JP2002321277A - Highly ductile polyester film - Google Patents
Highly ductile polyester filmInfo
- Publication number
- JP2002321277A JP2002321277A JP2001129874A JP2001129874A JP2002321277A JP 2002321277 A JP2002321277 A JP 2002321277A JP 2001129874 A JP2001129874 A JP 2001129874A JP 2001129874 A JP2001129874 A JP 2001129874A JP 2002321277 A JP2002321277 A JP 2002321277A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polyester
- polyester film
- thickness
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高延性ポリエステ
ルフィルムに関し、詳しくは、成形性が要求される用
途、例えば、成形転写用、成形容器用、金属貼り合わせ
用などの他、各種の塩化ビニルシート代替用途において
好適に使用される高延性ポリエステルフィルムに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly ductile polyester film, and more particularly to applications requiring moldability, for example, for forming and transferring, for forming containers, metal bonding, etc., and various kinds of vinyl chloride. The present invention relates to a highly ductile polyester film suitably used in a sheet replacement use.
【0002】[0002]
【従来の技術】ポリエステルフィルム、とりわけポリエ
チレンテレフタレートフィルムは、その強度、耐熱性、
耐薬品性などに優れ、比較的廉価な価格とあいまって包
装材料などの工業用途に幅広く使用されている。これら
用途において、ポリエステルフィルムに求められる特性
の一つとして成形性がある。成形性良好なポリエステル
フィルムの例として未延伸ポリエチレンテレフタレート
フィルムが挙げられるが、未延伸ポリエチレンテレフタ
レートの場合は、200μm以下の厚さにすることが容
易ではなく、また、200μm超の範囲であっても湿潤
な環境で100℃程度となると表面の艶が変化する場合
があり、甚だしい場合は白斑を生じる。2. Description of the Related Art Polyester films, especially polyethylene terephthalate films, have high strength, heat resistance,
It has excellent chemical resistance and is widely used in industrial applications such as packaging materials in combination with relatively inexpensive prices. In these applications, moldability is one of the properties required for the polyester film. As an example of a polyester film having good moldability, an unstretched polyethylene terephthalate film may be mentioned, but in the case of unstretched polyethylene terephthalate, it is not easy to reduce the thickness to 200 μm or less, and even when the thickness exceeds 200 μm. When the temperature reaches about 100 ° C. in a humid environment, the gloss of the surface may change.
【0003】一方、最も広く使用されるポリエステルフ
ィルムである二軸配向ポリエチレンテレフタレートフィ
ルムは、湿熱環境でも白化を生じ難く、強度、弾性率、
寸法安定性には優れるものの、その反面、高過ぎる剛性
により、一定レベル以上の大変形が必要な用途には必ず
しも十分な適性を有しておらず、成形性の改良が求めら
れている。On the other hand, biaxially oriented polyethylene terephthalate film, which is the most widely used polyester film, hardly causes whitening even in a wet heat environment, and has a strength, an elastic modulus,
Although it has excellent dimensional stability, on the other hand, it does not always have sufficient suitability for applications that require a large deformation of a certain level or more due to too high rigidity, and there is a need for improved moldability.
【0004】そこで、延伸比を低減したり、イソフタル
酸などの他成分を共重合したものを二軸配向させる等々
の方法で、成形性を付与し大変形を可能ならしめる試み
が行われている。Therefore, attempts have been made to reduce the draw ratio, or to biaxially align a copolymer of other components such as isophthalic acid to impart moldability and enable large deformation. .
【0005】しかしながら、延伸比の低減は、厚さや配
向の均一さを損ねるばかりでなく、生産性をも低下さ
せ、工業的大量生産には必ずしも最適ではない。また、
他成分を共重合し結晶性を低減する方法は、成形性が向
上する反面、熱粘着性も高まってしまうため、製膜工程
やフィルムの加工工程において金属冶具に対して滑り性
が悪化したり、甚だしい場合は融着してしまう等のトラ
ブルを生じる場合があると同時に、融点降下によって耐
熱性も低下する等の問題がある。このため実質的にホモ
ポリエステルから成り、二軸配向が付与されたフィルム
であって、同時に成形性も具備したフィルムが求められ
ている。[0005] However, a reduction in the draw ratio not only impairs the uniformity of the thickness and the orientation, but also reduces the productivity, and is not always optimal for industrial mass production. Also,
The method of copolymerizing other components to reduce crystallinity improves the moldability, but also increases the thermal adhesiveness, so that the slipperiness of the metal jig in the film forming process and the film processing process deteriorates. In severe cases, problems such as fusion may occur, and at the same time, there is a problem that the heat resistance decreases due to a decrease in melting point. For this reason, there is a demand for a film which is substantially made of a homopolyester and has a biaxial orientation, and which also has moldability.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記実状に
鑑みなされたものであって、その目的は、成形性が要求
される用途に好適に使用することの出来るポリエステル
フィルムを提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyester film which can be suitably used for applications requiring moldability. is there.
