JP2002521082A - Synthetic structural imaging and volume estimation of biological tissue organs - Google Patents
Synthetic structural imaging and volume estimation of biological tissue organsInfo
- Publication number
- JP2002521082A JP2002521082A JP2000560826A JP2000560826A JP2002521082A JP 2002521082 A JP2002521082 A JP 2002521082A JP 2000560826 A JP2000560826 A JP 2000560826A JP 2000560826 A JP2000560826 A JP 2000560826A JP 2002521082 A JP2002521082 A JP 2002521082A
- Authority
- JP
- Japan
- Prior art keywords
- tissue
- imaging system
- target tissue
- acoustic measurement
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 55
- 210000000056 organ Anatomy 0.000 title abstract description 35
- 238000002604 ultrasonography Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000005259 measurement Methods 0.000 claims abstract description 24
- 238000013528 artificial neural network Methods 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims description 50
- 238000012545 processing Methods 0.000 claims description 23
- 230000006870 function Effects 0.000 claims description 12
- 238000004891 communication Methods 0.000 claims 3
- 238000001914 filtration Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000012800 visualization Methods 0.000 abstract description 10
- 230000002159 abnormal effect Effects 0.000 abstract description 8
- 210000001519 tissue Anatomy 0.000 description 92
- 206010028980 Neoplasm Diseases 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 12
- 238000012360 testing method Methods 0.000 description 9
- 230000001605 fetal effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 210000003484 anatomy Anatomy 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 210000002307 prostate Anatomy 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000002591 computed tomography Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 206010006187 Breast cancer Diseases 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 210000001508 eye Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000036244 malformation Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012285 ultrasound imaging Methods 0.000 description 2
- 210000005166 vasculature Anatomy 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 206010009260 Cleft lip and palate Diseases 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 208000016653 cleft lip/palate Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000012631 diagnostic technique Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000001094 effect on targets Effects 0.000 description 1
- 238000002091 elastography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 208000024519 eye neoplasm Diseases 0.000 description 1
- 230000004578 fetal growth Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000009599 head growth Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/916—Ultrasound 3-D imaging
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
(57)【要約】 プロセッサ及びメモリを有するシステム(10)は、組織(14)に印加されるべき低周波超音波信号を発生して、組織のランプ、ステップ及びインパルス・サインの重み付けされた和を発生する。システム(10)は、組織サインを解析して、低周波数目標プロフィールを決定する。この低周波数目標プロフィールは、1組の記憶された組織データを用いて、組織のグラフィック表示を発生するため並びに組織の容量を推定するため、組織のタイプ及び状態に関して組織を分類するため用いられる。分類器は、神経回路網(34)及び/又は最隣接規則プロセッサ(36)を含み得る。システム(10)は、非侵襲性の音響的測定として、像形成システム及び方法を実行する。該システム及び方法は、合成構造的像形成(SSI)技術を用いて、正常及び異常な組織、器官、生物構造等の分類及び視覚化のため、生物構造のサイズ及び形状に関する独特の情報を提供する。 A system (10) having a processor and memory generates a low frequency ultrasound signal to be applied to tissue (14) to generate a weighted sum of ramps, steps and impulse signatures of the tissue. Occurs. The system (10) analyzes the tissue signature to determine a low frequency target profile. This low frequency target profile is used to generate a graphical representation of the tissue using the set of stored tissue data as well as to estimate tissue capacity and to classify the tissue with respect to tissue type and condition. The classifier may include a neural network (34) and / or a nearest neighbor processor (36). The system (10) implements the imaging system and method as a non-invasive acoustic measurement. The system and method uses synthetic structural imaging (SSI) technology to provide unique information about the size and shape of biological structures for the classification and visualization of normal and abnormal tissues, organs, biological structures, etc. I do.
Description
【0001】 [背景] [1.技術分野] 本開示は、医療像形成に関し、特に身体の器官を像形成し且つ決定するシステ
ム及び方法に関する。[Background] [1. TECHNICAL FIELD The present disclosure relates to medical imaging, and more particularly to systems and methods for imaging and determining body organs.
【0002】 [2.関連技術の説明] 器官系の内部解剖学的構造及び支持血管網(supporting vasc
ular network)の非侵襲性の視覚化は、患者の貴重な医療診断情報
を提供する。直接容量レンダリング及び表面近似(surface−fitti
ng)アルゴリズムを用いて、解剖学的構造を表す容量視覚化(volume
visualization)技術を探求する過去10年間にわたるかなりの研
究があった。これらの容量視覚化技術は、超音波(US)、磁気共鳴像形成(磁
気共鳴映像)(MRI)及びコンピュータ断層撮影(CT)のような種々の像形
成方法に適用されてきた。[2. Description of Related Art] Internal anatomy of organ system and supporting vasculature
Non-invasive visualization of the neural network provides valuable medical diagnostic information for the patient. Direct volume rendering and surface-fitti
ng) algorithm using the volume visualization (volume) representing the anatomy
There has been considerable research over the past decade exploring the technology of visualization. These volume visualization techniques have been applied to various imaging methods such as ultrasound (US), magnetic resonance imaging (magnetic resonance imaging) (MRI) and computed tomography (CT).
【0003】 診断用超音波の分野において、通常の2D像の使用は、オペレータに対して解
剖学及び関連の病理学の3D特性を精神的に再構成し且つ視覚化しようと試みる
ことを要求する。しかしながら、「3Dを考える」能力は、臨床家の間で相当変
わり、空間的知覚における彼らの経験及び生得の能力に依存する。放射線科医が
3D「画像」を2Dスライスから生成したり、複数の視像を用いてさえ多少の病
巣を検出したり、また支持血管系統を視覚化することが時として非常に困難であ
る。[0003] In the field of diagnostic ultrasound, the use of conventional 2D images requires the operator to attempt to mentally reconstruct and visualize the 3D characteristics of anatomy and related pathology. . However, the ability to "think 3D" varies considerably among clinicians and depends on their experience and innate ability in spatial perception. It is sometimes very difficult for radiologists to generate 3D “images” from 2D slices, detect some lesions even with multiple views, and visualize the supporting vascular system.
【0004】 三次元超音波(3D US)像は、通常の超音波走査からの二次元の連続的な
スライスから導出される。組織容量は、空間的にサンプリングされ、ディジタル
的に記憶され、同時に複数面の(multiplanar)アレイ形態で表示さ
れ、関心の構造を最適に視るため、必要に応じて回転、スレッショルド化及び解
剖(電子的解剖用メス)を用いて所望の任意の3つの垂直解剖学的面を与える。
全容量のデータを保持することにより、解析は、患者が診療所を去った後に、オ
フラインで実行することができる。このことは、複数面の像を多くの任意の面に
おいて且つ種々の処理選択を用いて調査することを可能にする。例えば、解析は
、関心領域の特定の統計及びそれらの時間に対する変化を得ること、複数の方法
からの情報を組み合わせること、及び動きの記述及び補償を考慮することができ
る。[0004] Three-dimensional ultrasound (3D US) images are derived from two-dimensional successive slices from a regular ultrasound scan. Tissue volumes are spatially sampled, stored digitally, and simultaneously displayed in a multiplanar array form, rotated, thresholded, and dissected as needed to optimally view the structure of interest. Provide any desired three vertical anatomical planes using an electronic scalpel.
By retaining the full volume of data, the analysis can be performed offline after the patient leaves the clinic. This allows multi-plane images to be explored in many arbitrary planes and using various processing options. For example, the analysis may consider obtaining specific statistics of the region of interest and their change over time, combining information from multiple methods, and describing and compensating for motion.
【0005】 3D像形成は、産科学及び婦人科学(Ob/Gyn)研究において非常に有効
であった。それは、口唇裂及び口蓋裂のような胎児の顔立ち(妊娠期間10から
39週)における先天性奇形を検出するために、また第1のトリメスター(3半
期)における染色体異常の早期検出のため頸部嚢胞性腫脹と生理的項部透明性(
physiological nuchai translucency)との
間を識別するために首尾よく用いられてきた。3D USはまた、胎児の成長及
び胎児の異常の評価のため胎児の器官容量の測定を可能にした。最初に、3D
USは、胎児の肺容量を測定し、そしてそれを妊娠期間及び胎児の重さと関連付
ける可能性を可能にした。3D複数面のUSはまた、標準心臓平面を14週から
満期まで識別し且つ評価するに有効であり得る。臨床試験は、心臓容量の3D測
定を用いて胎児の心臓奇形のためのスクリーニングを改善することができ、妊娠
期間の22週と27週との間に最良の結果を有することを示した。[0005] 3D imaging has been very effective in obstetric and gynecological (Ob / Gyn) studies. It is used to detect congenital malformations in fetal features such as cleft lip and palate (10 to 39 weeks gestation) and for early detection of chromosomal abnormalities in the first trimester (trimester). Cystic swelling and physiological head transparency (
physological nucai translucency). 3D US has also enabled the measurement of fetal organ volume for assessment of fetal growth and fetal abnormalities. First, 3D
The US has measured the fetal lung volume and has enabled the possibility of relating it to gestational age and fetal weight. The 3D multi-plane US may also be effective in identifying and evaluating standard heart planes from 14 weeks to maturity. Clinical trials have shown that 3D measurements of cardiac volume can be used to improve screening for fetal cardiac malformations and have the best results during gestational weeks 22 and 27.
【0006】 3D USはまた、心室、子宮解剖学的構造、頸動脈及び内部管腔(endo
luminal)構造を視覚化するため、前立腺及び胸部における血管及び腫瘍
の視覚化を改善するのに有効であった。最近の臨床前立腺研究において、3D
USは、前立腺ブラキー治療のリアルタイム最適化の目標のため、永久的経会陰
放射性シード挿入物(permanent transperineal ra
dioactive seed implant)を識別する際に、より大きな
信頼レベルを与える。胸部の研究において、手術中の3D USは、破裂した胸
部挿入物を手術で取り除くとき、その破裂した胸部挿入物からの自由シリコーン
の範囲を検出し且つ場所を突き止めるのに非常に有効である。3D USは、通
常の2D USと比較して、生検のため病巣のより正確な空間的場所を突き止め
、そして血管構造及びそれらの関連病理の正確な評価を提供する。広範囲の臨床
研究において、3Dの内部管腔USは、通常の2D像形成を用いては得ることが
できなかった、血管管腔のサイズ及び形状、プラークの分布、場所及びタイプの
ような解剖学的構造の空間的関係についての独特の情報を提供した。3D US
は、輸尿管に沿った腫瘍のより正確な分布、その構造体に隣接の関係を与え、そ
して腫瘍容量の尺度を与えることができる。それはまた、結腸直腸腫瘤(col
orectal mass)の視覚化及び進度の判断を非常に容易にすることが
できる。[0006] 3D US also describes ventricles, uterine anatomy, carotid arteries and internal lumens (endo).
luminal structures were effective in improving the visualization of blood vessels and tumors in the prostate and breast. In recent clinical prostate studies, 3D
The US has issued a permanent transperineal seed insert for the goal of real-time optimization of prostate brachytherapy.
Gives a greater level of confidence in identifying a dioactive seed implant. In breast studies, intraoperative 3D US is very effective in detecting and locating free silicone from a ruptured breast insert when the ruptured breast insert is surgically removed. 3D US locates the more accurate spatial location of the lesion for biopsy compared to regular 2D US and provides an accurate assessment of the vasculature and their associated pathology. In extensive clinical studies, 3D internal lumen US could not be obtained using normal 2D imaging, anatomy such as vessel lumen size and shape, plaque distribution, location and type. It provided unique information about the spatial relationship of the dynamic structure. 3D US
Can give a more accurate distribution of the tumor along the ureter, an adjacent relationship to its structure, and give a measure of tumor volume. It is also a colorectal mass (col)
The visualization of the original mass and the determination of the progress can be greatly facilitated.
【0007】 3D超音波像形成の幾つかの主要な限界は、(1)像再構成のため必要である
相当数の「ルック(look)」又は「スライス」(通常、磁気共鳴像形成(M
RI)及びコンピュータ断層撮影(CT)で500〜600スライス、及び超音
波で約64スライス)、(2)像形成のため必要な長いデータ取得時間、(3)
複数面(multi−plane)の解剖学的位置合わせに必要な精度(例えば
、約0.5mm以下の分解能)、及び(4)大きなメモリ格納及び迅速な計算の
ための要件である。そのような限界に対処するため像形成技術を改良する必要性
がある。例えば、取得時間を短縮することは胎児の動きのような目標の運動への
影響を大いに最小化し、そしてその結果暴露時間をより少なくし、付随して正常
な生物的活動からの又は突然の運動からの生物学的作用(bioeffect)
の危険をより少なくすることをもたらす。[0007] Some major limitations of 3D ultrasound imaging are: (1) the substantial number of "looks" or "slices" required for image reconstruction (usually magnetic resonance imaging (M
(500-600 slices for RI) and computed tomography (CT) and about 64 slices for ultrasound), (2) long data acquisition time required for image formation, (3)
The accuracy required for multi-plane anatomical registration (eg, a resolution of about 0.5 mm or less), and (4) requirements for large memory storage and rapid calculations. There is a need for improved imaging techniques to address such limitations. For example, reducing the acquisition time greatly minimizes the effect on target movements, such as fetal movements, and results in less exposure time, and concomitantly from normal biological activity or sudden movements. Biological effects from
Brings you to less risk.
【0008】 他の像形成技術は、対象の検出及び分類を改善するため用いられてきた。例え
ば、合成構造的像形成(Synthetic Structural Imag
ing)(SSI)技術は、航空機、音響機雷及び潜水艦それぞれの、レーダ及
びソナーの両方における首尾良い検出及び分類のため低周波数伝送を用いる。[0008] Other imaging techniques have been used to improve object detection and classification. For example, Synthetic Structural Imaging
(SSI) technology uses low frequency transmission for successful detection and classification of both aircraft and acoustic mines and submarines, both radar and sonar.
【0009】 SSIの概念は、ソナーの応用において音響的目標識別及び構造的特徴推定を
提供することが明らかにされてきた。試験結果は、音響的過渡応答が単純な幾何
学的形状特徴と強く関連した特徴を有する目標の同一性の独特の特性を示すこと
を示した。それは、狭帯域がほぼ正確な目標識別に対して十分な品質の画像情報
並びに十分な精度の容量推定量を与えるためそのようなサインが用いられ得るこ
とを示した。The concept of SSI has been shown to provide acoustic target identification and structural feature estimation in sonar applications. Test results have shown that the acoustic transient response exhibits unique characteristics of target identity with features strongly related to simple geometric features. It has shown that such a signature can be used to provide a sufficiently high quality image information as well as a sufficiently accurate capacity estimator for a narrow band for nearly accurate target identification.
【0010】 SSIはランプ応答解析を採用し、そのランプ応答解析は、航空団の識別のレ
ーダ研究で開発され、また水中の(スケーリングされた)目標を像形成するのに
首尾よく適用された。通常の高周波数像形成と似て、SSI方法は、方向に依存
するが、しかしかなり強固である。それは、従来技術より低分解能であるが、そ
の形状に対する相関ははるかに強い。SSI技術は、先の実験的研究において特
定のレーダ及びソナー応用に対して非常に有望であることを示した。[0010] The SSI employs a ramp response analysis, which was developed in an air wing identification radar study and has been successfully applied to imaging underwater (scaled) targets. Similar to normal high frequency imaging, SSI methods are direction dependent, but quite robust. It has lower resolution than the prior art, but the correlation to its shape is much stronger. SSI technology has been shown to be very promising for certain radar and sonar applications in previous experimental studies.
【0011】 SSI技術の生物学的媒体への応用は、生物学的器官、腫瘍及び他の構造の容
量の推定を提供し得る。現在までのところ、臨床環境における容量、サイズ及び
形状の一次組織クラシファイヤ(primary tissue classi
fier)を推定してそれらを組織病理学と関連付ける点で進歩はほとんどなか
った。更に、正常な組織を異常な組織から弁別することがSSIを用いては首尾
よく達成されていなかった。[0011] The application of SSI technology to biological media may provide an estimate of the volume of biological organs, tumors and other structures. To date, primary tissue classifiers for volume, size and shape in a clinical environment.
There has been little progress in estimating fiers) and relating them to histopathology. Furthermore, discrimination of normal from abnormal tissue has not been successfully achieved using SSI.
【0012】 [概要] SSI技術を用いて、正常及び異常な組織、器官、腫瘍等の分類及び視覚化の
ため、生物組織構造のサイズ及び形状に関する独特の情報を提供する新規な非侵
襲性の音響的測定及び像形成システム及び方法が開示されている。Overview A novel non-invasive technique that uses SSI technology to provide unique information about the size and shape of biological tissue structures for the classification and visualization of normal and abnormal tissues, organs, tumors, etc. Acoustic measurement and imaging systems and methods are disclosed.
【0013】 SSIシステムは、生物学的構造に印加されるべき低周波数超音波信号を発生
して、該構造の合成構造的像を発生するためのプロセッサ及びメモリを含む。S
SIシステムは、組織構造の低周波数ランプ応答を解析し、その低周波数ランプ
応答を用いて、組織構造のグラフィック表示を発生し並びに組織構造の容量を推
定し、そして1組の記憶された組織データを用いて組織構造を組織のタイプ及び
状態に関して分類する。分類器は、神経回路網及び/又は最隣接規則(near
est neighbor rule)プロセッサを含み得る。[0013] The SSI system includes a processor and memory for generating a low-frequency ultrasound signal to be applied to a biological structure to generate a composite structural image of the structure. S
The SI system analyzes the low frequency ramp response of the tissue structure, uses the low frequency ramp response to generate a graphical representation of the tissue structure as well as estimate the volume of the tissue structure, and provides a set of stored tissue data. Is used to classify the tissue structure with respect to tissue type and status. The classifier may be a neural network and / or a nearest neighbor (near neighbor) rule.
est neighbor rule) processor.
【0014】 開示されたシステム及び方法は、検出及び分類のため低周波数超音波伝送を利
用し、該伝送において組織のタイプ、目標方向及び周波数の関数としての振幅及
び位相情報が音響データベースとして格納される。システムは、目標形状と低周
波数サイン(signature)特徴との間の相関を利用する。The disclosed systems and methods utilize low frequency ultrasound transmission for detection and classification, where amplitude and phase information as a function of tissue type, target direction and frequency are stored as an acoustic database. You. The system utilizes the correlation between the target shape and low frequency signature features.
【0015】 高周波数像形成と組み合わさった低周波数像形成は、組織構造のリアルタイム
3D像形成を実現するために、通常の方法よりかなり少ない像形成平面又は「ス
ライス」しか必要としない。本システム及び方法は、生物組織容量並びに物質組
成の独特の尺度を与え、それらは組織の分類のための分類器に対する入力として
用いられ得る。事前決定された組織特有の信号波形、関心の生物学的「目標」の
一般的特性及び解剖学的場所に関する演繹的情報、及び時間的及び周波数的処理
が、有り得る曖昧さ及びアーチファクトを最小化するため用いられる。開示され
たシステム及び方法は、色フロー像形成(color flow imagin
g)技術を含む、既存のハイエンド放射線医学又は心臓学像形成システムと一体
化され得る。[0015] Low frequency imaging combined with high frequency imaging requires significantly fewer imaging planes or "slices" than conventional methods to achieve real-time 3D imaging of tissue structures. The systems and methods provide unique measures of biological tissue volume as well as material composition, which can be used as inputs to a classifier for tissue classification. Predetermined tissue-specific signal waveforms, a priori information about the general properties and anatomical location of the biological "target" of interest, and temporal and frequency processing minimize possible ambiguities and artifacts Used for The disclosed system and method provides for color flow imaging.
g) Can be integrated with existing high-end radiology or cardiology imaging systems, including technology.
【0016】 開示された組織像形成システム及び方法の特徴は、添付図面と共に、本発明の
例示的実施形態の以下の詳細な説明を参照することにより一層容易に明らかとな
り且つより良く理解されるようになるであろう。[0016] Features of the disclosed tissue imaging system and method will become more readily apparent and better understood by referring to the following detailed description of an exemplary embodiment of the invention, taken in conjunction with the accompanying drawings. Will be.
【0017】 [好適な実施形態の説明] ここで、類似の参照番号が類似の又は同一の構成要素を識別している図面を特
に詳細に参照すると、図1に示されるように、本開示は、正常及び異常な組織、
器官、生物学的構造等の分類及び視覚化のため生物学的構造のサイズ及び形状を
決定する組織像形成システム及び方法を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now particularly to the drawings, in which like reference numbers identify similar or identical components, and as shown in FIG. Normal and abnormal tissues,
A tissue imaging system and method for determining the size and shape of a biological structure for classification and visualization of organs, biological structures, etc., is described.
【0018】 説明の明瞭化のため、開示される組織像形成システム及び方法の例示的実施形
態は、個々の機能的ブロックを有するように提示され、それは、「プロセッサ」
又は「処理ユニット」とラベルを付された機能的ブロックを含み得る。これらの
ブロックにより表される機能は、ソフトウエアを実行できるハードウエアを含む
がこれに限定されない共用の又は専用のハードウエアの使用を通して与えられ得
る。例えば、本明細書に提示されているプロセッサ及び処理ユニットの機能は、
共用のプロセッサにより又は複数の個々のプロセッサにより与えられ得る。更に
、本明細書において添付ラベルを有する機能的ブロックの使用は、ソフトウエア
を実行できるハードウエアを排他的に言及していると解釈されるべきでない。例
示的実施形態は、AT&T DSP16又はDSP32Cのようなディジタル信
号プロセッサ(DSP)ハードウエア、以下に説明する動作を実行するソフトウ
エアを格納するための読出し専用メモリ(ROM)、及びDSP結果を格納する
ためのランダム・アクセス・メモリ(RAM)を含み得る。超大規模集積(VL
SI)ハードウエアの実施形態、並びに汎用DSP回路と組合わさったカスタム
VLSI回路もまた設けられ得る。これらの実施形態のいずれ及び全ては、本明
細書において用いられるように機能的ブロックのためのラベルの意味内に入ると
考えられ得る。For clarity of explanation, the exemplary embodiments of the disclosed tissue imaging system and method are presented as having individual functional blocks, which are referred to as “processors”.
Or it may include a functional block labeled "processing unit". The functions represented by these blocks may be provided through the use of shared or dedicated hardware, including but not limited to hardware capable of executing software. For example, the functions of the processors and processing units presented herein include:
It may be provided by a shared processor or by a plurality of individual processors. Furthermore, the use of functional blocks with the accompanying labels herein should not be interpreted as referring exclusively to hardware capable of executing software. The exemplary embodiment stores digital signal processor (DSP) hardware, such as an AT & T DSP16 or DSP32C, a read-only memory (ROM) for storing software for performing the operations described below, and stores DSP results. Random Access Memory (RAM) for Very large scale integration (VL
SI) Hardware embodiments may also be provided, as well as custom VLSI circuits in combination with general purpose DSP circuits. Any and all of these embodiments may be considered to fall within the meaning of a label for a functional block as used herein.
【0019】 図1の例示的実施形態において、システム10は、複数のセンサ12により与
えられる入力データ信号を処理する。その複数のセンサ12は、試験中に、低周
波数超音波信号インソニフィケーション(insonification)に応
答して、例えば、送信器46、及び投射器16のような超音波発生装置(両方と
も当該技術で既知)により生成され送信された超音波波形を有する、約10kH
zから約1.0MHzの範囲における周波数に応答して、生物組織14に応答す
る。投射器16は、試験中に慎重に制御された広範囲の超音波信号を送信器46
から生物組織14に印加して、対応するランプ応答サインを発生することができ
る。ランプ・サインは、センサ12により検出され、該センサ12は、対応した
受信入力データ信号を発生する。次いで、該受信入力データ信号が解析され、サ
イズ、形状、組成、容量(volume)、及び正常又は異常な状態のような生
物組織14の特性を決定する。In the exemplary embodiment of FIG. 1, system 10 processes an input data signal provided by a plurality of sensors 12. The plurality of sensors 12 respond to low frequency ultrasound signal insonification during testing, for example, a transmitter 46 and an ultrasound generator such as the projector 16 (both in the art). About 10 kHz, having an ultrasonic waveform generated and transmitted by
Responsive to biological tissue 14 in response to frequencies ranging from z to about 1.0 MHz. The projector 16 transmits a wide range of carefully controlled ultrasonic signals during the test to the transmitter 46.
Can be applied to the biological tissue 14 to generate a corresponding lamp response signature. The ramp sign is detected by a sensor 12, which generates a corresponding received input data signal. The received input data signal is then analyzed to determine characteristics of the biological tissue 14, such as size, shape, composition, volume, and normal or abnormal conditions.
【0020】 受信入力データ信号は、前置増幅器18により処理され、次いでフィルタ20
によりフィルタリングされる。フィルタリングされたデータ信号は、次いで、処
理ユニットにより処理される。該処理ユニットは、データ取得及び制御論理カー
ド24及びDSPカード26と共に動作する中央処理ユニット(CPU)22を
含む。CPU 22、及びシステム10の他の構成要素は、本明細書に記載され
る特徴及び方法を実現するため、例えば、C++プログラミング言語で書かれた
アプリケーション・プログラムにより制御され得る。The received input data signal is processed by a preamplifier 18 and then a filter 20
Is filtered by The filtered data signal is then processed by a processing unit. The processing unit includes a central processing unit (CPU) 22 that operates with a data acquisition and control logic card 24 and a DSP card 26. CPU 22 and other components of system 10 may be controlled by, for example, an application program written in the C ++ programming language to implement the features and methods described herein.
【0021】 メモリは、ハード・ドライブ28及び/又はRAMであってよく、そしてDS
Pカード26上のRAMが、より早いメモリ・アクセス及び処理のため用いられ
てもよい。ハード・ドライブ28及びカード24、26は、PCIプロトコルを
動作するPCIバスのようなバス32を用いてCPU 22と通信する。CPU
22は、以下により詳細に説明するように、分類化のための神経回路網34及
び/又は最隣接規則(NNR)プロセッサ36を含み得る。The memory may be hard drive 28 and / or RAM, and
RAM on the P-card 26 may be used for faster memory access and processing. The hard drive 28 and the cards 24, 26 communicate with the CPU 22 using a bus 32, such as a PCI bus, running a PCI protocol. CPU
22 may include a neural network 34 for classification and / or a nearest neighbor (NNR) processor 36, as described in more detail below.
【0022】 入力データ信号を処理した後で、システム10は、プリンタ38、又は任意に
ディスプレイ40、オーディオ・システム、又は当該技術において既知の他のタ
イプの出力装置のような出力装置による出力のための処理された信号を発生する
。出力装置は、試験された組織14の状態を示す英数字のテキスト・メッセージ
を出力し得て、及び/又は試験下の組織14が事前決定された正常な組織状態の
内に又は外にある程度を示す分類化メッセージを出力し得る、例えば、100%
の正常と比較した百分率が発生され又は出力され得る。出力装置はまた、組織ラ
ンプ・サインの処理に基づいて組織14のビデオ又はグラフィック表示を発生し
得る。例えば、ディスプレイ40は、グラフィック表示44を臨床家に表示する
ためのスクリーン42を含む。After processing the input data signal, the system 10 outputs the data to an output device such as a printer 38 or, optionally, a display 40, an audio system, or other type of output device known in the art. To generate a processed signal. The output device may output an alphanumeric text message indicating the condition of the tissue 14 being tested, and / or to some extent that the tissue under test 14 is within or outside of the predetermined normal tissue condition. May output a categorization message indicating, for example, 100%
The percentage compared to normal can be generated or output. The output device may also generate a video or graphic display of the tissue 14 based on the processing of the tissue lamp sign. For example, display 40 includes screen 42 for displaying graphical display 44 to a clinician.
【0023】 CPU 22は制御信号を送信器46に送る。なお、送信器46は、信号波形
を発生するプログラム可能波形発生器50を含み、且つそのような信号波形を増
幅するパワー増幅器48を含む。その信号波形は、組織構造14に印加される超
音波を発生する投射器16に送られる。The CPU 22 sends a control signal to the transmitter 46. Note that the transmitter 46 includes a programmable waveform generator 50 that generates a signal waveform, and includes a power amplifier 48 that amplifies such a signal waveform. The signal waveform is sent to a projector 16 that generates an ultrasonic wave applied to the tissue structure 14.
【0024】 例示的実施形態において、投射器16はピエゾセラミック(piezocer
amic)投射器であり、該ピエゾセラミック投射器は、1つ以上のトランスジ
ューサ・ピエゾセラミック構成要素から成り、そして患者の内部器官のような組
織構造14を約10kHzから約100kHzの周波数範囲でインソニファイ(
insonify)するため較正される。投射器16は、海軍研究実験所(Na
val Research Laboratory)(NRL)の水中音基準部
(Underwater Sound Reference Division
)(USRD)から入手可能である、F30又はF41トランスジューサであっ
てよい。組織構造からのエコーの戻りが、センサ12により受け取られる。なお
、そのセンサ12は、直交平面において4つの別個の目標アスペクトを与えるた
め方向付けされた、B&Kモデル8103のような、4つの較正された広帯域セ
ンサであり得る。In the exemplary embodiment, the projector 16 is a piezoceramic
amic) projector, the piezoceramic projector comprising one or more transducer piezoceramic components and insonifying the tissue structure 14, such as the internal organs of the patient, in a frequency range from about 10 kHz to about 100 kHz.
calibrated to insonify). Projector 16 is a Naval Research Laboratory (Na
val Research Laboratory (NRL) Underwater Sound Reference Division
) (USRD) may be an F30 or F41 transducer. The return of the echo from the tissue structure is received by the sensor 12. Note that the sensor 12 may be four calibrated broadband sensors, such as the B & K model 8103, oriented to provide four distinct target aspects in an orthogonal plane.
【0025】 代替実施形態において、センサ12及び投射器16は、胸部腫瘍のような組織
構造14をインソニファイすること、及び後方散乱された戻りを約100kHz
から約800kHzの周波数範囲で受け取ることとの両方を行うよう設計され且
つ製造された3つのカスタム・ピエゾセラミック・トランスジューサを含む、単
一の装置として組み込まれ得る。ポリエチレン・テレフタラートのような高度に
結晶性配向された種類の熱可塑性ポリマーもまた、約10kHzから約1MHz
までの広帯域周波数応答を生成するため用いられ得る。センサ12及びトランス
ジューサの出力は、同軸ケーブルを介して個々の前置増幅器18及びアンチエイ
リアシング(anti−aliasing)・フィルタ20に送られ、次いでC
PU 22に動作的に接続されているデータ取得カード24に送られる。なお、
CPU 22は、パーソナル・コンピュータ又はワークステーションとして具体
化され得る。In an alternative embodiment, sensor 12 and projector 16 insonify tissue structure 14, such as a breast tumor, and provide a backscattered return of about 100 kHz.
And receiving in the frequency range of about 800 kHz from a single device, including three custom piezoceramic transducers designed and manufactured. Highly crystalline oriented types of thermoplastic polymers such as polyethylene terephthalate are also available from about 10 kHz to about 1 MHz.
Up to a wideband frequency response. The outputs of the sensor 12 and the transducer are sent to individual preamplifiers 18 and anti-aliasing filters 20 via coaxial cables, and then to C
It is sent to a data acquisition card 24 operatively connected to the PU 22. In addition,
CPU 22 may be embodied as a personal computer or workstation.
【0026】 前置増幅器18は、約80dBの入力ダイナミック・レンジを与える一方雑音
及び歪みを最小にするため、低雑音JFETが前に置かれた、医療超音波で一般
に用いられているAD601のような別個で且つ独立した低雑音広帯域プログラ
ム可能利得増幅器であってよい。前置増幅器18は、システム10にプラグ・イ
ンし且つユーザが利得を増大するとき周波数応答を劣化させないでソフトウエア
制御を介して利得設定を変えることを可能にするコンピュータ・カード又はボー
ド上に構成され得る。フィルタ20は、エイリアシング保護を与えるよう約84
dB/オクターブの比較的高いロールオフ率を与えるため前置増幅器18に続い
た、TTE社の遅延等化された楕円フィルタのような、アンチエイリアシング・
フィルタであり得る。例示的実施形態において、受信器の前置増幅器18は、約
72dBの入力ダイナミック・レンジを有する一方雑音及び歪みを最小にする。The preamplifier 18 provides an input dynamic range of about 80 dB while minimizing noise and distortion, such as the AD601 commonly used in medical ultrasound, preceded by a low noise JFET. A separate and independent low noise wideband programmable gain amplifier. The preamplifier 18 is configured on a computer card or board that plugs into the system 10 and allows the user to change the gain setting via software control without degrading the frequency response when increasing the gain. Can be done. Filter 20 provides about 84 to provide aliasing protection.
Anti-aliasing, such as a TTE delay-equalized elliptic filter, followed by a preamplifier 18 to provide a relatively high roll-off rate of dB / octave.
It can be a filter. In an exemplary embodiment, the receiver preamplifier 18 has an input dynamic range of about 72 dB while minimizing noise and distortion.
【0027】 アンチエイリアシング・フィルタ20の出力は、データ取得及び制御論理カー
ド24又はボードに送られる。なお、該データ取得及び制御論理カード24又は
ボードは、例えば、約80メガバイト/秒のスループット・データ速度を有する
データ取得サブシステムとして動作する、Burr−BrownのADS802
又はAnalog DevicesのAD9042のような、4つの異なる入力
S/H増幅器、及び12ビット10MHzアナログ/ディジタル変換器(ADC
)を含み得る。ADCの各チャネルは、ADCのフル電圧範囲及び約100dB
のコモンモード除去比を与えるに十分な利得を有するそれ自身プログラム可能利
得増幅器を有し得る。The output of the anti-aliasing filter 20 is sent to a data acquisition and control logic card 24 or board. It should be noted that the data acquisition and control logic card 24 or board operates as a data acquisition subsystem having, for example, a throughput data rate of about 80 megabytes / second, Burr-Brown ADS802.
Or four different input S / H amplifiers, such as AD9042 from Analog Devices, and a 12-bit 10 MHz analog-to-digital converter (ADC).
). Each channel of the ADC has a full voltage range of the ADC and about 100 dB.
May have its own programmable gain amplifier with sufficient gain to provide a common mode rejection ratio of.
【0028】 CPU 22、カード22−28、及びオペレーティング及び制御ソフトウエ
アを含む、データ取得サブシステムは、Sonoran Microsyste
ms Inc.から入手可能な「FALCON」コンピュータ・システムに組み
込まれ、又はHi−Techniques Inc.から入手可能な「HT−6
00」コンピュータ・システムに組み込まれ得る。The data acquisition subsystem, including CPU 22, cards 22-28, and operating and control software, is based on the Sonoran Microsystem.
ms Inc. Embedded in the “FALCON” computer system available from Hi-Techniques Inc. HT-6 available from
00 "computer system.
【0029】 CPU 22は「インテル」ベースの「ペンティアム」マイクロプロセッサで
あり得て、DSPカード26はカッド(quad)TMS220C6201であ
り得る。ハード・ドライブ28は、全格納に対して1つ又はそれより多くのSe
gateの18.2GB高速SCSIハード・ドライブを含み得る。The CPU 22 can be an “Intel” based “Pentium” microprocessor and the DSP card 26 can be a quad TMS220C6201. Hard drive 28 may have one or more Se for all storage.
gate 18.2 GB high speed SCSI hard drive.
【0030】 データ取得及び制御論理カード24は、データを、ASCIIデータ・フォー
マットのような標準パーソナル・コンピュータ・ファイル・フォーマットにフォ
ーマット化し、そのため修正されたシステム・ソフトウエアを用いて、及び/又
はSPLUS又はMAPLEを含むアプリケーション・プログラムのような第三
者の市販解析ソフトウエアを用いて、研究所において当該データを再生するのを
可能にする。リアルタイム性能は、DSPカード26のための複数のCOTS
DSPボードの使用により達成される。DSPカード26を用いて、データを取
得し、ハード・ドライブ28に格納のためデータをパックしてCPU 22へ通
し、且つ同時にデータ低域通過フィルタをバンド・パスし及びバンド・パスされ
たデータを殺し(decimate)、そしてデータ正規化、高速フーリエ変換
(FFT)解析及びパラメータ推定のような種々の処理動作を実行する。The data acquisition and control logic card 24 formats the data into a standard personal computer file format, such as an ASCII data format, and thus uses modified system software and / or SPLUS Alternatively, the data can be reproduced in a laboratory using third-party commercial analysis software, such as an application program including MPLE. Real-time performance requires multiple COTS for DSP card 26
Achieved by using a DSP board. Using the DSP card 26, the data is acquired, the data is packed for storage in the hard drive 28 and passed to the CPU 22, while at the same time bandpassing the data low-pass filter and bandpassing the data. Decimates and performs various processing operations such as data normalization, fast Fourier transform (FFT) analysis and parameter estimation.
【0031】 システム10は、最小数の「ルック」、例えば、せいぜい3個のスライスを必
要とする生物学的器官の三次元像を決定する。システム10はまた、器官容量及
び腫瘍サイズの診断上有効な推定を発生し、そして神経回路網34及び/又はN
NRプロセッサ36を用いた組織14の分類化により生物組織組成の評価を与え
る。分類化を実行する際に、腫瘍のない生物学的器官のような正常な組織構造の
事前決定された3D STIC像、並びに器官容量の推定は、例えば、神経回路
網34を訓練するため、及び/又はNNRプロセッサ36により処理されて現在
の組織データをライブラリ21に格納されている組織データと比較するため、分
類化の基礎として用いられる。The system 10 determines a three-dimensional image of a biological organ that requires a minimum number of “looks”, for example, at most three slices. The system 10 also generates diagnostically useful estimates of organ volume and tumor size, and the neural network 34 and / or N
The classification of the tissue 14 using the NR processor 36 provides an estimate of the biological tissue composition. In performing the classification, a predetermined 3D STIC image of a normal tissue structure, such as a tumor-free biological organ, as well as an estimate of organ volume, for example, to train the neural network 34, and And / or used by the NNR processor 36 to compare the current tissue data with the tissue data stored in the library 21 and as a basis for classification.
【0032】 DSPカード26は、3D STIC超音波データ取得、信号処理、及び事前
決定され且つ識別された組織のインビボ及びインビトロ解析から導出された像再
構成技術を用いて、ハード・ドライブ28に格納された組織データベースを発生
する。The DSP card 26 is stored on the hard drive 28 using 3D STIC ultrasound data acquisition, signal processing, and image reconstruction techniques derived from in vivo and in vitro analysis of predetermined and identified tissue. Generated organization database.
【0033】 低周波数ランプ応答サインを利用する合成構造的像形成(SSI)は、三次元
医療データを臨床家に提示する独特の実効的な技術を提供する。高度の信号及び
像処理方法を有するSSI技術を適用することにより、システム10は、生物学
的器官のサイズ及び形状、並びにそれらの組成及び状態の臨床的に意味のある測
定を得る。Synthetic structural imaging (SSI) utilizing low frequency ramp response signatures offers a unique and effective technique for presenting three-dimensional medical data to clinicians. By applying SSI technology with advanced signal and image processing methods, system 10 obtains clinically meaningful measurements of the size and shape of biological organs, and their composition and condition.
【0034】 システム10は、組織14のような解剖学的構造の空間周波数に対して整合さ
れた低周波数信号インソニフィケーション(即ち、ランプ・サイン)を適用し、
そこにおいてその低周波数は、組織14の全体寸法及び適切な形状に関する独特
の情報を与える。次いで、システム10は、3個より多い個別の「ルック」又は
インソニファイイング(isonifying)平面を用いないで且つリアルタ
イム動作に近づくデータ取得時間でもって組織ファントムの3D像を再構成する
。The system 10 applies a low frequency signal insonification (ie, ramp sign) that is matched to the spatial frequency of an anatomical structure, such as tissue 14,
There the low frequency gives unique information about the overall size and proper shape of the tissue 14. The system 10 then reconstructs a 3D image of the tissue phantom without using more than three individual "looks" or insonifying planes and with data acquisition times approaching real-time operation.
【0035】 器官及び腫瘍のような目標組織の容量の推定は、目標組織の容量を、処理され
た低周波数エコー戻りから導出された独特で空間的に不変の分類化パラメータと
して決定することにより実行される。Estimation of the volume of target tissue, such as organs and tumors, is performed by determining the volume of target tissue as a unique and spatially invariant classification parameter derived from the processed low frequency echo returns. Is done.
【0036】 使用において、システム10は、生検を実行するのに先立った病理を検出する
目的のため、種々の器官、特に胸部、前立腺、子宮及び精巣の臨界的寸法を測定
する。システム10はまた、目、胎児の頭部成長及び心室、腫瘍及び他の病巣の
独特の解剖学的情報を提供するため適用され得る。In use, the system 10 measures critical dimensions of various organs, particularly the breast, prostate, uterus, and testes, for the purpose of detecting pathology prior to performing a biopsy. The system 10 can also be applied to provide unique anatomical information of eyes, fetal head growth and ventricles, tumors and other lesions.
【0037】 別の実施形態において、システム10は、低周波数像形成を用いるSSI技術
を既知の高周波数像形成(例えば、2から12MHz領域にある通常の超音波周
波数を用いる)と組み合わせ、それにより意味のある3D診断像を生成するため
非常に少ない数の像形成平面又は「スライス」しか必要としない。例示的実施形
態においては、先の技術での少なくとも64個のスライスと比較して最大3つの
スライスが用いられる。SSIにより与えられる独特の情報は、データ取得時間
の低減と共に、広範囲の組織研究のため、特に超音波大動脈検査法において、手
術中の処置において、前立腺及び腎臓のような特定の身体器官の解析において、
及び眼科学において、臨床的解釈を容易にし且つ著しく改善する。In another embodiment, the system 10 combines SSI technology using low frequency imaging with known high frequency imaging (eg, using normal ultrasound frequencies in the 2 to 12 MHz region), thereby Only a very small number of imaging planes or "slices" are required to produce a meaningful 3D diagnostic image. In an exemplary embodiment, up to three slices are used as compared to at least 64 slices in the prior art. The unique information provided by the SSI, along with a reduction in data acquisition time, is useful in extensive tissue studies, especially in ultrasound aortic examination, in intraoperative procedures, in the analysis of specific body organs such as the prostate and kidneys. ,
And facilitates and significantly improves clinical interpretation in ophthalmology.
【0038】 ランプ応答サインは低周波数特性付けに対する基礎であり、それは、目標のラ
ンプ応答R(t)の導出された物理光学近似が入射フィールドの伝搬の方向に沿
った目標断面積A(r)に正比例し、次のように表され得る特性を有する。The ramp response signature is the basis for low-frequency characterization, where the derived physical-optical approximation of the target lamp response R (t) is the target cross-section A (r) along the direction of propagation of the incident field. And has a characteristic that can be expressed as:
【0039】[0039]
【数1】 (Equation 1)
【0040】 ここで、cは媒体中の伝搬速度であり、rは半径距離である。従って、ランプ応
答は、目標形状、方向付け及び物質の独特の低周波数尺度を与える。 古典的音響目標後方散乱応答対kAが、図2において、レイリー、共振及び光
学的領域に関して、SSI動作のため示されたKa領域と共に示されている。こ
こで、kは波数、即ち周波数で、それは2π/λであり、λは波長であり、Aは
目標半径である。レーダ及びソナー試験による先の実験から、ランプ応答の有効
な推定は、上側レイリー領域に位置するインソニフィケーション周波数、及び目
標の散乱特性の低い共振領域、即ち図2に示される約0.8kAから約30kA
までの領域52に対して得られる。種々の情報は、領域52の時間及び周波数ド
メイン解析から導出され得る。時間ドメイン解析を用いて、合成像発生、並びに
目標の面積、容量、長さ、直径及びアスペクトのような目標パラメータ、即ち3
D空間における方向付けの決定が実行され得る。周波数ドメイン解析を用いて、
ドップラー特性、目標のアスペクト、スペクトル形状及び誤分類化の確率のよう
な特徴ベクトルが、発生され得る。目標の自然共振がまた、周波数ドメイン解析
から決定され得て、それは、骨組織とは対照的な肝臓組織のようなタイプの目標
の決定を容易にする。Here, c is the propagation velocity in the medium, and r is the radial distance. Thus, the lamp response provides a unique low frequency measure of target shape, orientation and material. The classical acoustic target backscatter response versus kA is shown in FIG. 2 for the Rayleigh, resonance and optical regions, with the Ka region indicated for SSI operation. Here, k is a wave number, that is, a frequency, which is 2π / λ, λ is a wavelength, and A is a target radius. From previous experiments with radar and sonar tests, a valid estimate of the lamp response was found to be the insonification frequency located in the upper Rayleigh region, and the resonance region with low target scattering properties, ie, about 0.8 kA shown in FIG. From about 30kA
Are obtained for the region 52 up to. Various information may be derived from the time and frequency domain analysis of region 52. Using time domain analysis, synthetic image generation and target parameters such as target area, volume, length, diameter and aspect, ie, 3
An orientation determination in D space may be performed. Using frequency domain analysis,
Feature vectors such as Doppler characteristics, target aspect, spectral shape and misclassification probabilities can be generated. The spontaneous resonance of the target can also be determined from frequency domain analysis, which facilitates determining a type of target such as liver tissue as opposed to bone tissue.
【0041】 低周波数像形成は狭帯域且つ低吸収損失により特徴付けられ、一方高周波数像
形成は広帯域且つ高吸収損失により特徴付けられる。従って、高周波数像形成は
、特徴付けのため一層短い組織深さに適用されがちである。高周波数は目標の精
細なディテールを特徴付け、一方低周波数は全体寸法及び適切な形状に関する情
報を与える。高周波数は像を鮮明にするのに用いられ得るが、しかし像は低周波
数情報なしに達成することが困難である。Low frequency imaging is characterized by a narrow band and low absorption loss, while high frequency imaging is characterized by a wide band and high absorption loss. Thus, high frequency imaging tends to be applied to shorter tissue depths for characterization. High frequencies characterize the fine details of the target, while low frequencies give information about overall dimensions and proper shape. High frequencies can be used to sharpen the image, but images are difficult to achieve without low frequency information.
【0042】 電磁応用において、物理光学近似は、目標の照射された部分に対する波形−目
標サイズ及び形状の推定を与え、それは、目標が完全な導体である場合有意であ
り、滑らか(smooth)であり、且つ数波長程度の大きさの寸法を有する。
試験結果は、目標の半分の大きさで始まり目標の寸法の約10倍まで増大する波
長に対応する周波数範囲にわたり目標の電磁応答を検査することによりランプ応
答が近似され得ることを示す。In electromagnetic applications, the physical optics approximation provides an estimate of the waveform-target size and shape for the illuminated portion of the target, which is significant and smooth if the target is a perfect conductor. And has a size of about several wavelengths.
Test results show that the lamp response can be approximated by examining the target's electromagnetic response over a frequency range corresponding to wavelengths starting at half the target and increasing to about ten times the target's dimensions.
【0043】 ランプ応答がまた超音波像形成に適用可能であることが分かった。システム1
0により用いられる像形成技術は、目標サイズ及び形状に対して低周波数超音波
信号を採用し、そしてそのような像形成は、高周波数の短パルス・データを利用
して構造的不連続性に関する追加の情報を与えることにより増強される。It has been found that the lamp response is also applicable to ultrasound imaging. System 1
The imaging technique used by O.0 employs low frequency ultrasound signals for the target size and shape, and such imaging utilizes high frequency short pulse data for structural discontinuities. Augmented by providing additional information.
【0044】 図2に示されるように、低周波数ランプ応答を有する超音波が組織14に印加
され得る。そのようなランプ応答は、時間に対して変化し且つ不連続であり得る
受信エコー信号により表され得る。本明細書において説明されるように、低周波
数は、組織14の検出及び分類のため用いられ得る。ランプ応答特徴とそれを生
成し得る可能性のある構造的不連続との間の多数対1の対応が存在し得るにも拘
わらず、この曖昧さは、インパルス応答を用いる短い高周波数パルスを採用する
ことにより解決され得る。従って、低周波数パルスからのランプ応答は、高周波
数の短パルスを用いることにより見分けられ得る。目標インパルス応答は、断面
範囲における曲率に対して感度が高く、従って境界不連続及び散乱中心に対して
感度が高い。従って、目標散乱中心を規定するため高周波数を含むことにより、
目標を像形成するに必要な低周波数の数は、著しく低減され得る。このことは、
最適目標応答がランプ、ステップ及びインパルス応答の重み付けされた和である
ことを示唆する。As shown in FIG. 2, ultrasound having a low frequency ramp response may be applied to the tissue 14. Such a ramp response may be represented by a received echo signal that may vary over time and may be discontinuous. As described herein, low frequencies may be used for tissue 14 detection and classification. This ambiguity employs short high frequency pulses using an impulse response, despite the fact that there may be a many-to-one correspondence between the ramp response features and the possible structural discontinuities that may produce them. Can solve the problem. Thus, the lamp response from low frequency pulses can be discerned by using high frequency short pulses. The target impulse response is sensitive to curvature in the cross-sectional area, and is therefore sensitive to boundary discontinuities and scattering centers. Therefore, by including high frequencies to define the target scattering center,
The number of low frequencies required to image the target can be significantly reduced. This means
Suggests that the optimal target response is a weighted sum of the ramp, step and impulse responses.
【0045】 別の実施形態において、ランプ応答を発生する低周波数は、神経回路網34及
び/又は最隣接規則(NNR)プロセッサ36によるパターン分類化のための特
徴ベクトルとして用いられる。神経回路網34への入力として、ランプ応答は、
入力特徴ベクトルとして処理され、組織データのトレーニング・セット(tra
ining set)に関してランプ応答を分類する神経回路網出力を発生する
。NNRプロセッサ36により実現されるように、最隣接規則は、一般的に、低
周波数データを弁別するのに理想的に適した強固な判断規則である。レーダ試験
結果は、分類化の90%以上の信頼性が振幅情報及び垂直偏波データを利用して
、ランプ応答の約4つの周波数でもって達成され得る。位相情報を採用すること
により一層少ない数の周波数しか必要でない。それは、位相が目標形状の変化の
高感度の尺度であるからである。音響応用においては、粒子速度が「回転的(r
otaionnal)」なので、振幅及び位相変調データのみが必要とされる。In another embodiment, the low frequencies that generate the ramp response are used as feature vectors for pattern classification by neural network 34 and / or nearest neighbor (NNR) processor 36. As an input to the neural network 34, the ramp response is
A training set of tissue data (tra
Generate a neural network output that classifies the ramp response with respect to the ining set. The nearest neighbor rule, as implemented by the NNR processor 36, is generally a strong decision rule that is ideally suited for discriminating low frequency data. Radar test results can be achieved with about four frequencies of the ramp response, with greater than 90% reliability of the classification utilizing amplitude information and vertically polarized data. Fewer frequencies are required by employing phase information. This is because phase is a sensitive measure of change in target shape. In acoustic applications, particle velocities are "rotary (r
ot ", only amplitude and phase modulated data is needed.
【0046】 これまでは、低周波数インソニフィケーションは生物学的解析及び診断に対し
て広く用いられていなかった。約10から約1000Hzの範囲における周波数
を用いた1つの低周波数診断技術は、超音波搬送周波数を変調する低周波数で組
織を機械的に振動させることにより、音弾性(sonoelasicity)と
呼ばれる、組織における異常な局所的弾性を像形成することができる。その結果
生じるドップラー変位は、組織の剛性、即ちヤング率の関数であり、従って、当
該技術において既知である、色フロー・マッピング(color flow m
apping)を含む、ドップラー・フロー・マッピング像形成システムでもっ
て表示され得る。Heretofore, low frequency insonification has not been widely used for biological analysis and diagnosis. One low frequency diagnostic technique, using frequencies in the range of about 10 to about 1000 Hz, involves mechanically vibrating the tissue at a low frequency that modulates the ultrasound carrier frequency, resulting in a so-called sonoelasticity in the tissue. Abnormal local elasticity can be imaged. The resulting Doppler displacement is a function of tissue stiffness, i.e., Young's modulus, and is therefore known in the art as color flow mapping.
and can be displayed with a Doppler flow mapping imaging system.
【0047】 予備的目安は、「堅い」又は「固い」組織が柔らかい組織より、固さの程度に
応じてより少なく振動することであり、また約100から約300Hzの間の振
動周波数が弁別のため有用であることである。A preliminary rule of thumb is that “hard” or “hard” tissue vibrates less than soft tissue, depending on the degree of firmness, and that vibration frequencies between about 100 and about 300 Hz Because it is useful.
【0048】 SSI技術を適用するため必要とされる低周波数は、一般的に音弾性又は弾性
記録法(elastography)のため用いられる周波数より高い。SSI
は、さもなければこれまで導出可能でなかった分類化パラメータの推定を与え、
それは次いで良性及び悪性の病気を表す特徴パターンを導出するためシステム1
0により用いられる。The low frequencies required to apply SSI technology are generally higher than the frequencies used for acousto-elastic or elastography. SSI
Gives an estimate of the classification parameters that were not previously derivable,
It then uses system 1 to derive feature patterns representing benign and malignant diseases.
Used by 0.
【0049】 音響エコー・サインは、一般的に、分布した組織構造からの情報に富み、そし
て実際の生物学的媒体における音響的及び弾性的散乱のためSSI技術を用いる
ことにより、そのような組織構造は、実質的な精度を有して検出され且つ分類化
され得る。Acoustic echo signatures are generally rich in information from distributed tissue structures, and by using SSI techniques for acoustic and elastic scattering in real biological media, Structures can be detected and classified with substantial accuracy.
【0050】 システム処理は、組織減衰の周波数依存性、組織剪断波発生の応答、及び相互
連結性組織及び隣接構造の衝撃(impact)、静脈及び動脈、並びに広いビ
ーム・インソニフィケーションの効果を考慮する。The system processing can be used to determine the frequency dependence of tissue attenuation, the response of tissue shear wave generation, and the effects of interconnected tissue and adjacent structures, the effects of veins and arteries, and broad beam insonification. Take into account.
【0051】 超音波減衰は、周波数の増大及び組織貫通深さの増大と共に増大する。ランプ
応答の全体ダイナミック・レンジに関する減衰に起因した応答の著しい変動(分
散)のため、その変動(分散)は、ランプ応答と器官の幾何学的形状との間の関
係に悪影響を与える。関心の器官に適合するようSSIを適用するため要求され
る周波数範囲は、約10から約100kHzである。約1.0dB/cm−MH
zの一方向の長手方向吸収に対して、約10cmの深さで受ける二方向吸収は、
その周波数帯域にわたり約0.2から約2.0dBである。Ultrasonic attenuation increases with increasing frequency and increasing tissue penetration depth. Because of the significant variation (variance) in the response due to the damping with respect to the overall dynamic range of the lamp response, the variation (variance) adversely affects the relationship between the lamp response and the organ geometry. The frequency range required to apply SSI to fit the organ of interest is about 10 to about 100 kHz. About 1.0dB / cm-MH
For one-way longitudinal absorption of z, the two-way absorption received at a depth of about 10 cm is:
It is about 0.2 to about 2.0 dB over the frequency band.
【0052】 そのような変動(分散)は、約48dBのダイナミック・レンジを有すること
により送信された超音波信号において補償され得る。考慮された実際の人間組織
器官に基づいて、採用されたSSI周波数はまた、振動的剪断モードを発生し得
る。実際に、剪断と圧縮との間のモードの多少の交差結合が起こり得て、そこで
システム10はそのような剪断波を評価する。典型的には、剪断波減衰係数は、
長手方向波減衰係数の約104倍であると測定された。Such fluctuations (dispersion) can be compensated for in the transmitted ultrasound signal by having a dynamic range of about 48 dB. Based on the actual human tissue organs considered, the adopted SSI frequency may also generate an oscillatory shear mode. In fact, some cross-coupling of modes between shear and compression can occur, where system 10 evaluates such shear waves. Typically, the shear wave attenuation coefficient is
It was measured to be about 10 4 times the longitudinal wave attenuation coefficient.
【0053】 理論的には、生物学的超音波ランプ応答は、血管、軟骨、及び隣接の解剖学的
構造体のような組織/器官付着物により影響を受ける。しかしながら、非常に大
きな器官の合成構造的像形成に必要とされる空間周波数においては、関連の血管
は一般的に音響的に透過性である。In theory, the biological ultrasound ramp response is affected by tissue / organ deposits such as blood vessels, cartilage, and adjacent anatomical structures. However, at the spatial frequencies required for synthetic structural imaging of very large organs, the vessels involved are generally acoustically transparent.
【0054】 正常なSSI動作は広いビーム幅を採用するので、幾つかの器官が一時にイン
ソニファイされ得る。エコー・ランプ・サインを個々の器官に関連した成分に分
解するため、システム10は、器官の一般的空間特性に関する演繹的情報、目標
のアスペクトの選択、及び時間ゲーティングを用いる。高周波数2D像データを
用いて、識別と分類とにおけるいずれの曖昧さを解決し得る。従って、システム
10は、生物学的器官及び腫瘍のサイズ及び形状を得て、且つそれらの組成を決
定することができる。Since normal SSI operation employs a wide beam width, some organs can be insonified at a time. To decompose the echo ramp signature into components associated with individual organs, the system 10 uses a priori information regarding the general spatial properties of the organ, selection of target aspects, and temporal gating. High frequency 2D image data can be used to resolve any ambiguity in identification and classification. Thus, the system 10 can obtain the size and shape of biological organs and tumors and determine their composition.
【0055】 使用の前に、システム10は、器官、及び組織模造の胸部腫瘍を含む組織の低
周波数ランプ応答のインビボ及びインビトロ測定を用い、経験的3D像、及び容
量及び物質組成の尺度を導出し、それらをハード・ドライブ28の中のライブラ
リ・データベース21に格納するよう構成される。組織器官からのそのようなデ
ータは、組織斑、システム雑音及びアーチファクトにより当然に変造され得て、
それらは組織/器官付着物及び隣接の構造体により導入され得る。システム10
は、既知の像形成システムの中に一体化され、そしてライブラリ・データベース
21を増強し且つ精密にするため人間の被験者のインビボ試験を行うため用いら
れ得る。Prior to use, system 10 derives empirical 3D images and measures of volume and material composition using in vivo and in vitro measurements of low frequency ramp responses of organs and tissues, including tissue mimic breast tumors. And configured to store them in the library database 21 in the hard drive 28. Such data from tissue organs can of course be corrupted by tissue plaques, system noise and artifacts,
They can be introduced by tissue / organ attachments and adjacent structures. System 10
Is integrated into known imaging systems and can be used to perform in vivo tests on human subjects to enhance and refine the library database 21.
【0056】 システム10は、特定の生物学的器官及び腫瘍のランプ応答を経験的に得るた
め、生物学的器官及び腫瘍の低周波数合成像を発生するため、器官及び腫瘍の容
量を推定するため、密度及び弾性のような、測定されたランプ応答からの組織組
成の尺度を導出するため、減衰及び目標アスペクトのような他のSSI生物学的
構造的特性を評価するため、及び剪断波及び広いビームインソニフィケーション
の作用を評価するため、投射器16から送信された信号を用いる。The system 10 can be used to empirically obtain ramp responses for specific biological organs and tumors, generate low-frequency composite images of biological organs and tumors, and estimate organ and tumor volumes. To derive measures of tissue composition from the measured ramp response, such as density, elasticity, to evaluate other SSI biological structural properties such as damping and target aspect, and The signal transmitted from the projector 16 is used to evaluate the effect of the beam insonification.
【0057】 経験的データ収集から、関心の特定の組織器官及び腫瘍に対応する独特の信号
波形又は超音波サインが、ハード・ドライブ28に格納される。信号波形は、送
信されたとき、信号波形が前立腺、腎臓、目及び胸部腫瘍のような特定の組織器
官に対する別個のランプ応答サインを有する組織ファントムを発生するように設
計される。要求された周波数帯域にわたる振幅及び位相の両方の変調を含む信号
波形は、これらの構造を特徴付ける空間周波数を整合させるよう調整され得る。From empirical data collection, unique signal waveforms or ultrasound signatures corresponding to specific tissue organs and tumors of interest are stored on hard drive 28. The signal waveform is designed such that when transmitted, the signal waveform generates a tissue phantom having distinct ramp response signatures for specific tissue organs such as prostate, kidney, eye and breast tumors. Signal waveforms that include both amplitude and phase modulation over the required frequency band can be adjusted to match the spatial frequencies that characterize these structures.
【0058】 例えば、システム10は、器官の視覚化のため約10から約100kHzまで
の周波数を有する信号波形を、また、胸部腫瘍を約2mmから約5mmのサイズ
で視覚化するため約100kHzから約800kHzまでの周波数を有する信号
波形を用い得る。そのような器官検出及び識別のため、送信される信号の基本波
対高調波比は約48dBであり、そして用いられる信号は、十分なダイナミック
・レンジ及び最小の誤りエコーを与えるため所定の複素関数に従って送信され得
る。For example, the system 10 may provide a signal waveform having a frequency of about 10 to about 100 kHz for organ visualization, and about 100 kHz to about 5 kHz for visualizing a breast tumor at a size of about 2 mm to about 5 mm. Signal waveforms having frequencies up to 800 kHz may be used. For such organ detection and identification, the fundamental to harmonic ratio of the transmitted signal is about 48 dB, and the signal used is a predetermined complex function to provide sufficient dynamic range and minimal error echo. Can be sent according to
【0059】 データを収集する前に、全てのシステム構成要素は、例えば、投射器及びハイ
ドロホンの(hydrophonic)空間周波数特性及び応答を含む超音波空
間及び周波数応答、ソース・レベル及びスペクトル純度、受信器帯域幅、前置増
幅器18の利得及び入力雑音レベル、いずれの積分及び微分非線形性、いずれの
高調波及びIM歪み、いずれのADCのスプリアス無しの動的範囲、いずれの後
方散乱データ、及び測定された周波数帯域内に自然に生じるいずれのバックグラ
ウンド過渡を確立するため較正される。次いで、チャネル間の振幅及び位相差が
、測定され、そして補償される。システム10において、送信のため採用される
パワー・レベルは、AIUM/NEMA規格9−17−1981に指定されたS
PTA要件と両立し得る。Prior to collecting the data, all system components include, for example, ultrasound spatial and frequency response including projector and hydrophonic spatial frequency characteristics and response, source level and spectral purity, reception Bandwidth, preamplifier gain and input noise level, any integral and differential non-linearities, any harmonic and IM distortion, any ADC spurious-free dynamic range, any backscatter data, and measurements Calibrated to establish any naturally occurring background transients within the specified frequency band. The amplitude and phase differences between the channels are then measured and compensated. In system 10, the power level employed for transmission is determined by the SUM specified in AIUM / NEMA standard 9-17-1981.
Compatible with PTA requirements.
【0060】 DSPカード26はエコー・データ処理を実行し、その処理において目標の複
素スペクトル応答のFFTは目標のランプ応答サインのFFT近似を構成するた
め適切に重み付けされる。エコー振幅及び位相データから導出されたランプ応答
は更に、目標断面積関数又は「プロフィール関数」を近似するため処理される。
経験的に導出されたプロフィール関数は、既知の幾何学的形状の拘束に基づいて
修正され、そしてCPU 22により採用される像再構成技術のための入力デー
タとして用いられる。The DSP card 26 performs echo data processing in which the FFT of the target complex spectral response is appropriately weighted to form an FFT approximation of the target ramp response signature. The ramp response derived from the echo amplitude and phase data is further processed to approximate a target cross section function or "profile function."
The empirically derived profile function is modified based on known geometric constraints and used as input data for the image reconstruction techniques employed by CPU 22.
【0061】 像再構成は、例えば、限定表面を用いて、目標の等大の像を発生し、そこにお
いて目標は、一般的に、円形又は楕円の断面により示される形状のような、数個
の単純な形状を含む。そのような形状の像再構成は、一般的に、輪郭推定のため
数個のパラメータしか必要としない。楕円のような一般化した表面は、その1組
みのプロフィール関数に適合され、その1組のプロフィール関数において少なく
とも1つのそのように一般化された表面は、各ルック角(look angle
)に対して計算される。次いで、像は、実質的に全ての単一アスペクト角限定表
面に対して共通の容量を囲む像表面を計算することにより一般化される。ルック
角間の直交性を用いて、そのような像処理を非常に単純化し得る。Image reconstruction generates, for example, an isometric image of a target using a confined surface, where the target is generally a few, such as a shape indicated by a circular or elliptical cross-section. Including the simple shape of. Image reconstruction of such shapes typically requires only a few parameters for contour estimation. A generalized surface, such as an ellipse, is fitted to the set of profile functions, and at least one such generalized surface in the set of profile functions is assigned a look angle (look angle).
). The image is then generalized by calculating the image surface surrounding a common volume for substantially all single aspect angle limited surfaces. The orthogonality between the look angles can be used to greatly simplify such image processing.
【0062】 三次元の再構成された像は、ライブラリの中の実際の組織像の全体検査(gr
oss examination)と比較される。採用された各組織ファントム
の実際の容量は、経験的に導出されたプロフィール関数を種々のアスペクトで積
分することにより測定された容量と比較される。容量誤差は、像の精度の尺度と
して用いられる。更に、ランプ応答は、組織の組成に関する情報を導出するため
検査される。The three-dimensional reconstructed image is a global examination (gr) of the actual tissue images in the library.
oss emission). The actual volume of each tissue phantom employed is compared to the volume measured by integrating the empirically derived profile function in various aspects. The capacitance error is used as a measure of image accuracy. Further, the lamp response is examined to derive information about the composition of the tissue.
【0063】 図3に示されるように、システム10は、以下のステップを含む方法を用いて
動作する。その以下のステップとは、ステップ54において、例えば、システム
10を初期化し且つ較正することにより、組織14の像形成を開始するステップ
と、ステップ56において、組織サインをハード・ドライブ28の中のデータベ
ースから検索するステップと、ステップ58において、組織サインを用いて組織
14に印加されるべき低周波数超音波を発生するステップと、ステップ60にお
いて、センサ12を用いて組織構造を検出し、組織ランプ・サインが低周波数超
音波に応答して組織14により発生されるステップと、ステップ62において、
組織ランプ・サインを処理して、組織特性を決定するステップとである。As shown in FIG. 3, system 10 operates using a method that includes the following steps. The following steps include, in step 54, starting imaging of the tissue 14, for example, by initializing and calibrating the system 10, and in step 56, storing the tissue signature in a database in the hard drive 28. And generating a low frequency ultrasonic wave to be applied to the tissue 14 using the tissue signature in step 58, and detecting the tissue structure using the sensor 12 in step 60, A step in which the signature is generated by the tissue 14 in response to the low frequency ultrasound;
Processing the tissue ramp sign to determine tissue characteristics.
【0064】 組織ランプ・サインを処理するステップ62は、例えば、ステップ64−68
のいずれの組合わせを含み得る。例示的実施形態において、システム10は、ス
テップ64において、組織14を分類化するための事前決定された組織データを
用いる神経回路網34及び/又はNNRプロセッサ36のような分類器を用いて
組織14を分類化する。神経回路網及びNNRプロセッサの説明は米国特許出願
No.09/167,868に見られ、その内容は本明細書に援用されている。Step 62 of processing the tissue ramp sign includes, for example, steps 64-68
May be included. In an exemplary embodiment, the system 10 uses the classifier such as the neural network 34 and / or the NNR processor 36 to use the predetermined tissue data to classify the tissue 14 in step 64. Is categorized. A description of neural networks and NNR processors is provided in U.S. Pat. 09 / 167,868, the contents of which are incorporated herein by reference.
【0065】 更に、システム10は、ステップ66において、SSI技術、FFT処理のよ
うな信号処理技術等を用いて組織14の容量、アスペクト、形状等を決定し、そ
してシステム10はまた、ステップ68において組織14の状態が正常又は異常
であるかを決定する。Further, the system 10 determines the capacity, aspect, shape, etc. of the tissue 14 at step 66 using SSI techniques, signal processing techniques such as FFT processing, etc., and the system 10 also determines at step 68 It is determined whether the state of the tissue 14 is normal or abnormal.
【0066】 次いで、システム10は、組織特性を臨床家に出力し得る。システム10はま
た、ステップ70において、そのような組織特性を用いて、組織14のグラフィ
ック表示を発生し得る。The system 10 may then output the tissue characteristics to the clinician. The system 10 may also generate a graphical representation of the tissue 14 at step 70 using such tissue characteristics.
【0067】 従って、本明細書に記載されるシステム10及び方法を用いて、臨床家は、患
者の組織構造の像を非侵襲的且つ音響的に測定し且つ発生して、正常及び異常な
組織、器官、生物学的構造等の分類及び視覚化のため生物学的構造のサイズ及び
形状に関する独特の情報を、改善された精度及び診断解析を有して提供し得る。Thus, using the systems 10 and methods described herein, a clinician can non-invasively and acoustically measure and generate images of a patient's tissue structure to produce normal and abnormal tissue. Unique information regarding the size and shape of biological structures for classification and visualization of organs, biological structures, etc. may be provided with improved accuracy and diagnostic analysis.
【0068】 開示された組織像形成システム及び方法が好適な実施形態を参照して特に示さ
れ且つ説明されたが、形式及び詳細における種々の修正が本発明の範囲と趣旨か
ら離れることなくなし得ることが当業者により理解されるであろう。従って、上
記に示唆されているがそれへの限定ではないそのような修正は、本発明の範囲内
にあると考えられるべきである。Although the disclosed tissue imaging systems and methods have been particularly shown and described with reference to preferred embodiments, various modifications in form and detail may be made without departing from the scope and spirit of the invention. It will be understood by those skilled in the art. Accordingly, such modifications, as suggested above, but not limited thereto, should be considered to be within the scope of the present invention.
【図1】 図1は、組織像形成システムのブロック図である。FIG. 1 is a block diagram of a tissue image forming system.
【図2】 図2は、後方散乱応答のグラフである。FIG. 2 is a graph of a backscatter response.
【図3】 図3は、組織像形成システムの動作方法のフローチャートである。FIG. 3 is a flowchart of an operation method of the tissue image forming system.
───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SL,SZ,UG,ZW),E A(AM,AZ,BY,KG,KZ,MD,RU,TJ ,TM),AE,AL,AM,AT,AU,AZ,BA ,BB,BG,BR,BY,CA,CH,CN,CU, CZ,DE,DK,EE,ES,FI,GB,GD,G E,GH,GM,HR,HU,ID,IL,IN,IS ,JP,KE,KG,KP,KR,KZ,LC,LK, LR,LS,LT,LU,LV,MD,MG,MK,M N,MW,MX,NO,NZ,PL,PT,RO,RU ,SD,SE,SG,SI,SK,SL,TJ,TM, TR,TT,UA,UG,US,UZ,VN,YU,Z A,ZW──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR , BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS , JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW
Claims (20)
ることにより発生された組織エコー・サインを受け取るセンサと、 前記受信機と通信して、低周波数ランプ応答を前記組織エコー・サインから決
定する中央プロセッサと、 記憶された組織データの音響データベースを用いて、低周波数ランプ応答から
目標組織構造のグラフィック表示を発生するメモリ・グラフィックスと を備える音響的測定及び像形成システム。1. A projector for generating a low frequency ultrasound signal in a target tissue, and a tissue generated by communicating with the projector to interact with the target tissue structure with the low frequency ultrasound signal. A sensor for receiving an echo signature; a central processor in communication with the receiver to determine a low frequency ramp response from the tissue echo signature; and a low frequency ramp response using the acoustic database of stored tissue data. An acoustic measurement and imaging system comprising: memory graphics that generate a graphical representation of the target tissue structure.
ータの前記データベースを用いて目標組織のタイプ又は状態に関して目標組織を
分類する分類器を更に備える請求項1記載の音響的測定及び像形成システム。2. The acoustical device of claim 1, further comprising a classifier in communication with said memory graphics to classify target tissue with respect to target tissue type or status using said database of stored tissue data. Measurement and imaging system.
び像形成システム。3. The acoustic measurement and imaging system according to claim 2, wherein said classifier comprises a neural network.
響的測定及び像形成システム。4. The acoustic measurement and imaging system of claim 2, wherein said classifier comprises a nearest neighbor processor.
位相情報を、組織のタイプ、組織の寸法、目標方向及びインソニファイされた周
波数の関数として含む請求項1記載の音響的測定及び像形成システム。5. The method of claim 1, wherein the acoustic database of stored tissue data includes amplitude and phase information as a function of tissue type, tissue size, target direction, and insonified frequency. Imaging system.
ー・サインを発生させる投射器と、 前記組織エコー・サインを目標組織から検出し且つ対応する入力データ信号を
発生する複数のセンサと、 入力データ信号を処理する前置増幅器と、 入力データ信号をフィルタリングするフィルタと、 前記のフィルタリングされた入力データ信号を1組の記憶された組織音響デー
タに基づいて処理し且つ出力信号を発生する中央プロセッサと、 目標組織の特性のグラフィック表示を前記出力信号から発生するグラフィック
ス構造体と を備える音響的測定及び像形成システム。6. A projector for generating an ultrasonic signal to a target tissue to generate a corresponding tissue echo signature, and detecting the tissue echo signature from the target tissue and generating a corresponding input data signal. A plurality of sensors, a preamplifier for processing the input data signal, a filter for filtering the input data signal, processing the filtered input data signal based on a set of stored tissue acoustic data, and An acoustic measurement and imaging system comprising: a central processor that generates an output signal; and a graphics structure that generates a graphical representation of a property of a target tissue from the output signal.
ィジタル信号プロセッサ・カード及び記憶装置と共に動作する請求項6記載の音
響的測定及び像形成システム。7. The acoustic measurement and imaging system of claim 6, wherein said central processor operates with a data acquisition and control logic card, a digital signal processor card and a storage device.
的測定及び像形成システム。8. The acoustic measurement and imaging system according to claim 6, wherein said central processor comprises a neural network.
記載の音響的測定及び像形成システム。9. The processor of claim 6, wherein the central processor comprises a nearest neighbor processor.
An acoustic measurement and imaging system as described.
の音響的測定及び像形成システム。10. The acoustic measurement and imaging system according to claim 6, wherein said graphics structure comprises a printer.
請求項6記載の音響的測定及び像形成システム。11. The acoustic measurement and imaging system according to claim 6, wherein said graphics structure comprises a video display.
zの周波数範囲においてインソニファイするため較正されたピエゾセラミック投
射器である請求項6記載の音響的測定及び像形成システム。12. The projector according to claim 1, wherein the target tissue has a frequency of about 10 kHz to about 100 kHz.
7. The acoustic measurement and imaging system of claim 6, wherein the piezoceramic projector is calibrated for insonification in the z frequency range.
付けされた4個の較正されたセンサを備える請求項6記載の音響的測定及び像形
成システム。13. The acoustic measurement and imaging system of claim 6, comprising four calibrated sensors oriented to provide four distinct target aspects in an orthogonal plane.
イし且つ後方散乱戻りを受け取るよう設計された少なくとも2つのピエゾセラミ
ック・トランスジューサを含む単一のユニットとして構成されている請求項6記
載の音響的測定及び像形成システム。14. The projector and the plurality of sensors configured as a single unit including at least two piezoceramic transducers designed to insonify target tissue and receive backscattered returns. An acoustic measurement and imaging system as described.
の周波数範囲にある請求項14記載の音響的測定及び像形成システム。15. The method according to claim 15, wherein the backscatter return is from about 100 kHz to about 800 kHz.
15. The acoustic measurement and imaging system of claim 14, wherein the frequency range is:
器である請求項6記載の音響的測定及び像形成システム。16. The acoustic measurement and imaging system according to claim 6, wherein said preamplifier is a low noise wideband programmable gain amplifier.
投射器と通信して前記目標組織構造を前記投射器からの低周波超音波信号と相互
作用させることにより発生された組織エコー・サインを受け取る少なくとも1つ
のセンサと、前記受信機と通信して低周波数ランプ応答を前記組織エコー・サイ
ンから決定する中央プロセッサと、記憶された組織データの音響データベースを
用いて低周波数ランプ応答から目標組織のグラフィック表示を発生するメモリ・
グラフィックスとを備える音響的測定及び像形成システムを設けるステップと、 前記音響的測定及び像形成システムを初期化し且つ較正するステップと、 音響データベースから組織エコー・サインを検索するステップと、 低周波超音波を目標組織に対して発生するステップと、 前記少なくとも1つのセンサを用いて、組織エコー・サインを検出するステッ
プと、 組織エコー・サインを処理して、目標組織の組織特性を決定するステップと を備える目標組織の音響的測定及び像形成方法。17. A projector for generating low frequency ultrasound in target tissue, and generated by communicating with the projector to interact with the target tissue structure with low frequency ultrasound signals from the projector. At least one sensor for receiving the generated tissue echo signature, a central processor in communication with the receiver to determine a low frequency ramp response from the tissue echo signature, and a low-level processor using an acoustic database of stored tissue data. A memory that generates a graphical representation of the target tissue from the frequency ramp response
Providing an acoustic measurement and imaging system comprising graphics; initializing and calibrating the acoustic measurement and imaging system; retrieving a tissue echo signature from an acoustic database; Generating a sound wave to a target tissue; detecting a tissue echo signature using the at least one sensor; and processing the tissue echo signature to determine a tissue characteristic of the target tissue. A method for acoustically measuring and imaging a target tissue comprising:
決定するステップを更に備える請求項17記載の音響的測定及び目標組織の像形
成方法。18. The method of claim 17, further comprising determining one or more of volume, aspect, and shape of the target tissue.
するステップを更に備える請求項17記載の目標組織の音響的測定及び像形成方
法。19. The method of claim 17, further comprising generating a graphical representation of at least a portion of the target tissue structure.
された組織データを用いる神経回路網を用いて、組織を分類するステップを含む
請求項17記載の目標組織の音響的測定及び像形成方法。20. The method of claim 17, wherein processing the tissue echo signature comprises classifying the tissue using a neural network using predetermined tissue data. Image forming method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9351898P | 1998-07-21 | 1998-07-21 | |
US60/093,518 | 1998-07-21 | ||
PCT/US1999/016472 WO2000004831A1 (en) | 1998-07-21 | 1999-07-21 | Synthetic structural imaging and volume estimation of biological tissue organs |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002521082A true JP2002521082A (en) | 2002-07-16 |
Family
ID=22239389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000560826A Pending JP2002521082A (en) | 1998-07-21 | 1999-07-21 | Synthetic structural imaging and volume estimation of biological tissue organs |
Country Status (6)
Country | Link |
---|---|
US (1) | US6585647B1 (en) |
EP (1) | EP1105044A1 (en) |
JP (1) | JP2002521082A (en) |
AU (1) | AU5117699A (en) |
CA (1) | CA2338735A1 (en) |
WO (1) | WO2000004831A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010514524A (en) * | 2006-12-29 | 2010-05-06 | ベラソン インコーポレイテッド | Ultrasound harmonic imaging system and method |
JP2010527277A (en) * | 2007-05-16 | 2010-08-12 | ベラソン インコーポレイテッド | Bladder detection system and method using harmonic imaging |
JP2012066052A (en) * | 2010-09-24 | 2012-04-05 | Samsung Medison Co Ltd | Ultrasonograph for combining images of various irradiation angles and method for operating the same |
JP2012529332A (en) * | 2009-06-10 | 2012-11-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Algorithm for photonic needle terminal |
Families Citing this family (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10027827A1 (en) * | 2000-06-05 | 2001-12-06 | Sonem Gmbh | Adaptive classifying device for classifying reflective/absorbent structures or acoustic barrier layers with similar properties has n channels of a spectrum to separate response signals ready to be evaluated by a classifying unit. |
US6899680B2 (en) * | 2000-10-19 | 2005-05-31 | Odetect As | Ultrasound measurement techniques for bone analysis |
GB0028491D0 (en) * | 2000-11-22 | 2001-01-10 | Isis Innovation | Detection of features in images |
JP4057524B2 (en) * | 2001-08-20 | 2008-03-05 | 独立行政法人科学技術振興機構 | Ultrasound diagnostic system |
US20030220556A1 (en) * | 2002-05-20 | 2003-11-27 | Vespro Ltd. | Method, system and device for tissue characterization |
GB2391625A (en) * | 2002-08-09 | 2004-02-11 | Diagnostic Ultrasound Europ B | Instantaneous ultrasonic echo measurement of bladder urine volume with a limited number of ultrasound beams |
US8221321B2 (en) * | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods for quantification and classification of fluids in human cavities in ultrasound images |
US20080139938A1 (en) * | 2002-06-07 | 2008-06-12 | Fuxing Yang | System and method to identify and measure organ wall boundaries |
US8435181B2 (en) * | 2002-06-07 | 2013-05-07 | Verathon Inc. | System and method to identify and measure organ wall boundaries |
US8221322B2 (en) | 2002-06-07 | 2012-07-17 | Verathon Inc. | Systems and methods to improve clarity in ultrasound images |
US7819806B2 (en) | 2002-06-07 | 2010-10-26 | Verathon Inc. | System and method to identify and measure organ wall boundaries |
US6898263B2 (en) * | 2002-11-27 | 2005-05-24 | Ge Medical Systems Global Technology Company, Llc | Method and apparatus for soft-tissue volume visualization |
WO2004054449A1 (en) * | 2002-12-15 | 2004-07-01 | Ultramove Ltd. | System and method for determination of fetal movement |
US7175597B2 (en) * | 2003-02-03 | 2007-02-13 | Cleveland Clinic Foundation | Non-invasive tissue characterization system and method |
AU2004231713A1 (en) * | 2003-04-16 | 2004-11-04 | Eastern Virginia Medical School | System and method for generating operator independent ultrasound images |
US7175599B2 (en) * | 2003-04-17 | 2007-02-13 | Brigham And Women's Hospital, Inc. | Shear mode diagnostic ultrasound |
US6932769B2 (en) * | 2003-05-28 | 2005-08-23 | Delphi Technologies, Inc. | Ultrasonic occupant detection and classification system |
US7244233B2 (en) * | 2003-07-29 | 2007-07-17 | Ntd Laboratories, Inc. | System and method for utilizing shape analysis to assess fetal abnormality |
CA2576646C (en) * | 2003-07-29 | 2011-02-08 | Ntd Laboratories, Inc. | System and method for assessing fetal abnormality based on landmarks |
WO2005074809A1 (en) * | 2004-02-05 | 2005-08-18 | Rueter Dirk | Device for measuring the function of a lung |
US7817843B2 (en) * | 2004-03-04 | 2010-10-19 | The Boeing Company | Manufacturing process or in service defects acoustic imaging using sensor array |
US8234923B2 (en) | 2004-09-20 | 2012-08-07 | Innervision Medical Technologies Inc. | Systems and methods for ultrasound imaging |
CN101065778A (en) * | 2004-11-23 | 2007-10-31 | 伊斯曼柯达公司 | Method for classifying radiographs |
EP1815392A1 (en) * | 2004-11-23 | 2007-08-08 | Eastman Kodak Company | Automated radiograph classification using anatomy information |
GB2421572A (en) * | 2004-12-22 | 2006-06-28 | Elekta Ab | Radiotherapeutic apparatus |
EP1865875A4 (en) * | 2005-03-31 | 2009-07-08 | Perio Imaging Inc | Ultrasonic periodontal device, system and method of using |
US7532214B2 (en) * | 2005-05-25 | 2009-05-12 | Spectra Ab | Automated medical image visualization using volume rendering with local histograms |
WO2007063425A2 (en) * | 2005-06-16 | 2007-06-07 | University Health Network | Methods of monitoring cellular death using low frequency ultrasound |
US20070043290A1 (en) * | 2005-08-03 | 2007-02-22 | Goepp Julius G | Method and apparatus for the detection of a bone fracture |
US7914451B2 (en) * | 2005-09-15 | 2011-03-29 | Innervision Medical Technologies Inc. | Determining attributes using ultrasound |
JP4690204B2 (en) * | 2006-01-16 | 2011-06-01 | 富士フイルム株式会社 | Image reproduction apparatus and program thereof |
US8095198B2 (en) | 2006-01-31 | 2012-01-10 | Warsaw Orthopedic. Inc. | Methods for detecting osteolytic conditions in the body |
US7328131B2 (en) * | 2006-02-01 | 2008-02-05 | Medtronic, Inc. | Implantable pedometer |
US8078282B2 (en) * | 2006-02-01 | 2011-12-13 | Warsaw Orthopedic, Inc | Implantable tissue growth stimulator |
US20070238992A1 (en) * | 2006-02-01 | 2007-10-11 | Sdgi Holdings, Inc. | Implantable sensor |
WO2007092054A2 (en) | 2006-02-06 | 2007-08-16 | Specht Donald F | Method and apparatus to visualize the coronary arteries using ultrasound |
US8473239B2 (en) | 2009-04-14 | 2013-06-25 | Maui Imaging, Inc. | Multiple aperture ultrasound array alignment fixture |
US8016859B2 (en) | 2006-02-17 | 2011-09-13 | Medtronic, Inc. | Dynamic treatment system and method of use |
US20070197895A1 (en) * | 2006-02-17 | 2007-08-23 | Sdgi Holdings, Inc. | Surgical instrument to assess tissue characteristics |
US7993269B2 (en) * | 2006-02-17 | 2011-08-09 | Medtronic, Inc. | Sensor and method for spinal monitoring |
US7918796B2 (en) * | 2006-04-11 | 2011-04-05 | Warsaw Orthopedic, Inc. | Volumetric measurement and visual feedback of tissues |
US8041129B2 (en) * | 2006-05-16 | 2011-10-18 | Sectra Ab | Image data set compression based on viewing parameters for storing medical image data from multidimensional data sets, related systems, methods and computer products |
CN101460095B (en) * | 2006-06-02 | 2012-05-16 | 皇家飞利浦电子股份有限公司 | Multi-modal imaging system and workstation with support for structured hypothesis testing |
WO2008038159A2 (en) * | 2006-09-29 | 2008-04-03 | Odetect As | Ultrasound measurement techniques for bone analysis |
WO2008051639A2 (en) | 2006-10-25 | 2008-05-02 | Maui Imaging, Inc. | Method and apparatus to produce ultrasonic images using multiple apertures |
US7830381B2 (en) * | 2006-12-21 | 2010-11-09 | Sectra Ab | Systems for visualizing images using explicit quality prioritization of a feature(s) in multidimensional image data sets, related methods and computer products |
US20080228072A1 (en) * | 2007-03-16 | 2008-09-18 | Warsaw Orthopedic, Inc. | Foreign Body Identifier |
US20080287780A1 (en) * | 2007-05-16 | 2008-11-20 | James Geoffrey Chase | Integral based parameter identification applied to three dimensional tissue stiffness reconstruction in a digital image-based elasto-tomography system |
US20080287807A1 (en) * | 2007-05-16 | 2008-11-20 | James Geoffrey Chase | Global motion invariant signatures for fast and accurate motion tracking in a digital image-based elasto-tomography system |
US8167803B2 (en) | 2007-05-16 | 2012-05-01 | Verathon Inc. | System and method for bladder detection using harmonic imaging |
US9282945B2 (en) * | 2009-04-14 | 2016-03-15 | Maui Imaging, Inc. | Calibration of ultrasound probes |
WO2009154691A2 (en) * | 2008-05-29 | 2009-12-23 | Yale University | Systems, devices and methods for cartilage and bone grafting |
US20100113921A1 (en) * | 2008-06-02 | 2010-05-06 | Uti Limited Partnership | Systems and Methods for Object Surface Estimation |
EP2344084A1 (en) * | 2008-07-28 | 2011-07-20 | Zimmer, Inc. | Mosaicplasty constructs |
CA2957778C (en) | 2008-08-07 | 2022-12-13 | Jongtae Yuk | Device, system, and method to measure abdominal aortic aneurysm diameter |
US20110137166A1 (en) * | 2008-08-15 | 2011-06-09 | Koninklijke Philips Electronics N.V. | Transducer arrangement and method for acquiring sono-elastographical data and ultrasonic data of a material |
US9785858B2 (en) * | 2008-09-26 | 2017-10-10 | Siemens Healthcare Gmbh | Method and system for hierarchical parsing and semantic navigation of full body computed tomography data |
WO2010048160A2 (en) | 2008-10-20 | 2010-04-29 | The Johns Hopkins University | Environment property estimation and graphical display |
EP2182351A1 (en) * | 2008-10-29 | 2010-05-05 | National Research Council Of Canada | Method and apparatus for ultrasonic characterization of scale-dependent bulk material heterogeneities |
US20100210942A1 (en) * | 2008-11-26 | 2010-08-19 | New Jersey Institute Of Technology | System and method for ultrasound analysis of biological structures |
US20110121996A1 (en) * | 2009-11-23 | 2011-05-26 | Delphi Technologies, Inc. | Method and System for Detecting an Occupant Using Reflected Signals |
EP2536339B1 (en) | 2010-02-18 | 2024-05-15 | Maui Imaging, Inc. | Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging |
US9134420B2 (en) * | 2010-03-10 | 2015-09-15 | Samsung Medison Co., Ltd. | Three-dimensional (3D) ultrasound system for scanning object inside human body and method for operating 3D ultrasound system |
US20120071760A1 (en) * | 2010-09-22 | 2012-03-22 | Toshiba Medical Systems Corporation | Reconfigurable medical ultrasound transducer arrays with preprocessing |
EP2627257B1 (en) | 2010-10-13 | 2019-04-17 | Maui Imaging, Inc. | Concave ultrasound transducers and 3d arrays |
WO2012051305A2 (en) | 2010-10-13 | 2012-04-19 | Mau Imaging, Inc. | Multiple aperture probe internal apparatus and cable assemblies |
US20130282396A1 (en) * | 2010-12-20 | 2013-10-24 | Koninklijke Philips N.V. | System and method for deploying multiple clinical decision support models |
CA2845015C (en) | 2011-08-11 | 2020-10-06 | University Of Virginia | Image-based identification of muscle abnormalities |
TW201336478A (en) | 2011-12-01 | 2013-09-16 | Maui Imaging Inc | Motion detection using ping-based and multiple aperture doppler ultrasound |
KR20140107648A (en) | 2011-12-29 | 2014-09-04 | 마우이 이미징, 인코포레이티드 | M-mode ultrasound imaging of arbitrary paths |
CN104135937B (en) | 2012-02-21 | 2017-03-29 | 毛伊图像公司 | Material stiffness is determined using porous ultrasound |
KR102103137B1 (en) | 2012-03-26 | 2020-04-22 | 마우이 이미징, 인코포레이티드 | Systems and methods for improving ultrasound image quality by applying weighting factors |
JP6008580B2 (en) * | 2012-05-25 | 2016-10-19 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus, control method of ultrasonic diagnostic apparatus, and ultrasonic diagnostic program |
JP6008581B2 (en) * | 2012-05-25 | 2016-10-19 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus, control method of ultrasonic diagnostic apparatus, and ultrasonic diagnostic program |
IN2015DN00556A (en) | 2012-08-10 | 2015-06-26 | Maui Imaging Inc | |
IN2015DN00764A (en) | 2012-09-06 | 2015-07-03 | Maui Imaging Inc | |
WO2014160291A1 (en) | 2013-03-13 | 2014-10-02 | Maui Imaging, Inc. | Alignment of ultrasound transducer arrays and multiple aperture probe assembly |
WO2015019196A2 (en) * | 2013-08-09 | 2015-02-12 | Palti Yoram Prof | Passive data transmission |
US9883848B2 (en) | 2013-09-13 | 2018-02-06 | Maui Imaging, Inc. | Ultrasound imaging using apparent point-source transmit transducer |
WO2016028787A1 (en) | 2014-08-18 | 2016-02-25 | Maui Imaging, Inc. | Network-based ultrasound imaging system |
WO2016135604A1 (en) * | 2015-02-24 | 2016-09-01 | Siano Mobile Silicon Ltd. | Treatment of bone fractures |
WO2016210246A2 (en) | 2015-06-24 | 2016-12-29 | Massachusetts Institute Of Technology | Ultrasound image-based concentration measurement |
US10492691B2 (en) | 2015-08-31 | 2019-12-03 | Massachusetts Institute Of Technology | Systems and methods for tissue stiffness measurements |
CN113729764A (en) | 2016-01-27 | 2021-12-03 | 毛伊图像公司 | Ultrasound imaging with sparse array probe |
US10625137B2 (en) | 2016-03-18 | 2020-04-21 | Icon Health & Fitness, Inc. | Coordinated displays in an exercise device |
US10493349B2 (en) | 2016-03-18 | 2019-12-03 | Icon Health & Fitness, Inc. | Display on exercise device |
US20190117190A1 (en) * | 2016-04-19 | 2019-04-25 | Koninklijke Philips N.V. | Ultrasound imaging probe positioning |
US10625114B2 (en) | 2016-11-01 | 2020-04-21 | Icon Health & Fitness, Inc. | Elliptical and stationary bicycle apparatus including row functionality |
US10716545B2 (en) * | 2016-12-22 | 2020-07-21 | Fujifilm Sonosite, Inc. | Ultrasound system for imaging and protecting ophthalmic or other sensitive tissues |
EP3366221A1 (en) | 2017-02-28 | 2018-08-29 | Koninklijke Philips N.V. | An intelligent ultrasound system |
TWI640301B (en) * | 2017-10-31 | 2018-11-11 | 財團法人工業技術研究院 | Ultrasound system and method with adaptive over flow and gain control |
US20220061807A1 (en) * | 2020-08-26 | 2022-03-03 | University Of Southern California | Actively damped ultrasonic transducer |
CN112649773B (en) * | 2020-12-22 | 2023-05-26 | 上海联影医疗科技股份有限公司 | Magnetic resonance scanning method, device, equipment and storage medium |
Family Cites Families (242)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3193034A (en) | 1961-01-06 | 1965-07-06 | Continental Scale Corp | Weighing scale |
US3134451A (en) | 1962-03-14 | 1964-05-26 | Hanson Scale Co | Platform type bathroom scale |
US3310049A (en) | 1963-09-17 | 1967-03-21 | Air Shields | Ultrasonic cardiac volume measurements |
US3433663A (en) | 1964-05-04 | 1969-03-18 | Union Carbide Corp | Impregnated porous paper webs and method of obtaining same |
US3594993A (en) | 1966-11-14 | 1971-07-27 | Dexter Corp | Porous, bonded and impregnated, nonwoven filter sheet structure |
US3499437A (en) | 1967-03-10 | 1970-03-10 | Ultrasonic Systems | Method and apparatus for treatment of organic structures and systems thereof with ultrasonic energy |
US3550586A (en) | 1967-03-10 | 1970-12-29 | Ultrasonic Systems | Ultrasonic treatment method and device for fertilized ova and live embryos |
US3767195A (en) | 1969-03-03 | 1973-10-23 | Lifecycle Inc | Programmed bicycle exerciser |
CA962806A (en) | 1970-06-04 | 1975-02-18 | Ontario Research Foundation | Surgical prosthetic device |
US3701352A (en) | 1970-12-01 | 1972-10-31 | Nathaniel L Bosworth | Abdominal wall punch |
US3760799A (en) | 1972-03-02 | 1973-09-25 | D Crowson | Sonic teeth-cleaning apparatus and method |
US3828769A (en) | 1973-02-28 | 1974-08-13 | H Mettler | Method and apparatus for ultrasonic treatment of lower tissues simultaneous with heating of subcutaneous, outer muscle and lower tissues |
US3986212A (en) | 1975-04-11 | 1976-10-19 | Glasrock Products, Inc. | Composite prosthetic device with porous polymeric coating |
US3961380A (en) | 1975-05-27 | 1976-06-08 | Garr Ernest J | Bathtub appliance with hot water bladder and heat chamber |
FR2336116A1 (en) | 1975-12-22 | 1977-07-22 | Lion Hamigaki Kk | ULTRASONIC DENTAL TREATMENT DEVICE |
FR2356465A1 (en) | 1976-07-02 | 1978-01-27 | Benoist Girard & Cie | PROCESS FOR MANUFACTURING PARTS WITH A GRENUE SURFACE AND PART OBTAINED, IN PARTICULAR SURGICAL PROSTHESES |
US4105017A (en) | 1976-11-17 | 1978-08-08 | Electro-Biology, Inc. | Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment |
US4315503A (en) | 1976-11-17 | 1982-02-16 | Electro-Biology, Inc. | Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment |
GB1550010A (en) | 1976-12-15 | 1979-08-08 | Ontario Research Foundation | Surgical prosthetic device or implant having pure metal porous coating |
US4164794A (en) | 1977-04-14 | 1979-08-21 | Union Carbide Corporation | Prosthetic devices having coatings of selected porous bioengineering thermoplastics |
US4176664A (en) | 1978-03-13 | 1979-12-04 | Stanley Kalish | Impregnated bandage |
US4170045A (en) | 1978-06-09 | 1979-10-09 | Estes Judith K | Hospital bathtub |
US4361154A (en) | 1978-07-28 | 1982-11-30 | Massachusetts Institute Of Technology | Method for establishing, in vivo, bone strength |
USRE32782E (en) | 1978-07-28 | 1988-11-15 | Massachusetts Institute Of Technology | Method for determining in vivo, bone strength |
US4421119A (en) | 1979-06-15 | 1983-12-20 | Massachusetts Institute Of Technology | Apparatus for establishing in vivo, bone strength |
FR2437136A1 (en) | 1978-09-19 | 1980-04-18 | Labo Electronique Physique | SUPPORT FOR DEVICE FOR TRANSMITTING OR RECEIVING SIGNALS IN A SPECIFIED ANGULAR SECTOR |
US4233477A (en) | 1979-01-31 | 1980-11-11 | The United States Of America As Represented By The Secretary Of The Navy | Flexible, shapeable, composite acoustic transducer |
US4365359A (en) | 1979-02-15 | 1982-12-28 | Raab S | PMMA Coated bone connective prostheses and method of forming same |
US4227111A (en) | 1979-03-28 | 1980-10-07 | The United States Of America As Represented By The Secretary Of The Navy | Flexible piezoelectric composite transducers |
US4351069A (en) | 1979-06-29 | 1982-09-28 | Union Carbide Corporation | Prosthetic devices having sintered thermoplastic coatings with a porosity gradient |
US4216766A (en) | 1979-09-07 | 1980-08-12 | The United States Of America As Represented By The Secretary Of The Navy | Treatment of body tissue by means of internal cavity resonance |
AU526429B2 (en) | 1979-11-22 | 1983-01-06 | Nikki Co., Ltd. | Bubble generator |
US4312536A (en) | 1980-06-05 | 1982-01-26 | Lo-Rich Enterprises, Inc. | Dunk seat |
JPS5711648A (en) | 1980-06-27 | 1982-01-21 | Matsushita Electric Ind Co Ltd | Ultrasonic probe |
US4358105A (en) | 1980-08-21 | 1982-11-09 | Lifecycle, Inc. | Programmed exerciser apparatus and method |
US4446586A (en) | 1980-09-15 | 1984-05-08 | Silchor | Apparatus and method for bathing invalids |
US4383533A (en) | 1981-02-10 | 1983-05-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus for determining changes in limb volume |
US4644942A (en) | 1981-07-27 | 1987-02-24 | Battelle Development Corporation | Production of porous coating on a prosthesis |
US4570640A (en) | 1981-08-06 | 1986-02-18 | Barsa John E | Sensory monitoring apparatus and method |
US4441486A (en) | 1981-10-27 | 1984-04-10 | Board Of Trustees Of Leland Stanford Jr. University | Hyperthermia system |
US4476847A (en) | 1981-11-19 | 1984-10-16 | Litton Industrial Products, Inc. | Adjustable double disc grinder dresser |
BR8107560A (en) | 1981-11-19 | 1983-07-05 | Luiz Romariz Duarte | ULTRASONIC STIMULATION OF BONE FRACTURE CONSOLIDATION |
US4542539A (en) | 1982-03-12 | 1985-09-24 | Artech Corp. | Surgical implant having a graded porous coating |
US4476874A (en) * | 1982-06-01 | 1984-10-16 | Sri International | Ultrasonic imaging with volume flow measuring method and apparatus |
US4511921A (en) | 1982-06-16 | 1985-04-16 | Rca Corporation | Television receiver with manual and selectively disabled automatic picture control |
US4452326A (en) | 1982-07-26 | 1984-06-05 | Tricolor Corporation | Corner bearing assembly for platform scale |
US4594662A (en) | 1982-11-12 | 1986-06-10 | Schlumberger Technology Corporation | Diffraction tomography systems and methods with fixed detector arrays |
US4550714A (en) | 1983-03-09 | 1985-11-05 | Electro-Biology, Inc. | Electromagnetic coil insert for an orthopedic cast or the like |
US4542744A (en) | 1983-03-23 | 1985-09-24 | North American Philips Corporation | Method and apparatus for remote tissue identification by statistical modeling and hypothesis testing of echo ultrasound signals |
US4536894A (en) | 1983-08-04 | 1985-08-27 | Galante Jorge O | Hip prosthesis with flared porous bony ingrowth pads |
GB2156983B (en) | 1983-08-26 | 1987-03-11 | Mintowt Czyz Witek | Method and apparatus for assessing the structure and mechanical integrity of osseous systems |
US4556066A (en) | 1983-11-04 | 1985-12-03 | The Kendall Company | Ultrasound acoustical coupling pad |
US5143073A (en) | 1983-12-14 | 1992-09-01 | Edap International, S.A. | Wave apparatus system |
US4573996A (en) | 1984-01-03 | 1986-03-04 | Jonergin, Inc. | Device for the administration of an active agent to the skin or mucosa |
US4687195A (en) | 1984-02-06 | 1987-08-18 | Tri-Tech, Inc. | Treadmill exerciser |
US4612160A (en) | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
DE3583850D1 (en) | 1984-10-15 | 1991-09-26 | Edo Western Corp | FLEXIBLE PIEZOELECTRIC CONVERTER ARRANGEMENT. |
JPS61107181A (en) | 1984-10-31 | 1986-05-26 | Hitachi Ltd | Apparatus and method for detecting object in medium material |
JPS625359A (en) | 1985-07-01 | 1987-01-12 | 林原 健 | Resonant type vibration transmitter |
US4630323A (en) | 1985-08-02 | 1986-12-23 | Sage Dennis R | Bathtub liner |
US5201766A (en) | 1985-09-11 | 1993-04-13 | Smith & Nephew Richards Inc. | Prosthetic device with porous matrix and method of manufacture |
US4947853A (en) | 1985-09-26 | 1990-08-14 | Hon Edward H | Sensor support base and method of application |
US4708127A (en) | 1985-10-24 | 1987-11-24 | The Birtcher Corporation | Ultrasonic generating system with feedback control |
JPS62117553A (en) | 1985-11-16 | 1987-05-29 | 肥後 矢吉 | Function evaluation apparatus |
US4770184A (en) | 1985-12-17 | 1988-09-13 | Washington Research Foundation | Ultrasonic doppler diagnostic system using pattern recognition |
US4774959A (en) | 1986-01-10 | 1988-10-04 | Walker Sonix A/S | Narrow band ultrasonic frequency attentuation bone measurement system |
US4763661A (en) | 1986-02-11 | 1988-08-16 | Stanford University | Filtered ultrasonic wave method and apparatus for detecting diseased tissue |
US4627429A (en) | 1986-02-28 | 1986-12-09 | American Home Products Corporation | Storage-stable transdermal adhesive patch |
US4792336A (en) | 1986-03-03 | 1988-12-20 | American Cyanamid Company | Flat braided ligament or tendon implant device having texturized yarns |
US4913157A (en) | 1986-06-03 | 1990-04-03 | Analog Devices, Inc. | Ultrasound method and apparatus for evaluating, in vivo, bone conditions |
JPS6336172A (en) | 1986-07-29 | 1988-02-16 | Toshiba Corp | Ultrasonic coupler |
US4867169A (en) | 1986-07-29 | 1989-09-19 | Kaoru Machida | Attachment attached to ultrasound probe for clinical application |
USRE34959E (en) | 1986-08-04 | 1995-05-30 | Stairmaster Sports/Medical Products, Inc. | Stair-climbing exercise apparatus |
US4830015A (en) | 1986-09-16 | 1989-05-16 | Kabushiki Kaisha Toshiba | Method and system for measuring an ultrasound tissue characterization |
US4726099A (en) | 1986-09-17 | 1988-02-23 | American Cyanamid Company | Method of making piezoelectric composites |
US4933230A (en) | 1986-09-17 | 1990-06-12 | American Cyanamid | Piezoelectric composites |
US4891849A (en) | 1986-10-20 | 1990-01-09 | Robinson Harry W | Hydrotherapy patient support apparatus |
US4932951A (en) | 1988-03-23 | 1990-06-12 | Life Resonances, Inc. | Method and apparatus for controlling tissue growth and an applied fluctuating magnetic field |
US5100373A (en) | 1989-01-09 | 1992-03-31 | Life Resonances, Inc. | Techniques for controlling osteoporosis using non-invasive magnetic fields |
US5067940A (en) | 1988-03-23 | 1991-11-26 | Life Resonances, Inc. | Method and apparatus for controlling the growth of cartilage |
US5106361A (en) | 1988-03-23 | 1992-04-21 | Life Resonances, Inc. | Method and apparatus for controlling the growth of non-osseous non-cartilaginous solid connective tissue |
US4802477A (en) | 1987-05-07 | 1989-02-07 | Shlomo Gabbay | Sternum closure device |
BG46024A1 (en) | 1987-05-19 | 1989-10-16 | Min Na Narodnata Otbrana | Method and device for treatment of bone patology |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
DE3826709C2 (en) | 1987-08-05 | 1994-12-22 | Toshiba Kawasaki Kk | Ultrasound therapy device |
US4782822A (en) | 1987-08-07 | 1988-11-08 | Ricken James F | Resonance frequency stimulator |
US5018285A (en) | 1987-08-24 | 1991-05-28 | Zimmer, Inc. | Method of constructing prosthetic implant with wrapped porous surface |
US4858599A (en) | 1987-09-22 | 1989-08-22 | Halpern Alan A | Antiosteoporosis device and method |
US4836316A (en) | 1987-09-28 | 1989-06-06 | Sunbeam Corporation | Bath scale |
US4855911A (en) | 1987-11-16 | 1989-08-08 | Massachusetts Institute Of Technology | Ultrasonic tissue characterization |
US4936303A (en) | 1987-11-20 | 1990-06-26 | Ultrathermics | Ultrasonic heating apparatus and method |
US4905671A (en) | 1988-01-11 | 1990-03-06 | Dornier Medizintechnik Gmbh | Inducement of bone growth by acoustic shock waves |
JP2702953B2 (en) | 1988-01-30 | 1998-01-26 | オリンパス光学工業株式会社 | Chemical impregnated ceramics |
US5209221A (en) | 1988-03-01 | 1993-05-11 | Richard Wolf Gmbh | Ultrasonic treatment of pathological tissue |
US5088976A (en) | 1988-03-23 | 1992-02-18 | Life Resonances, Inc. | Deformable magnetic field aiding coils for use in controlling tissue growth |
US5318561A (en) | 1988-03-23 | 1994-06-07 | Life Resonances Inc. | Deformable magnetic field aiding coils for use in controlling tissue growth |
US5178134A (en) | 1988-03-30 | 1993-01-12 | Malmros Holding, Inc. | Ultrasonic treatment of animals |
US5054490A (en) | 1988-05-11 | 1991-10-08 | Lunar Corporation | Ultrasonic densitometer device and method |
US4941474A (en) | 1988-07-01 | 1990-07-17 | Massachusetts Institute Of Technology | Multivariable analysis of bone condition |
US4917092A (en) | 1988-07-13 | 1990-04-17 | Medical Designs, Inc. | Transcutaneous nerve stimulator for treatment of sympathetic nerve dysfunction |
US5046484A (en) | 1988-08-03 | 1991-09-10 | Osteo-Dyne, Inc. | Method and device for treating bone disorders characterized by low bone mass |
US5197475A (en) | 1988-08-10 | 1993-03-30 | The Board Of Regents, The University Of Texas System | Method and apparatus for analyzing material properties using ultrasound |
US4926870A (en) | 1988-08-30 | 1990-05-22 | Osteo-Technology, Inc. | Method and apparatus for ultrasonic analysis of bone strength in vivo |
US5003965A (en) | 1988-09-14 | 1991-04-02 | Meditron Corporation | Medical device for ultrasonic treatment of living tissue and/or cells |
US5186162A (en) | 1988-09-14 | 1993-02-16 | Interpore Orthopaedics, Inc. | Ultrasonic transducer device for treatment of living tissue and/or cells |
US5211160A (en) | 1988-09-14 | 1993-05-18 | Interpore Orthopaedics, Inc. | Ultrasonic orthopedic treatment head and body-mounting means therefor |
US4993413A (en) | 1988-09-22 | 1991-02-19 | The Research Foundation Of State University Of New York | Method and apparatus for inducing a current and voltage in living tissue |
FR2637400B1 (en) | 1988-09-30 | 1990-11-09 | Labo Electronique Physique | DEVICE FOR IMPROVED PROCESSING OF AN ECHOGRAPHIC SIGNAL |
SE462137B (en) | 1988-10-18 | 1990-05-14 | Freddy Rafael Astudillo Ley | DEVICE FOR CONNECTING AN OPENING IN STERNUM |
AU614435B2 (en) | 1988-11-03 | 1991-08-29 | Mixalloy Limited | Improvements in the production of coated components |
US4982730A (en) | 1988-12-21 | 1991-01-08 | Lewis Jr Royce C | Ultrasonic wound cleaning method and apparatus |
US5099702A (en) | 1988-12-30 | 1992-03-31 | French Sportech Corp. | Perimeter mounted polymeric piezoelectric transducer pad |
US5019083A (en) | 1989-01-31 | 1991-05-28 | Advanced Osseous Technologies, Inc. | Implanting and removal of orthopedic prostheses |
US5108452A (en) | 1989-02-08 | 1992-04-28 | Smith & Nephew Richards Inc. | Modular hip prosthesis |
US4995883A (en) | 1989-02-08 | 1991-02-26 | Smith & Nephew Richards Inc. | Modular hip prosthesis |
US5143069A (en) | 1989-04-24 | 1992-09-01 | Orthosonics, Inc. | Diagnostic method of monitoring skeletal defect by in vivo acoustic measurement of mechanical strength using correlation and spectral analysis |
US5004476A (en) | 1989-10-31 | 1991-04-02 | Tulane University | Porous coated total hip replacement system |
US5016641A (en) | 1989-11-13 | 1991-05-21 | Advanced Technology Laboratories, Inc. | Spectral interpolation of ultrasound Doppler signal |
CA2030272C (en) * | 1989-11-24 | 1995-06-27 | David R. Brunfeldt | Vector network analyzer |
DE3941683A1 (en) | 1989-12-18 | 1991-06-20 | Dornier Medizintechnik | ULTRASONIC LOCATION FOR LITHOTRIPSY |
US5509933A (en) | 1989-12-21 | 1996-04-23 | Smith & Nephew Richards, Inc. | Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys |
US5000442A (en) | 1990-02-20 | 1991-03-19 | Proform Fitness Products, Inc. | Cross country ski exerciser |
US5115805A (en) | 1990-02-23 | 1992-05-26 | Cygnus Therapeutic Systems | Ultrasound-enhanced delivery of materials into and through the skin |
JPH03251240A (en) | 1990-02-28 | 1991-11-08 | Toshiba Corp | Ultrasonic medical treatment device |
US5542893A (en) | 1990-03-08 | 1996-08-06 | Bioform Engineering, Inc. | Exercise machine which converts reciprocating motion to unidirectional rotational motion |
FR2660186A1 (en) | 1990-03-27 | 1991-10-04 | Technomed Int Sa | USE OF ULTRASOUNDS FOR THE DETECTION AND LOCALIZATION OF A BONE ZONE, METHOD AND DEVICE FOR DETECTING AND LOCATING SUCH A BONE ZONE BY ULTRASOUND. |
US5163598A (en) | 1990-07-23 | 1992-11-17 | Rudolph Peters | Sternum stapling apparatus |
US5103806A (en) | 1990-07-31 | 1992-04-14 | The Research Foundation Of State University Of New York | Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue |
US5191880A (en) | 1990-07-31 | 1993-03-09 | Mcleod Kenneth J | Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue |
US5273028A (en) | 1990-07-31 | 1993-12-28 | Mcleod Kenneth J | Non-invasive means for in-vivo bone-growth stimulation |
JP2559529B2 (en) | 1990-09-21 | 1996-12-04 | 株式会社日立製作所 | Charged particle exposure system |
US5172692A (en) | 1990-12-05 | 1992-12-22 | Kulow Howard H | Method for inflammatory response management |
US5133420A (en) | 1990-12-11 | 1992-07-28 | Sunbeam Corporation | Bearing support for a scale platform |
US5195941A (en) | 1991-01-07 | 1993-03-23 | American Medical Electronics, Inc. | Contoured triangular transducer system for PEMF therapy |
US5107853A (en) | 1991-01-07 | 1992-04-28 | Daniels Manufacturing Corporation | Apparatus for determining suceptibility to carpal tunnel syndrome |
US5184605A (en) | 1991-01-31 | 1993-02-09 | Excel Tech Ltd. | Therapeutic ultrasound generator with radiation dose control |
US5314487A (en) | 1991-02-14 | 1994-05-24 | Smith & Nephew Richards Inc. | Acetabular prosthesis with anchoring pegs |
US5316000A (en) | 1991-03-05 | 1994-05-31 | Technomed International (Societe Anonyme) | Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy |
US5314401A (en) | 1991-03-29 | 1994-05-24 | Amei Technologies Inc. | Conformable PEMF transducer |
US5134999A (en) | 1991-05-22 | 1992-08-04 | Walker Magnetics Group, Inc. | Ultrasonic transducer assembly |
DE4118610A1 (en) | 1991-06-06 | 1992-12-10 | Siemens Ag | Coupling device for introducing acoustic waves into the body of a living being |
US5492525A (en) | 1991-06-06 | 1996-02-20 | Gibney; Joel | Exercise device for treating carpal tunnel syndrome |
DE4119524C2 (en) | 1991-06-13 | 1998-08-20 | Siemens Ag | Device for the treatment of bone disorders by means of acoustic waves |
DE4125950C1 (en) | 1991-08-06 | 1992-11-05 | Dornier Medizintechnik Gmbh, 8000 Muenchen, De | |
US5160328A (en) | 1991-08-07 | 1992-11-03 | Ndm Acquisition Corp. | Hydrogel bandage |
US5140988A (en) | 1991-08-22 | 1992-08-25 | Animal Ultrasound Services, Inc. | Detection of abnormal bone structure in animals and carcasses with ultrasound |
US5380269A (en) | 1991-08-26 | 1995-01-10 | Urso; Charles L. | Back treatment device |
DE4130761A1 (en) | 1991-09-16 | 1993-03-18 | Siemens Ag | DEVICE FOR TREATING A LIVING BEING WITH ACOUSTIC WAVES |
US5301683A (en) | 1991-12-23 | 1994-04-12 | Durkan John A | Diagnosing carpal tunnel syndrome |
US5230345A (en) | 1991-12-30 | 1993-07-27 | Curran Thomas M | Method for detecting carpal tunnel syndrome |
US5871446A (en) | 1992-01-10 | 1999-02-16 | Wilk; Peter J. | Ultrasonic medical system and associated method |
US5415167A (en) | 1992-01-10 | 1995-05-16 | Wilk; Peter J. | Medical system and associated method for automatic diagnosis and treatment |
US5230334A (en) | 1992-01-22 | 1993-07-27 | Summit Technology, Inc. | Method and apparatus for generating localized hyperthermia |
JP3264963B2 (en) | 1992-02-12 | 2002-03-11 | ジーイー横河メディカルシステム株式会社 | Ultrasound diagnostic equipment |
US5405389A (en) | 1992-02-19 | 1995-04-11 | Joint Medical Products Corporation | Sintered coatings for implantable prostheses |
US5254123A (en) | 1992-02-24 | 1993-10-19 | Complete System Diagnostics, Inc. | Compressive device for ultrasound-guided repair of pseudoaneurysms |
US5690608A (en) | 1992-04-08 | 1997-11-25 | Asec Co., Ltd. | Ultrasonic apparatus for health and beauty |
US5334214A (en) | 1992-05-21 | 1994-08-02 | Putnam Matthew D | Apparatus and method for dividing transverse carpal ligament |
US5259384A (en) | 1992-07-30 | 1993-11-09 | Kaufman Jonathan J | Ultrasonic bone-assessment apparatus and method |
US5309898A (en) | 1992-07-30 | 1994-05-10 | Kaufman Jonathan J | Ultrasonic bone-therapy and assessment apparatus and method |
US5230921A (en) | 1992-08-04 | 1993-07-27 | Blacktoe Medical, Inc. | Flexible piezo-electric membrane |
US5295931A (en) | 1992-09-04 | 1994-03-22 | Nordictrack, Inc. | Rowing machine exercise apparatus |
US5367500A (en) | 1992-09-30 | 1994-11-22 | The United States Of America As Represented By The Secretary Of The Navy | Transducer structure |
US5330489A (en) | 1992-10-09 | 1994-07-19 | United States Surgical Corporation | Sternum closure buckle |
US5285788A (en) | 1992-10-16 | 1994-02-15 | Acuson Corporation | Ultrasonic tissue imaging method and apparatus with doppler velocity and acceleration processing |
US5366465A (en) | 1992-12-07 | 1994-11-22 | M. Ather Mirza | Endoscopic surgical procedure and instrument for implementation thereof |
US5393296A (en) | 1992-12-09 | 1995-02-28 | Siemens Aktiengesellschaft | Method for the medical treatment of pathologic bone |
DE4302538C1 (en) | 1993-01-29 | 1994-04-07 | Siemens Ag | Ultrasonic therapy device for tumour treatment lithotripsy or osteorestoration - with ultrasonic imaging and ultrasonic treatment modes using respective acoustic wave frequencies |
US5322067A (en) | 1993-02-03 | 1994-06-21 | Hewlett-Packard Company | Method and apparatus for determining the volume of a body cavity in real time |
WO1994017771A2 (en) | 1993-02-10 | 1994-08-18 | Siemens Aktiengesellschaft | Process and apparatus for analgesic therapy and/or for influencing the vegetative nervous system |
EP0617982A1 (en) | 1993-03-11 | 1994-10-05 | Zentralinstitut Für Biomedizinische Technik Universität Ulm | Method and apparatus for neuromagnetical stimulation |
US5340510A (en) | 1993-04-05 | 1994-08-23 | Materials Systems Incorporated | Method for making piezoelectric ceramic/polymer composite transducers |
GB2277448A (en) | 1993-04-19 | 1994-11-02 | Paul Albert Thodiyil | Ultrasound apparatus and method for securing or removing a prosthesis |
US5398290A (en) | 1993-05-03 | 1995-03-14 | Kansas State University Research Foundation | System for measurement of intramuscular fat in cattle |
US5387222A (en) | 1993-05-14 | 1995-02-07 | Strickland; James W. | Carpal tunnel tome and carpal tunnel release surgery |
US5460595A (en) | 1993-06-01 | 1995-10-24 | Dynatronics Laser Corporation | Multi-frequency ultrasound therapy systems and methods |
GB2278783A (en) | 1993-06-11 | 1994-12-14 | Daniel Shellon Gluck | Method of magnetically stimulating neural cells |
US5434827A (en) | 1993-06-15 | 1995-07-18 | Hewlett-Packard Company | Matching layer for front acoustic impedance matching of clinical ultrasonic tranducers |
US5630837A (en) | 1993-07-01 | 1997-05-20 | Boston Scientific Corporation | Acoustic ablation |
US5394878A (en) | 1993-07-13 | 1995-03-07 | Frazin; Leon J. | Method for two dimensional real time color doppler ultrasound imaging of bodily structures through the gastro intestinal wall |
CA2100728C (en) | 1993-07-16 | 2005-10-11 | William H. Kemp | Ultrasonic bathing system |
US5413550A (en) | 1993-07-21 | 1995-05-09 | Pti, Inc. | Ultrasound therapy system with automatic dose control |
US5466215A (en) | 1993-08-26 | 1995-11-14 | Brown Medical Industries | Method of using a carpal tunnel protection device |
US5478306A (en) | 1993-10-12 | 1995-12-26 | Stoner; I. Paul | Apparatus and method to support carpals to aid in the prevention and treatment of carpal tunnel syndrome and related conditions |
US5441058A (en) | 1993-10-15 | 1995-08-15 | Fareed; Donald O. | Method for treating carpal tunnel syndrome |
US5400795A (en) | 1993-10-22 | 1995-03-28 | Telectronics Pacing Systems, Inc. | Method of classifying heart rhythms by analyzing several morphology defining metrics derived for a patient's QRS complex |
US5386830A (en) | 1993-10-25 | 1995-02-07 | Advanced Technology Laboratories, Inc. | Ultrasonic pulsed doppler flow measurement system with two dimensional autocorrelation processing |
US5363850A (en) | 1994-01-26 | 1994-11-15 | Cardiovascular Imaging Systems, Inc. | Method for recognition and reduction of blood speckle in blood vessel imaging system |
US5417215A (en) | 1994-02-04 | 1995-05-23 | Long Island Jewish Medical Center | Method of tissue characterization by ultrasound |
SE9401015L (en) | 1994-03-24 | 1995-09-25 | Eks International Ab | Wave, especially bathroom scales, and ways to mount it |
GB9408668D0 (en) | 1994-04-30 | 1994-06-22 | Orthosonics Ltd | Untrasonic therapeutic system |
US5524624A (en) | 1994-05-05 | 1996-06-11 | Amei Technologies Inc. | Apparatus and method for stimulating tissue growth with ultrasound |
US5496256A (en) | 1994-06-09 | 1996-03-05 | Sonex International Corporation | Ultrasonic bone healing device for dental application |
US5615466A (en) | 1994-06-22 | 1997-04-01 | Rutgers University | Mehtod for making piezoelectric composites |
US5431612A (en) | 1994-06-24 | 1995-07-11 | Nordictrack, Inc. | Treadmill exercise apparatus with one-way clutch |
US5829437A (en) * | 1994-07-01 | 1998-11-03 | Interstitial, Inc. | Microwave method and system to detect and locate cancers in heterogenous tissues |
IT1274590B (en) | 1994-08-05 | 1997-07-18 | Ambrogio Lazzari | MULTIFUNCTIONAL EQUIPMENT FOR AESTHETIC TREATMENTS |
US5743862A (en) | 1994-09-19 | 1998-04-28 | Kabushiki Kaisha Toshiba | Ultrasonic medical treatment apparatus |
US5626630A (en) | 1994-10-13 | 1997-05-06 | Ael Industries, Inc. | Medical telemetry system using an implanted passive transponder |
US5547459A (en) | 1994-10-25 | 1996-08-20 | Orthologic Corporation | Ultrasonic bone-therapy apparatus and method |
US5541489A (en) | 1994-12-15 | 1996-07-30 | Intel Corporation | Smart battery power availability feature based on battery-specific characteristics |
US5520612A (en) | 1994-12-30 | 1996-05-28 | Exogen, Inc. | Acoustic system for bone-fracture therapy |
US5501657A (en) | 1995-01-30 | 1996-03-26 | Feero; Andrew A. | Method of alleviating carpal tunnel syndrome |
US5886302A (en) | 1995-02-08 | 1999-03-23 | Measurement Specialties, Inc. | Electrical weighing scale |
US5441051A (en) | 1995-02-09 | 1995-08-15 | Hileman; Ronald E. | Method and apparatus for the non-invasive detection and classification of emboli |
ES2199244T3 (en) | 1995-02-15 | 2004-02-16 | Exogen, Inc. | LOCALIZING DEVICE. |
US5556372A (en) | 1995-02-15 | 1996-09-17 | Exogen, Inc. | Apparatus for ultrasonic bone treatment |
US5626554A (en) | 1995-02-21 | 1997-05-06 | Exogen, Inc. | Gel containment structure |
US5468220A (en) | 1995-02-27 | 1995-11-21 | Sucher; Benjamin M. | Carpal tunnel bracelet |
IT1273570B (en) | 1995-04-14 | 1997-07-08 | Teuco Guzzini Srl | WHIRLPOOL BATHTUB WITH ULTRASONIC EMISSION DEVICES WITH WIDE BEAM OPENING |
DE29506648U1 (en) | 1995-04-19 | 1995-06-14 | Mentop Elektronic GmbH, 59597 Erwitte | Massage head |
US5730705A (en) | 1995-06-12 | 1998-03-24 | Talish; Roger J. | Ultrasonic treatment for bony ingrowth |
IL114162A (en) | 1995-06-15 | 1999-03-12 | Ostrow Alvin Stewart | Submersive therapy apparatus |
US5578060A (en) | 1995-06-23 | 1996-11-26 | Chattanooga Group, Inc. | Physical therapy apparatus having an interactive interface, and method of configuring same |
US5708236A (en) | 1995-06-28 | 1998-01-13 | Enlight Corporation | Weighing scale with cantilever beam for transmitting force to a strain gauge |
GB2303552A (en) | 1995-07-24 | 1997-02-26 | Gar Investment Corp | Ultrasound apparatus for non invasive cellulite reduction |
US5691960A (en) | 1995-08-02 | 1997-11-25 | Materials Systems, Inc. | Conformal composite acoustic transducer panel and method of fabrication thereof |
US5648941A (en) | 1995-09-29 | 1997-07-15 | Hewlett-Packard Company | Transducer backing material |
JPH09103431A (en) | 1995-10-13 | 1997-04-22 | Olympus Optical Co Ltd | Ultrasonic diagnostic device |
US5779600A (en) | 1995-12-19 | 1998-07-14 | Pape; Leslie | Rowing simulator |
US5725482A (en) | 1996-02-09 | 1998-03-10 | Bishop; Richard P. | Method for applying high-intensity ultrasonic waves to a target volume within a human or animal body |
US5868649A (en) | 1996-02-09 | 1999-02-09 | Hydrosplash Enterprises, Inc. | Aquatic exercise device |
US5651363A (en) | 1996-02-16 | 1997-07-29 | Orthologic Corporation | Ultrasonic bone assessment method and apparatus |
EP0883860B1 (en) * | 1996-02-29 | 2006-08-23 | Acuson Corporation | Multiple ultrasound image registration system, method and transducer |
US5762616A (en) | 1996-03-15 | 1998-06-09 | Exogen, Inc. | Apparatus for ultrasonic treatment of sites corresponding to the torso |
US5656016A (en) | 1996-03-18 | 1997-08-12 | Abbott Laboratories | Sonophoretic drug delivery system |
US5818149A (en) | 1996-03-25 | 1998-10-06 | Rutgers, The State University Of New Jersey | Ceramic composites and methods for producing same |
US5680863A (en) | 1996-05-30 | 1997-10-28 | Acuson Corporation | Flexible ultrasonic transducers and related systems |
US5699803A (en) | 1996-08-09 | 1997-12-23 | Emerson Electric Co. | Method of performing ultrasonic examination |
US6213958B1 (en) | 1996-08-29 | 2001-04-10 | Alan A. Winder | Method and apparatus for the acoustic emission monitoring detection, localization, and classification of metabolic bone disease |
US6261221B1 (en) | 1996-11-01 | 2001-07-17 | Amei Technologies Inc. | Flexible coil pulsed electromagnetic field (PEMF) stimulation therapy system |
US5997490A (en) | 1997-02-12 | 1999-12-07 | Exogen, Inc. | Method and system for therapeutically treating bone fractures and osteoporosis |
US5904659A (en) | 1997-02-14 | 1999-05-18 | Exogen, Inc. | Ultrasonic treatment for wounds |
WO1998049944A1 (en) | 1997-05-02 | 1998-11-12 | Pilling Weck Incorporated | Adjustable supporting bracket having plural ball and socket joints |
US5957814A (en) | 1997-06-09 | 1999-09-28 | Eschenbach; Paul William | Orbital exercise apparatus with arm exercise |
US6086078A (en) | 1997-10-28 | 2000-07-11 | Ferez; Marcio C. | Rowing machine with wheels |
US6019710A (en) | 1998-01-06 | 2000-02-01 | Icon Health & Fitness, Inc. | Exercising device with elliptical movement |
US6179797B1 (en) | 1998-03-16 | 2001-01-30 | Gregory R. Brotz | Therapeutic stimulatory massage device |
US6261249B1 (en) | 1998-03-17 | 2001-07-17 | Exogen Inc. | Ultrasonic treatment controller including gel sensing circuit |
US6165144A (en) | 1998-03-17 | 2000-12-26 | Exogen, Inc. | Apparatus and method for mounting an ultrasound transducer |
US6093135A (en) | 1998-10-29 | 2000-07-25 | Huang; Ming-Hui | Multipurpose exercising machine |
US6206843B1 (en) | 1999-01-28 | 2001-03-27 | Ultra Cure Ltd. | Ultrasound system and methods utilizing same |
-
1999
- 1999-07-21 AU AU51176/99A patent/AU5117699A/en not_active Abandoned
- 1999-07-21 WO PCT/US1999/016472 patent/WO2000004831A1/en not_active Application Discontinuation
- 1999-07-21 US US09/744,136 patent/US6585647B1/en not_active Expired - Lifetime
- 1999-07-21 CA CA002338735A patent/CA2338735A1/en not_active Abandoned
- 1999-07-21 EP EP99935769A patent/EP1105044A1/en not_active Withdrawn
- 1999-07-21 JP JP2000560826A patent/JP2002521082A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010514524A (en) * | 2006-12-29 | 2010-05-06 | ベラソン インコーポレイテッド | Ultrasound harmonic imaging system and method |
JP2010527277A (en) * | 2007-05-16 | 2010-08-12 | ベラソン インコーポレイテッド | Bladder detection system and method using harmonic imaging |
JP2012529332A (en) * | 2009-06-10 | 2012-11-22 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Algorithm for photonic needle terminal |
JP2012066052A (en) * | 2010-09-24 | 2012-04-05 | Samsung Medison Co Ltd | Ultrasonograph for combining images of various irradiation angles and method for operating the same |
Also Published As
Publication number | Publication date |
---|---|
US6585647B1 (en) | 2003-07-01 |
EP1105044A1 (en) | 2001-06-13 |
WO2000004831A1 (en) | 2000-02-03 |
AU5117699A (en) | 2000-02-14 |
CA2338735A1 (en) | 2000-02-03 |
WO2000004831A9 (en) | 2000-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6585647B1 (en) | Method and means for synthetic structural imaging and volume estimation of biological tissue organs | |
JP7132925B2 (en) | Ultrasound imaging system using neural networks for deriving imaging data and tissue information | |
Greenleaf et al. | Clinical imaging with transmissive ultrasonic computerized tomography | |
US20200113543A1 (en) | 3-D Ultrasound Imaging Device and Methods | |
Sehgal et al. | A review of breast ultrasound | |
US8246543B2 (en) | Imaging method utilizing attenuation and speed parameters in inverse scattering techniques | |
US20130023767A1 (en) | Low-cost, high fidelity ultrasound system | |
Sanabria et al. | Speed-of-sound imaging based on reflector delineation | |
JP2020536678A (en) | New ultrasonic detection of different tissue types | |
Aleef et al. | Multi-frequency 3d shear wave absolute vibro-elastography (s-wave) system for the prostate | |
RU2681515C1 (en) | Method of differential diagnosis of cynic formations of pancreas | |
CN111050660A (en) | Ultrasonic diagnostic apparatus and method for evaluating physical properties of biological tissue | |
JP6538280B2 (en) | Apparatus and method for characterizing a subject's tissue | |
JP6933262B2 (en) | Ultrasound diagnostic system and image generation method | |
Carson et al. | Lesion detectability in ultrasonic computed tomography of symptomatic breast patients | |
Wells | Doppler studies of the vascular system | |
JP2024523586A (en) | Ultrasonic quantification of acoustic attenuation coefficient in the presence of elevation aperture obstructions. | |
Jones et al. | Ultrasonic tissue characterization and quantitative ultrasound scatter imaging: methods and approaches | |
KR101956460B1 (en) | Method for detecting microcalcification using ultrasound medical imaging device and ultrasound medical imaging device thereof | |
Ghehi et al. | Effect of Tissue excitation in breast cancer detection from ultrasound RF time series: Phantom studies | |
Morris et al. | Multiparametric Ultrasound for the Targeting of Prostate Cancer using ARFI, SWEI, B-mode, and QUS | |
WO2007072720A1 (en) | Diagnostic imaging apparatus for medical use and method of identifying biological tissue | |
Wells | Ultrasonics and its use in medicine | |
Mirzaei et al. | Synthetic aperture with high lateral sampling frequency for ultrasound elastography | |
EP1808122A2 (en) | Non-invasive turbulent blood flow imaging system |