電力の低減、す
なわち半導体光増幅器への注入電流の低減が望まれる。
また、低コスト化の観点からCW光源はいくつかの一括
波長変換装置で共有化されることが望ましく、このため
1チャネルあたりに入射するCW光パワーは減少する。
当然のことながら、波長変換回路に入射する信号光パワ
ーも伝送中及びノード内部での損失のために減少する。
つまり、多チャネル化に伴い、波長変換器の低消費電力
化及び必要動作光パワーの低減の両方が実用上重要な課
題となる。As described above, in the case of performing collective wavelength conversion, it is necessary to make the number of wavelength converters equal to the number of used wavelengths. Therefore, it is desired to reduce the power consumption per channel, that is, the injection current to the semiconductor optical amplifier.
Further, from the viewpoint of cost reduction, it is desirable that the CW light source is shared by several collective wavelength conversion devices, and thus the CW light power incident on one channel is reduced.
As a matter of course, the signal light power incident on the wavelength conversion circuit also decreases due to the loss during transmission and inside the node.
That is, along with the increase in the number of channels, both the reduction of the power consumption of the wavelength converter and the reduction of the required operating light power become important issues for practical use.
【0014】しかし、従来の動作点aにおいてImod
を減少させると、次のような問題が生じる。図4は固定
パタン信号(″1連続″、″0連続″、″10連続″、
の繰り返し)入力時においてパタン効果がない場合
(a)と有る場合(b)の出力固定パタンとその時のア
イパタンを模式的に示したものである。However, at the conventional operating point a, Imod
However, the following problems occur. FIG. 4 shows fixed pattern signals (“1 continuous”, “0 continuous”, “10 continuous”,
2) schematically shows the output fixed pattern and the eye pattern at that time when there is no pattern effect (a) and when there is a pattern effect (b).
【0015】Imodが十分に高い場合(Imodが2
00mA程度以上)、(a)のようなパタン効果のない
良好な出力波形が観測される。このとき、″1連続″信
号と″0連続″信号の低周波入力に対する出力振幅A
と、″10連続″信号に対する高周波応答振幅Bとの比
がアイ開口度B/Aとしてアイパタンに現れる。When Imod is sufficiently high (Imod is 2
A good output waveform without the pattern effect as in (a) is observed. At this time, the output amplitude A for the low frequency input of the "1 continuous" signal and the "0 continuous" signal
And the ratio of the high frequency response amplitude B to the "10 continuous" signal appears in the eye pattern as the eye opening B / A.
【0016】波長変換出力の場合、Imodが減少する
とキャリア寿命が大きくなり、″10連続″のような高
周波入力に追随しなくなる。その結果、出力振幅Bは出
力振幅Aより小さくなり、出力アイパタンのアイ開口度
が劣化する(図4(b))。このようなアイ開口度の劣
化分は符号誤り率の測定においてパワーペナルティとし
て観測される。In the case of the wavelength conversion output, the carrier life becomes longer as Imod decreases, and the high frequency input such as "10 continuous" cannot be followed. As a result, the output amplitude B becomes smaller than the output amplitude A, and the eye opening degree of the output eye pattern deteriorates (FIG. 4B). Such deterioration of the eye opening is observed as a power penalty in measuring the bit error rate.
【0017】これを解消するには通常Imodを増加し
なくてはならず、通常200mA近くまで上昇させる必
要があり、その結果、Ipcも含めた総電流量は300
〜400mAと大きな値となる。このため、動作点aに
おいてはSOAへの低注入電流動作の実現が容易ではな
かった。In order to solve this, it is usually necessary to increase Imod, and it is usually necessary to increase it to near 200 mA. As a result, the total current amount including Ipc is 300.
It becomes a large value of 400 mA. Therefore, it was not easy to realize the low injection current operation to the SOA at the operating point a.