【0007】[0007]
【課題を解決するための手段】本発明者は、鋭意検討し
た結果、ポリエステルフィルムの物性を工夫して特定の
変形挙動を示すフィルムにするならば、生産性を損ねる
ことなく、高い成形性が得られるとの知見を得、本発明
を完成するに至った。Means for Solving the Problems As a result of diligent studies, the present inventor has found that if a polyester film is devised to have a specific deformation behavior by devising its physical properties, high moldability can be obtained without impairing productivity. The inventor has obtained the knowledge that it can be obtained, and has completed the present invention.
【0008】すなわち、本発明の要旨は、150℃にお
いて非熱接着性のフィルムであって、結晶化度が30%
以上、フィルム縦方向の厚さ斑が5%以下、最大屈折率
方向の塑性変形抵抗が0.50MPa/%以下であるこ
とを特徴とするポリエステルフィルムに存する。That is, the gist of the present invention is to provide a non-heat-adhesive film having a crystallinity of 30% at 150 ° C.
As described above, the polyester film has a thickness unevenness in the longitudinal direction of the film of 5% or less and a plastic deformation resistance in the maximum refractive index direction of 0.50 MPa /% or less.
【0009】[0009]
【発明の実施の形態】以下、発明を詳細に説明する。本
発明にいうポリエステルとは、ジカルボン酸成分とグリ
コール成分とが重縮合されたポリマーである。ジカルボ
ン酸の例としては、テレフタル酸、イソフタル酸、フタ
ル酸、2,6−ナフタレンジカルボン酸、4,4’−ジ
フェニルジカルボン酸などの芳香族ジカルボン酸、アジ
ピン酸、アゼライン酸、セバシン酸、1,4−シクロヘ
キシルジカルボン酸などの脂肪族ジカルボン酸が挙げら
れ、グリコールの例としては、エチレングリコール、プ
ロピレングリコール、ジエチレングリコール、トリエチ
レングリコール、トリメチレングリコール、テトラメチ
レングリコール、ネオペンチルグリコール、1,4−シ
クロヘキサンジメタノール等が挙げられる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The polyester referred to in the present invention is a polymer obtained by polycondensing a dicarboxylic acid component and a glycol component. Examples of dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, Examples thereof include aliphatic dicarboxylic acids such as 4-cyclohexyldicarboxylic acid, and examples of glycols include ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, trimethylene glycol, tetramethylene glycol, neopentyl glycol, and 1,4-cyclohexane. Dimethanol and the like.
【0010】本発明のポリエステルフィルム(以下、単
にフィルムという)は150℃において非熱接着性であ
る。150℃において熱接着性を有していると、フィル
ムを各種成形加工するに際し、金属製の成形加工設備に
対する高温での滑り性が不十分となり、甚だしい場合は
融着を生じる恐れがある。[0010] The polyester film of the present invention (hereinafter simply referred to as a film) is non-heat-adhesive at 150 ° C. When the film has thermal adhesiveness at 150 ° C., when various types of film are formed, the slipperiness at a high temperature with respect to metal forming equipment becomes insufficient, and in extreme cases, there is a possibility that fusion may occur.
【0011】本発明のフィルムは、結晶化度が30%以
上、好ましくは40%以上、更に好ましくは50%以上
である。結晶化度が30%に満たない場合は、湿熱環境
で容易に白化してしまう。結晶化度の上限は通常100
%である。なお、フィルムの用途においては、結晶格子
定数から求められる完全結晶密度、非晶質の実測密度、
試料の実測密度とから結晶化度を算出する所謂密度法に
よる結晶化度の算出が一般的であるが、斯かる方法では
分子配向によって稠密化した非晶相の影響も受けるた
め、湿熱環境下における白化特性の指標としては必ずし
も適当ではない。そこで、本発明ではX線回折によって
算出される結晶比率を指標として使用する。The film of the present invention has a crystallinity of 30% or more, preferably 40% or more, more preferably 50% or more. If the degree of crystallinity is less than 30%, whitening easily occurs in a moist heat environment. The upper limit of crystallinity is usually 100
%. In addition, in the application of the film, the complete crystal density determined from the crystal lattice constant, the measured density of the amorphous,
It is common to calculate the degree of crystallinity by the so-called density method of calculating the degree of crystallinity from the measured density of the sample. Is not necessarily appropriate as an index of the whitening characteristic in the above. Therefore, in the present invention, the crystal ratio calculated by X-ray diffraction is used as an index.
【0012】本発明のフィルムは、縦方向の厚さ斑が5
%以下である。斯かる厚さ斑が5%を超えると成形加工
が不均一となる。縦方向の厚さ斑の下限は通常0.5%
である。The film of the present invention has a thickness unevenness of 5
% Or less. If the thickness unevenness exceeds 5%, the molding process becomes uneven. The lower limit of thickness unevenness in the vertical direction is usually 0.5%
It is.
