Nothing Special   »   [go: up one dir, main page]

JP2002363644A - Method for manufacturing high-tensile steel with excellent toughness and fatigue strength - Google Patents

Method for manufacturing high-tensile steel with excellent toughness and fatigue strength

Info

Publication number
JP2002363644A
JP2002363644A JP2001175091A JP2001175091A JP2002363644A JP 2002363644 A JP2002363644 A JP 2002363644A JP 2001175091 A JP2001175091 A JP 2001175091A JP 2001175091 A JP2001175091 A JP 2001175091A JP 2002363644 A JP2002363644 A JP 2002363644A
Authority
JP
Japan
Prior art keywords
rolling
ferrite
steel
temperature
transformation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001175091A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Masanori Minagawa
昌紀 皆川
Hiroyuki Shirahata
浩幸 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001175091A priority Critical patent/JP2002363644A/en
Publication of JP2002363644A publication Critical patent/JP2002363644A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for attaining an ultrafine-grained structure of 1-3 μm average ferrite grain size over the whole thickness of steel and obtaining high-tensile steel combinedly having extremely excellent toughness, brittle crack arrest property, and fatigue characteristics of welded joint and having about >=490 MPa class tensile strength. SOLUTION: A manufacturing method wherein, as a basic requirement, the temperature of the steel during rolling stands within the range from (Ac1 transformation point - 50 deg.C) to (Ac3 transformation point - 50 deg.C) is applied to the steel having a microstructure with a prescribed component composition when the steel is heated to a temperature between 300 deg.C and rolling temperature at (0.1 to 50) deg.C/s temperature-rise rate and rolling is started in the course of temperature raise from the Ac1 transformation point to (Ac3 transformation point - 100 deg.C) or after holding at this temperature for 1-60 s and then rolling of 50-90% cumulative draft is applied. By this method, the ultrafine-grained structure of 1-3 μm minimal in the degree of duplex grain can be obtained, and extremely excellent toughness, brittle crack arrest property, and fatigue characteristics at welded joint can be attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,低温靱性あるいは
/及び疲労強度が必要とされる構造部材に用いられる高
張力鋼材の製造方法に関するものである。この方法で製
造した鋼材は,例えば,海洋構造物,圧力容器,造船,
橋梁,建築物,ラインパイプなどの溶接鋼構造物一般に
用いることができるが,特に低温靱性あるいは/及び疲
労強度を必要とする海洋構造物,造船,橋梁等の構造物
用鋼板として有用である。また,その他,構造部材とし
て用いられ,低温靱性あるいは/及び疲労強度が要求さ
れる鋼管素材,あるいは形鋼にも適用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength steel material used for a structural member requiring low-temperature toughness and / or fatigue strength. Steel products manufactured in this way can be used, for example, in offshore structures, pressure vessels, shipbuilding,
It can be used in general for welded steel structures such as bridges, buildings, line pipes, etc., but is particularly useful as steel plates for structures such as marine structures, ships, bridges, etc., which require low-temperature toughness and / or fatigue strength. In addition, the present invention can be applied to a steel pipe material or a shaped steel which is used as a structural member and requires low-temperature toughness and / or fatigue strength.

【0002】[0002]

【従来の技術】厚鋼板に代表される高張力鋼材は構造部
材として用いられるため,構造物の安全性確保の観点か
ら,低温靱性を要求される。高張力鋼材において,低温
靱性を向上させる方法は種々提案されているが,他の特
性劣化を生じることなく低温靱性を向上させる方法とし
ては,結晶粒径の微細化がほぼ唯一の方法である。
2. Description of the Related Art Since high-strength steels represented by thick steel plates are used as structural members, low-temperature toughness is required from the viewpoint of ensuring the safety of structures. Various methods have been proposed for improving the low-temperature toughness of high-strength steel materials. However, the only method for improving the low-temperature toughness without deteriorating the other properties is to refine the crystal grain size.

【0003】本発明者らはすでにフェライト粒径を3μ
m程度以下に超細粒化して低温靭性を飛躍的に向上させ
る技術を,特開平8−60239号公報,特開平10−
121132号公報等で開示している。本技術の要件は
いずれも,でオーステナイト域及びオーステナイト/フ
ェライト二相域における加熱・熱間圧延条件の最適化に
より,変態フェライトを微細化した上で,該フェライト
を加工により再結晶せしめて超微細粒を得ることにあ
る。該技術は,実際上は1〜3μm程度の超細粒化を達
成するために適した手段であり,2mmVノッチシャル
ピー衝撃試験の破面遷移温度(vTrs)で−100℃
〜−120℃程度の靭性を安定的に得るには十分な技術
であるが,さらにそれ以上の低温靭性を達成するために
は,新たな技術が必要であった。
The present inventors have already set the ferrite grain size to 3 μm.
Japanese Patent Application Laid-Open Nos. Hei 8-60239 and Hei 10-109
No. 121132 discloses this. All of the requirements for this technology are to refine the transformed ferrite by optimizing the heating and hot rolling conditions in the austenite region and the austenite / ferrite two-phase region, and then recrystallize the ferrite by processing to obtain an ultrafine structure. To get the grains. This technique is actually a means suitable for achieving ultra-fine graining of about 1 to 3 μm, and has a fracture surface transition temperature (vTrs) of −100 ° C. in a 2 mm V notch Charpy impact test.
This is a technique sufficient to stably obtain a toughness of about -120 ° C, but a new technique is required to achieve further low temperature toughness.

【0004】さらなる低温靱性の向上の手段の一つとし
ては特開平2000−8123号公報に開示されている
ように,1パス当たりの圧下率を含めた圧延条件の精密
な制御によって平均α粒径をさらに一段階微細化するこ
とで可能となる。しかし,このような方法の場合,圧延
条件の精密・厳格な制御が必要であり,また,累積圧下
率だけでなく1パス当たりの圧下率も低温で大圧下とす
る必要があり,圧延機への負荷増大,生産性の低下等の
問題も生じる。
As one means for further improving the low temperature toughness, as disclosed in Japanese Patent Application Laid-Open No. 2000-8123, the average α grain size is controlled by precise control of the rolling conditions including the rolling reduction per pass. Is further reduced by one step. However, in the case of such a method, precise and strict control of the rolling conditions is required, and not only the cumulative rolling reduction but also the rolling reduction per pass needs to be reduced at a low temperature to a large degree. There are also problems such as an increase in load on the device and a decrease in productivity.

【0005】さらなる靱性向上の別の方法としては,既
存の方法では達成が困難な鋼材の部位による粒径のばら
つきを極限的に低減する,すなわち,より均一な超細粒
組織を達成する方法が考えられる。本方法によれば,1
μm以下といった極端な超細粒組織とすることなく,平
均粒径が1〜3μm程度でも,フェライトの加工・再結
晶を利用した従来の超細粒化方法において達成できるレ
ベルを凌駕した靱性を達成することが可能と考えられる
が,特開平8−60239号公報,特開平10−121
132号公報等で示されているような,平均粒径が1〜
3μm程度のフェライト粒径を得るいための,従来の方
法では,加工前組織をある程度細粒化しておいても,結
晶方位により再結晶の難易度の差が存在するために,再
結晶後の組織の粒径の不均一さが不可避であった。
As another method of further improving toughness, there is a method of minimizing variation in grain size due to a portion of a steel material, which is difficult to achieve by the existing method, that is, a method of achieving a more uniform ultrafine grain structure. Conceivable. According to this method, 1
Achieving a toughness exceeding the level that can be achieved by the conventional ultrafine graining method using ferrite processing and recrystallization, even if the average grain size is about 1 to 3 µm, without having an extremely ultrafine grain structure of less than μm. It is considered possible to do this, but JP-A-8-60239 and JP-A-10-121
No. 132, etc., the average particle size is 1 to
In the conventional method for obtaining a ferrite grain size of about 3 μm, even if the structure before processing is refined to some extent, there is a difference in the difficulty of recrystallization depending on the crystal orientation. Was inevitable in the particle size of the particles.

【0006】[0006]

【発明が解決しようとする課題】本発明は,本発明者ら
がすでに開示している加工・再結晶による超細粒化技術
をさらに発展させることにより,複雑な熱間加工あるい
は熱処理工程を必要とせずに,かつ,特殊なせまい範囲
の化学組成に限定することなく,混粒度の極めて少な
い,平均フェライト粒径が1〜3μm以下の超細粒組織
を鋼材の全厚にわたって達成し,優れた機械的性質を有
する,引張強度が約490MPa級以上の高張力鋼材を
製造するための方法を提供するものである。
SUMMARY OF THE INVENTION The present invention requires a complicated hot working or heat treatment step by further developing the ultra-fine graining technique by working and recrystallization already disclosed by the present inventors. Without having to limit the chemical composition to a specific narrow range, an ultrafine grain structure with an extremely small mixed grain size and an average ferrite grain size of 1 to 3 μm or less is achieved over the entire thickness of the steel material. An object of the present invention is to provide a method for producing a high-tensile steel material having mechanical properties and a tensile strength of about 490 MPa or more.

【0007】[0007]

【課題を解決するための手段】今までの本発明者らの研
究結果によれば,熱間圧延段階でのフェライトの加工・
再結晶によって得られる結晶粒径に支配的な影響を及ぼ
すのは,オーステナイト/フェライト二相域〜フェライ
ト単相域での累積圧下率と圧延前の組織の微細さであ
る。特に,オーステナイトがフェライト相中に適正量存
在すると,フェライトの再結晶がより容易に生じる。同
じオーステナイト分率であれば個々のオーステナイト粒
が微細で,均一に分散しているほど再結晶が均一に生
じ,フェライト粒径も微細になるが,本発明者らはオー
ステナイトが存在することによるフェライトの再結晶の
促進機構の詳細な研究の中で,昇温中〜昇温後の圧延に
よって,効率的なオーステナイトの微細均一分散とその
結果としての均一なフェライト超細粒組織の達成が可能
なことを初めて見出した。
According to the results of the research conducted by the present inventors, the processing of ferrite in the hot rolling stage has been described.
The dominant effects on the crystal grain size obtained by recrystallization are the cumulative rolling reduction in the austenite / ferrite dual phase region to the ferrite single phase region and the fineness of the structure before rolling. In particular, when an appropriate amount of austenite is present in the ferrite phase, recrystallization of ferrite occurs more easily. If the austenite fraction is the same, individual austenite grains are finer, and the more uniformly dispersed, the more recrystallization occurs and the smaller the ferrite grain size. In the detailed study of the mechanism of accelerating the recrystallization of steel, it is possible to achieve an efficient fine and uniform dispersion of austenite and consequently a uniform ultrafine ferrite structure by rolling during and after heating. I found it for the first time.

【0008】オーステナイトの微細分散の手段として,
特開平7−126797号公報に開示されているよう
に,オーステナイト/フェライト二相域加工前の組織を
マルテンサイトないしはベイナイトの単相組織,あるい
は両組織の混合組織,または,フェライトの組織中の割
合を限定したフェライトを含む混合組織,さらにはフェ
ライト粒径を規定したフェライト単相やマルテンサイ
ト,ベイナイト,パーライトとの混合組織とすることに
より超細粒化が容易となるが,本発明はそれよりもさら
に有効な方法で,一定の微細組織を適切な昇温速度で二
相域まで加熱し,直ちにないしは一定の保持時間以内で
圧延ないしは加工を加えると,各圧延パスごとに新たな
サイトから微細なオーステナイトが生成するために,フ
ェライトへの歪導入がより均一になり,かつフェライト
/オーステナイト界面積が顕著に増加して,フェライト
の再結晶が非常に均一となり,かつ安定的に平均フェラ
イト粒径が1〜3μmの超細粒組織が得られる。
[0008] As means for fine dispersion of austenite,
As disclosed in Japanese Patent Application Laid-Open No. Hei 7-126797, the structure before the austenite / ferrite dual phase region processing is changed to a single phase structure of martensite or bainite, a mixed structure of both structures, or a ratio of the structure of ferrite to the structure. In the present invention, ultrafine graining is facilitated by using a mixed structure containing ferrite with a limited grain size and a mixed structure with ferrite single phase or martensite, bainite, or pearlite having a specified ferrite grain size. A more effective method is to heat a certain microstructure to the two-phase region at an appropriate heating rate, and then roll or work immediately or within a certain holding time. Since austenite is generated, the introduction of strain into ferrite becomes more uniform and the ferrite / austenite interface Is significantly increased, the recrystallization of the ferrite becomes very uniform, and the average ferrite grain size stably ultra fine grain structure 1~3μm is obtained.