【0018】[0018]
【課題を解決するための手段】上記課題を解決するた
め、本発明においては、出力信号光のアイ開口度と位相
調整用電流Ipcの関係に着目し、パタン効果のない出
力信号光を実現するためにIpcを最大出力消光比が得
られる動作点aから最大出力アイ開口度が得られる動作
点(bとする)へ移行する。その移行過程として、アイ
開口をモニタしながら、(1)Ps-inは一定で、ある刻
み幅でIpcをIpc=aから減少させると同時に入力
CW光パワーPc-inを減少させる。もしくは、(2)P
c-inは一定で、ある刻み幅でIpcをIpc=aから減
少させると同時に入力信号光パワーPs-inを増加させ
る、のいずれかの過程を、アイ開口が最大になるまで繰
り返し、最適動作点を検出する。In order to solve the above problems, in the present invention, attention is paid to the relationship between the eye opening degree of the output signal light and the phase adjusting current Ipc, and an output signal light without a pattern effect is realized. Therefore, Ipc is shifted from the operating point a where the maximum output extinction ratio is obtained to the operating point (referred to as b) where the maximum output eye opening is obtained. As the transition process, while monitoring the eye opening, (1) Ps-in is constant and Ipc is decreased from Ipc = a in a certain step width, and at the same time, the input CW optical power Pc-in is decreased. Or (2) P
c-in is constant, Ipc is decreased from Ipc = a in a certain step width, and at the same time, the input signal light power Ps-in is increased. Detect points.
【0019】また、一度設定された最適動作条件に対し
て、入力信号光と同波長の出力信号光パワーPs-out を
測定する。入力動作光パワー(Pc-in、Ps-in)の変化
が生じる場合はこのPs-out を保持するように、動作光
パワーのどちらか一方の増加・減少に対して、他方を増
加・減少させる。Further, the output signal light power Ps-out having the same wavelength as the input signal light is measured under the optimum operating condition once set. When the input operation optical power (Pc-in, Ps-in) changes, the operation optical power is increased / decreased while the other is increased / decreased so that this Ps-out is maintained. .
【0020】更に、最小動作光パワーを検出するために
動作光パワーをある刻み幅で低減する過程において、前
記のPs-out 一定条件と共に、そのアイ開口度の保持も
確認し、Ps-out が一定でもアイ開口度が劣化した際に
は、その入力動作光パワー条件より高い光パワーを最小
動作光パワーとして検出する。Furthermore, in the process of reducing the operating light power with a certain step size in order to detect the minimum operating light power, it is also confirmed that the eye opening degree is maintained together with the above Ps-out constant condition. When the eye opening degree deteriorates even with a constant value, an optical power higher than the input operating optical power condition is detected as the minimum operating optical power.
【0021】[0021]
【発明の実施の形態】図5に、出力アイ開口度と出力パ
ワーのIpc依存性を示す。ImodとPs-inは一定と
する。図5で、Ipc=aのとき、出力パワーは最大に
なるが十分なアイ開口が得られていないのに対し、Ip
cをaから減少させると出力パワーは減少するがアイ開
口の最大となる動作点b(Ipc=b)が存在すること
が分かる。BEST MODE FOR CARRYING OUT THE INVENTION FIG. 5 shows the Ipc dependence of the output eye opening and the output power. Imod and Ps-in are constant. In FIG. 5, when Ipc = a, the output power is maximized, but a sufficient eye opening is not obtained.
It can be seen that when c is decreased from a, the output power decreases but there is an operating point b (Ipc = b) that maximizes the eye opening.
【0022】本発明の第1の実施の形態として、図6を
参照しつつ、この動作点aからbへの移行手順について
具体的に説明する。図6はImodとIpcの電流設定
手順を示すフローチャートである。また本発明の第2の
実施の形態として、図7を参照しつつ、図6で設定され
た入力条件に対し、動作光パワー(Ps-in、Pc-in)を
減少させ、最小動作光パワーPs-in(min),Pc-in
(min)を検出する手順を示す。As the first embodiment of the present invention, the procedure for shifting from the operating point a to the operating point b will be specifically described with reference to FIG. FIG. 6 is a flow chart showing the current setting procedure of Imod and Ipc. As a second embodiment of the present invention, referring to FIG. 7, the operating light power (Ps-in, Pc-in) is reduced with respect to the input condition set in FIG. 6, and the minimum operating light power is reduced. Ps-in (min), Pc-in
A procedure for detecting (min) will be shown.
【0023】まず、図6を基に、電流条件設定手順から
説明する。但し、入力波長条件は一定とする。(1) 〜
(6) の操作は図2の動作状態を説明するものである。First, the current condition setting procedure will be described with reference to FIG. However, the input wavelength condition is constant. (1) ~
The operation (6) is for explaining the operation state of FIG.