【0013】本発明のフィルムは、引張試験における降
伏後の塑性変形抵抗が0.50MPa/%以下、好まし
くは0.30MPa/%以下、更に好ましくは0.20
MPa/%以下である。塑性変形抵抗が0.50を超え
ると成形性が不十分となる。上記の塑性変形抵抗の下限
は通常0MPa/%である。The film of the present invention has a plastic deformation resistance after yielding in a tensile test of 0.50 MPa /% or less, preferably 0.30 MPa /% or less, more preferably 0.20 MPa /% or less.
MPa /% or less. If the plastic deformation resistance exceeds 0.50, the formability will be insufficient. The lower limit of the above plastic deformation resistance is usually 0 MPa /%.
【0014】他の要件を満足しつつ塑性変形抵抗を低減
する方法の例としては、ポリエチレンテレフタレートと
ポリブチレンテレフタレートの様に、異なる融点を有し
且つ非晶相では相溶しつつも個別に結晶化し得るポリエ
ステル同士を混合し、常法に従って2軸延伸を施した
後、一方のポリエステルの融点以上で且つ他方の融点未
満の温度で熱固定を施す方法などが挙げられる。As an example of a method for reducing the plastic deformation resistance while satisfying other requirements, there is a method such as polyethylene terephthalate and polybutylene terephthalate which have different melting points and are individually compatible with each other while being compatible with each other in the amorphous phase. After mixing polyesters which can be made into each other and subjecting them to biaxial stretching according to a conventional method, a method of performing heat fixing at a temperature equal to or higher than the melting point of one polyester and lower than the other melting point may be used.
【0015】本発明のフィルムは、必要に応じ、印刷イ
ンキ易接着、金属板易接着、金属蒸着易接着、帯電防
止、滑り性付与、傷つき防止などの観点から、一般的な
2軸配向ポリエチレンテレフタレートフィルムに準じ、
適宜フィラー等を含有させたり、各種コーティングを施
してもよい。The film of the present invention may be made of a general biaxially oriented polyethylene terephthalate from the viewpoint of easy adhesion of printing ink, easy adhesion of metal plate, easy adhesion of metal deposition, antistatic, imparting of slipperiness and prevention of scratching, if necessary. According to the film,
A filler or the like may be appropriately contained, or various coatings may be applied.
【0016】また、多素材にラミネートして使用される
用途においては、本発明のフィルムの一方の表面に接着
層を設けて複合フィルムとしてもよい。接着層として
は、接着剤のコーティング層や共押出法などによって形
成された接着性表面層であってもよい。この場合、本発
明のフィルムの要件の1つである150℃における非熱
接着性は、接着層とは反対側の面が満足していればよ
い。In applications where the film of the present invention is used after being laminated on multiple materials, a composite film may be formed by providing an adhesive layer on one surface of the film of the present invention. The adhesive layer may be an adhesive coating layer or an adhesive surface layer formed by a coextrusion method or the like. In this case, the non-thermal adhesive property at 150 ° C., which is one of the requirements of the film of the present invention, only needs to satisfy the surface on the side opposite to the adhesive layer.
【0017】本発明のフィルムは例えば次の様にして製
造することが出来る。先ず、ポリエチレンテレフタレー
トペレットとポリブチレンテレフタレートペレットとを
等重量十分に混合し、ベント式二軸押出機にて脱気・脱
水しながら溶融する。得られた溶融物をTダイよりシー
ト状に押し出し、冷却ドラム上で直ちに30℃未満にま
で急冷し、実質的に非晶質シートとする。次いで、得ら
れた非晶質シートを55℃で長手方向に3.3倍、横方
向に4.0倍の延伸を施し、引き続きフィルム幅固定の
まま245℃で3秒間の熱固定を施し、厚さ100μの
二軸延伸フィルムを得る。The film of the present invention can be produced, for example, as follows. First, polyethylene terephthalate pellets and polybutylene terephthalate pellets are mixed in equal weight and sufficient, and are melted while being degassed and dehydrated by a vented twin-screw extruder. The obtained melt is extruded into a sheet shape from a T-die and rapidly cooled to a temperature of less than 30 ° C. immediately on a cooling drum to obtain a substantially amorphous sheet. Next, the obtained amorphous sheet was stretched 3.3 times in the longitudinal direction at 55 ° C. and 4.0 times in the transverse direction, and then heat-fixed at 245 ° C. for 3 seconds while keeping the film width fixed. A 100 micron thick biaxially stretched film is obtained.
【0018】[0018]
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を超えない限り、以下の実
施例に限定されるものではない。なお、以下の諸例にお
いて、「部」とあるのは重量部の意味である。評価方法
は次の通りである。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In the following examples, “parts” means parts by weight. The evaluation method is as follows.