【0009】なお,本発明の,フェライトの加工・再結
晶を利用した製造方法で達成された,混粒度の少ない均
一な超細粒組織の種々機械的性質を調査したところ,同
一組成で,通常の熱間圧延,焼きならし,あるいは焼入
・焼戻しにより製造された鋼に比べて,母材の疲労き裂
伝播速度が1/5〜1/10程度まで遅延し,廻し溶接
継手の疲労寿命で評価しても,ほぼ1/2以下とするこ
とが可能であることが知見された。従って,本発明によ
り製造された鋼は低温靱性と高疲労強度とを同時に満足
することが可能であり,低温靱性あるいは/及び疲労強
度が要求される用途に極めて有用である。
Investigations were made on various mechanical properties of a uniform ultrafine-grained structure having a small mixed grain size, which were achieved by the method of the present invention utilizing the processing and recrystallization of ferrite. Compared with steel manufactured by hot rolling, normalizing, or quenching / tempering, the fatigue crack propagation speed of the base metal is delayed to about 1/5 to 1/10, and the fatigue life of the turning welded joint It was found that it was possible to make it approximately ほ ぼ or less even when evaluated by. Therefore, the steel produced according to the present invention can satisfy both low temperature toughness and high fatigue strength at the same time, and is extremely useful for applications requiring low temperature toughness and / or fatigue strength.

【0010】本発明は以上の新たな知見に基づいて発明
するに至ったものであり,その要旨は以下に示す通りで
ある。(1)質量%で,C:0.01〜0.2% Si:0.01〜1% Mn:0.1〜2% Al:0.001〜0.1% N:0.001〜0.01%を含有し,不純物として,
P:0.02%以下,S:0.01%以下を含有し,残
部が鉄および不可避不純物からなり,以下の〜のい
ずれかの組織を有する鋼を,300℃以上を0.1〜5
0℃/sの昇温速度で加熱し,Ac1変態点〜(Ac3変態
点−100℃)の昇温途上で圧延を開始し,累積圧下率
が50〜90%の圧延を行うに際して,圧延中の鋼の温
度が(Ac1変態点−50℃)〜(Ac3変態点−50℃)
の範囲内であることを特徴とする靭性と疲労強度とに優
れた高張力鋼の製造方法。 マルテンサイト単相組織,あるいはベイナイト単相組
織,あるいは両者の混合組織 フェライトの割合が20%未満であり,且つ,フェラ
イトとマルテンサイト,あるいはフェライトとベイナイ
ト,あるいはフェライト,マルテンサイト,ベイナイト
3者の混合組織 フェライトの割合が20%以上で,その平均粒径が2
0μm以下であり,且つ,フェライト単相組織,あるい
はフェライトとマルテンサイト,ベイナイト,パーライ
トの内,1種または2種以上からなる混合組織
The present invention has been made based on the above-mentioned new findings, and the gist thereof is as follows. (1) In mass%, C: 0.01 to 0.2% Si: 0.01 to 1% Mn: 0.1 to 2% Al: 0.001 to 0.1% N: 0.001 to 0 0.01% and as impurities
A steel containing P: 0.02% or less, S: 0.01% or less, the balance being iron and unavoidable impurities, and having any of the following structures:
Heating is performed at a heating rate of 0 ° C./s , and rolling is started while the temperature is increasing from the A c1 transformation point to the (A c3 transformation point−100 ° C.). The temperature of the steel during rolling is (A c1 transformation point−50 ° C.) to (A c3 transformation point−50 ° C.)
A method for producing a high-strength steel excellent in toughness and fatigue strength, which is within the range described above. Martensite single-phase structure, bainite single-phase structure, or a mixed structure of both The ferrite content is less than 20%, and ferrite and martensite, or ferrite and bainite, or a mixture of ferrite, martensite, and bainite Microstructure The ferrite content is 20% or more and the average grain size is 2%.
0 μm or less, and a ferrite single phase structure, or a mixed structure of ferrite and one or more of martensite, bainite, and pearlite

【0011】(2)質量%で,C:0.01〜0.2% Si:0.01〜1% Mn:0.1〜2% Al:0.001〜0.1% N:0.001〜0.01%を含有し,不純物として,
P:0.02%以下,S:0.01%以下を含有し,残
部が鉄および不可避不純物からなり,以下の〜のい
ずれかの組織を有する鋼を,300℃以上を0.1〜5
0℃/sの昇温速度で加熱し,Ac1変態点〜(Ac3変態
点−100℃)の温度で1〜600s保持後,圧延を開
始し,累積圧下率が50〜90%の圧延を行うに際し
て,圧延中の鋼の温度が(Ac1変態点−50℃)〜(A
c3変態点−50℃)の範囲内であることを特徴とする靭
性と疲労強度とに優れた高張力鋼の製造方法。 マルテンサイト単相組織,あるいはベイナイト単相組
織,あるいは両者の混合組織 フェライトの割合が20%未満であり,且つ,フェラ
イトとマルテンサイト,あるいはフェライトとベイナイ
ト,あるいはフェライト,マルテンサイト,ベイナイト
3者の混合組織 フェライトの割合が20%以上で,その平均粒径が2
0μm以下であり,且つ,フェライト単相組織,あるい
はフェライトとマルテンサイト,ベイナイト,パーライ
トの内,1種または2種以上からなる混合組織
(2) In mass%, C: 0.01-0.2% Si: 0.01-1% Mn: 0.1-2% Al: 0.001-0.1% N: 0. 001-0.01%, as impurities
A steel containing P: 0.02% or less, S: 0.01% or less, the balance being iron and unavoidable impurities, and having any of the following structures:
Rolling is started at a heating rate of 0 ° C./s, after holding at a temperature of A c1 transformation point to (A c3 transformation point−100 ° C.) for 1 to 600 s, rolling is started, and a rolling reduction of 50% to 90% is achieved. When performing the rolling, the temperature of the steel during rolling is (A c1 transformation point−50 ° C.) to (A
c3 transformation point −50 ° C.). A method for producing a high-strength steel excellent in toughness and fatigue strength, which is within the range of ( c3 transformation point −50 ° C.). Martensite single-phase structure, bainite single-phase structure, or a mixed structure of both The ferrite content is less than 20%, and ferrite and martensite, or ferrite and bainite, or a mixture of ferrite, martensite, and bainite Microstructure The ferrite content is 20% or more and the average grain size is 2%.
0 μm or less, and a ferrite single phase structure, or a mixed structure of ferrite and one or more of martensite, bainite, and pearlite

【0012】(3)圧延終了後,2〜100℃/sの冷
却速度で20℃〜650℃まで加速冷却することを特徴
とする前記(1)または(2)に記載の靱性と疲労強度
とに優れた高張力鋼の製造方法。 (4)圧延後さらに,加熱温度が300℃以上,Ac1
態点以下の焼戻しを施すことを特徴とする前記(1)〜
(3)のいずれかに記載の靭性と疲労強度とに優れた高
張力鋼の製造方法。
(3) After rolling is completed, accelerated cooling is performed at a cooling rate of 2 to 100 ° C. to 20 ° C. to 650 ° C. The toughness, fatigue strength and toughness described in (1) or (2) above. Method for producing high-strength steel excellent in quality. (4) After the rolling, tempering at a heating temperature of 300 ° C. or more and an A c1 transformation point is further performed.
(3) The method for producing a high-tensile steel having excellent toughness and fatigue strength according to any one of (3) and (4).

【0013】(5)さらに,質量%で,Ni:0.1〜
5% Cu:0.1〜1.5% Cr:0.01〜2% Mo:0.01〜2% W:0.01〜2% Ti:0.003〜0.1% V:0.005〜0.5% Nb:0.003〜0.2% Zr:0.003〜0.1% Ta:0.005〜0.2% B:0.0002〜0.005% の1種または2種以上を含有することを特徴とする前記
(1)〜(4)のいずれかに記載の靭性と疲労強度とに
優れた高張力鋼の製造方法。
(5) Further, in mass%, Ni: 0.1 to
5% Cu: 0.1 to 1.5% Cr: 0.01 to 2% Mo: 0.01 to 2% W: 0.01 to 2% Ti: 0.003 to 0.1% V: 0. 005-0.5% Nb: 0.003-0.2% Zr: 0.003-0.1% Ta: 0.005-0.2% B: 0.0002-0.005% The method for producing a high-tensile steel having excellent toughness and fatigue strength according to any one of the above (1) to (4), comprising two or more kinds.

【0014】(6)さらに,質量%で,Mg:0.00
05〜0.01% Ca:0.0005〜0.01% Y:0.005〜0.1% のうち1種または2種以上を含有することを特徴とする
前記(1)〜(5)のいずれかに記載の靭性と疲労強度
とに優れた高張力鋼の製造方法。
(6) Further, in mass%, Mg: 0.00
(1) to (5), wherein one or more of Ca: 0.0005 to 0.01% Y: 0.005 to 0.1% are contained. The method for producing a high-tensile steel having excellent toughness and fatigue strength according to any one of the above.

【0015】[0015]

【発明の実施の形態】以下に本発明について詳細に説明
する。本発明は,熱間圧延段階でのフェライトの加工・
再結晶によってフェライト粒径を超微細化させることを
基本技術としている。より容易にかつ均一に超細粒化さ
せるためには,フェライトとオーステナイトとが共存す
る二相域で圧延を施すことが好ましく,本発明も硬質相
としてのオーステナイトを有効活用することを基本要件
としている。すなわち,フェライトの超細粒化のために
は,フェライトへの加工を加える段階で,加工前の組織
を微細化するとともに,適正量のオーステナイトを存在
させることが前提となる。ただし,フェライトの加工・
再結晶によってフェライト粒径が1〜3μm程度の超細
粒組織を得るために従来の技術以上に,より容易にかつ
均一に超細粒化させるためには,該基本要件に加えて,
さらに,個々のオーステナイト粒子を極力微細かつ高密
度に分散させることが重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present invention relates to the processing and processing of ferrite in the hot rolling stage.
The basic technology is to make the ferrite grain size ultra-fine by recrystallization. For easier and uniform ultrafine grain refinement, it is preferable to perform rolling in the two-phase region where ferrite and austenite coexist. The basic requirement of the present invention is to make effective use of austenite as a hard phase. I have. That is, in order to make ferrite ultra-fine, it is premised that at the stage of processing into ferrite, the structure before processing is refined and an appropriate amount of austenite is present. However, ferrite processing
In order to obtain an ultrafine grained structure having a ferrite grain size of about 1 to 3 μm by recrystallization more easily and uniformly than the conventional technique, in addition to the basic requirements,
Furthermore, it is important to disperse the individual austenite particles as finely and densely as possible.