【0024】まず、(1)CW光を0dBm程度入力し、
(2)任意のImodを入力する。但し、入力光に対して
SOAチップ利得を十分生じる電流値とする。(3)Ip
cを入力し、Pc-out を測定する。(4)Pc-out が最大
になるまでIpcを増加する。Ipc=Ipc(ma
x)となった時点で、(5)Ps-in(CW)を入力してPc
-out を測定する。ここでIpc(max)は、前述の
動作点a(Ipc=a)である。(6)Pc-out (mi
n)を検出したら、(7)次にPs-in(sig)を入力す
る。Ps-in(sig)は、CW光をEA変調器(Electr
o Absorption modulator)等を用いて変調して生成す
る。EA変調器への入力電気信号はPG(Pattern Gene
rator)の正弦波信号(10Gb/sランダム信号相当に
は5GHz)で構わない。この時の最適Ps-in(si
g)平均パワーは、Pc-out (max)からPc-out
(min)の変化に必要な入力光パワーPs-in(s)の
半分になるよう設定する。First, (1) input CW light of about 0 dBm,
(2) Input any Imod. However, the current value is set to sufficiently generate the SOA chip gain with respect to the input light. (3) Ip
Input c and measure Pc-out. (4) Increase Ipc until Pc-out becomes maximum. Ipc = Ipc (ma
x), enter (5) Ps-in (CW) and enter Pc
-out is measured. Here, Ipc (max) is the above-mentioned operating point a (Ipc = a). (6) Pc-out (mi
When n) is detected, (7) Next, Ps-in (sig) is input. Ps-in (sig) is an EA modulator (Electr
o Absorption modulator) is used for modulation and generation. The input electric signal to the EA modulator is PG (Pattern Gene).
sine wave signal (5 GHz for 10 Gb / s random signal). The optimum Ps-in (si
g) Average power is from Pc-out (max) to Pc-out
The input light power Ps-in (s) required to change (min) is set to half.
【0025】(8)として出力振幅比B/A(図4参照)
を測定し、B/Aが0.9以上であれば、Imodが減
少するよう(2) に戻る。この操作は、Imodを動作可
能な最小限の電流値とするためである。(8) で出力振幅
比B/Aが0.9より小さければ、(9)Ipcを下げ、
(10)((5) →(6) →(7))を繰り返す。(8) Output amplitude ratio B / A (see FIG. 4)
If the B / A is 0.9 or more, return to (2) so that Imod decreases. This operation is performed to set Imod to the minimum operable current value. If the output amplitude ratio B / A is smaller than 0.9 in (8), lower (9) Ipc,
Repeat (10) ((5) → (6) → (7)).
【0026】(11) でB/Aが最大になり、且つ(12)そ
の値が0.9以上であれば、その時のIpcをIpc
(opt)とし、その他の動作パラメータImod、P
s-in、Pc-inを抽出する。ここでIpc(opt)は前
述のIpcの動作点bである。(11)ではB/Aが最大に
なるまでIpcを減少させる。また、(12)でB/Aが
0.9以下であればImodが増加するよう(2) に戻
る。この操作は、Ipc=Ipc(opt)においても
出力アイパタンのパタン効果が十分に抑制されない場合
(つまり(12)でB/A<0.9の場合)、Imodを上
げ、SOAのキャリア寿命を小さくし、応答速度を向上
させる必要があるためである。Imodは、(8)と(12)
のフィードバック操作によって最小値となる。If B / A is maximized in (11) and (12) the value is 0.9 or more, then Ipc at that time is Ipc
(Opt) and other operation parameters Imod, P
Extract s-in and Pc-in. Here, Ipc (opt) is the above-mentioned operating point b of Ipc. In (11), Ipc is decreased until B / A becomes maximum. Further, if B / A is 0.9 or less in (12), the process returns to (2) so that Imod increases. This operation increases Imod and shortens the carrier life of the SOA when the pattern effect of the output eye pattern is not sufficiently suppressed even when Ipc = Ipc (opt) (that is, when B / A <0.9 in (12)). However, it is necessary to improve the response speed. Imod is (8) and (12)
It becomes the minimum value by the feedback operation of.
【0027】また、処理(10)に代わり、(10)′でもよ
い。(10)′では(5) 〜(7) で抽出した最適Ps-in(CW
or signal)は一定のまま、Pc-inを下げながらPc-ou
t (CW or signal)を測定する。処理(10)と(10)′が
等価であることは、補助図(10)を用いて説明できる。Further, instead of the processing (10), (10) 'may be used. In (10) ′, the optimum Ps-in (CW extracted in (5) to (7)
or signal) remains constant, Pc-in is lowered while Pc-in is lowered.