【0019】(1)結晶化度(%):理学電機(株)製
X線回折装置「RINT2000」にて測定した。すな
わち、フィルム面に平行に配列している結晶格子面の回
折を反射法2θ/θ走査で測定を行った。なお、X線は
CuのKα線を使用し、出力は40kV、30mAとし
た。得られた回折プロファイルに対し、2θ≒21°に
出現する非晶ハローとそれ以外の回折ピークそれぞれを
ピーク分離した上で各々のピーク面積を求め、前者を
A、後者の総和をCとし、下式に従って結晶化度を求め
た。なお、ピーク分離に際しては、ピークをガウス関数
およびローレンツ関数の線形和であると仮定した。(1) Crystallinity (%): Measured with an X-ray diffractometer “RINT2000” manufactured by Rigaku Corporation. That is, the diffraction of the crystal lattice plane arranged in parallel to the film plane was measured by reflection method 2θ / θ scanning. The X-ray used was a Kα ray of Cu, and the output was 40 kV and 30 mA. With respect to the obtained diffraction profile, the amorphous halo appearing at 2θ ≒ 21 ° and the other diffraction peaks were separated into peaks, and the respective peak areas were obtained. The former was A, the latter was C, and the sum was C. The crystallinity was determined according to the equation. In the peak separation, the peak was assumed to be a linear sum of a Gaussian function and a Lorentz function.
【0020】[0020]
【数1】結晶化度=C/(C+A)×100## EQU1 ## Crystallinity = C / (C + A) × 100
【0021】(2)非熱接着性:幅15mmの矩形試料
フィルムを2枚重ね、テスター産業製「ヒートシールテ
スター」を使用し、150℃、3MPa、10秒間の条
件にてシール部が矩形試料幅方向に平行となる様にヒー
トシールを行った。非加圧部の一方を固定し、他方の端
部に100gの分銅を取り付け、鉛直に垂らした際、シ
ール部での剥離状況より以下の2分類を行った。(2) Non-thermal adhesiveness: Two rectangular sample films each having a width of 15 mm were stacked, and a "heat seal tester" manufactured by Tester Sangyo Co., Ltd. was used. Heat sealing was performed so as to be parallel to the width direction. When one of the non-pressurized portions was fixed, and a weight of 100 g was attached to the other end, and was vertically dropped, the following two classifications were performed based on the peeling state at the seal portion.
【0022】[0022]
【表1】 ○:非熱接着性(シール部で剥離を生じた) ×:熱接着性(シール部で剥離を生じなかった)[Table 1] ○: Non-thermal adhesion (peeling occurred at the seal part) ×: Thermal adhesion (peeling did not occur at the seal part)
【0023】(3)厚さ斑(%):安立電気社製のフィ
ルム厚さ測定器を使用し、試料フィルムの縦方向に沿っ
ての厚さを測定し、下式より厚さ斑を算出した。(3) Thickness unevenness (%): Using a film thickness measuring device manufactured by Anritsu Electric Co., the thickness along the longitudinal direction of the sample film is measured, and the thickness unevenness is calculated from the following equation. did.
【0024】[0024]
【数2】厚さ斑=フィルム最大厚さ−フィルム最小厚
さ)/フィルム平均厚さ×100## EQU2 ## Thickness unevenness = maximum film thickness−minimum film thickness) / average film thickness × 100
【0025】(4)塑性変形抵抗(MPa/%):2枚
の偏光板を偏光面が互いに直行する様に並べ、その間に
試料フィルムを挟む。そして、偏光板の位置を固定した
ままフィルムを適宜回転させ、完全に消光となる2方向
を特定する。特定した方向の屈折率をアッベ屈折計で測
定し、大きい値を取った方向を最大屈折率方向とする。(4) Plastic deformation resistance (MPa /%): Two polarizing plates are arranged so that their polarization planes are perpendicular to each other, and a sample film is sandwiched between them. Then, the film is appropriately rotated while the position of the polarizing plate is fixed, and two directions in which light is completely extinguished are specified. The refractive index in the specified direction is measured with an Abbe refractometer, and the direction having the larger value is defined as the maximum refractive index direction.
【0026】最大屈折率方向に長さ100mm以上、幅
15mmに矩形試料フィルムを切り出し、標点間50m
m、引張速度200mm/分で(株)島津製作所製「島
津オートグラフAG−I」にて引張試験を行った。得ら
れた応力−歪曲線より、降伏後の最大応力(σb)、降
伏から最大応力に達するまでの間の最小応力(σy)、
σb時の歪(εb)、σy時の歪(εy)の各値を求
め、下式に従って塑性変形抵抗を求めた。明瞭な降伏が
観測されないケースでは、0.2%耐力をσyに当て
た。応力の単位はMPa、歪の単位は%とした。Cut out a rectangular sample film having a length of 100 mm or more and a width of 15 mm in the direction of the maximum refractive index, and having
A tensile test was performed at a speed of 200 mm / min with a “Shimadzu Autograph AG-I” manufactured by Shimadzu Corporation. From the obtained stress-strain curve, the maximum stress after yield (σb), the minimum stress from yield to reaching the maximum stress (σy),
The values of strain (εb) at σb and strain (εy) at σy were determined, and the plastic deformation resistance was determined according to the following equation. In the case where no clear yield was observed, 0.2% proof stress was assigned to σy. The unit of stress was MPa and the unit of strain was%.