【0016】本発明は,オーステナイト粒子を微細分散
させるためには,適正な加工前組織を有する鋼に対し
て,昇温中あるいは一定以内の保持中に加工する昇温加
工ないしは昇温圧延を加えることによって,非平衡状態
からオーステナイトを生成させることが有効であるとの
新たな知見に基づいている。すなわち,具体的には,適
正な化学組成を有し,以下の〜に該当する組織を有
する鋼を,300℃〜圧延温度まで0.1〜50℃/s
の昇温速度で加熱し,Ac1変態点〜(Ac3変態点−10
0℃)の昇温途上,あるいは,該温度で1〜600s保
持後,圧延を開始し,累積圧下率が50〜90%の圧延
を行うに際して,圧延中の鋼の温度が(Ac1変態点−5
0℃)〜(Ac3変態点−50℃)の範囲内であることを
基本要件とする。 マルテンサイト単相組織,あるいはベイナイト単相組
織,あるいは両者の混合組織 フェライトの割合が20%未満であり,且つ,フェラ
イトとマルテンサイト,あるいはフェライトとベイナイ
ト,あるいはフェライト,マルテンサイト,ベイナイト
3者の混合組織 フェライトの割合が20%以上で,その平均粒径が2
0μm以下であり,且つ,フェライト単相組織,あるい
はフェライトとマルテンサイト,ベイナイト,パーライ
トの内,1種または2種以上からなる混合組織
According to the present invention, in order to finely disperse austenite particles, a steel having an appropriate structure before working is subjected to a heating process or a temperature-rolling process, which is performed during heating or holding within a certain range. It is based on the new finding that it is effective to generate austenite from a non-equilibrium state. That is, concretely, a steel having an appropriate chemical composition and a structure corresponding to the following (1) is prepared at a temperature of 300 ° C to a rolling temperature of 0.1 to 50 ° C / s.
At a heating rate of A c1 transformation point to (A c3 transformation point −10).
0 ° C.), or after holding at this temperature for 1 to 600 s, rolling is started, and when rolling is performed with a cumulative rolling reduction of 50 to 90%, the temperature of the steel during rolling becomes (A c1 transformation point). -5
(0 ° C.) to ( Ac 3 transformation point −50 ° C.). Martensite single-phase structure, bainite single-phase structure, or a mixed structure of both The ferrite content is less than 20%, and ferrite and martensite, or ferrite and bainite, or a mixture of ferrite, martensite, and bainite Microstructure The ferrite content is 20% or more and the average grain size is 2%.
0 μm or less, and a ferrite single phase structure, or a mixed structure of ferrite and one or more of martensite, bainite, and pearlite

【0017】本発明においては,「300℃〜圧延温度
まで0.1〜50℃/sの昇温速度で加熱し,Ac1変態
点〜(Ac3変態点−100℃)の昇温途上,あるいは,
該温度で1〜600s保持後,圧延を開始し,累積圧下
率が50〜90%の圧延を行うに際して,圧延中の鋼の
温度が(Ac1変態点−50℃)〜(Ac3変態点−50
℃)の範囲内であることを特徴とする二相域での昇温圧
延によって,主としてフェライトの加工・再結晶組織を
超細粒化させるが,該昇温圧延に入る前の組織を適正化
する必要がある。すなわち,圧延によってフェライトの
再結晶を容易に且つ均一に生じさせるためには,昇温圧
延時の再結晶核生成サイトとオーステナイトの生成サイ
トとが均一且つ多量に存在する必要があり,そのために
好ましい組織が上記〜を満足する組織形態となる。
In the present invention, the heating is performed at a heating rate of 0.1 to 50 ° C./s from 300 ° C. to the rolling temperature, and while the temperature is rising from the A c1 transformation point to the (A c3 transformation point−100 ° C.), Or,
After holding at this temperature for 1 to 600 s, rolling is started, and when rolling at a cumulative reduction of 50 to 90%, the temperature of the steel during rolling is (A c1 transformation point−50 ° C.) to (A c3 transformation point). -50
(° C), the hot-rolling in the two-phase region is mainly characterized by ultra-fine graining of the processed and recrystallized structure of ferrite, but the structure before entering the hot-rolling was optimized. There is a need to. That is, in order to easily and uniformly generate recrystallization of ferrite by rolling, it is necessary to have a uniform and large number of recrystallization nucleation sites and austenite generation sites at the time of elevated temperature rolling, which is preferable. The structure of the structure satisfies the above conditions.

【0018】〜の好ましい組織形態の条件は詳細な
実験により求めたもので,以下に説明する。 のマルテンサイト単相組織,あるいはベイナイト単相
組織,あるいは両者の混合組織では,旧オーステナイト
粒界だけでなく,微細なラス境界が再結晶核生成サイト
とオーステナイトの生成サイトとして機能するため,再
結晶を容易に且つ均一に生じさせるために好ましい組織
形態である。
The preferred conditions of the tissue morphology were determined by detailed experiments and will be described below. In the martensitic single-phase structure, bainite single-phase structure, or a mixed structure of the two, not only the former austenite grain boundaries but also the fine lath boundaries function as recrystallization nucleation sites and austenite formation sites. Is a preferred tissue form for easily and uniformly generating the following.

【0019】一方,フェライトは粒内に下部組織をほと
んど持たないため,一般的には再結晶核生成サイトやオ
ーステナイトの生成サイトはフェライト粒界のみとな
り,再結晶が生じ難く,また不均一になりやすく,好ま
しくない。そのため,鋼の組成から,フェライトの存在
が不可避である場合は,組織に対するフェライトの割合
を一定以下に限定するか,フェライト粒径を微細化する
必要がある。フェライトの割合が20%未満で,残部が
マルテンサイトかベイナイトの一方,あるいは両方であ
れば,フェライト粒径が粗大でも構わない。これは,フ
ェライトの割合が20%未満であれば,加工が軟質相で
あるフェライトに集中するため,フェライトでも再結晶
やオーステナイトの核生成が十分均一に生じ得るためで
ある。
On the other hand, since ferrite hardly has a substructure in grains, recrystallization nucleus generation sites and austenite generation sites are generally only at ferrite grain boundaries, making recrystallization difficult to occur and non-uniform. Easy and not preferred. Therefore, when the presence of ferrite is inevitable due to the composition of the steel, it is necessary to limit the ratio of ferrite to the structure to a certain level or less, or to reduce the ferrite grain size. If the proportion of ferrite is less than 20% and the balance is martensite or bainite or both, the ferrite grain size may be coarse. This is because if the proportion of ferrite is less than 20%, the processing concentrates on the ferrite, which is a soft phase, so that recrystallization and austenite nucleation can occur sufficiently uniformly even with ferrite.

【0020】一方,フェライトの割合が20%以上であ
ると,粗大なフェライトでは再結晶やオーステナイトの
核生成サイトが不均一になるのを避けられないため,フ
ェライト粒径を微細化する必要がある。圧延前組織にお
けるフェライト粒径が20μm以下であれば,フェライ
ト以外の組織形態によらず,再結晶が容易且つ均一に生
じ,結果,最終的に均一な超細粒組織が達成される。従
って,本発明ではフェライトの割合が20%以上である
場合には該フェライトの粒径を20μm以下に限定す
る。フェライト粒径が20μm超であると,昇温圧延に
よってオーステナイトを微細に分散させても混粒度の小
さい均一な超細粒組織を達成することは困難である。以
上が,昇温圧延前組織の要件であるが,該組織要件に関
しては,化学組成が本発明を満足していれば,その達成
手段は問わない。
On the other hand, when the proportion of ferrite is 20% or more, coarse ferrite cannot avoid recrystallization or non-uniform nucleation sites of austenite, so that it is necessary to reduce the ferrite grain size. . If the ferrite grain size in the structure before rolling is 20 μm or less, recrystallization easily and uniformly occurs regardless of the structure form other than ferrite, and as a result, a uniform ultrafine grain structure is finally achieved. Therefore, in the present invention, when the proportion of ferrite is 20% or more, the particle size of the ferrite is limited to 20 μm or less. If the ferrite grain size is more than 20 μm, it is difficult to achieve a uniform ultrafine grain structure with a small mixed grain size even if austenite is finely dispersed by elevated temperature rolling. The above is the requirement of the structure before the temperature-increasing rolling. Regarding the structure requirement, as long as the chemical composition satisfies the present invention, there is no limitation on the means for achieving the structure.

【0021】次に,昇温加工条件の限定条件を説明す
る。前記〜の適正な組織を有する鋼に昇温途上ある
いは適性範囲での保持後に昇温圧延を施すが,所定の圧
延温度に達するまでの昇温速度は,300℃から圧延温
度までの平均で0.1〜50℃/sとする必要がある。
これは,昇温中のオーステナイトの生成を抑制して,昇
温圧延の各圧延パスごとに新たなサイトから微細なオー
ステナイトを生成させるための条件で,該昇温速度が
0.1℃/s未満であると,昇温中,各温度で平衡に近
いオーステナイト相が生成するため,圧延によって誘起
されるオーステナイトがほとんどなく,オーステナイト
の微細分散は困難となり,結果,均一な超細粒化は図ら
れない。一方,昇温速度は大きいほど,非平衡度が増
し,昇温加工時のオーステナイト生成がより容易に生
じ,オーステナイト相の微細分散には好ましいが,50
℃/s超では効果が飽和する一方で,工業的に鋼全体を
均一昇温することが困難となるため,本発明では該昇温
速度の上限を50℃/sとする。
Next, the limiting conditions of the temperature raising processing conditions will be described. The steel having the appropriate structure of the above is subjected to warming rolling during the heating or after holding in the appropriate range. The heating rate until reaching the predetermined rolling temperature is 0 on average from 300 ° C to the rolling temperature. 0.1 to 50 ° C./s.
This is a condition for suppressing the generation of austenite during the temperature rise, and generating fine austenite from a new site for each rolling pass of the temperature raising rolling. If the temperature is less than, an austenite phase near equilibrium is formed at each temperature during the heating, and there is almost no austenite induced by rolling, and fine dispersion of austenite becomes difficult. I can't. On the other hand, as the heating rate increases, the degree of non-equilibrium increases, and austenite is generated more easily during the heating process, which is preferable for fine dispersion of the austenite phase.
If the temperature exceeds ℃ / s, the effect is saturated, but it is difficult to uniformly raise the temperature of the entire steel industrially. Therefore, in the present invention, the upper limit of the temperature rising rate is set to 50 ° C / s.

【0022】上記昇温速度で昇温した後,圧延開始温度
をAc1変態点〜(Ac3変態点−100℃)として,昇温
途上直ちに,あるいは,該圧延開始温度で1〜600s
保持後に,累積圧下率が50〜90%圧延を行う。該圧
延工程において,フェライトに加工による転位が多量に
導入され,その結果,再結晶を生じて超細粒組織が形成
されるが,圧延前及び圧延中にオーステナイトが微細か
つ高密度に生成することによって,再結晶が均一に生じ
るため,混粒度が小さい均一な超細粒組織が達成され
る。圧延開始温度の下限をAc1変態点とするのは,圧延
前及び圧延中がオーステナイトを生成するために必要な
ためで,開始温度がAc1変態点未満であると,該温度で
保持しても十分なオーステナイトの生成が見込めず,ま
た,圧延中に加工で誘起されて生成するオーステナイト
の量も微少に止まるため,均一超細粒化が期待できな
い。
After the temperature is raised at the above-mentioned heating rate, the rolling start temperature is set to A c1 transformation point to (A c3 transformation point −100 ° C.) immediately after the temperature rise or 1 to 600 s at the rolling start temperature.
After the holding, rolling is performed at a cumulative reduction of 50 to 90%. In the rolling step, a large amount of dislocations are introduced into the ferrite due to processing, which results in recrystallization and the formation of an ultrafine grain structure, but fine and high-density austenite is formed before and during rolling. As a result, recrystallization occurs uniformly, and a uniform ultrafine grain structure with a small mixed particle size is achieved. The reason for setting the lower limit of the rolling start temperature to the A c1 transformation point is that it is necessary to form austenite before and during rolling, so if the starting temperature is lower than the A c1 transformation point, the temperature is maintained at that temperature. However, the formation of sufficient austenite cannot be expected, and the amount of austenite generated by processing during rolling is also small, so that uniform ultrafine graining cannot be expected.