Measure t (CW or signal). The equivalence of the processes (10) and (10) 'can be explained by using the auxiliary diagram (10).
【0028】補助図(10)に、入力信号光パワーPs-inに
対する最適CW光パワーを、Ipcをパラメータとして
示す。実線はIpc=Ipc(max)、点線はIpc
=Ipc(opt)のときである。Ipc(max)か
らIpc(opt)への移行する過程として、Pc-inを
一定にしてPs-inを増加させる(処理(10))、Ps-inを
一定にしてPc-inを減少させる(処理(10)′)の2通り
有ることがわかる。The auxiliary diagram (10) shows the optimum CW optical power with respect to the input signal optical power Ps-in with Ipc as a parameter. The solid line is Ipc = Ipc (max), the dotted line is Ipc
= Ipc (opt). As a process of transition from Ipc (max) to Ipc (opt), Pc-in is kept constant and Ps-in is increased (process (10)), Ps-in is kept constant and Pc-in is decreased (process (10)). It can be seen that there are two types of processing (10) ′).
【0029】図6のフローチャートにおいては、Imo
dを最小の電流値で用いるためにIpc(opt)を最
適化する。Ps-inとPc-inについては、補助図(10)に示
すように組み合わせが幾つも存在するため、所望の動作
光パワーで用いる場合には次の図7(a)のフローチャ
ートに示す手順が必要となる。In the flowchart of FIG. 6, Imo
Optimize Ipc (opt) to use d at the minimum current value. Since there are many combinations of Ps-in and Pc-in as shown in the auxiliary diagram (10), the procedure shown in the flowchart of FIG. Will be needed.
【0030】図7(a)において、まず、準備として
図6の電流条件設定手順で抽出された1つの最適動作条
件(Ipc、Imod、Ps-in(sig)、Pc-in)に
対し、Ps-out (sig)(入力信号光と同波長の出
力信号光パワー)を測定し、これをCとする。以下、P
s-inは変調信号光Ps-in(sig)を示す。In FIG. 7 (a), first, as a preparation, for one optimum operating condition (Ipc, Imod, Ps-in (sig), Pc-in) extracted in the current condition setting procedure of FIG. -out (sig) (output signal light power of the same wavelength as the input signal light) is measured and designated as C. Below, P
s-in represents the modulated signal light Ps-in (sig).
【0031】とでは、図6の挿入図(10)に示すPc-
inとPs-inの増減関係に従い、Pc-inを下げ(またはP
s-inを下げ)、次にPs-inを下げる(またはPc-inを下
げる)。このとき、Ps-out (sig)をモニタし、
Ps-out (sig)<Cであれば、処理に戻る。
Ps-out (sig)=C、且つ、パタン効果によってア
イ開口が劣化していない場合、(例えば0.8以上)処
理に戻る。Then, Pc- shown in the inset (10) of FIG.
Decrease Pc-in (or P according to the increasing / decreasing relationship between in and Ps-in
Lower s-in), then lower Ps-in (or lower Pc-in). At this time, monitor Ps-out (sig),
If Ps-out (sig) <C, the process returns.
When Ps-out (sig) = C and the eye opening is not deteriorated by the pattern effect (for example, 0.8 or more), the process is returned to.
【0032】動作光パワーをある刻み幅(例えばPs-in
は0.5dB程度、Pc-inは0.1dB程度)で減少さ
せていったとき、n番目の動作光パワーPs-in(n)の
時ににおいてアイ開口が劣化し始めた時点でループか
ら出、最小動作光パワーPs-in(min)=Ps-in
(n- 1)、Pc-in(min)=Pc-in(n- 1)とな
る。The operating light power is divided into steps (for example, Ps-in
Is about 0.5 dB, and Pc-in is about 0.1 dB), the loop exits when the eye opening starts to deteriorate at the n-th operating light power Ps-in (n). , Minimum operating light power Ps-in (min) = Ps-in
(N-1), Pc-in (min) = Pc-in (n-1).