【0027】[0027]
【数3】 塑性変形抵抗=(σb−σy)/(εb−εy)## EQU3 ## Plastic deformation resistance = (σb−σy) / (εb−εy)
【0028】(5)成形性:エポキシ系接着剤を使用し
て試料フィルムを厚さ0.25mmの鋼板に貼り合わせ
たラミネート板をデュポン衝撃試験に供した。すなわ
ち、先端R3/16インチ、落錘500g、落下距離3
0cmの条件でデンツを形成した。得られたデンツの凸
部側のエナメル値を測定し、以下の2分類を行った。(5) Formability: A laminate obtained by bonding a sample film to a steel sheet having a thickness of 0.25 mm using an epoxy adhesive was subjected to a DuPont impact test. That is, tip R3 / 16 inch, falling weight 500g, falling distance 3
Dents were formed under the condition of 0 cm. The enamel value on the convex side of the obtained dentz was measured, and the following two classifications were performed.
【0029】[0029]
【表2】 ○:成形性良好(0.5mA以下) ×:成形性不良(0.5mA超)[Table 2] ○: good moldability (0.5 mA or less) ×: poor moldability (more than 0.5 mA)
【0030】(6)耐熱性:試料フィルムに121℃2
気圧の条件でレトルト処理を30分間施した。処理後の
フィルムを水洗後に風乾し、目視観察にて以下の3段階
に分類した。(6) Heat resistance: 121 ° C.2 on the sample film
The retort treatment was performed for 30 minutes under atmospheric pressure conditions. The treated film was air-dried after washing with water, and classified into the following three stages by visual observation.
【0031】[0031]
【表3】 ○:白斑が全く見られない。 △:白斑が若干見られるが目立たない。 ×:白斑が見られ外観を著しく損ねている。○: No white spots are observed. Δ: Some white spots are observed but not noticeable. X: Vitiligo was observed and the appearance was significantly impaired.
【0032】実施例および比較例で使用したポリエステ
ルは以下の方法により製造した。The polyester used in the examples and comparative examples was produced by the following method.
【0033】(1)ポリエステルA:テレフタル酸ジメ
チル100部、エチレングリコール60部および酢酸カ
ルシウム−水塩0.1部を反応器に採りエステル交換を
行った。すなわち、反応開始温度を170℃とし、メタ
ノールの留出と共に徐々に反応温度を上昇させ、4時間
後に230℃まで昇温し、実質的にエステル交換反応を
終了させた。次いで、平均粒径1.5μmの無定形シリ
カを含有するエチレングリコールスラリーとリン酸0.
04部を添加した後、三酸化アンチモン0.04部を添
加し、重縮合反応を行った。すなわち、温度を徐々に高
めると共に圧力を徐々に減じ、2時間後に温度を280
℃、圧力を0.3mmHgとし、更に、反応を継続し固
有粘度が0.70dl/gとなった時点で反応を停止
し、シリカ0.1部を含有するポリエステルAを得た。(1) Polyester A: 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol and 0.1 part of calcium acetate-water salt were placed in a reactor and transesterified. That is, the reaction start temperature was set to 170 ° C., the reaction temperature was gradually increased with the distillation of methanol, and after 4 hours, the temperature was raised to 230 ° C. to substantially end the transesterification reaction. Next, an ethylene glycol slurry containing amorphous silica having an average particle size of 1.5 μm and phosphoric acid 0.1 wt.
After adding 04 parts, 0.04 part of antimony trioxide was added, and a polycondensation reaction was performed. That is, the temperature is gradually increased and the pressure is gradually decreased.
The pressure was set to 0.3 mmHg and the reaction was continued. When the intrinsic viscosity reached 0.70 dl / g, the reaction was stopped to obtain a polyester A containing 0.1 part of silica.
【0034】(2)ポリエステルB:テレフタル酸ジメ
チル100部に代えて、テレフタル酸ジメチル85部、
イソフタル酸ジメチル15部とした他は、ポリエステル
Aの場合と同様にしてポリエステルBを得た。固有粘度
は0.70dl/gであった。(2) Polyester B: 85 parts of dimethyl terephthalate instead of 100 parts of dimethyl terephthalate
Polyester B was obtained in the same manner as polyester A, except that 15 parts of dimethyl isophthalate were used. The intrinsic viscosity was 0.70 dl / g.
【0035】(3)ポリエステルC:三菱エンジニアリ
ングプラスチックス(株)製「ノバデュラン5010」
をポリエステルCとした。(3) Polyester C: "Novaduran 5010" manufactured by Mitsubishi Engineering-Plastics Corporation
Was designated as polyester C.