【0023】一方,本発明においては,圧延開始温度の
上限を(Ac3変態点−100℃)とする。これは,フェ
ライトの再結晶を超細粒化の基本とする本発明において
は,圧延前のフェライト相を十分確保する必要があるた
めで,圧延開始温度が(Ac3変態点−100℃)以下で
あれば,本発明においては,圧延中にオーステナイト相
が過度に増加することがなく,実質的に均一な超細粒再
結晶フェライトが得られる。圧延開始温度が(Ac3変態
点−100℃)を超えると,圧延前のオーステナイト相
が過剰となり,該オーステナイトから変態で生じるフェ
ライト粒は再結晶フェライトに比べて粗粒となり,混粒
度が増加して靱性,疲労特性の両方に悪影響を及ぼす。
On the other hand, in the present invention, the upper limit of the rolling start temperature is (A c3 transformation point−100 ° C.). This is because, in the present invention, in which recrystallization of ferrite is the basis of ultrafine grain refinement, it is necessary to ensure a sufficient ferrite phase before rolling, so that the rolling start temperature is (A c3 transformation point −100 ° C.) or less. Then, in the present invention, an austenite phase does not excessively increase during rolling, and a substantially uniform ultrafine recrystallized ferrite can be obtained. When the rolling start temperature exceeds (A c3 transformation point −100 ° C.), the austenite phase before rolling becomes excessive, and the ferrite grains formed by transformation from the austenite become coarser than recrystallized ferrite, and the mixed grain size increases. Adversely affects both toughness and fatigue properties.

【0024】昇温圧延前あるいは昇温圧延中にオーステ
ナイトを微細かつ高密度に生成させることが本発明の最
も重要な要件であるが,そのための必要条件が,前述の
ように,昇温速度を適性範囲に限定することに加えて,
昇温途上あるいは,圧延前に保持する場合には,保持時
間を1〜600sに限定することである。300℃から
圧延温度までの平均で0.1〜50℃/sの昇温速度で
昇温した場合,平衡状態に比べてオーステナイト生成が
大きく抑制される。オーステナイトが抑制されたままの
状態から圧延を開始することで,種々のサイトから微細
なオーステナイトが高密度に生成し,硬質のオーステナ
イトが存在することによって,引き続く圧延工程におい
てフェライトへの歪が均一に導入され,かつ該オーステ
ナイトが再結晶サイトとして機能し,その結果,均一な
フェライトの超細粒化が達成される。
It is the most important requirement of the present invention to form austenite finely and at a high density before or during the temperature raising rolling. In addition to limiting to the appropriate range,
When the temperature is maintained during the heating or before rolling, the holding time is limited to 1 to 600 s. When the temperature is raised at an average rate of 0.1 to 50 ° C./s from 300 ° C. to the rolling temperature, austenite formation is greatly suppressed as compared with the equilibrium state. By starting rolling from a state in which austenite is suppressed, fine austenite is generated at high density from various sites, and the presence of hard austenite allows uniform deformation of ferrite in the subsequent rolling process. Introduced and the austenite functions as a recrystallization site, so that a uniform ultrafine graining of ferrite is achieved.

【0025】圧延開始あるいは圧延中にまで引き続いて
非平衡状態を保って,オーステナイト相の生成を抑制す
るためには,昇温途中から直ちに圧延を開始するか,保
持する場合でも600s以下とする必要がある。保持時
間が600s超であると,保持中にオーステナイトが平
衡状態に近い割合まで生成し,その場合のオーステナイ
トは本発明に比べて粗大となるため,均一超細粒化が不
十分となる。保持時間は短くても構わないが,保持工程
を確実に制御できる条件として,本発明では,昇温圧延
前に保持を行う場合の保持時間の下限は1sとする。
In order to keep the non-equilibrium state at the start of rolling or continuously during rolling and to suppress the formation of austenite phase, it is necessary to start rolling immediately during the temperature rise or to keep the rolling time at 600 s or less even if it is maintained. There is. If the holding time is longer than 600 s, austenite is generated to a ratio close to the equilibrium state during the holding, and in this case, the austenite becomes coarser than in the present invention, so that uniform ultrafine graining becomes insufficient. The holding time may be short, but as a condition for reliably controlling the holding step, in the present invention, the lower limit of the holding time when holding is performed before the temperature-increasing rolling is 1 s.

【0026】300℃〜圧延温度まで0.1〜50℃/
sの昇温速度で加熱し,Ac1変態点〜(Ac3変態点−1
00℃)の昇温途上であるいは圧延開始前に1〜600
s保持した後,圧延を開始するが,該圧延の累積圧下率
は50〜90%とする。累積圧下率が50%未満である
と,他の要件が本発明を満足していても,全面再結晶組
織が得られず,均一な超細粒化が望めない。累積圧下率
は大きいほど好ましいが,90%を超えても効果が飽和
するためと,過度な累積圧下率にした場合,製造できる
板厚限定され,形状や生産性にも不利であるとの,実用
的見地から,本発明では,累積圧下率の上限を90%と
する。
From 300 ° C. to the rolling temperature, 0.1 to 50 ° C. /
a heating rate of s, A c1 transformation point ~ (A c3 transformation point -1
(00 ° C) or before the start of rolling.
After the holding, rolling is started, and the cumulative rolling reduction of the rolling is set to 50 to 90%. If the cumulative rolling reduction is less than 50%, even if the other requirements satisfy the present invention, a recrystallized structure over the entire surface cannot be obtained, and uniform ultrafine graining cannot be expected. It is preferable that the cumulative rolling reduction is as large as possible. However, if the cumulative rolling reduction exceeds 90%, the effect is saturated, and if the cumulative rolling reduction is excessive, the thickness of the sheet that can be produced is limited, and the shape and productivity are disadvantageous. From a practical point of view, in the present invention, the upper limit of the cumulative rolling reduction is set to 90%.

【0027】本発明の圧延温度域では,加えられた加工
歪はほぼ蓄積されるので,各パスの圧下率の大小は問わ
ない。ただし,後述の圧延中での温度履歴の要件は満足
する必要がある。また,各圧延パスの間隔を不必要に長
くとることは,歪の回復が生じて,折角導入した加工歪
が組織微細化に有効利用されないため,好ましくない。
各パスの間隔は好ましくは30s以内とすべきである。
In the rolling temperature range of the present invention, the applied processing strain is substantially accumulated, so that the rolling reduction of each pass does not matter. However, the requirement for the temperature history during rolling described below must be satisfied. Unnecessarily long intervals between the rolling passes are not preferable because the recovery of the strain occurs, and the processing strain introduced by the bending is not effectively used for refining the structure.
The spacing between each pass should preferably be within 30s.

【0028】上記のように,本発明においては昇温加工
に関わる,昇温速度,圧延前保持時間,圧延開始温度,
累積圧下率を限定するが,さらに,均一超細粒化を確実
にするために,圧延開始温度を限定することに加えて,
鋼の温度が圧延中のいずれの段階でも(Ac1変態点−5
0℃)〜(Ac3変態点−50℃)の範囲内に収まるよう
にする必要がある。圧延開始温度が,Ac1変態点〜(A
c3変態点−100℃)であれば圧延前〜圧延中にオース
テナイトが微細・高密度に生成して,超細粒化に有効に
働くが,本発明は多パス圧延を前提としており,圧延の
各パスが超細粒化に有効に働くために,また,下記に述
べる,その他の理由により,圧延開始以降の各パスの圧
延温度を,(Ac1変態点−50℃)〜(Ac3変態点−5
0℃)の範囲内に収まるようにする必要がある。
As described above, in the present invention, the heating rate, the holding time before rolling, the rolling start temperature,
In addition to limiting the rolling reduction temperature, in addition to limiting the rolling reduction temperature to ensure uniform ultra-fine graining,
At any stage during rolling, the temperature of the steel (A c1 transformation point -5)
(0 ° C.) to ( Ac 3 transformation point −50 ° C.). Rolling start temperature is from A c1 transformation point to (A
If the c3 transformation point is -100 ° C), austenite is generated in a fine and high density before and during rolling and effectively works for ultra-fine graining. However, the present invention is premised on multi-pass rolling. In order for each pass to work effectively for ultra-fine graining, and for the other reasons described below, the rolling temperature of each pass after the start of rolling is set to (A c1 transformation point −50 ° C.) to (A c3 transformation). Point-5
(0 ° C.).

【0029】すなわち,(Ac1変態点−50℃)未満に
圧延中の温度が低下すると,材質の異方性が拡大するこ
と,鋼の形状が悪化する点で,好ましくない。また,超
細粒化に対しては,累積圧下の効果が蓄積されるため,
1部の圧延パスが(Ac1変態点−50℃)未満になって
も構わないが,大半のパスが(Ac1変態点−50℃)未
満となると,再結晶が生じ難くなる可能性があるため,
本発明では,圧延中の温度の下限を(Ac1変態点−50
℃)以上とする。
That is, if the temperature during rolling is lower than (A c1 transformation point −50 ° C.), it is not preferable because the anisotropy of the material increases and the shape of the steel deteriorates. In addition, the effect of the cumulative reduction is accumulated for ultra-fine graining.
Although a part of the rolling pass may be less than (A c1 transformation point −50 ° C.), if most of the rolling passes are less than (A c1 transformation point −50 ° C.), recrystallization may not easily occur. Because
In the present invention, the lower limit of the temperature during rolling is set to (A c1 transformation point −50).
℃) or higher.

【0030】一方,圧延中の温度が(Ac3変態点−50
℃)を超えることは,超細粒化に直接悪影響を及ぼし,
好ましくない。すなわち,圧延中に(Ac3変態点−50
℃)を超えると,オーステナイト相が過剰に増加して加
工組織が解消される。また,加工されたフェライトの粒
成長が無視できないことにより,超細粒化が不十分とな
る懸念がある。加工組織の解消は特に疲労強度に悪影響
を及ぼす。
On the other hand, the temperature during rolling is (A c3 transformation point −50).
℃) directly affects the ultra-fine graining,
Not preferred. That is, during rolling, the (A c3 transformation point −50)
If the temperature exceeds (° C), the austenite phase excessively increases and the processed structure is eliminated. In addition, since the grain growth of the processed ferrite cannot be ignored, there is a concern that ultra-fine graining may be insufficient. Elimination of the processed structure has a particularly bad influence on the fatigue strength.

【0031】以上が,本発明の製造方法に関する基本要
件であるが,圧延後は,強度の調整のために,必要に応
じて,圧延終了後,加速冷却および/または焼戻しを施
すことができる。加速冷却を行う場合は,2〜100℃
/sの冷却速度で20℃〜650℃まで加速冷却する。
加速冷却の冷却速度が2℃/s未満では,加速冷却によ
る組織制御効果が十分でなく,一方,100℃/s超で
は,本発明の成分範囲では加速冷却の効果が飽和すると
ともに,残留応力が過大となったり,鋼板の平坦度が悪
化するため好ましくない。従って,本発明では加速冷却
の冷却速度を2〜100℃/sに限定する。
The above are the basic requirements for the manufacturing method of the present invention. After rolling, accelerated cooling and / or tempering can be performed after the rolling, if necessary, for adjusting the strength. 2 to 100 ° C for accelerated cooling
Accelerated cooling to 20 ° C. to 650 ° C. at a cooling rate of / s.
If the cooling rate of the accelerated cooling is less than 2 ° C./s, the effect of controlling the structure by the accelerated cooling is not sufficient, whereas if it exceeds 100 ° C./s, the effect of the accelerated cooling is saturated and the residual stress Is undesirably large or the flatness of the steel sheet deteriorates. Therefore, in the present invention, the cooling rate of the accelerated cooling is limited to 2 to 100 ° C./s.