【0033】本フローチャートの補助図を図7(b)に
示す。図7(b)ではPc-inをパラメータに、横軸のP
s-inの変化に対し、縦軸にPs-out を示す。Pc-inの増
加に伴い、同じPs-out を得るために必要なPs-inは増
加することがわかる。Ps-out 一定の線上においてPc-
inとPs-inは最適組み合わせとなる。及びの処理
は、Ps-out 一定の線上のいずれかから始まり、動作光
パワーを下げていく順序としては、図中の矢印で示すよ
うに2通りの道筋が存在する。An auxiliary diagram of this flowchart is shown in FIG. In FIG. 7B, Pc-in is used as a parameter, and P on the horizontal axis is used.
The vertical axis represents Ps-out with respect to changes in s-in. It can be seen that as Pc-in increases, Ps-in required to obtain the same Ps-out increases. Ps-out Pc- on a constant line
The optimum combination of in and Ps-in. The processing of and is started from one of the lines on which Ps-out is constant, and there are two ways of decreasing the operating light power, as shown by the arrows in the figure.
【0034】図8に本発明の手順に従い動作条件の最適
化を行ったときの動作点a及びbにおける出力アイパタ
ンを示す。動作点aにおいてはアイ開口が十分でないの
に対し、動作点bではアイ開口度0.9以上の良好な出
力が得られた。FIG. 8 shows output eye patterns at operating points a and b when the operating conditions are optimized according to the procedure of the present invention. At the operating point a, the eye opening was not sufficient, but at the operating point b, a good output with an eye opening of 0.9 or more was obtained.
【0035】また、図9に動作光パワーPs-inを減少さ
せていった時のパワーペナルティの変化を、IpcがI
pc(max)(図中、動作点a)とIpc(opt)
(図中、動作点b)の各々の場合に示す。動作光パワー
−6dBm以下において動作点(a)ではパワーペナル
ティが1dB以下にならないのに対し、動作点(b)で
はPs-in=−10dBmまでパワーペナルティ=0.5
dB程度を保持している。この時、Pc-inは−10dB
m、総電流量は215mAと低いものであった。Further, in FIG. 9, Ipc shows the change in the power penalty when the operating light power Ps-in is decreased.
pc (max) (operating point a in the figure) and Ipc (opt)
(In the figure, operating point b) is shown in each case. When the operating light power is -6 dBm or less, the power penalty does not become 1 dB or less at the operating point (a), while at the operating point (b), the power penalty is 0.5 up to Ps-in = -10 dBm.
It holds about dB. At this time, Pc-in is -10dB
m, the total current amount was 215 mA, which was low.
【0036】このように、本発明の動作条件の最適化手
順に従い、多チャネル化に適した低消費電力駆動、低パ
ワー動作が可能な位相変調型波長変換動作を実現するこ
とができる。As described above, according to the procedure for optimizing the operating conditions of the present invention, it is possible to realize the phase modulation type wavelength conversion operation capable of low power consumption driving and low power operation suitable for multi-channel operation.
【0037】[0037]
【発明の効果】以上、実施の形態と共に具体的に説明し
たように、本発明では、まず、信号光非入射側の半導体
光増幅器の駆動電流値Ipcを、出力消光比が最大とな
る動作点から出力アイ開口度が最大となる動作点へ移行
する過程において、Ipcを下げると共に入力信号光パ
ワーを増加、もしくは、入力CW光パワーを減少させる
手順をふみながら出力アイ開口を測定し、Ipcの最適
化を行う手順を示している。これによって、もう一方の
信号光入力側の半導体光増幅器の電流値Imodを最小
に設定することが可能であり、このため、全消費電力の
低減を実現できる。As described above in detail with the embodiments, in the present invention, first, the driving current value Ipc of the semiconductor optical amplifier on the non-incident side of the signal light is set to the operating point at which the output extinction ratio becomes maximum. From the operating point where the output eye opening degree becomes maximum, the output eye opening is measured while following the procedure of decreasing Ipc and increasing the input signal light power or decreasing the input CW light power, The procedure for performing optimization is shown. As a result, it is possible to set the current value Imod of the other semiconductor optical amplifier on the signal light input side to the minimum value, and thus it is possible to reduce the total power consumption.