【0036】実施例1 ポリエステルA50部とポリエステルC50部とを室温
で十分に撹拌・混合したものをベント式2軸押出機にて
280℃で溶融し、Tダイより押し出した後に冷却ドラ
ム上で直ちに30℃未満の温度に急冷することで実質的
に非晶質のフィルムを得た。得られた非晶質フィルムを
ロール延伸機にて55℃で縦方向に3.3倍、テンター
延伸機にて80℃で横方向に4.0倍延伸し、引き続き
テンター延伸機内で240℃1秒間の熱固定を施し、更
に、160℃で5%の幅弛緩を施し、室温まで冷却した
後に巻き取り、厚さ50μmのフィルムを得た。フィル
ムの評価結果を表4に示す。Example 1 A mixture of 50 parts of polyester A and 50 parts of polyester C sufficiently stirred and mixed at room temperature was melted at 280 ° C. by a vented twin screw extruder, extruded from a T-die, and immediately on a cooling drum. By quenching to a temperature below 30 ° C., a substantially amorphous film was obtained. The obtained amorphous film is stretched 3.3 times in the machine direction at 55 ° C. by a roll stretching machine and 4.0 times in the transverse direction at 80 ° C. by a tenter stretching machine. The film was heat-fixed for 2 seconds, relaxed at 160 ° C. by 5%, cooled to room temperature, and wound up to obtain a film having a thickness of 50 μm. Table 4 shows the evaluation results of the films.
【0037】実施例2 ポリエステルA50部とポリエステルC50部とを混合
した混合ポリエステルIとポリエステルBとをそれぞれ
別のベント式2軸押出機にて280℃で溶融し、ポリエ
ステルBに対する混合ポリエステルIの吐出量比を5と
してTダイより共押出し、冷却ドラム上で直ちに30℃
未満の温度に急冷することで実質的に非晶質のフィルム
を得た。得られた非晶質フィルムをロール延伸機にて5
5℃で縦方向に3.3倍、テンター延伸機にて80℃で
横方向に4.0倍延伸し、引き続きテンター延伸機内で
240℃1秒間の熱固定を施し、更に、160℃で5%
の幅弛緩を施し、室温まで冷却した後に巻き取り、厚さ
12μmのフィルムを得た。フィルムの評価結果を表4
に示す。Example 2 Mixed polyester I and polyester B in which 50 parts of polyester A and 50 parts of polyester C were mixed were melted at 280 ° C. in separate vented twin screw extruders, and the mixed polyester I was discharged to polyester B. Coextrusion from a T-die at a quantitative ratio of 5
Quenching to a temperature of less than resulted in a substantially amorphous film. The obtained amorphous film is rolled with a roll stretching machine.
The film is stretched 3.3 times in the longitudinal direction at 5 ° C. and 4.0 times in the transverse direction at 80 ° C. in the tenter stretching machine, and subsequently heat-set at 240 ° C. for 1 second in the tenter stretching machine. %
After cooling to room temperature, the film was wound up to obtain a film having a thickness of 12 μm. Table 4 shows the evaluation results of the film.
Shown in
【0038】比較例1 ポリエステルAをベント式2軸押出機にて280℃で溶
融し、Tダイより押し出した後に冷却ドラム上で直ちに
30℃未満の温度に急冷することで実質的に非晶質のフ
ィルムを得た。得られたフィルムの厚さは200μmで
あった。フィルムの評価結果を表4に示す。COMPARATIVE EXAMPLE 1 Polyester A was melted at 280 ° C. in a vented twin-screw extruder, extruded from a T-die, and immediately cooled on a cooling drum to a temperature of less than 30 ° C. to be substantially amorphous. Was obtained. The thickness of the obtained film was 200 μm. Table 4 shows the evaluation results of the films.
【0039】比較例2 ポリエステルAをベント式2軸押出機にて280℃で溶
融し、Tダイより押し出した後に冷却ドラム上で直ちに
30℃未満の温度に急冷することで実質的に非晶質のフ
ィルムを得た。得られた非晶質フィルムをロール延伸機
にて80℃で縦方向に3.3倍、テンター延伸機にて1
00℃で横方向に4.0倍延伸し、引き続きテンター延
伸機内で240℃1秒間の熱固定を施し、更に、160
℃で5%の幅弛緩を施し、室温まで冷却した後に巻き取
り、厚さ50μmのフィルムを得た。フィルムの評価結
果を表4に示す。Comparative Example 2 Polyester A was melted at 280 ° C. in a vented twin-screw extruder, immediately extruded from a T-die, and immediately cooled on a cooling drum to a temperature of less than 30 ° C. to be substantially amorphous. Was obtained. The obtained amorphous film was longitudinally 3.3 times at 80 ° C. by a roll stretching machine and 1 × by a tenter stretching machine.
The film is stretched 4.0 times in the transverse direction at 00 ° C., and then heat-set at 240 ° C. for 1 second in a tenter stretching machine.
The film was relaxed by 5% at 5 ° C., cooled to room temperature, and wound up to obtain a film having a thickness of 50 μm. Table 4 shows the evaluation results of the films.
【0040】比較例3 横延伸後の熱固定温度を240℃に代えて180℃とし
た他は、実施例1と同様にして厚さ50μmのフィルム
を得た。フィルムの評価結果を表4に示す。Comparative Example 3 A film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that the heat setting temperature after the transverse stretching was changed to 180 ° C. instead of 240 ° C. Table 4 shows the evaluation results of the films.
【0041】比較例4 ポリエステルAに代えてポリエステルBを使用し、縦延
伸倍率を2.8倍に代えて3.3倍、横延伸倍率を3.