【0032】圧延後,あるいは圧延後さらに加速冷却を
行った後に焼戻しを施す場合は,加熱温度を300℃以
上,Ac1変態点以下に限定する。焼戻しの加熱温度が3
00℃未満であると,材質に及ぼす焼戻しの効果が十分
でなく,焼戻しの意義が失われる。一方,加熱温度がA
c1変態点を超えると,オーステナイト相が生成して超細
粒組織が解消されるため,好ましくない。従って,本発
明では焼戻しにおける加熱温度を300℃〜Ac1変態点
に限定する。なお,焼戻しの保持時間や冷却条件につい
ては,材質への影響は加熱温度に比べて非常に小さく,
現実的な条件範囲では特に規定する必要はないが,組織
の粗大化抑制のためには,冷却条件としては放冷または
放冷以上の冷却速度の冷却方法がより好ましく,保持時
間は,加熱温度が500℃以下では48h以下,500
℃超では4h以下が好ましい。なお,疲労特性を重視し
て,廻し溶接継手での疲労寿命を,確実に通常組織の鋼
の1/2以下とするためには,圧延後に加速冷却を施
し,かつ,焼戻しを施さないか,焼戻しを施す場合は加
熱温度を600℃以下にすることがより好ましい。
When tempering is performed after rolling or after further accelerated cooling after rolling, the heating temperature is limited to 300 ° C. or higher and A c1 transformation point or lower. Heating temperature for tempering is 3
If the temperature is lower than 00 ° C., the effect of tempering on the material is not sufficient, and the significance of tempering is lost. On the other hand, when the heating temperature is A
Exceeding the c1 transformation point is not preferable because an austenite phase is formed and the ultrafine grain structure is eliminated. Therefore, in the present invention, the heating temperature in tempering is limited to 300 ° C. to the A c1 transformation point. The effect on the material of the tempering holding time and cooling conditions is very small compared to the heating temperature.
Although it is not necessary to specify this in a practical condition range, in order to suppress the coarsening of the structure, it is more preferable to use a cooling method of cooling at a cooling rate higher than or equal to cooling, and the holding time is set at the heating temperature. Is less than 500h, 48h or less, 500
When the temperature exceeds ℃, it is preferably 4 hours or less. In order to ensure that the fatigue life of the lap welded joint is less than half that of a normal structure steel with emphasis on fatigue characteristics, accelerated cooling after rolling and tempering should be performed. When performing tempering, the heating temperature is more preferably set to 600 ° C. or lower.

【0033】以上が,本発明の目的とする,混粒度の極
めて少ない,平均フェライト粒径が1〜3μm以下の超
細粒組織を得るための,製造方法に関わる要件の限定理
由であるが,該組織を得るために,また,引張強度が約
490MPa級以上の高張力鋼において,極めて優れた
靭性,脆性き裂伝播停止特性を達成し,さらに同時に良
好な溶接継手疲労特性を達成するためには,組織要件と
は別に,化学組成も同時に限定する必要がある。
The above is the reason for limiting the requirements relating to the production method for obtaining an ultrafine grain structure having an extremely small mixed grain size and an average ferrite grain size of 1 to 3 μm or less, which is the object of the present invention. In order to obtain this structure, and to achieve extremely excellent toughness and brittle crack propagation arrestability in high-tensile steel with a tensile strength of about 490 MPa or higher, and at the same time, to achieve good weld joint fatigue properties. In addition to the organizational requirements, it is necessary to limit the chemical composition at the same time.

【0034】以下に化学組成の限定理由を述べる。先
ず,Cは鋼の強度を向上させる有効な成分として含有す
るもので,0.01%未満では構造用鋼に必要な強度の
確保が困難であるが,0.20%を超える過剰の含有は
母材及び溶接部の靱性や耐溶接割れ性を低下させるた
め,0.01〜0.2%の範囲とした。次に,Siは,
脱酸元素として,また,母材の強度確保に有効な元素で
あるが,0.01%未満の含有では脱酸が不十分とな
り,また強度確保に不利である。逆に1%を超える過剰
の含有は粗大な酸化物を形成して延性や靱性の劣化を招
く。そこで,Siの範囲は0.01〜1%とした。ま
た,Mnは母材の強度,靱性の確保に必要な元素であ
り,最低限0.1%以上含有する必要があるが,過剰に
含有すると,硬質相の生成や粒界脆化等により母材靭性
や溶接部の靱性,さらに溶接割れ性など劣化させるた
め,材質上許容できる範囲で上限を2%とした。
The reasons for limiting the chemical composition are described below. First, C is contained as an effective component for improving the strength of steel. If it is less than 0.01%, it is difficult to secure the strength necessary for structural steel, but if it is more than 0.20%, it is excessive. In order to reduce the toughness and weld crack resistance of the base metal and the welded portion, the content is set in the range of 0.01 to 0.2%. Next, Si
As a deoxidizing element, it is an element effective for securing the strength of the base material. However, if the content is less than 0.01%, deoxidation becomes insufficient and disadvantageous for securing the strength. Conversely, an excessive content exceeding 1% forms a coarse oxide and causes deterioration of ductility and toughness. Therefore, the range of Si is set to 0.01 to 1%. Further, Mn is an element necessary for securing the strength and toughness of the base material, and it is necessary to contain at least 0.1% or more. Since the material toughness, the toughness of the welded part, and the weld cracking property are deteriorated, the upper limit is set to 2% as far as the material allows.

【0035】Alは脱酸,加熱オーステナイト粒径の細
粒化等に有効な元素であるが,効果を発揮するためには
0.001%以上含有する必要がある。一方,0.1%
を超えて過剰に含有すると,粗大な酸化物を形成して延
性を極端に劣化させるため,0.001%〜0.1%の
範囲に限定する必要がある。NはAlやTiと結びつい
てオーステナイト粒微細化に有効に働くため,微量であ
れば機械的特性向上に有効である。また,工業的に鋼中
のNを完全に除去することは不可能であり,必要以上に
低減することは製造工程に過大な負荷をかけるため好ま
しくない。そのため,工業的に制御が可能で,製造工程
への負荷が許容できる範囲として下限を0.001%と
する。過剰に含有すると,固溶Nが増加し,延性や靱性
に悪影響を及ぼす可能性があるため,許容できる範囲と
して上限を0.01%とする。
Al is an element effective for deoxidation, grain refinement of the heated austenite grain size, etc., but it is necessary to contain 0.001% or more in order to exhibit the effect. On the other hand, 0.1%
If it is contained in excess of more than 0.001%, a coarse oxide is formed and ductility is extremely deteriorated, so it is necessary to limit the content to the range of 0.001% to 0.1%. N is effective in refining austenite grains in combination with Al and Ti, so that a small amount of N is effective in improving mechanical properties. Further, it is impossible to industrially completely remove N in steel, and it is not preferable to reduce N more than necessary because an excessive load is applied to a manufacturing process. Therefore, the lower limit is set to 0.001% as a range in which industrial control is possible and load on the manufacturing process can be tolerated. If it is contained excessively, the amount of dissolved N increases, which may adversely affect ductility and toughness. Therefore, the upper limit is set to 0.01% as an allowable range.

【0036】Pは不純物元素であり,鋼の諸特性に対し
て有害であるため,極力低減する方が好ましいが,本発
明においては,実用上悪影響が許容できる量として,上
限を0.02%とする。Sも基本的には不純物元素であ
り,特に鋼の延性,靱性さらには疲労特性に悪影響が大
きいため,低減が好ましい。実用上,悪影響が許容でき
る量として,上限を0.01%に限定する。ただし,S
は微量範囲では,微細硫化物を形成して溶接熱影響部
(HAZ)靱性向上に寄与するため,HAZ靱性を考慮
する場合は,0.0005〜0.005%の範囲で添加
することは好ましい。
P is an impurity element, and is harmful to various properties of steel. Therefore, it is preferable to reduce P as much as possible. However, in the present invention, the upper limit is set to 0.02% as a practically allowable amount. And S is also basically an impurity element, and particularly has a large adverse effect on the ductility, toughness and fatigue characteristics of steel. The upper limit is limited to 0.01% as a practically allowable amount. Where S
In the trace amount range, fine sulfides are formed to contribute to the improvement of the weld heat affected zone (HAZ) toughness. Therefore, when considering the HAZ toughness, it is preferable to add 0.0005 to 0.005% in the range. .

【0037】以上が本発明の鋼材の基本成分の限定理由
であるが,本発明においては,強度・靱性の調整のため
に,必要に応じて,Ni,Cu,Cr,Mo,W,T
i,V,Nb,Zr,Ta,Bの1種または2種以上を
含有することができる。
The above is the reason for limiting the basic components of the steel material of the present invention. In the present invention, Ni, Cu, Cr, Mo, W, T
One, two or more of i, V, Nb, Zr, Ta, and B can be contained.

【0038】Niは母材の強度と靱性を同時に向上で
き,非常に有効な元素であるが,効果を発揮するために
は0.1%以上の添加が必要である。Ni量は増加する
ほど母材の強度・靱性を向上させるが,5%を超えるよ
うな過剰な添加では,効果が飽和する一方で,HAZ靱
性や溶接性の劣化を生じる懸念があり,また,高価な元
素であるため,経済性も考慮して,本発明においてはN
iの上限を5%とする。CuもNiとほぼ同様の効果を
有する元素であるが,効果を発揮するるためには0.1
%以上の添加が必要であり,1.5%超の添加では熱間
加工性やHAZ靱性に問題を生じるため,本発明におい
ては,0.1〜1.5%の範囲に限定する。
Ni is a very effective element that can improve the strength and toughness of the base material at the same time, but it is necessary to add 0.1% or more to exhibit its effect. As the amount of Ni increases, the strength and toughness of the base material improve. However, an excessive addition of more than 5% saturates the effect, but may cause deterioration of HAZ toughness and weldability. Since it is an expensive element, in the present invention, N
The upper limit of i is set to 5%. Cu is an element having almost the same effect as Ni, but in order to exhibit the effect, 0.1%
% Or more is required, and if added over 1.5%, there is a problem in hot workability and HAZ toughness. Therefore, in the present invention, the content is limited to the range of 0.1 to 1.5%.

【0039】Crは固溶強化,析出強化により強度向上
に有効な元素であり,効果を生じるためには0.01%
以上必要であるが,Crは過剰に添加すると焼き入れ硬
さの増加,粗大析出物の形成等を通して,母材やHAZ
の靱性に悪影響をおよぼすため,許容できる範囲とし
て,上限を2%に限定する。Mo,WもCrと同様に,
固溶強化,析出強化によって強度を高めるに有効な元素
であるが,各々,効果を発揮でき,他特性に悪影響をお
よぼさない範囲として,Mo,Wともに,0.01〜2
%に限定する。
Cr is an element effective for improving the strength by solid solution strengthening and precipitation strengthening.
However, if Cr is added excessively, the base metal and HAZ are increased through the increase of quenching hardness, formation of coarse precipitates, etc.
Since the toughness of the steel is adversely affected, the upper limit is limited to 2% as an allowable range. Mo and W are similar to Cr,
These elements are effective for increasing the strength by solid solution strengthening and precipitation strengthening. However, Mo and W are both 0.01 to 2 as far as they can exert their effects and do not adversely affect other properties.
%.