【0038】また、上記最適動作条件において、入力信
号光と同波長の出力信号光パワーPs-out(sig)を測定
し、これを保持するように、動作光パワー(CW光パワ
ー、信号光パワー)の増減の調整を行うことで所望の動
作光パワーに設定することができる。最小動作光パワー
を検出する際には、動作光パワーを減少させつつ上記調
整を行い、Ps-out(sig)の波形劣化(アイ開口やQ値で
確認)が生じるまで動作光パワーを低減するという手順
によって、最小動作光パワーを検出できる。Under the optimum operating conditions, the output signal light power Ps-out (sig) having the same wavelength as that of the input signal light is measured, and the operation light power (CW light power, signal light power) is held so as to hold it. The desired operating light power can be set by adjusting the increase / decrease. When detecting the minimum operating light power, the above adjustment is performed while reducing the operating light power, and the operating light power is reduced until the waveform deterioration of Ps-out (sig) (confirmed by the eye opening and the Q value) occurs. By this procedure, the minimum operating light power can be detected.
【図1】相互位相変調型(XPM)光波長変換回路を示
す構成図である。FIG. 1 is a configuration diagram showing a cross phase modulation (XPM) optical wavelength conversion circuit.
【図2】従来の動作点決定手法を示す説明図である。FIG. 2 is an explanatory diagram showing a conventional operating point determination method.
【図3】多チャネルのXPM回路を用いた一括光波長変
換装置を示す構成図である。FIG. 3 is a configuration diagram showing a collective optical wavelength conversion device using a multi-channel XPM circuit.
【図4】パタン効果の有無による出力波形を示す模式図
である。FIG. 4 is a schematic diagram showing an output waveform depending on the presence or absence of a pattern effect.
【図5】出力パワーとアイ開口度のIpc依存性を示し
た模式図である。FIG. 5 is a schematic diagram showing Ipc dependence of output power and eye opening degree.
【図6】本発明の第1の実施の形態における電流条件設
定手順を示すフローチャートである。FIG. 6 is a flowchart showing a current condition setting procedure in the first embodiment of the present invention.
【図7】本発明の第2の実施の形態における、最小動作
光パワー検出手順を示す説明図であり、(a)はフロー
チャート、(b)は補助図である。7A and 7B are explanatory diagrams showing a minimum operating light power detection procedure in the second embodiment of the invention, FIG. 7A is a flowchart, and FIG. 7B is an auxiliary diagram.
【図8】本発明の実施結果であるアイパターンを示す説
明図である。FIG. 8 is an explanatory diagram showing an eye pattern as a result of implementing the present invention.
【図9】本発明の実施結果を示した説明図である。FIG. 9 is an explanatory diagram showing the results of implementation of the present invention.
1,2,3 ポート 4,5,6 光合分波器 7,8 半導体光増幅器 9 光フィルタ 10 平面光波回路 31 ポート 32 波長合分波器 33 波長変換器列 34 波長合分波器 35 ポート 1, 2, 3 ports 4, 5, 6 Optical multiplexer / demultiplexer 7,8 Semiconductor optical amplifier 9 Optical filter 10 Planar lightwave circuit 31 ports 32 wavelength multiplexer / demultiplexer 33 Wavelength converter array 34 Wavelength multiplexer / demultiplexer 35 ports
───────────────────────────────────────────────────── フロントページの続き (72)発明者 曲 克明 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 鈴木 安弘 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 小川 育生 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 2H079 AA05 AA12 BA01 CA04 EA05 EA07 HA16 KA20 2K002 AA02 AB12 BA02 DA11 EA30 GA07 5F073 AB25 BA01 EA29 GA25 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Katsuaki 2-3-1, Otemachi, Chiyoda-ku, Tokyo Inside Telegraph and Telephone Corporation (72) Inventor Yasuhiro Suzuki 2-3-1, Otemachi, Chiyoda-ku, Tokyo Inside Telegraph and Telephone Corporation (72) Inventor Ikuo Ogawa 2-3-1, Otemachi, Chiyoda-ku, Tokyo Inside Telegraph and Telephone Corporation F-term (reference) 2H079 AA05 AA12 BA01 CA04 EA05 EA07 HA16 KA20 2K002 AA02 AB12 BA02 DA11 EA30 GA07 5F073 AB25 BA01 EA29 GA25
Claims (3)
光の波長を入力連続光の波長に変換して出力信号光とす
る相互位相変調型全光波長変換器の動作条件設定方法で
あって、 前記2つの半導体光増幅器のうち入力信号光非入射側の
半導体光増幅器の駆動電流の値を減少させると共に、入
力信号光のパワーを増加、もしくは、入力連続光のパワ
ーを減少させることにより、入力信号光非入射側の半導
体光増幅器の駆動電流の値を、出力消光比が最大となる
動作条件から出力アイ開口が最大となる動作条件へ移行
することを特徴とする相互位相変調型全光波長変換器の
動作条件設定方法。1. A method for setting an operating condition of a cross phase modulation type all-optical wavelength converter which has two semiconductor optical amplifiers and converts the wavelength of input signal light into the wavelength of input continuous light to obtain output signal light. By decreasing the drive current value of the semiconductor optical amplifier on the non-incident side of the input signal light among the two semiconductor optical amplifiers and increasing the power of the input signal light or decreasing the power of the input continuous light. , The cross-phase modulation type all characterized in that the drive current value of the semiconductor optical amplifier on the non-incident side of the input signal light is changed from the operating condition where the output extinction ratio becomes maximum to the operating condition where the output eye opening becomes maximum. Optical wavelength converter operating condition setting method.