1倍に代えて4.0倍とした他は、比較例3と同様にし
て厚さ50μmのフィルムを得た。フィルムの評価結果
を表4に示す。Comparative Example 4 Polyester B was used in place of Polyester A, and the longitudinal stretch ratio was changed to 3.3 times instead of 2.8 times, and the transverse stretch ratio was changed to 3.3 times.
A film having a thickness of 50 μm was obtained in the same manner as in Comparative Example 3 except that the magnification was changed to 4.0 instead of 1. Table 4 shows the evaluation results of the films.
【0042】[0042]
【表4】 [Table 4]
【0043】[0043]
【発明の効果】以上説明した本発明のポリエステルフィ
ルムは、柔軟性および成形性に優れ、例えば成形転写等
の成形用途に好適であり、その工業的価値は著しく大き
い。The polyester film of the present invention described above has excellent flexibility and moldability, is suitable for molding applications such as molding transfer, and has an extremely large industrial value.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA43 AF11Y AF14Y AG29 AH04 BB06 BB08 BC01 BC12 BC17 4F210 AA24 AG01 AH81 QC06 QG01 QG18 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F071 AA43 AF11Y AF14Y AG29 AH04 BB06 BB08 BC01 BC12 BC17 4F210 AA24 AG01 AH81 QC06 QG01 QG18
Claims (1)
であって、結晶化度が30%以上、フィルム縦方向の厚
さ斑が5%以下、最大屈折率方向の塑性変形抵抗が0.
50MPa/%以下であることを特徴とするポリエステ
ルフィルム。1. A non-heat-adhesive film at 150 ° C., having a crystallinity of 30% or more, a thickness unevenness in a longitudinal direction of the film of 5% or less, and a plastic deformation resistance in the maximum refractive index direction of 0.1%.
A polyester film having a pressure of 50 MPa /% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129874A JP2002321277A (en) | 2001-04-26 | 2001-04-26 | Highly ductile polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001129874A JP2002321277A (en) | 2001-04-26 | 2001-04-26 | Highly ductile polyester film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002321277A true JP2002321277A (en) | 2002-11-05 |
JP2002321277A5 JP2002321277A5 (en) | 2008-08-21 |
Family
ID=18978343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001129874A Pending JP2002321277A (en) | 2001-04-26 | 2001-04-26 | Highly ductile polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002321277A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005017007A1 (en) | 2003-08-19 | 2005-02-24 | Toyo Boseki Kabushiki Kaisya | Polyester film |
WO2007123095A1 (en) | 2006-04-19 | 2007-11-01 | Toray Industries, Inc. | Biaxially oriented polyester film for forming members |
JP2008290388A (en) * | 2007-05-25 | 2008-12-04 | Fujifilm Corp | Method of manufacturing biaxially stretched thermoplastic resin film, and base film for optical film |
US7572865B2 (en) | 2002-01-11 | 2009-08-11 | Toyo Boseki Kabushiki Kaisha | Polyester films |
WO2010038655A1 (en) | 2008-09-30 | 2010-04-08 | 東レ株式会社 | Polyester film |
KR20170139607A (en) * | 2015-04-24 | 2017-12-19 | 도요보 가부시키가이샤 | Biaxially oriented polyester film and method for producing the same |
US20170368809A1 (en) * | 2016-06-28 | 2017-12-28 | Toray Plastics (America), Inc. | Formable polyester balloon |
US11318721B2 (en) | 2016-06-28 | 2022-05-03 | Toray Plastics (America), Inc. | Method of forming a formable polyester film |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04216032A (en) * | 1990-12-13 | 1992-08-06 | Toray Ind Inc | Forming method for polyester film |
JPH05186612A (en) * | 1992-01-16 | 1993-07-27 | Teijin Ltd | Metallic plate-laminating polyester film |
JPH05222216A (en) * | 1992-02-12 | 1993-08-31 | Teijin Ltd | Polyester film for lamination to metal plate |
JPH05331301A (en) * | 1992-06-03 | 1993-12-14 | Teijin Ltd | White polyester film for laminating with metal plate |
JPH0673203A (en) * | 1992-08-26 | 1994-03-15 | Teijin Ltd | Polyester film for laminate molding of metallic sheet |
JPH07145252A (en) * | 1993-11-24 | 1995-06-06 | Teijin Ltd | Covering transparent film for sticking to cover of metal can |
JPH0912743A (en) * | 1995-06-27 | 1997-01-14 | Teijin Ltd | Polyester film |
JPH09150492A (en) * | 1995-09-28 | 1997-06-10 | Toray Ind Inc | Laminated film for laminating metal plate |
JPH09300892A (en) * | 1996-05-16 | 1997-11-25 | Teijin Ltd | Polyester film for transfer foil |
JPH1017683A (en) * | 1996-07-04 | 1998-01-20 | Teijin Ltd | Polyester film for large-sized molded transfer foil |
-
2001
- 2001-04-26 JP JP2001129874A patent/JP2002321277A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04216032A (en) * | 1990-12-13 | 1992-08-06 | Toray Ind Inc | Forming method for polyester film |
JPH05186612A (en) * | 1992-01-16 | 1993-07-27 | Teijin Ltd | Metallic plate-laminating polyester film |
JPH05222216A (en) * | 1992-02-12 | 1993-08-31 | Teijin Ltd | Polyester film for lamination to metal plate |
JPH05331301A (en) * | 1992-06-03 | 1993-12-14 | Teijin Ltd | White polyester film for laminating with metal plate |
JPH0673203A (en) * | 1992-08-26 | 1994-03-15 | Teijin Ltd | Polyester film for laminate molding of metallic sheet |
JPH07145252A (en) * | 1993-11-24 | 1995-06-06 | Teijin Ltd | Covering transparent film for sticking to cover of metal can |
JPH0912743A (en) * | 1995-06-27 | 1997-01-14 | Teijin Ltd | Polyester film |
JPH09150492A (en) * | 1995-09-28 | 1997-06-10 | Toray Ind Inc | Laminated film for laminating metal plate |
JPH09300892A (en) * | 1996-05-16 | 1997-11-25 | Teijin Ltd | Polyester film for transfer foil |
JPH1017683A (en) * | 1996-07-04 | 1998-01-20 | Teijin Ltd | Polyester film for large-sized molded transfer foil |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7572865B2 (en) | 2002-01-11 | 2009-08-11 | Toyo Boseki Kabushiki Kaisha | Polyester films |
US7399518B2 (en) | 2003-08-19 | 2008-07-15 | Toyo Boseki Kabushiki Kaisha | Polyester film |
WO2005017007A1 (en) | 2003-08-19 | 2005-02-24 | Toyo Boseki Kabushiki Kaisya | Polyester film |
US8354171B2 (en) | 2006-04-19 | 2013-01-15 | Toray Industries, Inc. | Biaxially oriented polyester film for molded part |
WO2007123095A1 (en) | 2006-04-19 | 2007-11-01 | Toray Industries, Inc. | Biaxially oriented polyester film for forming members |
JP2008290388A (en) * | 2007-05-25 | 2008-12-04 | Fujifilm Corp | Method of manufacturing biaxially stretched thermoplastic resin film, and base film for optical film |
WO2008146696A1 (en) * | 2007-05-25 | 2008-12-04 | Fujifilm Corporation | Method for production of bi-axially oriented thermoplastic resin film, and base film for optical film |
WO2010038655A1 (en) | 2008-09-30 | 2010-04-08 | 東レ株式会社 | Polyester film |
US9375902B2 (en) | 2008-09-30 | 2016-06-28 | Toray Industries, Inc. | Polyester film |
KR20170139607A (en) * | 2015-04-24 | 2017-12-19 | 도요보 가부시키가이샤 | Biaxially oriented polyester film and method for producing the same |
KR102183791B1 (en) | 2015-04-24 | 2020-11-27 | 도요보 가부시키가이샤 | Biaxially stretched polyester film and its manufacturing method |
US20170368809A1 (en) * | 2016-06-28 | 2017-12-28 | Toray Plastics (America), Inc. | Formable polyester balloon |
US11318721B2 (en) | 2016-06-28 | 2022-05-03 | Toray Plastics (America), Inc. | Method of forming a formable polyester film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112969743B (en) | Biaxially oriented polyester film and process for producing the same | |
JP2008095084A (en) | Polyester film for molding | |
WO2017170333A1 (en) | Laminate for battery packages | |
JP2006297853A (en) | Film for use in molding | |
JP2022025703A (en) | Laminated film | |
JP4232004B2 (en) | Biaxially oriented polyester film | |
JP2002321277A (en) | Highly ductile polyester film | |
JP4631583B2 (en) | Laminated polyester film for lamination and polyester resin laminated metal sheet | |
JP2000169600A (en) | Polyester film for packaging | |
JP2004075713A (en) | Polyester film, polyester film for molding and molding member using the same | |
JPH0827260A (en) | Heat-shrinkable polyester film | |
JP2005105255A (en) | Biaxially oriented polyester film | |
JP7088434B1 (en) | Exterior materials for power storage devices, their manufacturing methods, and power storage devices | |
JP3071573B2 (en) | Polyester film for metal plate lamination processing | |
WO2022071548A1 (en) | Exterior material for power storage devices, method for manufacturing same, and power storage device | |
KR20190078121A (en) | Polyester film for molding and manufacturing method thereof | |
JP2007111877A (en) | Biaxially oriented polyester film for molding member | |
TW202227273A (en) | Biaxially oriented polyester film | |
JP2000129008A (en) | Polyester film for metal plate cladding fabrication | |
JP2000103878A (en) | Polyester film for decorative metal plate | |
JPH11263854A (en) | White film for metal laminate | |
JP2011098529A (en) | Hard coat film | |
JP2007105948A (en) | Polyester film | |
JP2024155122A (en) | Highly rigid polyethylene terephthalate film | |
JP2001055456A (en) | Thermally shrinkable polyester film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080201 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080423 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080704 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101130 |
|
A02 | Decision of refusal |
Effective date: 20110329 Free format text: JAPANESE INTERMEDIATE CODE: A02 |