【0040】Tiはオーステナイト中に安定なTiNを
形成して母材だけでなくHAZの加熱オーステナイト粒
径微細化に寄与するため,強度向上に加えて靱性向上に
も有効な元素である。ただし,その効果を発揮するため
には,0.003%以上含有させる必要がある一方,
0.1%を超えて過剰に含有させると,粗大なTiNを
形成して靱性を逆に劣化させるため,本発明において
は,0.003〜0.1%の範囲に限定する。Vは析出
強化により母材の強度向上に有効な元素であるが,効果
を発揮するためには0.005%以上必要である。添加
量が多くなるほど強化量も増加するが,それに伴って,
母材靱性,HAZ靱性が劣化し,かつ,析出物が粗大化
して強化の効果も飽和する傾向となるため,強化量に対
して靱性劣化が小さい範囲として,上限を0.5%とす
る。
Since Ti forms stable TiN in austenite and contributes to refinement of the heated austenite grain size of the HAZ as well as the base material, Ti is an element effective for improving the toughness as well as the strength. However, in order to exhibit the effect, it is necessary to contain 0.003% or more.
If it is contained in excess of 0.1%, coarse TiN is formed and toughness is adversely deteriorated. Therefore, in the present invention, the content is limited to the range of 0.003 to 0.1%. V is an element effective for improving the strength of the base material by precipitation strengthening, but in order to exhibit the effect, 0.005% or more is necessary. As the amount of addition increases, the amount of reinforcement also increases.
Since the base material toughness and the HAZ toughness are deteriorated, and the precipitates tend to be coarse and the effect of strengthening tends to be saturated, the upper limit is set to 0.5% as a range where the toughness deterioration is small with respect to the strengthening amount.

【0041】Nbは析出強化および変態強化により微量
で高強度化に有効な元素であり,また,オーステナイト
の加工・再結晶挙動に大きな影響を及ぼすため,母材靱
性向上にも有効である。効果を発揮するためには,0.
003%以上は必要である。ただし,0.2%を超えて
過剰に添加すると,靱性を極端に劣化させるため,本発
明においては,0.003〜0.2%の範囲に限定す
る。Zrも主として析出強化により強度向上に有効な元
素であるが,効果を発揮するためには0.003%以上
必要である。一方,0.1%を超えて過剰に添加すると
粗大な析出物を形成して靱性に悪影響をおよぼすため,
上限を0.1%とする。TaもNbと同様の効果を有
し,適正量の添加により強度,靱性の向上に寄与する
が,0.005%未満では効果が明瞭には生ぜず,0.
2%を超える過剰な添加では粗大な析出物に起因した靱
性劣化が顕著となるため,範囲を0.005〜0.2%
とする。
Nb is an element that is effective in increasing the strength in a trace amount by precipitation strengthening and transformation strengthening, and also has a significant effect on the processing and recrystallization behavior of austenite, and is therefore effective in improving the base material toughness. In order to achieve the effect,
003% or more is necessary. However, if added in excess of 0.2%, the toughness will be extremely deteriorated. Therefore, in the present invention, the content is limited to the range of 0.003 to 0.2%. Zr is also an element that is effective for improving the strength mainly by precipitation strengthening, but is required to be 0.003% or more to exhibit the effect. On the other hand, if it is added in excess of 0.1%, coarse precipitates are formed and the toughness is adversely affected.
The upper limit is set to 0.1%. Ta also has the same effect as Nb, and when added in an appropriate amount, contributes to improvement in strength and toughness.
If the addition exceeds 2%, toughness deterioration due to coarse precipitates becomes remarkable, so the range is 0.005 to 0.2%.
And

【0042】Bは極微量で焼入性を高める元素であり,
高強度化に有効な元素である。Bは固溶状態でオーステ
ナイト粒界に偏析することによって焼入性を高めるた
め,極微量でも有効であるが,0.0002%未満では
粒界への偏析量を十分に確保できないため,焼入性向上
効果が不十分となったり,効果にばらつきが生じたりし
やすくなるため好ましくない。一方,0.005%を超
えて添加すると,鋼片製造時や再加熱段階で粗大な析出
物を形成する場合が多いため,焼入性向上効果が不十分
となったり,鋼片の割れや析出物に起因した靱性劣化を
生じる危険性も増加する。そのため,本発明において
は,Bの範囲を0.0002〜0.005%とする。
B is an element that enhances hardenability in a very small amount.
It is an effective element for increasing strength. B is segregated at the austenite grain boundaries in a solid solution state to enhance hardenability by increasing the hardenability. Therefore, even a very small amount is effective, but if it is less than 0.0002%, the amount of segregation at the grain boundaries cannot be sufficiently ensured. This is not preferable because the effect of improving the performance is likely to be insufficient or the effect tends to vary. On the other hand, if added in excess of 0.005%, coarse precipitates are often formed during the production of the slab or during the reheating stage, so that the effect of improving hardenability becomes insufficient, and The risk of toughness degradation due to precipitates also increases. Therefore, in the present invention, the range of B is set to 0.0002 to 0.005%.

【0043】さらに,本発明においては,延性の向上,
継手靱性の向上のために,必要に応じて,Mg,Ca,
Yの1種または2種以上を含有することができる。M
g,Ca,Yはいずれも硫化物の熱間圧延中の展伸を抑
制して延性特性向上に有効である。酸化物を微細化させ
て継手靱性の向上にも有効に働きく。その効果を発揮す
るための下限の含有量は,Mgは0.0005%,Ca
は0.0005%,Yは0.005%である。一方,過
剰に含有すると,硫化物や酸化物の粗大化を生じ,延
性,靱性,さらに疲労特性の劣化を招くため,上限を各
々,Mg,Caは0.01%,Yは0.1%とする。
Further, in the present invention, improvement of ductility,
To improve the joint toughness, Mg, Ca,
One or more kinds of Y can be contained. M
All of g, Ca, and Y are effective for suppressing ductile expansion of sulfide during hot rolling and improving ductility. It works effectively to improve the joint toughness by making the oxide finer. The lower limit contents for exhibiting the effect are 0.0005% of Mg,
Is 0.0005% and Y is 0.005%. On the other hand, if it is contained excessively, sulfides and oxides are coarsened and the ductility, toughness and fatigue properties are deteriorated. Therefore, the upper limits are respectively 0.01% for Mg and Ca and 0.1% for Y. And

【0044】[0044]

【実施例】次に,本発明の効果を実施例によってさらに
具体的に述べる。実施例に用いた供試鋼の化学組成を表
1,2に示す。各供試鋼は造塊後,分塊圧延により,あ
るいは連続鋳造により鋼片となしたものである。表1,
2の内,鋼片番号1〜10は本発明の化学組成範囲を満
足しており,鋼片番号11〜13は本発明の化学組成範
囲を満足していない。
Next, the effects of the present invention will be described more specifically with reference to examples. Tables 1 and 2 show the chemical compositions of the test steels used in the examples. Each test steel was made into a slab by ingot slab, by slab rolling, or by continuous casting. Table 1,
Among 2, the billet numbers 1 to 10 satisfy the chemical composition range of the present invention, and the billet numbers 11 to 13 do not satisfy the chemical composition range of the present invention.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】表1,2の化学組成の鋼片を表3,4,5
に示す条件により板厚25mmの鋼板に製造し,室温の
引張特性,2mmVノッチシャルピー衝撃特性,脆性き
裂の伝播停止特性としてESSO特性,さらに溶接継手
の疲労特性を調査した。 なお,熱間圧延前の鋼片段階
での組織(組織分率,フェライト粒径)は,鋳造まま
か,あるいは焼きならし,焼入焼戻し処理を適宜施すこ
とによって調整した。
The steel slabs having the chemical compositions shown in Tables 1 and 2 are shown in Tables 3, 4 and 5
The steel plate was manufactured into a steel plate having a thickness of 25 mm under the conditions shown in (1), and the tensile characteristics at room temperature, the 2 mm V notch Charpy impact characteristics, ESSO characteristics as brittle crack propagation stopping characteristics, and the fatigue characteristics of welded joints were investigated. The structure (structure fraction, ferrite grain size) at the slab stage before hot rolling was adjusted as cast or by normalizing and quenching and tempering as appropriate.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【表4】 [Table 4]

【0050】[0050]

【表5】 [Table 5]

【0051】鋼片段階での組織分率の測定は,表面下1
mm〜板厚中心部まで連続撮影した光学顕微鏡組織写真
を画像解析装置にかけて行った。また,フェライト粒径
は表面下1mm,板厚の1/4,板厚中心部について切
断法により求め,平均した値を用いた。引張試験片及び
シャルピー衝撃試験片は板厚中心部から圧延方向に直角
(C方向)に採取した。 シャルピー衝撃特性は50%
破面遷移温度(vTrs)で評価した。脆性き裂の伝播
停止特性は全厚の温度勾配型ESSO試験で測定し,K
ca値が400kgf・mm-3/2なる温度(TKca400
で評価した。
The measurement of the structure fraction at the billet stage was performed under the surface below
An optical microscope structure photograph taken continuously from mm to the center of the plate thickness was taken by an image analyzer. Further, the ferrite grain size was obtained by a cutting method at 1 mm below the surface, 1/4 of the plate thickness, and the center of the plate thickness, and the average value was used. Tensile test specimens and Charpy impact test specimens were taken from the center of the sheet thickness at right angles to the rolling direction (C direction). 50% Charpy impact properties
Evaluation was made based on the fracture surface transition temperature (vTrs). The propagation arrestability of brittle cracks was measured by a temperature gradient type ESSO test for all thicknesses.
ca value 400kgf · mm -3/2 becomes temperature (T Kca400)
Was evaluated.

【0052】疲労試験は,構造物の溶接止端部から疲労
き裂が発生し,母材部を伝播する場合の疲労特性を評価
するために,図1に示す廻し溶接継手について行った。
試験片は,鋼板から鋼板長手方向長さ:300mm,幅
方向長さ:80mm,板厚:25mm(全厚),のサイ
ズで試験板を採取し,幅:10mm,長さ:30mm,
高さ:30mmのリブ板を炭酸ガス溶接(CO2 溶接)
により,試験板の中央に廻し溶接で溶接した。この際の
炭酸ガス溶接は,化学組成が,C:0.06mass
%,Si:0.5mass%,Mn:1.4mass
%,である1.4mm径の溶接ワイヤを用いて,電流:
270A,電圧:30V,溶接速度:20cm/min
で行った。疲労試験は,荷重支点のスパンを,下スパ
ン:70mm,上スパン:220mmとして,最大荷重
(Pmax):5500kgfで応力比(R):0.1
の繰り返し応力負荷を加え,疲労寿命を測定した。各鋼
板の機械的性質を表6に示す。
The fatigue test was performed on the circular welded joint shown in FIG. 1 in order to evaluate the fatigue characteristics when a fatigue crack was generated from the weld toe of the structure and propagated through the base material.
A test piece was sampled from a steel plate at a length of 300 mm in the longitudinal direction of the steel sheet, a length of 80 mm in the width direction, a thickness of 25 mm (all thickness), and a width of 10 mm, a length of 30 mm,
Height: Carbon dioxide welding of 30mm rib plate (CO 2 welding)
And welded by turning around the center of the test plate. In this case, the carbon dioxide welding was performed with a chemical composition of C: 0.06 mass.
%, Si: 0.5 mass%, Mn: 1.4 mass
%, Using a 1.4 mm diameter welding wire, the current:
270A, voltage: 30V, welding speed: 20cm / min
I went in. In the fatigue test, the span of the load fulcrum was 70 mm for the lower span and 220 mm for the upper span, and the maximum load (Pmax) was 5500 kgf and the stress ratio (R) was 0.1.
, And the fatigue life was measured. Table 6 shows the mechanical properties of each steel sheet.

【0053】[0053]

【表6】 [Table 6]

【0054】表3,4,5,6のうちの鋼板番号A1〜
A14は,本発明の化学組成を有する鋼片番号1〜10
を用いて,本発明の製造方法により製造して,本発明の
要件を全て満足させた鋼板であり,いずれも良好な継手
疲労特性と強度,靭性(2mmVノッチシャルピー衝撃
特性),さらに脆性き裂伝播停止特性(ESSO試験特
性)とが同時に達成されていることが明らかである。
In Tables 3, 4, 5, and 6, steel plate numbers A1 to A1
A14 is a slab number 1 to 10 having the chemical composition of the present invention.
A steel sheet that has been manufactured by the manufacturing method of the present invention and that satisfies all of the requirements of the present invention, and has good joint fatigue properties, strength, toughness (2 mmV notch Charpy impact properties), and brittle cracks. It is clear that the propagation stop characteristics (ESSO test characteristics) are simultaneously achieved.

【0055】一方,鋼板番号B1〜B10は,本発明の
いずれかの要件を満足していない方法により製造された
比較の鋼板であり,本発明によ製造された鋼板に比べ
て,靱性,脆性き裂伝播停止特性,継手疲労特性の一部
あるいは全てが劣っていることが明白である。鋼板番号
B1〜B3は,化学組成が本発明を満足していないため
に,本発明の方法で製造しても良好な特性を達成できな
かった例である。
On the other hand, steel sheet numbers B1 to B10 are comparative steel sheets manufactured by a method not satisfying any of the requirements of the present invention, and have higher toughness and brittleness than the steel sheets manufactured according to the present invention. It is clear that some or all of the crack arrest characteristics and joint fatigue characteristics are inferior. Steel sheet numbers B1 to B3 are examples in which good properties could not be achieved even when manufactured by the method of the present invention because their chemical compositions did not satisfy the present invention.

【0056】すなわち,鋼板番号B1は,C量が過剰な
ために,超細粒化は達成されているものの,靱性(vT
rs),脆性き裂伝播停止特性,継手疲労特性のいずれ
もが,本発明に比べて大幅に劣っている。鋼板番号B2
は,Mn量が過剰なために,超細粒化は達成されている
ものの,脆性き裂伝播停止特性が大きく劣化している。
靱性,継手疲労特性も,本発明に比べて明確に劣ってい
る。鋼板番号B3は,不純物としてのP量が過剰に含有
されているために,超細粒化は達成されているものの,
靱性,脆性き裂伝播停止特性,継手疲労特性のいずれも
が,本発明に比べて大幅に劣っている。
That is, in the steel sheet number B1, although ultra-fine graining was achieved due to the excessive amount of C, the toughness (vT
rs), brittle crack propagation arresting properties, and joint fatigue properties are all significantly inferior to those of the present invention. Steel plate number B2
Although ultra-fine graining was achieved due to the excessive amount of Mn, the brittle crack propagation arresting property was greatly deteriorated.
The toughness and joint fatigue properties are also clearly inferior to those of the present invention. In steel sheet No. B3, although ultra-fine graining was achieved due to excessive P content as an impurity,
All of the toughness, brittle crack propagation arresting properties and joint fatigue properties are significantly inferior to those of the present invention.

【0057】鋼板番号B4〜B10は,化学組成は本発
明を満足しているものの,表3,4,5に関わる製造方
法の一部が本発明を満足していないために良好な特性を
達成できなかった例である。すなわち,鋼板番号B4
は,昇温圧延前の鋼片段階での組織要件が本発明を満足
していない,すなわち,フェライトが20%以上存在す
る組織において,該フェライトの粒径が20μm超と粗
大になっているため,超細粒化が十分でなく靱性,脆性
き裂伝播停止特性,継手疲労特性のいずれもが,本発明
に比べて大幅に劣っている。鋼板番号B5は,圧延温度
が過大で,開始温度がAc3変態点を超えてしまっている
ため,オーステナイトの熱間圧延となってしまってお
り,本発明のフェライトの加工・再結晶を利用した場合
に比べて,最終のフェライト粒径が顕著に粗大となって
いる。そのため,靱性,脆性き裂伝播停止特性,継手疲
労特性のいずれもが,本発明に比べて大幅に劣ってい
る。
Although the steel sheets Nos. B4 to B10 satisfy the present invention in chemical composition, good properties are achieved because some of the production methods relating to Tables 3, 4, and 5 do not satisfy the present invention. This is an example that could not be done. That is, steel plate number B4
Is because the microstructure requirement at the slab stage before the temperature raising rolling does not satisfy the present invention, that is, in the microstructure in which ferrite is present in an amount of 20% or more, the grain size of the ferrite is over 20 μm and coarse However, ultra-fine graining was not sufficient, and all of the toughness, brittle crack propagation arrestability, and joint fatigue properties were significantly inferior to those of the present invention. Since the steel sheet number B5 has an excessively high rolling temperature and a starting temperature exceeding the A c3 transformation point, austenite is hot-rolled, and the ferrite processing and recrystallization of the present invention was used. Compared with the case, the final ferrite grain size is remarkably coarse. Therefore, all of the toughness, brittle crack propagation arrestability, and joint fatigue properties are significantly inferior to those of the present invention.

【0058】鋼板番号B6は,圧延温度が低すぎて,フ
ェライト単相域での加工に終始しており,本発明を特徴
づけている,二相域加工による超細粒化の発現効果を活
用できておらず,最終フェライト粒径は微細になってい
ない。従って,靱性,脆性き裂伝播停止特性が著しく劣
る。鋼板番号B7は,圧延に至るまでの昇温速度が過少
であるため,オーステナイトが昇温中に平衡状態に近い
状態で生成するため,圧延中での微細・高密度な生成が
生ぜず,その結果,超細粒化が十分でなく,靱性,脆性
き裂伝播停止特性,継手疲労特性のいずれもが本発明に
比べて劣っている。
For the steel sheet No. B6, the rolling temperature is too low, and the processing in the ferrite single-phase region has been started all the time. No final ferrite grain size is obtained. Therefore, the toughness and brittle crack propagation arresting properties are remarkably inferior. In steel sheet No. B7, the austenite is formed in a state close to the equilibrium state during the temperature rise because the heating rate until rolling is too low, so that fine and high-density formation during rolling does not occur. As a result, ultrafine graining was not sufficient, and all of the toughness, brittle crack propagation arrestability, and joint fatigue properties were inferior to those of the present invention.

【0059】鋼板番号B8は,圧延における累積圧下率
が不足しているため,再結晶が十分生じておらず,その
結果,平均粒径が粗大であり,特に,靱性,脆性き裂伝
播停止特性の低下が大きい。鋼板番号B9は,圧延中に
鋼板の温度が高くなりすぎた例であり,超細粒化が十分
でないため,靱性,脆性き裂伝播停止特性,継手疲労特
性のいずれもが本発明に比べて劣っている。鋼板番号B
10は,圧延中に鋼板の温度が低くなりすぎた例であ
り,再結晶の神鋼が不十分なために,フェライト粒径が
若干粗大となっており,特に,靱性,脆性き裂伝播停止
特性が本発明に比べて大きく劣っている。
The steel sheet No. B8 did not sufficiently recrystallize because of the insufficient rolling reduction in rolling, and as a result, the average grain size was coarse. The drop is large. Steel sheet number B9 is an example in which the temperature of the steel sheet was excessively high during rolling. Since ultra-fine graining was not sufficient, all of the toughness, brittle crack propagation arrestability, and joint fatigue properties were lower than those of the present invention. Inferior. Steel plate number B
No. 10 is an example in which the temperature of the steel sheet became too low during rolling, and the ferrite grain size was slightly coarse due to insufficient recrystallized steel, especially toughness and brittle crack arrestability. However, it is significantly inferior to the present invention.

【0060】以上の実施例から,本発明によれば,極め
て優れた低温靭性,脆性き裂伝播停止特性とを有しなが
ら,優れた継手疲労特性を得ることが可能であることが
明白である。
From the above examples, it is clear that according to the present invention, it is possible to obtain excellent joint fatigue characteristics while having extremely excellent low-temperature toughness and brittle crack propagation stopping characteristics. .

【0061】[0061]

【発明の効果】本発明は,引張強さが約490MPa級
以上の高張力鋼材において,極めて良好な靱性,脆性き
裂伝播停止特性,継手疲労特性を同時に付与するために
有効な手段であり,安全性が重要視される,海洋構造
物,圧力容器,造船,橋梁,建築物,ラインパイプなど
の溶接鋼構造物用鋼材を大幅なコスト上昇を招かずに製
造することを可能にする点で,産業上の有用性は極めて
大きい。
The present invention is an effective means for simultaneously imparting extremely good toughness, brittle crack propagation arresting properties and joint fatigue properties to a high tensile steel material having a tensile strength of about 490 MPa class or more. It is possible to manufacture steel materials for welded steel structures such as marine structures, pressure vessels, shipbuilding, bridges, buildings, line pipes, etc., where safety is important, without incurring a significant cost increase. The industrial utility is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における溶接継手疲労特性評価のため
の,廻し溶接4点曲げ試験方法の概念図である。
FIG. 1 is a conceptual diagram of a turning welding four-point bending test method for evaluating the fatigue characteristics of a welded joint in an example.

フロントページの続き (72)発明者 白幡 浩幸 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4K032 AA01 AA02 AA05 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA39 BA01 BA02 CA01 CD02 CD03Continuing from the front page (72) Inventor Hiroyuki Shirahata Oita, Oita, Oita, Nishi-no-Shi 1 F-term in Nippon Steel Corporation Oita Works (reference) 4K032 AA01 AA02 AA05 AA11 AA12 AA14 AA15 AA16 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA39 BA01 BA02 CA01 CD02 CD03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で,C:0.01〜0.2% Si:0.01〜1% Mn:0.1〜2% Al:0.001〜0.1% N:0.001〜0.01%を含有し,不純物として,
P:0.02%以下,S:0.01%以下を含有し,残
部が鉄および不可避不純物からなり,以下の〜のい
ずれかの組織を有する鋼を,300℃以上を0.1〜5
0℃/sの昇温速度で加熱し, Ac1変態点〜(Ac3変態
点−100℃)の昇温途上で圧延を開始し,累積圧下率
が50〜90%の圧延を行うに際して,圧延中の鋼の温
度が(Ac1変態点−50℃)〜(Ac3変態点−50℃)
の範囲内であることを特徴とする靭性と疲労強度とに優
れた高張力鋼の製造方法。 マルテンサイト単相組織,あるいはベイナイト単相組
織,あるいは両者の混合組織。 フェライトの割合が20%未満であり,且つ,フェラ
イトとマルテンサイト,あるいはフェライトとベイナイ
ト,あるいはフェライト,マルテンサイト,ベイナイト
3者の混合組織。 フェライトの割合が20%以上で,その平均粒径が2
0μm以下であり,且つ,フェライト単相組織,あるい
はフェライトとマルテンサイト,ベイナイト,パーライ
トの内,1種または2種以上からなる混合組織。
1. In mass%, C: 0.01 to 0.2% Si: 0.01 to 1% Mn: 0.1 to 2% Al: 0.001 to 0.1% N: 0.001 ~ 0.01%, as impurities
A steel containing P: 0.02% or less, S: 0.01% or less, the balance being iron and unavoidable impurities, and having any of the following structures:
Heating is performed at a heating rate of 0 ° C / s. Rolling is started while the temperature is rising from the A c1 transformation point to the (A c3 transformation point −100 ° C.). The temperature of the steel during rolling is (A c1 transformation point−50 ° C.) to (A c3 transformation point−50 ° C.)
A method for producing a high-strength steel excellent in toughness and fatigue strength, which is within the range described above. Martensite single phase structure, bainite single phase structure, or a mixed structure of both. A ferrite content of less than 20%, and a mixed structure of ferrite and martensite, or ferrite and bainite, or ferrite, martensite, and bainite. Ferrite content is 20% or more and its average particle size is 2%
0 μm or less and a ferrite single phase structure, or a mixed structure composed of one or more of ferrite and martensite, bainite, and pearlite.
【請求項2】 質量%で,C:0.01〜0.2% Si:0.01〜1% Mn:0.1〜2% Al:0.001〜0.1% N:0.001〜0.01%を含有し,不純物として,
P:0.02%以下,S:0.01%以下を含有し,残
部が鉄および不可避不純物からなり,以下の〜のい
ずれかの組織を有する鋼を,300℃以上を0.1〜5
0℃/sの昇温速度で加熱し,Ac1変態点〜(Ac3変態
点−100℃)の温度で1〜600s保持後,圧延を開
始し,累積圧下率が50〜90%の圧延を行うに際し
て,圧延中の鋼の温度が(Ac1変態点−50℃)〜(A
c3変態点−50℃)の範囲内であることを特徴とする靭
性と疲労強度とに優れた高張力鋼の製造方法。 マルテンサイト単相組織,あるいはベイナイト単相組
織,あるいは両者の混合組織。 フェライトの割合が20%未満であり,且つ,フェラ
イトとマルテンサイト,あるいはフェライトとベイナイ
ト,あるいはフェライト,マルテンサイト,ベイナイト
3者の混合組織。 フェライトの割合が20%以上で,その平均粒径が2
0μm以下であり,且つ,フェライト単相組織,あるい
はフェライトとマルテンサイト,ベイナイト,パーライ
トの内,1種または2種以上からなる混合組織
2. In mass%, C: 0.01 to 0.2% Si: 0.01 to 1% Mn: 0.1 to 2% Al: 0.001 to 0.1% N: 0.001 ~ 0.01%, as impurities
A steel containing P: 0.02% or less, S: 0.01% or less, the balance being iron and unavoidable impurities, and having any of the following structures:
Rolling is started at a heating rate of 0 ° C./s, after holding at a temperature of A c1 transformation point to (A c3 transformation point−100 ° C.) for 1 to 600 s, rolling is started, and a rolling reduction of 50% to 90% is achieved. When performing the rolling, the temperature of the steel during rolling is (A c1 transformation point−50 ° C.) to (A
c3 transformation point −50 ° C.). A method for producing a high-strength steel excellent in toughness and fatigue strength, which is within the range of ( c3 transformation point −50 ° C.). Martensite single phase structure, bainite single phase structure, or a mixed structure of both. A ferrite content of less than 20%, and a mixed structure of ferrite and martensite, or ferrite and bainite, or ferrite, martensite, and bainite. Ferrite content is 20% or more and its average particle size is 2%
0 μm or less, and a ferrite single phase structure, or a mixed structure of ferrite and one or more of martensite, bainite, and pearlite
【請求項3】 圧延終了後,2〜100℃/sの冷却速
度で20℃〜650℃まで加速冷却することを特徴とす
る請求項1または2のいずれかに記載の靱性と疲労強度
とに優れた高張力鋼の製造方法。
3. The toughness and fatigue strength according to claim 1 or 2, wherein after completion of rolling, the steel sheet is accelerated and cooled at a cooling rate of 2 to 100 ° C./s to 20 ° C. to 650 ° C. Excellent method for producing high tensile steel.
【請求項4】 圧延後さらに,加熱温度が300℃以
上,Ac1変態点以下の焼戻しを施すことを特徴とする請
求項1〜3のいずれかに記載の靭性と疲労強度とに優れ
た高張力鋼の製造方法。
4. A high temperature steel with excellent toughness and fatigue strength according to claim 1, further comprising, after rolling, tempering at a heating temperature of 300 ° C. or more and an A c1 transformation point or less. Manufacturing method for tensile steel.
【請求項5】 さらに,質量%で,Ni:0.1〜5% Cu:0.1〜1.5% Cr:0.01〜2% Mo:0.01〜2% W:0.01〜2% Ti:0.003〜0.1% V:0.005〜0.5% Nb:0.003〜0.2% Zr:0.003〜0.1% Ta:0.005〜0.2% B:0.0002〜0.005% の1種または2種以上を含有することを特徴とする請求
項1〜4のいずれかに記載の靭性と疲労強度とに優れた
高張力鋼の製造方法。
5. Ni: 0.1 to 5% Cu: 0.1 to 1.5% Cr: 0.01 to 2% Mo: 0.01 to 2% W: 0.01 by mass% 22% Ti: 0.003 to 0.1% V: 0.005 to 0.5% Nb: 0.003 to 0.2% Zr: 0.003 to 0.1% Ta: 0.005 to 0% High strength steel excellent in toughness and fatigue strength according to any one of claims 1 to 4, wherein the steel contains one or more of 0.2% B: 0.0002 to 0.005%. Manufacturing method.
【請求項6】 さらに,質量%で,Mg:0.0005
〜0.01% Ca:0.0005〜0.01% Y:0.005〜0.1% のうち1種または2種以上を含有することを特徴とする
請求項1〜5のいずれかに記載の靭性と疲労強度とに優
れた高張力鋼の製造方法。
6. Mg: 0.0005 in mass%.
6 to 0.01% Ca: 0.0005 to 0.01% Y: 0.005 to 0.1% A method for producing a high-tensile steel having excellent toughness and fatigue strength as described.
JP2001175091A 2001-06-11 2001-06-11 Method for manufacturing high-tensile steel with excellent toughness and fatigue strength Withdrawn JP2002363644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175091A JP2002363644A (en) 2001-06-11 2001-06-11 Method for manufacturing high-tensile steel with excellent toughness and fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175091A JP2002363644A (en) 2001-06-11 2001-06-11 Method for manufacturing high-tensile steel with excellent toughness and fatigue strength

Publications (1)

Publication Number Publication Date
JP2002363644A true JP2002363644A (en) 2002-12-18

Family

ID=19016284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175091A Withdrawn JP2002363644A (en) 2001-06-11 2001-06-11 Method for manufacturing high-tensile steel with excellent toughness and fatigue strength

Country Status (1)

Country Link
JP (1) JP2002363644A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031765A (en) * 2005-07-26 2007-02-08 Sanoh Industrial Co Ltd High-strength steel pipe and heat treatment method therefor
WO2007097043A1 (en) * 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2012241274A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour resistance, and method for producing the same
JP2012241272A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and toughness of weld heat-affected zone, and method for producing the same
JP2014505170A (en) * 2010-12-28 2014-02-27 ポスコ High strength steel sheet with excellent cryogenic toughness and method for producing the same
WO2016156849A1 (en) * 2015-04-02 2016-10-06 Cambridge Enterprise Limited Martensitic steel alloy with resistance to hydrogen embrittlement
JP2018094599A (en) * 2016-12-14 2018-06-21 丸嘉工業株式会社 Tube material and manufacturing method of the tube material
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding
CN113913696A (en) * 2021-10-13 2022-01-11 新余钢铁股份有限公司 420MPa grade high-rise building steel plate and production method thereof
CN114150231A (en) * 2021-11-16 2022-03-08 中联先进钢铁材料技术有限责任公司 Steel plate with high fracture toughness and 420MPa grade for marine platform and preparation method
JP2022541704A (en) * 2020-06-19 2022-09-27 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method
CN116875901A (en) * 2023-07-24 2023-10-13 鞍钢股份有限公司 Marine 720 MPa-level steel plate with excellent fatigue performance and manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031765A (en) * 2005-07-26 2007-02-08 Sanoh Industrial Co Ltd High-strength steel pipe and heat treatment method therefor
US8273195B2 (en) 2005-07-26 2012-09-25 Sanoh Kogyo Kabushiki Kaisha High-strength steel tube and heat treatment method of heat-treating the same
WO2007097043A1 (en) * 2006-02-27 2007-08-30 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
US8142576B2 (en) 2006-02-27 2012-03-27 Aisin Seiki Kabushiki Kaisha Clutch member and process for manufacturing the same
JP2014505170A (en) * 2010-12-28 2014-02-27 ポスコ High strength steel sheet with excellent cryogenic toughness and method for producing the same
US9255305B2 (en) 2010-12-28 2016-02-09 Posco High-strength steel sheet having superior toughness at cryogenic temperatures, and method for manufacturing same
JP2012241273A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour-resistance and method for producing the same
JP2012241274A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and sour resistance, and method for producing the same
JP2012241272A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp High strength linepipe superior in collapse resistance and toughness of weld heat-affected zone, and method for producing the same
WO2016156849A1 (en) * 2015-04-02 2016-10-06 Cambridge Enterprise Limited Martensitic steel alloy with resistance to hydrogen embrittlement
JP2018094599A (en) * 2016-12-14 2018-06-21 丸嘉工業株式会社 Tube material and manufacturing method of the tube material
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel
CN108677084B (en) * 2018-04-08 2020-11-03 敬业钢铁有限公司 Production method of low-inclusion clean steel
JP2020204072A (en) * 2019-06-17 2020-12-24 日本製鉄株式会社 High strength steel sheet for high heat input welding
JP7381838B2 (en) 2019-06-17 2023-11-16 日本製鉄株式会社 steel plate
JP2022541704A (en) * 2020-06-19 2022-09-27 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method
JP7297096B2 (en) 2020-06-19 2023-06-23 ヒュンダイ スチール カンパニー Shaped steel and its manufacturing method
CN113913696A (en) * 2021-10-13 2022-01-11 新余钢铁股份有限公司 420MPa grade high-rise building steel plate and production method thereof
CN113913696B (en) * 2021-10-13 2022-11-25 新余钢铁股份有限公司 420MPa grade high-rise building steel plate and production method thereof
CN114150231A (en) * 2021-11-16 2022-03-08 中联先进钢铁材料技术有限责任公司 Steel plate with high fracture toughness and 420MPa grade for marine platform and preparation method
CN116875901A (en) * 2023-07-24 2023-10-13 鞍钢股份有限公司 Marine 720 MPa-level steel plate with excellent fatigue performance and manufacturing method
CN116875901B (en) * 2023-07-24 2024-06-18 鞍钢股份有限公司 Marine 720 MPa-level steel plate with excellent fatigue performance and manufacturing method

Similar Documents

Publication Publication Date Title
EP2006407B1 (en) High-strength steel plate with superior crack arrestability
JP3860763B2 (en) Thick steel plate with excellent fatigue strength and its manufacturing method
JP2001123245A (en) High toughness and high tensile strength steel excellent in weld zone toughness and producing method therefor
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
WO2016119500A1 (en) Steel plate having high crack-arresting performance, and manufacturing method thereof
JP6573059B1 (en) Nickel-containing steel sheet
JP2003253331A (en) Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
JP2002363644A (en) Method for manufacturing high-tensile steel with excellent toughness and fatigue strength
JPH10168542A (en) High strength steel excellent in low temperature toughness and fatigue strength and its production
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP2000129392A (en) High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2004143504A (en) Thick steel member having excellent fatigue crack propagating resistance, and production method therefor
JPH0453929B2 (en)
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2019081930A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP2001123222A (en) Manufacturing method of high-toughness and high-tensile steel
EP2860276B1 (en) Steel plate
JP2005002372A (en) Method for producing thick steel plate having small anisotropic characteristic and variation in material quality
JP2002047531A (en) High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JP2000008123A (en) Production of high tensile strength steel excellent in low temperature toughness
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP2003119543A (en) Steel material for welded structure with little degradation of toughness caused by plastic strain, and manufacturing method therefor
JP2002129280A (en) Ni ALLOY STEEL FOR LOW TEMPERATURE AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902