光の波長を入力連続光の波長に変換して出力信号光とす
る相互位相変調型全光波長変換器の動作条件設定方法で
あって、 前記2つの半導体光増幅器のうち入力信号光非入射側の
半導体光増幅器の駆動電流の値を減少させると共に、入
力信号光のパワーを増加、もしくは、入力連続光のパワ
ーを減少させることにより、入力信号光非入射側の半導
体光増幅器の駆動電流の値を、出力消光比が最大となる
動作条件から出力アイ開口が最大となる動作条件へ移行
させ、 更に、前記出力アイ開口が最大となる動作条件下で、入
力信号光と同波長の出力信号光のパワーを測定し、入力
信号光と同波長の出力信号光のパワーが常に一定に保持
されるように、入力信号光のパワーと入力連続光のパワ
ーのどちらか一方が減少した場合に、他方を減少させる
ことにより入力信号光のパワー及び入力連続光のパワー
を設定することを特徴とする相互位相変調型全光波長変
換器の動作条件設定方法。2. A method for setting operating conditions of a cross-phase modulation type all-optical wavelength converter having two semiconductor optical amplifiers, which converts the wavelength of input signal light into the wavelength of input continuous light to produce output signal light. By decreasing the drive current value of the semiconductor optical amplifier on the non-incident side of the input signal light among the two semiconductor optical amplifiers and increasing the power of the input signal light or decreasing the power of the input continuous light. , The value of the drive current of the semiconductor optical amplifier on the non-incident side of the input signal light is changed from the operating condition in which the output extinction ratio is maximum to the operating condition in which the output eye opening is maximized, and further, the output eye opening is maximized. Under the following operating conditions, measure the power of the output signal light of the same wavelength as the input signal light, and measure the power of the input signal light so that the power of the output signal light of the same wavelength as the input signal light is always kept constant. Input continuous light power If either is reduced, cross-phase modulation operation condition setting method of the all-optical wavelength converter and sets the power and the power of the input continuous light of the input signal light by decreasing the other.
光の波長を入力連続光の波長に変換して出力信号光とす
る相互位相変調型全光波長変換器の動作条件検出方法で
あって、 入力信号光と同波長の出力信号光のパワーを常に一定に
保持すると共に、入力信号光と同波長の出力信号光の波
形の保持を確認し、この出力信号光の波形が劣化するま
で請求項2の動作を繰り返すことにより、前記出力アイ
開口が最大となる条件下での入力信号光の最小パワー及
び入力連続光の最小パワーを検出することを特徴とする
相互位相変調型全光波長変換器の動作条件検出方法。3. A method of detecting an operating condition of a cross-phase modulation type all-optical wavelength converter having two semiconductor optical amplifiers, which converts the wavelength of input signal light into the wavelength of input continuous light to produce output signal light. Hold the power of the output signal light of the same wavelength as the input signal light at all times, and confirm that the waveform of the output signal light of the same wavelength as the input signal light is held, until the waveform of the output signal light deteriorates. By repeating the operation of claim 2, the minimum power of the input signal light and the minimum power of the input continuous light under the conditions where the output eye opening is maximized are detected, and the cross-phase modulation type all-optical wavelength is characterized. Method of detecting operating condition of converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001231046A JP3666741B2 (en) | 2001-07-31 | 2001-07-31 | Operating condition setting method and operating condition detection method for cross-phase modulation type all-optical wavelength converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001231046A JP3666741B2 (en) | 2001-07-31 | 2001-07-31 | Operating condition setting method and operating condition detection method for cross-phase modulation type all-optical wavelength converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003043429A true JP2003043429A (en) | 2003-02-13 |
JP3666741B2 JP3666741B2 (en) | 2005-06-29 |
Family
ID=19063156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001231046A Expired - Fee Related JP3666741B2 (en) | 2001-07-31 | 2001-07-31 | Operating condition setting method and operating condition detection method for cross-phase modulation type all-optical wavelength converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3666741B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021200097A1 (en) * | 2020-03-30 | 2021-10-07 | 日本電気株式会社 | Monitoring device, monitoring method, and non-transitory computer-readable medium in which program is stored |
US12224850B2 (en) | 2020-03-30 | 2025-02-11 | Nec Corporation | Monitoring apparatus, monitoring method, and non-transitory computer-readable medium containing program |
-
2001
- 2001-07-31 JP JP2001231046A patent/JP3666741B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021200097A1 (en) * | 2020-03-30 | 2021-10-07 | 日本電気株式会社 | Monitoring device, monitoring method, and non-transitory computer-readable medium in which program is stored |
JPWO2021200097A1 (en) * | 2020-03-30 | 2021-10-07 | ||
JP7548298B2 (en) | 2020-03-30 | 2024-09-10 | 日本電気株式会社 | Monitoring device, monitoring method, and program |
US12224850B2 (en) | 2020-03-30 | 2025-02-11 | Nec Corporation | Monitoring apparatus, monitoring method, and non-transitory computer-readable medium containing program |
Also Published As
Publication number | Publication date |
---|---|
JP3666741B2 (en) | 2005-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9523867B2 (en) | Off quadrature biasing of Mach Zehnder modulator for improved OSNR performance | |
JPWO2002035665A1 (en) | Optical transmitter, optical repeater, optical receiver, and optical transmission method | |
Feyisa et al. | Compact 8× 8 SOA-based optical WDM space switch in generic InP technology | |
Udalcovs et al. | Analysis of spectral and energy efficiency tradeoff in single-line rate WDM links | |
US5949925A (en) | Method, device, and system for optical modulation in wavelength division multiplexing | |
CN102929072B (en) | Full-optical-wavelength conversion simplifying device and full-optical-wavelength conversion simplifying method of polarization multiplexing system without polarization crosstalk | |
JP2010041707A (en) | Production method of optical transmission channel with 100 g bit/sec or more | |
Ab-Rahman et al. | Semiconductor optical amplifier for optical channel capacity improvement based on cross-phase modulation | |
JP2003043429A (en) | Method for setting operating condition and method for detecting operating condition of cross phase modulation type entire optical wavelength transducer | |
US7092146B2 (en) | Method and apparatus for controlling a SOA-MZI wavelength converter | |
CN113395114B (en) | Optical module, data center system and data transmission method | |
EP1126638B1 (en) | Optical wavelength division multiplexing transmission system | |
JP2002303900A (en) | Hybrid wavelength converter | |
JP3979579B2 (en) | Cross-phase modulation type wavelength converter with stability control function and stability control method of cross-phase modulation type wavelength converter | |
CN101261418A (en) | All Optical Wavelength Converter | |
Kurosu et al. | Nonlinearity Free Operation of SOA for Use in High-Capacity Co-Packaged Optics | |
Fayyaz et al. | Performance analysis of optical interconnects’ architectures for data center networks: Do you have a subtitle? If so, write it here | |
KR102557191B1 (en) | Optical transmitter based on optical time division multiplexing | |
US12057888B2 (en) | Laser light system with wavelength attenuation | |
Teshima et al. | Virtual wavelength path cross-connect based on optoelectronic wavelength conversion | |
Dupas et al. | 2R all-optical regenerator assessment at 2.5 Gbit/s over 3600 km using only standard fibre | |
YAN et al. | Toward Low-Cost Flexible Intelligent OAM in Optical Fiber Communication Networks | |
US7356263B2 (en) | Signal processor for converting signal | |
Aleksejeva et al. | Research on Super-PON Communication System with FWM-based Comb Source | |
Gong et al. | Crosstalk-aware multiple-AWG based optical interconnects for datacenter networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20050331 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050331 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050331 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110415 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |