Nothing Special   »   [go: up one dir, main page]

JP2002358959A - Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same - Google Patents

Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same

Info

Publication number
JP2002358959A
JP2002358959A JP2001095981A JP2001095981A JP2002358959A JP 2002358959 A JP2002358959 A JP 2002358959A JP 2001095981 A JP2001095981 A JP 2001095981A JP 2001095981 A JP2001095981 A JP 2001095981A JP 2002358959 A JP2002358959 A JP 2002358959A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode active
active material
acid
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001095981A
Other languages
Japanese (ja)
Inventor
Takao Noda
孝男 野田
Akihiko Shirakawa
彰彦 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001095981A priority Critical patent/JP2002358959A/en
Publication of JP2002358959A publication Critical patent/JP2002358959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active substance that has suppressed elusion of Mn from the manganic acid system positive electrode active substance and can achieve excellent battery characteristics, and a positive electrode paste using the same, and a positive electrode made of this paste and a non-aqueous electrolyte secondary battery using the positive electrode. SOLUTION: In the manufacturing method of a positive electrode active substance that contains a conductive polymer having a π electron conjugate system structure and a manganese oxide, the manganese oxide is a complex oxide made of mainly lithium, manganese and oxygen, and the polymeric compound is chemically oxidation-polymerized and the conductive polymer is coated on the surface of the complex oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極活物質とその
製造方法並びに正極活物質を用いた正極用ペースト、正
極、非水電解質二次電池に関する。
The present invention relates to a positive electrode active material, a method for producing the same, a positive electrode paste using the positive electrode active material, a positive electrode, and a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】非水電解質二次電池(又は「非水二次電
池」と略する。)の正極活物質には、低コストで資源的
な制約がなく安全性に優れたスピネル構造を有するLi
Mn24やMn元素を他の元素Mで置換したLixMn3
-x-yMyO4、層状構造を有するLiMnO2等が現在検
討されている。しかしながら、これらMn系正極活物質
は充電と放電を繰り返すとMnが溶出して電気容量の低
下を起こし、また高温下ではさらに容量低下が激しくな
る等の大きな問題を抱えている。係る問題を解決する方
法として、ポリマーと複合化させる方法が提案されてい
る。
2. Description of the Related Art A positive electrode active material of a non-aqueous electrolyte secondary battery (or abbreviated as "non-aqueous secondary battery") has a spinel structure which is low in cost, free from resource restrictions and excellent in safety. Li
LixMn 3 in which Mn 2 O 4 or Mn element is replaced by another element M
-x-yMyO 4 , LiMnO 2 having a layered structure and the like are currently being studied. However, these Mn-based positive electrode active materials have a serious problem that, when charge and discharge are repeated, Mn is eluted and the electric capacity is reduced, and the capacity is further greatly reduced at high temperatures. As a method of solving such a problem, a method of forming a composite with a polymer has been proposed.

【0003】例えば、特開平5−290618号公報に
はポリアニリン、同置換誘導体やポリチオフェン誘導体
の可溶性導電性高分子で被覆されたインタカレート材料
/可溶性導電性高分子材料複合体が開示されており、そ
して同高分子を溶解させた溶液に正極活物質を分散後、
溶解度の低い溶媒を添加して正極活物質と共沈させる製
造方法が提案されているが、この方法で得られた複合体
では、正極活物質表面を均一に被覆できないので、充電
と放電を繰り返すとMnが溶出して電気容量の低下を起
こしてしまい、十分な改善策になっていない。
For example, JP-A-5-290618 discloses an intercalating material / soluble conductive polymer material composite coated with a soluble conductive polymer of polyaniline, the same substituted derivative and a polythiophene derivative. After dispersing the positive electrode active material in a solution in which the polymer is dissolved,
A production method in which a solvent having low solubility is added to coprecipitate with the positive electrode active material has been proposed.However, in the composite obtained by this method, the surface of the positive electrode active material cannot be uniformly coated, so that charging and discharging are repeated. And Mn are eluted to cause a decrease in electric capacity, which is not a sufficient improvement measure.

【0004】特開平11−40157号公報には、遷移
元素とリチウムとの複合酸化物の粒子表面にポリビニー
ルアルコール等の水溶性高分子で処理する電池用電極及
びその製造方法が提案されているが、該水溶性高分子と
前記複合酸化物との濡れ性が低いので正極活物質表面の
被覆が不充分になってしまう上に、電気分解しやすいの
で問題であった。
Japanese Patent Application Laid-Open No. 11-40157 proposes a battery electrode in which the surface of a composite oxide particle of a transition element and lithium is treated with a water-soluble polymer such as polyvinyl alcohol, and a method for producing the same. However, since the wettability between the water-soluble polymer and the composite oxide is low, the coating on the surface of the positive electrode active material becomes insufficient, and furthermore, there is a problem that electrolysis easily occurs.

【0005】特開昭63−102162号公報には、正
極が導電性高分子及び無機カルコゲナイト、或いは導電
性高分子及び無機酸化物の複合体が開示されており、導
電性高分子としては具体的にアニリン又はピロールの重
合体やそれらの構造を含む共重合体が、無機酸化物とし
て例えばコバルト酸化物が開示されているが、この手法
でマンガン酸化物に導電性高分子を複合化しても被覆が
不十分になってしまいMnが溶出するという問題点があ
った。
Japanese Patent Application Laid-Open No. 63-102162 discloses a conductive polymer and an inorganic chalcogenite or a composite of a conductive polymer and an inorganic oxide for a positive electrode. A polymer containing aniline or pyrrole or a copolymer containing such a structure is disclosed as an inorganic oxide, for example, cobalt oxide. Was insufficient and Mn was eluted.

【0006】特開平9−35716号公報には、マンガ
ン酸化物を活物質とする正極とリチウムを活物質とする
負極とLiCF3SO3又はLiPF3を溶質としかつエ
チレンカーボネート又はエチレンカーボネートを含む混
合溶媒を電解液とする非水電解液とを備えるリチウム電
池において、LiMnO2等のマンガン酸化物にポリア
ニリン、ポリピロール、ポリアセチレン、ポリチオフェ
ン、ポリフェニレンスルフィド及びポリパラフェニレン
よりなる群から選ばれた少なくとも1種のポリマーが添
加された正極活物質が開示されているが、Mnが溶出す
るという問題点があった。
Japanese Patent Application Laid-Open No. 9-35716 discloses a positive electrode using manganese oxide as an active material, a negative electrode using lithium as an active material, a mixture containing LiCF 3 SO 3 or LiPF 3 as a solute and containing ethylene carbonate or ethylene carbonate. And a non-aqueous electrolyte having a solvent as an electrolyte, wherein at least one member selected from the group consisting of polyaniline, polypyrrole, polyacetylene, polythiophene, polyphenylene sulfide and polyparaphenylene on a manganese oxide such as LiMnO 2 . Although a positive electrode active material to which a polymer is added is disclosed, there is a problem that Mn is eluted.

【0007】また、マンガン酸化物のうちリチウム、マ
ンガン及び酸素を主体とするスピネル型複合酸化物を非
水系二次電池の正極活物質に使用した場合には、その充
放電の際に電解液中に該正極活物質からMnの溶出が起
こるという問題点が指摘されている。その為に、正極活
物質と電解液との接触を避けるために正極活物質表面に
絶縁材料を被覆する方法が採用されているが、この場合
正極活物質間の電子伝導性や正極活物質と電解液との電
気化学反応に伴う電子伝導性が阻害されるため、大きな
問題となっていた。このように従来技術に開示されてい
る被覆方法では、正極活物質表面を均一に被覆できなか
ったり、正極活物質の重量当りの容量が小さくなってし
まい、期待される被覆効果が得られていなかった。
[0007] When a spinel-type composite oxide mainly composed of lithium, manganese and oxygen among manganese oxides is used as a positive electrode active material of a non-aqueous secondary battery, the charge / discharge of the electrolyte in the electrolytic solution takes place. It is pointed out that a problem that Mn is eluted from the positive electrode active material occurs. Therefore, in order to avoid contact between the positive electrode active material and the electrolyte, a method of coating the surface of the positive electrode active material with an insulating material has been adopted. Since the electron conductivity accompanying the electrochemical reaction with the electrolytic solution is hindered, this has been a major problem. As described above, in the coating method disclosed in the prior art, the surface of the positive electrode active material cannot be uniformly coated, or the capacity per unit weight of the positive electrode active material becomes small, and the expected coating effect is not obtained. Was.

【0008】[0008]

【発明が解決しようとする課題】本発明では、マンガン
酸系正極活物質からのMn溶出を抑制し、従来になく優
れた電池特性を達成できる正極活物質と、それを用いた
正極電極用ペースト、該ペーストから作製した正極、及
び該正極とリチウムイオンを吸蔵・放出可能な負極活物
質を含む負極と電解質を溶解した非水電解液とを備えた
非水電解質二次電池(非水系二次電池ともいう。)を提
供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, there is provided a positive electrode active material capable of suppressing the elution of Mn from a manganate-based positive electrode active material and achieving unprecedented excellent battery characteristics, and a positive electrode paste using the same. A non-aqueous electrolyte secondary battery (a non-aqueous secondary battery) comprising a positive electrode prepared from the paste, a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte solution in which an electrolyte is dissolved. (Also referred to as a battery).

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記従来
技術の問題点に鑑み鋭意研究を重ねた結果、リチウム、
マンガン及び酸素を主体とするマンガン酸系複合酸化物
とπ電子共役系構造を有する導電性高分子を含んだ正極
活物質を有する正極を使用した非水系二次電池におい
て、正極活物質として、該複合酸化物の表面に重合性化
合物を化学的酸化重合で一部又は全部に堆積(被覆)し
た正極活物質を使用することにより、課題を解決し、本
発明に至った。即ち、本発明は以下の手段により解決し
た。
Means for Solving the Problems The present inventors have conducted intensive studies in view of the problems of the prior art, and as a result, have found that lithium,
In a non-aqueous secondary battery using a positive electrode having a positive electrode active material containing a manganese-based composite oxide mainly composed of manganese and oxygen and a conductive polymer having a π-electron conjugated structure, as a positive electrode active material, The problem was solved by using a positive electrode active material in which a polymerizable compound was partially (or entirely) deposited (coated) on the surface of a composite oxide by chemical oxidative polymerization, and the present invention was achieved. That is, the present invention has been solved by the following means.

【0010】即ち、 (1)π電子共役系構造を有する導電性高分子とマンガ
ン酸化物を含む正極活物質の製造方法において、マンガ
ン酸化物がリチウム、マンガン及び酸素を主体とする複
合酸化物であり、重合性化合物を化学的酸化重合して該
複合酸化物表面に導電性高分子を被覆することを特徴と
する正極活物質の製造方法。 (2)リチウム、マンガン及び酸素を主体とする複合酸
化物が、LiMn24、LixMn3-X4 (0.9<
x<1.2)、Li1+XMn2-x-yy4(式中、MはM
nの一部をCr、Co、Al、Ni、V、Fe、Mg、Tiからなる群
より選ばれた少なくとも1種の異種元素Mで置き換えた
ものであり、xは−0.1<x≦0.2の範囲、yは0
<y≦0.2の範囲である。)、LiMnO2及びLix
Mn2-x-yMyO2(式中、MはMn元素の一部をCr、Co、
Al、Ni、V、Fe、Mg、Tiからなる群より選ばれた少なく
とも1種の異種元素Mで置き換えたものであり、xは−
0.1<x≦0.1の範囲、yは0<y≦0.1の範囲
である。)から選ばれた1種の複合酸化物を含むもので
ある前項1に記載の正極活物質の製造方法。
That is, (1) a method for producing a positive electrode active material containing a conductive polymer having a π-electron conjugated structure and a manganese oxide, wherein the manganese oxide is a composite oxide mainly containing lithium, manganese and oxygen. A method for producing a positive electrode active material, comprising chemically oxidatively polymerizing a polymerizable compound and coating the surface of the composite oxide with a conductive polymer. (2) lithium complex oxide mainly comprising manganese and oxygen, LiMn 2 O 4, LixMn 3 -X O 4 (0.9 <
x <1.2), Li 1 + X Mn 2-xy M y O 4 ( wherein, M is M
a part of n is replaced by at least one kind of different element M selected from the group consisting of Cr, Co, Al, Ni, V, Fe, Mg and Ti, and x is -0.1 <x ≦ Range of 0.2, y is 0
<Y ≦ 0.2. ), LiMnO 2 and Lix
Mn 2 -x-yMyO 2 (wherein M is a part of Mn element such as Cr, Co,
Al is replaced by at least one different element M selected from the group consisting of Al, Ni, V, Fe, Mg, and Ti, and x is-
Y is in the range of 0.1 <x ≦ 0.1, and y is in the range of 0 <y ≦ 0.1. 3. The method for producing a positive electrode active material according to item 1, wherein the method includes one kind of composite oxide selected from the above).

【0011】(3)リチウム、マンガン及び酸素を主体
とする複合酸化物が、8.240Å以下の格子定数を有
するスピネル型酸化物を含む複合酸化物である前項1又
は2に記載の正極活物質の製造方法。 (428)リチウム、マンガン及び酸素を主体とする複
合酸化物が、一次粒子径0.1μm〜1μmの粒子を含
む複合酸化物である前項1乃至3のいずれか1項に記載
の正極活物質の製造方法。 (5)リチウム、マンガン及び酸素を主体とする複合酸
化物が、粒子径3μm〜50μmの造粒物を含む複合酸
化物であることを特徴とする前項1乃至5のいずれか1
項に記載の正極活物質の製造方法。
(3) The positive electrode active material as described in (1) or (2) above, wherein the composite oxide mainly containing lithium, manganese and oxygen is a composite oxide containing a spinel-type oxide having a lattice constant of 8.240 ° or less. Manufacturing method. (428) The positive electrode active material according to any one of the above items 1 to 3, wherein the composite oxide mainly containing lithium, manganese, and oxygen is a composite oxide containing particles having a primary particle diameter of 0.1 µm to 1 µm. Production method. (5) The composite oxide according to any one of (1) to (5) above, wherein the composite oxide mainly composed of lithium, manganese and oxygen is a composite oxide containing a granulated product having a particle diameter of 3 μm to 50 μm.
13. The method for producing a positive electrode active material according to item 10.

【0012】(6)造粒物が、リチウム、マンガン及び
酸素を主体とする複合酸化物の粉砕物に、550℃〜9
00℃の温度で溶融する酸化物又はその酸化物になりう
る元素又は該元素を含む化合物、もしくはリチウム又は
マンガンと固溶又は反応して溶融する酸化物又はその酸
化物になりうる元素又は該元素を含む化合物の燒結促進
助剤を添加・混合して造粒されたものである前項5に記
載の正極活物質の製造方法。 (7)リチウム、マンガン及び酸素を主体とする複合酸
化物が、30Å〜400Åの範囲の細孔を有する複合酸
化物を含むものである前項1乃至6のいずれか1項に記
載の正極活物質の製造方法。
(6) When the granulated material is 550 ° C. to 9 ° C.
Oxide which melts at a temperature of 00 ° C. or an element which can be an oxide thereof, or a compound containing the element, or an oxide which can be dissolved or reacted with lithium or manganese to melt or an element which can become an oxide thereof, or this element 6. The method for producing a positive electrode active material according to the above item 5, which is obtained by adding and mixing a sintering promoting aid of a compound containing (7) The production of the positive electrode active material according to any one of the above items 1 to 6, wherein the composite oxide mainly containing lithium, manganese, and oxygen includes a composite oxide having pores in a range of 30 ° to 400 °. Method.

【0013】(8)重合性化合物を化学的酸化重合する
手段が、該複合酸化物を溶媒中で、酸化剤と重合性化合
物を接触させて反応せしめることを特徴とする前項1乃
至7のいずれか1項に記載の正極活物質の製造方法。 (9)酸化剤が、MnO2、Fe(III)系化合物、無水塩
化アルミニウム/塩化第一銅、アルカリ金属過硫酸塩、
過硫酸アンモニウム塩、過酸化物、過マンガン酸カリウ
ム、2,3−ジクロロ−5,6−ジシアノ−1,4−ベ
ンゾキノン(DDQ)、テトラクロロ−1,4−ベンゾ
キノン、テトラシアノ−1,4−ベンゾキノン、よう
素、臭素からなる群より選ばれた少なくとも1種である
ことを特徴とする前項8に記載の正極活物質の製造方
法。
(8) The method according to any one of (1) to (7) above, wherein the means for chemically oxidatively polymerizing the polymerizable compound comprises reacting the composite oxide by contacting the oxidizing agent with the polymerizable compound in a solvent. 9. The method for producing a positive electrode active material according to claim 1. (9) MnO 2 , Fe (III) compound, anhydrous aluminum chloride / cuprous chloride, alkali metal persulfate,
Ammonium persulfate, peroxide, potassium permanganate, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetrachloro-1,4-benzoquinone, tetracyano-1,4-benzoquinone 9. The method for producing a positive electrode active material according to item 8, wherein the positive electrode active material is at least one selected from the group consisting of iodine and bromine.

【0014】(10)MnO2が、リチウム、マンガン及び
酸素を主体とする複合酸化物のスピネル型LiMn24
系複合酸化物に酸を反応させて該複合酸化物の表面に生
成させたMnO2であることを特徴とする前項9に記載の正
極活物質の製造方法。 (11)MnO2が、λ-MnO2である前項10に記載の正
極活物質の製造方法。 (12)MnO2が、リチウム、マンガン及び酸素を主体と
する複合酸化物のスピネル型LiMn24系複合酸化物
に酸を反応させ、次いで該複合酸化物を200℃以上、
400℃未満の温度で熱処理して得られたβ-MnO2
あることを特徴とする前項9に記載の正極活物質の製造
方法。
(10) MnO 2 is a spinel-type LiMn 2 O 4 of a composite oxide mainly composed of lithium, manganese and oxygen.
10. The method for producing a positive electrode active material according to the above item 9, wherein MnO 2 is formed on the surface of the composite oxide by reacting an acid with the system composite oxide. (11) The method for producing a positive electrode active material according to the above item 10, wherein MnO 2 is λ-MnO 2 . (12) MnO 2 reacts an acid with a spinel-type LiMn 2 O 4 -based composite oxide of a composite oxide mainly composed of lithium, manganese and oxygen, and then reacts the composite oxide at 200 ° C. or higher.
Item 10. The method for producing a positive electrode active material according to item 9, wherein the β-MnO 2 is obtained by heat treatment at a temperature of less than 400 ° C.

【0015】(13)酸が、塩酸、臭化水素酸、沃化水
素酸、フッ酸、硝酸、クロロ硫酸、フルオロ硫酸、アミ
ド硫酸、硫酸、リン酸、過塩素酸、メタンスルホン酸、
エタンスルホン酸、プロパンスルホン酸、ベンゼンスル
ホン酸、トルエンスルホン酸、ナフタレンスルホン酸、
ナフタレンジスルホン酸、トリフルオロ酢酸、トリクロ
ロ酢酸、蟻酸、シュウ酸から選ばれた少なくとも1種で
ある前項10乃至12のいずれか1項に記載の正極活物
質の製造方法。 (14)重合性化合物が、アニリン、複素五員環式化合
物、イソチアナフテン、1,3−ジヒドロイソチアナフ
テン、1,3−ジヒドロイソチアナフテン−2−スルホ
キシド及びそれらの誘導体からなる群より選ばれた少な
くとも1種である前項1乃至13のいずれか1項に記載
の正極活物質の製造方法。
(13) The acid is hydrochloric acid, hydrobromic acid, hydroiodic acid, hydrofluoric acid, nitric acid, chlorosulfuric acid, fluorosulfuric acid, amidosulfuric acid, sulfuric acid, phosphoric acid, perchloric acid, methanesulfonic acid,
Ethanesulfonic acid, propanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid,
13. The method for producing a positive electrode active material according to any one of the above items 10 to 12, which is at least one selected from naphthalenedisulfonic acid, trifluoroacetic acid, trichloroacetic acid, formic acid, and oxalic acid. (14) The polymerizable compound is selected from the group consisting of aniline, a five-membered heterocyclic compound, isothianaphthene, 1,3-dihydroisothianaphthene, 1,3-dihydroisothianaphthene-2-sulfoxide and derivatives thereof. 14. The method for producing a positive electrode active material according to any one of the above items 1 to 13, which is at least one selected material.

【0016】(15)重合性化合物が、下記一般式
(I)
(15) The polymerizable compound is represented by the following general formula (I)

【化3】 (式中、R1、R2は各々独立して、水素原子、炭素数1
乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和の
炭化水素基、炭素数1乃至6の直鎖状もしくは分岐状の
飽和又は不飽和のアルコキシ基、水酸基、ハロゲン原
子、ニトロ基、シアノ基、トリハロメチル基、フェニル
基、又は置換フェニル基を表わすか、又はR 1及びR2
互いに任意の位置で結合して、少なくとも1つ以上の5
〜7員環の飽和もしくは不飽和の環状構造を形成する二
価の基を形成してもよい。XはS、O、Se、Te又は
NR3を表わし、R3は水素原子、炭素数1乃至6の直鎖
状もしくは分岐状の飽和もしくは不飽和の炭化水素基、
フェニル基、又は炭素数1乃至6の直鎖状もしくは分岐
状の飽和又は不飽和のアルコキシ基を表わす。R1、R2
及びR3が表わすアルキル基又はアルコキシ基の鎖中に
は、カルボニル結合、エーテル結合、エステル結合、ア
ミド結合、イミノ結合を含んでもよい。)である前項1
乃至13のいずれか1項に記載の正極活物質の製造方
法。
Embedded image(Where R1, RTwoAre each independently a hydrogen atom, carbon number 1
To 6 linear or branched saturated or unsaturated
Hydrocarbon group, linear or branched having 1 to 6 carbon atoms
Saturated or unsaturated alkoxy group, hydroxyl group, halogen atom
Child, nitro group, cyano group, trihalomethyl group, phenyl
Or a substituted phenyl group, or R 1And RTwoIs
Bonding to each other at any position to form at least one or more 5
A two- or seven-membered ring forming a saturated or unsaturated cyclic structure;
A valent group may be formed. X is S, O, Se, Te or
NRThreeAnd RThreeIs a hydrogen atom, a linear chain having 1 to 6 carbon atoms
Or branched saturated or unsaturated hydrocarbon groups,
A phenyl group, or a straight or branched chain having 1 to 6 carbon atoms
Represents a saturated or unsaturated alkoxy group. R1, RTwo
And RThreeIn the chain of the alkyl or alkoxy group represented by
Represents a carbonyl bond, an ether bond, an ester bond,
It may contain a mid bond or an imino bond. (1)
14. The method for producing a positive electrode active material according to any one of
Law.

【0017】(16)重合性化合物が、下記一般式(II
I)
(16) A polymerizable compound represented by the following general formula (II)
I)

【化4】 (式中、R4及びR5は、各々独立して水素原子、炭素数
1乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和
の炭化水素基、又は炭素数1乃至6の炭化水素基が互い
に任意の位置で結合して、2つの酸素元素を含む少なく
とも1つ以上の5〜7員環の飽和炭化水素の環状構造を
形成する置換基を表わす。また、前記環状構造には置換
されていてもよいビニレン結合を有するもの、置換され
ていてもよいフェニレン構造のものが含まれる。)であ
る前項1乃至13のいずれか1項に記載の正極活物質の
製造方法。
Embedded image (Wherein R 4 and R 5 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, or a hydrocarbon group having 1 to 6 carbon atoms) Represents a substituent which bonds to each other at an arbitrary position to form a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon ring containing two oxygen elements, and the cyclic structure is substituted. The method for producing a positive electrode active material according to any one of the above items 1 to 13, which includes a compound having a vinylene bond which may be substituted and a compound having a phenylene structure which may be substituted.

【0018】(17)重合性化合物が、ピロールである
前項1乃至13のいずれか1項に記載の正極活物質の製
造方法。 (18)導電性高分子の堆積が、リチウム、マンガン及
び酸素を主体とする複合酸化物に対する導電性高分子被
覆量をP(質量%)とした場合、リチウム、マンガン及
び酸素を主体とする複合酸化物の比表面積S(m2/g)に対
して、P/S比が5×10-3≦P/S≦10の範囲であること
を特徴とする前項1乃至17のいずれか1項に記載の正
極活物質の製造方法。 (19)導電性高分子の被覆量P(質量%)が、0.05
≦P≦10の範囲であることを特徴とする前項1乃至1
8の何れか1項に記載の正極活物質の製造方法。 (20)重合性化合物がピロールであって、添加する酸
量がピロール1モルに対して8グラム当量以下であるこ
とを特徴とする前項10乃至13に記載の正極活物質の
製造方法。
(17) The method for producing a positive electrode active material according to any one of items 1 to 13, wherein the polymerizable compound is pyrrole. (18) When the amount of the conductive polymer is P (mass%) with respect to the composite oxide mainly composed of lithium, manganese, and oxygen, the composite composed mainly of lithium, manganese, and oxygen is deposited. The P / S ratio is in the range of 5 × 10 −3 ≦ P / S ≦ 10 with respect to the specific surface area S (m 2 / g) of the oxide, any one of the preceding items 1 to 17, 3. The method for producing a positive electrode active material according to item 1. (19) The coating amount P (% by mass) of the conductive polymer is 0.05
PP ≦ 10, wherein
9. The method for producing a positive electrode active material according to any one of 8. (20) The method for producing a positive electrode active material according to the above (10) to (13), wherein the polymerizable compound is pyrrole, and the amount of the acid to be added is 8 gram equivalent or less per 1 mol of pyrrole.

【0019】(21)前項1乃至20のいずれか1項に
記載の正極活物質の製造方法によって製造された正極活
物質。 (22)表面にMnO2層を有する、リチウム、マンガ
ン及び酸素を主体とする複合酸化物に化学的酸化重合で
生成した導電性高分子が被覆された正極活物質。 (23)リチウム、マンガン及び酸素を主体とする複合
酸化物が、スピネル型LiMn24系複合酸化物である
前項22に記載の正極活物質。
(21) A positive electrode active material produced by the method for producing a positive electrode active material according to any one of the above items 1 to 20. (22) A positive electrode active material having a MnO 2 layer on the surface and comprising a composite oxide mainly composed of lithium, manganese, and oxygen coated with a conductive polymer generated by chemical oxidation polymerization. (23) The positive electrode active material according to the above item 22, wherein the composite oxide mainly composed of lithium, manganese, and oxygen is a spinel-type LiMn 2 O 4 -based composite oxide.

【0020】(24)導電性高分子で被覆された形状
が、粒状である前項21乃至は23の何れか1項に記載
の正極活物質。 (25)前項21乃至24に記載の正極活物質、導電性
付与剤、バインダー及び有機バインダーを溶解又は膨潤
する溶媒を含むことを特徴とする正極用ペースト。 (26)前項21乃至24に記載の正極活物質、導電性
付与剤、バインダー及び集電体からなる正極。 (27)前項21乃至24に記載の正極活物質を含む正
極、Liイオンを含む電解質、非水電解液及びLiイオ
ンを吸蔵・放出可能な負極からなる非水電解質二次電
池。
(24) The positive electrode active material according to any one of the above items 21 to 23, wherein the shape coated with the conductive polymer is granular. (25) A paste for a positive electrode, comprising a solvent that dissolves or swells the positive electrode active material, the conductivity-imparting agent, the binder, and the organic binder described in the above items 21 to 24. (26) A positive electrode comprising the positive electrode active material, the conductivity-imparting agent, the binder, and the current collector according to the above items 21 to 24. (27) A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material described in 21 to 24 above, an electrolyte containing Li ions, a non-aqueous electrolyte, and a negative electrode capable of inserting and extracting Li ions.

【0021】[0021]

【発明の実施の形態】本発明の正極活物質の製造方法に
よって得られる正極活物質は、リチウム(Li)、マン
ガン(Mn)及び酸素(O)を主体とする複合酸化物と
π電子共役系構造を有する導電性高分子とを含んだ複合
体である。本発明の正極活物質の製造方法は、前記複合
酸化物の存在下に重合性化合物を化学的に重合させて該
複合酸化物表面の一部又は全面にπ電子共役系構造を有
する導電性高分子を被覆(堆積)することを特徴とす
る。この時、化学的重合には重合性化合物を重合し得る
酸化剤が利用できる。
BEST MODE FOR CARRYING OUT THE INVENTION A positive electrode active material obtained by the method for producing a positive electrode active material of the present invention comprises a composite oxide mainly composed of lithium (Li), manganese (Mn) and oxygen (O) and a π-electron conjugated system. It is a composite containing a conductive polymer having a structure. The method for producing a positive electrode active material of the present invention is a method for producing a positive electrode having a π-electron conjugated structure on a part or the whole surface of the composite oxide by chemically polymerizing a polymerizable compound in the presence of the composite oxide. It is characterized by coating (depositing) molecules. At this time, an oxidizing agent capable of polymerizing the polymerizable compound can be used for the chemical polymerization.

【0022】本発明において使用するリチウム、マンガ
ン及び酸素を主体とする複合酸化物には、LiMn
2、LiMn24やそれぞれMnの一部を異種元素で
置き換えた化学構造の化合物等を例示することができ
る。本発明では、特にスピネル構造を有する、LiMn
24、LixMn3-X4 (0.9<x<1.2)及び
前記Mn元素をCr、Co、Al、Ni、V、Fe、M
g、Ti等からなる群より選ばれた少なくとも1種の他
の元素(Mと略する)で置換したLi1+XMn2-x-yy
4(ここで、−0.1<x≦0.2、0<y≦0.
2)(これらを総称してスピネル型LiMn24系複合
酸化物ともいう。)や層状構造を有するLiMnO2
そのMn元素をCr、Co、Al、Ni、V、Fe、M
g、Tiからなる群より選ばれた少なくとも1種の異種
元素Mで置換したLixMn2-x-yMyO2(ここで、−
0.1<x≦0.1、0<y≦0.1)等が好ましく使
用される。
The composite oxide mainly composed of lithium, manganese and oxygen used in the present invention includes LiMn.
O 2 , LiMn 2 O 4, and compounds having a chemical structure in which a part of Mn is replaced by a different element can be exemplified. In the present invention, LiMn having a spinel structure is particularly preferred.
2 O 4 , LixMn 3-X O 4 (0.9 <x <1.2) and the Mn element are represented by Cr, Co, Al, Ni, V, Fe, M
g, Li 1 + X substituted with at least one other element selected from the group consisting of Ti or the like (abbreviated as M) Mn 2-xy M y
O 4 (-0.1 <x ≦ 0.2, 0 <y ≦ 0.
2) (these are also collectively referred to as spinel-type LiMn 2 O 4 -based composite oxides), LiMnO 2 having a layered structure, and its Mn element are Cr, Co, Al, Ni, V, Fe, M
g, LixMn 2 -x-yMyO 2 substituted with at least one different element M selected from the group consisting of Ti (here, -
0.1 <x ≦ 0.1, 0 <y ≦ 0.1) and the like are preferably used.

【0023】スピネル型LiMn24系複合酸化物を用
いる場合には、その格子定数としては8.240Å以
下、好ましくは8.235Å以下、さらに好ましくは
8.233Å以下の複合酸化物がよい。格子定数が8.
240Åを越えると電池の容量維持率の低下が激しくな
ってしまう。また、前記LixMn2-x-yMyO2を具体的
に例示すれば、Li1.02Mn1.88Al 0.104,Li
1.00Mn0.95Ni0.052等)が挙げられる。本発明の
正極活物質の製造方法においては、Mn溶出量の多いL
iMn1.5Ni0 .54、LiMn1.5Co0.54、LiM
1.5Cr0.54、LiMn1.5Fe0.54などの5V級
高電位系正極活物質に対して特に有効である。
Spinel type LiMnTwoOFourUsing composite oxide
If it is, the lattice constant is 8.240 ° or less.
Below, preferably below 8.235 °, more preferably
A composite oxide having a temperature of 8.233 ° or less is preferable. Lattice constant is 8.
When the temperature exceeds 240 °, the capacity maintenance rate of the battery decreases sharply.
I will. In addition, the LixMnTwo-x-yMyOTwoThe concrete
For example, Li1.02Mn1.88Al 0.10OFour, Li
1.00Mn0.95Ni0.05OTwoEtc.). Of the present invention
In the method for producing a positive electrode active material, L having a large amount of Mn elution is used.
iMn1.5Ni0 .FiveOFour, LiMn1.5Co0.5OFour, LiM
n1.5Cr0.5OFour, LiMn1.5Fe0.5OFour5V class such as
It is particularly effective for high potential positive electrode active materials.

【0024】本発明の正極活物質の製造方法において好
ましく用いられる当該酸化物の一次粒子径は、0.1μ
m〜1μm、好ましくは0.2μm〜0.5μmの範囲
のものがよい。また、本発明においては、これらの状態
の一次粒子を3μm〜50μm、好ましくは5μm〜3
0μmに造粒して被覆用正極活物質の基材として用いて
もよい。
The primary particle diameter of the oxide preferably used in the method for producing a positive electrode active material of the present invention is 0.1 μm.
A range of m to 1 μm, preferably 0.2 μm to 0.5 μm is good. In the present invention, the primary particles in these states are 3 μm to 50 μm, preferably 5 μm to 3 μm.
It may be granulated to 0 μm and used as a base material of the coating positive electrode active material.

【0025】本発明において、リチウム、マンガン及び
酸素を主体とする複合酸化物や、スピネル構造を有する
複合酸化物等の製造方法及びその出発原料には、特に制
限はなく、例えば、スピネル構造を有する複合酸化物の
製造方法においては、マンガン化合物とリチウム化合物
の混合物、又はさらにマンガンと置換し得る異種元素を
含む化合物を添加した混合物を大気中又は酸素ガスフロ
ー雰囲気中において300℃から850℃の温度下で少
なくとも1時間以上焼成すればよい。
In the present invention, there are no particular restrictions on the method for producing a composite oxide mainly composed of lithium, manganese and oxygen, a composite oxide having a spinel structure, and the starting materials thereof. In the method for producing a composite oxide, a mixture of a manganese compound and a lithium compound, or a mixture to which a compound containing a different element that can be substituted for manganese is further added, is heated to a temperature of 300 ° C. to 850 ° C. in the air or an oxygen gas flow atmosphere. What is necessary is just to bake below at least 1 hour.

【0026】リチウム、マンガン及び酸素を主体とする
スピネル構造を有する複合酸化物の結晶性については特
に限定はなく、未反応のリチウム化合物とマンガン酸化
物が残留していても構わない。一方、出発原料のマンガ
ン源としては、電解二酸化マンガン(EMD)、化学合
成二酸化マンガン(CMD)、三二酸化マンガン、四三
酸化マンガン、オキシ水酸化マンガン、炭酸マンガン、
硝酸マンガン等が利用でき、リチウム源としては水酸化
リチウム、炭酸リチウム、硝酸リチウム等が使用でき
る。好ましいマンガン源としては、リチウムとの反応性
に富む炭酸マンガンが挙げられる。
The crystallinity of the composite oxide having a spinel structure mainly composed of lithium, manganese and oxygen is not particularly limited, and an unreacted lithium compound and manganese oxide may remain. On the other hand, the starting material manganese sources include electrolytic manganese dioxide (EMD), chemically synthesized manganese dioxide (CMD), manganese trioxide, manganese tetroxide, manganese oxyhydroxide, manganese carbonate,
Manganese nitrate or the like can be used, and lithium hydroxide such as lithium hydroxide, lithium carbonate, and lithium nitrate can be used. Preferred manganese sources include manganese carbonate, which is highly reactive with lithium.

【0027】本発明に使用される、リチウム、マンガン
及び酸素を主体とする複合酸化物としては、その焼成品
を解砕後、得られた粉砕粒子(これは1次粒子又は1次
粒子の集合した二次粒子であり、好ましくは平均粒子径
が2μm以下である。)に焼結促進助剤(造粒促進剤)
を添加混合して造粒焼成された緻密な造粒粒子を使用し
てもよい。ここで、緻密な造粒粒子とは、該酸化物の1
次粒子間に空隙がない又は少ないことを意味し、焼結促
進助剤を使用した以下の方法で製造することができる。
The composite oxide mainly composed of lithium, manganese and oxygen used in the present invention is obtained by pulverizing the calcined product and then obtaining the pulverized particles (which are primary particles or aggregates of primary particles). Sintering accelerator (granulation accelerator).
May be used, and granulated and dense granulated particles may be used. Here, the dense granulated particles refer to one of the oxides.
It means that there are no or few voids between the secondary particles, and it can be produced by the following method using a sintering accelerator.

【0028】解砕・粉砕したリチウム、マンガン及び酸
素を主体とする複合酸化物粒子と焼結促進助剤との混合
方法は、特に限定はなく、例えば媒体攪拌式粉砕機、ボ
ールミル、ペイントシェーカー、混合ミキサーなどが使
用できる。混合方式についても乾式、湿式どちらでもよ
い。該複合酸化物を解砕・粉砕する際に焼結促進助剤を
添加して混合を同時に行ってもよい。
The method of mixing the crushed and pulverized composite oxide particles mainly composed of lithium, manganese and oxygen with the sintering promoting aid is not particularly limited. For example, a medium stirring type pulverizer, a ball mill, a paint shaker, A mixing mixer or the like can be used. The mixing method may be either a dry method or a wet method. When the composite oxide is crushed and pulverized, a sintering accelerator may be added and mixing may be performed at the same time.

【0029】使用できる焼結促進助剤は、該リチウム、
マンガン及び酸素を主体とする複合酸化物粒子の解砕・
粉砕粒子を造粒のために焼結できるものであればよく、
より好ましくは、900℃以下の温度で溶融する化合
物、例えば、550℃〜900℃の温度で溶融可能な酸
化物又はその酸化物になりうる元素又は該元素を含む化
合物(前駆体)もしくはリチウム又はマンガンと固溶又
は反応して溶融する酸化物又はその酸化物になりうる元
素又は該元素を含む化合物であれば良い。
The sintering accelerator which can be used is lithium,
Disintegration of composite oxide particles mainly composed of manganese and oxygen
What is necessary is just to be able to sinter the pulverized particles for granulation,
More preferably, a compound that melts at a temperature of 900 ° C. or less, for example, an oxide that can be melted at a temperature of 550 ° C. to 900 ° C., an element that can become the oxide, or a compound (precursor) containing the element or lithium or Any oxide may be used as long as it is an oxide which forms a solid solution with or reacts with manganese and melts, or an element which can become the oxide or a compound containing the element.

【0030】例えば、焼結促進助剤には、Bi、B、
W、Mo、Pbなどの元素を含む化合物が挙げられ、ま
たこれらの化合物を任意に組み合わせて使用しても良
く、またB23とLiFを組み合わせた化合物もしくは
MnF2とLiFを組み合わせた化合物も使用される。
中でも、Bi、B、Wの元素を含む化合物は焼結収縮効
果が大きいので特に好ましい。
For example, sintering accelerators include Bi, B,
Compounds containing elements such as W, Mo, Pb, etc. may be mentioned, and these compounds may be used in any combination, or a compound obtained by combining B 2 O 3 and LiF or a compound obtained by combining MnF 2 and LiF Is also used.
Among them, compounds containing the elements Bi, B, and W are particularly preferable because they have a large sintering shrinkage effect.

【0031】例えば、Bi化合物としては三酸化ビスマ
ス、硝酸ビスマス、安息香酸ビスマス、オキシ酢酸ビス
マス、オキシ炭酸ビスマス、クエン酸ビスマス、水酸化
ビスマスなどが挙げられる。またB化合物としては、三
二酸化硼素、炭化硼素、窒化硼素、硼酸などが挙げられ
る。W化合物としては、二酸化タングステン、三酸化タ
ングステンなどが挙げられる。
For example, Bi compounds include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, bismuth hydroxide and the like. Examples of the B compound include boron trioxide, boron carbide, boron nitride, and boric acid. Examples of the W compound include tungsten dioxide and tungsten trioxide.

【0032】焼結促進助剤の添加量は、添加金属元素換
算で該複合酸化物中のMn1モルに対して0.0001
〜0.05モルの範囲内が好ましい。添加金属元素換算
での添加量が、0.0001モル未満では焼結収縮効果
がないし、0.05モルを越えると活物質の初期容量が
小さくなりすぎるからである。好ましいのは、0.00
5〜0.03モルである。
The amount of the sintering accelerator is 0.0001 in terms of the added metal element per mole of Mn in the composite oxide.
It is preferably in the range of -0.05 mol. If the amount of the added metal element is less than 0.0001 mol, there is no sintering shrinkage effect, and if it exceeds 0.05 mol, the initial capacity of the active material becomes too small. Preferred is 0.00
5 to 0.03 mol.

【0033】焼結促進助剤は粉末状態でも溶媒に溶解し
た液体状態で使用しても構わない。粉末状態で添加する
場合、焼結促進助剤の平均粒子径は50μm以下が好ま
しく、さらに好ましくは10μm以下であり、さらに好
ましくは3μm以下である。焼結促進助剤は造粒/焼結
前に添加した方が好ましいが、造粒後焼結促進助剤が溶
融できる温度下で造粒物に含浸させ、焼結させても構わ
ない。
The sintering accelerator may be used in the form of a powder or a liquid dissolved in a solvent. When added in the form of a powder, the average particle size of the sintering accelerator is preferably 50 μm or less, more preferably 10 μm or less, and still more preferably 3 μm or less. The sintering promoting aid is preferably added before granulation / sintering, but the granulated material may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted after granulation.

【0034】次に造粒方法について説明する。造粒方法
としては、前記焼結促進助剤を使用して噴霧造粒方法、
流動造粒方法、圧縮造粒方法、撹拌造粒方法などが挙げ
られ、また媒体流動乾燥や媒体振動乾燥などの併用をし
てもよい。撹拌造粒と圧縮造粒は、二次粒子の密度が高
くなるので、また噴霧造粒は造粒粒子形状が真球状とな
るので特に好ましい。撹拌造粒器の例としては、パウレ
ック(株)社製バーチィカルグラニュレーターや不二パ
ウダル(株)社製スパルタンリューザーなどが挙げら
れ、圧縮造粒器の例としては、栗本鉄工(株)製ローラ
ーコンパクターMRCP−200型などが挙げられる。
噴霧造粒器の例としては、アシザワニロアトマイザー
(株)モービルマイナー型スプレードライヤーなどが挙
げられる。
Next, the granulation method will be described. As the granulation method, spray granulation method using the sintering accelerator,
Examples of the method include a fluidized-granulation method, a compression-granulation method, and a stirring-granulation method. Agitation granulation and compression granulation are particularly preferred because the density of secondary particles increases and spray granulation results in a perfectly spherical granulated particle shape. Examples of the agitation granulator include a vertical granulator manufactured by Powrex Co., Ltd. and a Spartan Luzer manufactured by Fuji Paudal Co., Ltd., and examples of the compression granulator include Kurimoto Tekko Co., Ltd. Roller compactor MRCP-200 type.
Examples of the spray granulator include a mobile minor type spray dryer such as Ashizawaniro Atomizer Co., Ltd.

【0035】本発明において、正極活物質に使用される
造粒した粒子のサイズには特に制約はない。造粒した粒
子の平均粒子径が大きすぎる場合には、造粒直後又は焼
結後に軽く解砕・粉砕し分級・整粒し希望する粒度にす
ればよい。造粒効率を高めるためには、有機物系の造粒
助剤を添加してもよい。造粒助剤としては、アクリル系
樹脂、イソブチレンと無水マレイン酸との共重合体、ポ
リビニルアルコール、ポリエチレングリコール、ポリビ
ニルピロリデン、ハイドロキシプロピルセルロース、メ
チルセルロース、コーンスターチ、ゼラチン、リグニン
などが挙げられる。
In the present invention, the size of the granulated particles used for the positive electrode active material is not particularly limited. If the average particle size of the granulated particles is too large, it may be lightly crushed and pulverized immediately after granulation or after sintering, classified and sized to obtain a desired particle size. In order to increase the granulation efficiency, an organic granulation aid may be added. Examples of the granulation aid include an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, lignin and the like.

【0036】造粒助剤の添加量としては、リチウム、マ
ンガン及び酸素を主体とするスピネル構造を有する複合
酸化物及び焼結促進助剤100質量部に対して5質量部
以下が好ましく、さらに好ましくは2質量部以下であ
る。
The addition amount of the granulation assistant is preferably 5 parts by mass or less, more preferably 100 parts by mass of the composite oxide having a spinel structure mainly composed of lithium, manganese and oxygen and 100 parts by mass of the sintering accelerator. Is 2 parts by mass or less.

【0037】次に造粒した粒子の焼成方法について説明
する。造粒した粒子の脱脂方法は、大気中又は酸素を含
有するガス雰囲気中で300℃から550℃の温度範囲
で10分以上保持することにより行う。脱脂した造粒物
のカーボン残留量としては0.1質量%以下であること
が好ましい。脱脂後の造粒粒子は、大気又は酸素を含有
する雰囲気中で550℃〜900℃の温度範囲で1分以
上保持することにより焼結させる。また、前述の有機物
系の造粒助剤を使用しない造粒物の粒子の焼成も、大気
中又は酸素を含有するガス雰囲気中で同様に焼結収縮さ
せ、二次粒子の緻密化をはかることができる。
Next, a method of firing the granulated particles will be described. The method of degreasing the granulated particles is performed by holding the granulated particles in a temperature range of 300 ° C. to 550 ° C. for 10 minutes or more in the atmosphere or in a gas atmosphere containing oxygen. The defatted granule preferably has a carbon residue of 0.1% by mass or less. The degreased granulated particles are sintered by holding them in a temperature range of 550 ° C. to 900 ° C. for 1 minute or more in the atmosphere or an atmosphere containing oxygen. In addition, the sintering of the particles of the granulated material without using the above-described organic-based granulation aid should be similarly performed by sintering and shrinking in the air or in a gas atmosphere containing oxygen, and the secondary particles should be densified. Can be.

【0038】次に、本発明における第2の実施態様とし
て、リチウム、マンガン及び酸素を主体とする複合酸化
物が、スピネル型LiMn24系複合酸化物を酸で表面
処理した後、重合性化合物と接触することで該複合酸化
物表面に導電性高分子を被覆することを特徴とする正極
活物質の製造方法を提供する。すなわち、本発明者らは
スピネル型LiMn24系複合酸化物を酸で表面処理し
て形成したλ-MnO2を重合性化合物の酸化剤として利
用する方法を見出した。これまでにスピネル型LiMn
24を酸の水溶液で処理した場合、そのLiMn 24
λ-MnO2に変わることが報告されている(Journal of
Solid State Chemistry 39, 142-147 (1981))。即
ち、例えば硝酸を用いた場合は、
Next, a second embodiment of the present invention will be described.
, Composite oxidation mainly composed of lithium, manganese and oxygen
Is spinel type LiMnTwoOFourSurface of composite oxide with acid
After the treatment, the composite oxidation
Positive electrode characterized in that a conductive polymer is coated on an object surface
Provided is a method for producing an active material. That is, the present inventors
Spinel type LiMnTwoOFour-Based complex oxide surface treated with acid
Λ-MnO formed byTwoAs an oxidizing agent for polymerizable compounds
I found a way to use it. So far, spinel type LiMn
TwoOFourIs treated with an aqueous solution of an acid, the LiMn TwoOFourIs
λ-MnOTwo(Journal of
 Solid State Chemistry 39, 142-147 (1981)). Immediately
For example, when nitric acid is used,

【0039】下記反応式(1)、 2LiMn24 + 4HNO3 → 2LiNO3 + Mn(NO32 + 3λ-MnO2 + 2H2O・・・・(1) の反応式に従って、スピネル構造がλ-MnO2に変化す
ることが知られている。本発明においては、表面の形成
したλ-MnO2を酸化剤として利用する正極活物質の製
造方法を提供するものである。
According to the following reaction formula (1), 2LiMn 2 O 4 + 4HNO 3 → 2LiNO 3 + Mn (NO 3 ) 2 + 3λ-MnO 2 + 2H 2 O (1) Is known to change to λ-MnO 2 . The present invention provides a method for producing a positive electrode active material using λ-MnO 2 formed on the surface as an oxidizing agent.

【0040】本発明の正極活物質の製造方法では、上記
反応式(1)に従ってスピネル構造からλ-MnO2への
変換を、酸性溶液のpHを検出することで、酸による反
応の完結を知ることができる。さらには、添加すべき酸
のモル数からスピネル構造の変換率を設計、実施するこ
とができる。すなわち、この酸処理は、λ-MnO2の形
成量(モル量)に応じて、添加すべき酸の濃度、酸のモ
ル量及び反応時間を決めることができる。酸処理による
スピネル構造からλ-MnO2への変換モル%は、好まし
くは該スピネル構造複合酸化物に対して1〜13モル%
であり、さらに好ましくは2〜7モル%、さらに望まし
くは3〜5モル%である。λ-MnO2への変換率(モル
%)が、1モル%未満では表面処理に伴う期待効果が現
れないし、13モル%を越えると電池を構成した時の非
水二次電池の初期放電容量の減少量が大きくなりすぎ、
好ましくない。
In the method for producing a positive electrode active material of the present invention, conversion of the spinel structure to λ-MnO 2 is detected in accordance with the above reaction formula (1), and the completion of the reaction by the acid is detected by detecting the pH of the acidic solution. be able to. Furthermore, the conversion of the spinel structure can be designed and implemented from the number of moles of the acid to be added. That is, in this acid treatment, the concentration of the acid to be added, the molar amount of the acid, and the reaction time can be determined according to the formation amount (molar amount) of λ-MnO 2 . The conversion mol% from the spinel structure to λ-MnO 2 by the acid treatment is preferably 1 to 13 mol% based on the spinel structure composite oxide.
And more preferably 2 to 7 mol%, and still more preferably 3 to 5 mol%. If the conversion ratio (mol%) to λ-MnO 2 is less than 1 mol%, the expected effect accompanying the surface treatment is not exhibited, and if it exceeds 13 mol%, the initial discharge capacity of the non-aqueous secondary battery when the battery is formed. Too much decrease,
Not preferred.

【0041】次ぎに本発明者らは、本発明の正極活物質
の製造方法について第3の実施態様として、酸処理によ
り複合酸化物の表面に形成したλ-MnO2を、200℃
以上、400℃未満の温度で加熱(熱処理)すること
で、該複合酸化物の表層が実質的にβ型MnO2からな
る複合酸化物に変換し、これを重合物の酸化剤に使用す
ることができることを見出した。すなわち、このβ型M
nO2も前記λ-MnO2と同様に重合性化合物の酸化剤
として利用することを見出した。ここで、「実質的に」
とは、リチウム、マンガン及び酸素を主体とするスピネ
ル構造を有する複合酸化物の表面層にβ型MnO2が少
なくとも1格子含まれていればよい。
Next, the present inventors, as a third embodiment of the method for producing a cathode active material of the present invention, used a method in which λ-MnO 2 formed on the surface of a composite oxide by an acid treatment was treated at 200 ° C.
As described above, by heating (heat treatment) at a temperature of less than 400 ° C., the surface layer of the composite oxide is converted into a composite oxide substantially consisting of β-type MnO 2 , which is used as an oxidizing agent for a polymer. I found that I can do it. That is, this β-type M
It has been found that nO 2 is also used as an oxidizing agent for a polymerizable compound, like λ-MnO 2 . Where "substantially"
What is necessary is that the surface layer of the composite oxide having a spinel structure mainly composed of lithium, manganese, and oxygen contains at least one β-type MnO 2 lattice.

【0042】本発明において、正極活物質として使用さ
れる複合酸化物は、リチウム、マンガン及び酸素を主体
とする複合酸化物であり、好ましくは複合酸化物がスピ
ネル型複合酸化物であって、さらに好ましくは重合性化
合物の重合前に、酸処理によりその表面をλ型MnO2
相が存在する複合酸化物とすることがよく、あるいは次
いで熱処理してλ型MnO2相からβ型MnO2相に変換
した複合酸化物が用いられる。
In the present invention, the composite oxide used as the positive electrode active material is a composite oxide mainly composed of lithium, manganese and oxygen, preferably the composite oxide is a spinel type composite oxide, Preferably, prior to polymerization of the polymerizable compound, the surface thereof is treated with an acid to form a λ-type MnO 2.
A composite oxide having a phase is preferably used, or a composite oxide converted from a λ-type MnO 2 phase to a β-type MnO 2 phase by heat treatment is used.

【0043】このようにして製造された造粒品(二次粒
子も含む)又は前記1次粒子の表層に、β型MnO2
を有する複合酸化物を正極活物質に使用した場合、該非
水二次電池の初期放電容量が大きく、60℃の環境下で
充放電を繰り返しても放電容量の低下が少ない特徴を有
し、β型MnO2相の表層厚みは、例えば、造粒した2
次粒子が20μmの場合0.02μm〜0.22μm、
好ましくは0.05μm〜0.08μmの範囲で形成さ
れたものが好ましい。
When a composite oxide having a β-type MnO 2 phase is used as a positive electrode active material on the surface of the thus-produced granulated product (including secondary particles) or the primary particles, the non-aqueous The secondary battery has a feature that the initial discharge capacity is large and the discharge capacity is small even when charge and discharge are repeated in an environment of 60 ° C., and the surface layer thickness of the β-type MnO 2 phase is, for example, 2
0.02 μm to 0.22 μm when the secondary particles are 20 μm,
Preferably, those formed in the range of 0.05 μm to 0.08 μm are preferable.

【0044】本発明の正極活物質の製造方法では、該ス
ピネル構造を有する複合酸化物表面のλ-MnO2を20
0℃以上、400℃未満の温度で熱処理することによ
り、電池充放電に対して安定なβ-MnO2に変換させる
ことが特徴であり、熱処理温度が200℃未満では、λ
-MnO2からβ-MnO2への変化が起こりにくく、40
0℃以上では該スピネル構造複合酸化物のリチウムが表
面に拡散してしまい、該スピネル構造複合酸化物表面を
安定化できない。Liが表面に拡散したか否かは、20
0℃以上、400℃未満で熱処理した時の格子定数より
も格子定数が大きくなることで判別できる。熱処理時間
は少なくとも5分以上実施すればよい。
In the method for producing a positive electrode active material of the present invention, the λ-MnO 2 on the surface of the composite oxide having the spinel structure is reduced to 20%.
By performing heat treatment at a temperature of 0 ° C. or more and less than 400 ° C., it is characterized in that it is converted into β-MnO 2 that is stable against battery charge / discharge.
-MnO 2 hardly changes from β-MnO 2 to 40
At 0 ° C. or more, lithium of the spinel structure composite oxide diffuses to the surface, and the surface of the spinel structure composite oxide cannot be stabilized. Whether or not Li has diffused to the surface is determined by 20
This can be determined by the fact that the lattice constant becomes larger than the lattice constant when heat treatment is performed at 0 ° C. or more and less than 400 ° C. The heat treatment may be performed for at least 5 minutes.

【0045】また、本発明において、リチウム、マンガ
ン及び酸素を主体とするスピネル構造の複合酸化物に酸
処理をすることにより、30Å〜400Åの範囲の細孔
をもつ粒子に改質することができる。このような細孔状
態を有する前記複合酸化物を正極活物質に使用すること
により、充放電の際の正極活物質表面の局部的な電流密
度を小さくでき、サイクル特性が極めて向上するものと
考えられる。
In the present invention, by subjecting a complex oxide having a spinel structure mainly composed of lithium, manganese and oxygen to an acid treatment, it can be modified into particles having pores in the range of 30 ° to 400 °. . By using the composite oxide having such a pore state as the positive electrode active material, it is considered that local current density on the surface of the positive electrode active material during charge and discharge can be reduced, and the cycle characteristics are extremely improved. Can be

【0046】一般的に優れた電池特性を得るためには、
正極活物質の副反応を抑制する必要から、比表面積が小
さい(1m2/g以下)正極活物質の方が望ましいと言
われている。しかながら、驚くべきことに本発明の正極
活物質の比表面積は、1.5m2/g以上と大きいにも
関わらず、従来になく優れた電池特性が得られる。本発
明の正極活物質の製造方法についての第4の実施態様と
しては、リチウム、マンガン及び酸素を主体とする複合
酸化物の表層にλ-MnO2又はβ-MnO2を形成したの
ち、さらに他の酸化剤を添加して重合性化合物の重合反
応を促進しながら該複合酸化物表面に導電性高分子を被
覆することを特徴とする正極活物質の製造方法を提供す
る。重合性化合物の重合に対し、λ型MnO2及びβ型
MnO2の酸化力が不十分な場合に、この酸化剤の投入
は特に効果的である。
In general, in order to obtain excellent battery characteristics,
It is said that a positive electrode active material having a small specific surface area (1 m 2 / g or less) is more desirable because it is necessary to suppress a side reaction of the positive electrode active material. However, surprisingly, although the specific surface area of the positive electrode active material of the present invention is as large as 1.5 m 2 / g or more, excellent battery characteristics can be obtained as never before. As a fourth embodiment of the method for producing a positive electrode active material of the present invention, after forming λ-MnO 2 or β-MnO 2 on the surface layer of a composite oxide mainly composed of lithium, manganese and oxygen, A method for producing a positive electrode active material, comprising coating a conductive polymer on the surface of the composite oxide while promoting the polymerization reaction of a polymerizable compound by adding an oxidizing agent. When the oxidizing power of λ-type MnO 2 and β-type MnO 2 is insufficient for the polymerization of the polymerizable compound, the addition of the oxidizing agent is particularly effective.

【0047】本発明の正極活物質の製造方法において任
意に使用される酸は、塩酸、臭化水素酸、沃化水素酸、
フッ酸、硝酸、クロロ硫酸、フルオロ硫酸、アミド硫
酸、硫酸、リン酸、過塩素酸、メタンスルホン酸、エタ
ンスルホン酸、プロパンスルホン酸、ベンゼンスルホン
酸、トルエンスルホン酸、ナフタレンスルホン酸、ナフ
タレンジスルホン酸、トリフルオロ酢酸、トリクロロ酢
酸、蟻酸、シュウ酸から選ばれた少なくとも1種が挙げ
られ、中でも硝酸、過塩素酸が特に好ましく使用でき
る。
Acids optionally used in the method for producing a positive electrode active material of the present invention include hydrochloric acid, hydrobromic acid, hydroiodic acid,
Hydrofluoric acid, nitric acid, chlorosulfuric acid, fluorosulfuric acid, amidosulfuric acid, sulfuric acid, phosphoric acid, perchloric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid And at least one selected from trifluoroacetic acid, trichloroacetic acid, formic acid, and oxalic acid. Of these, nitric acid and perchloric acid are particularly preferably used.

【0048】使用される重合性化合物は、重合後にπ電
子共役系化学構造を形成できるものなら何でもよく、限
定されないが、好ましくはアニリン、複素五員環式化合
物、イソチアナフテン、1,3−ジヒドロイソチアナフ
テン、1,3−ジヒドロイソチアナフテン−2−スルホ
キシド及びそれらの誘導体からなる群より選ばれた少な
くとも1種が用いられる。
The polymerizable compound to be used is not particularly limited as long as it can form a π-electron conjugated chemical structure after polymerization, and is preferably, but not limited to, aniline, a five-membered heterocyclic compound, isothianaphthene, 1,3- At least one selected from the group consisting of dihydroisothianaphthene, 1,3-dihydroisothianaphthene-2-sulfoxide and derivatives thereof is used.

【0049】これらの重合性化合物には、さらに例示す
れば、下記一般式(I)
These polymerizable compounds may be further exemplified by the following general formula (I)

【化5】 (式中、R1、R2は各々独立して、水素原子、炭素数1
乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和の
炭化水素基、炭素数1乃至6の直鎖状もしくは分岐状の
飽和又は不飽和のアルコキシ基、水酸基、ハロゲン原
子、ニトロ基、シアノ基、トリハロメチル基、フェニル
基、又は置換フェニル基を表わすか、又はR 1及びR2
互いに任意の位置で結合して、少なくとも1つ以上の5
〜7員環の飽和もしくは不飽和の環状構造を形成する二
価の基を形成してもよい。XはS、O、Se、Te又は
NR3を表わし、R3は水素原子、炭素数1乃至6の直鎖
状もしくは分岐状の飽和もしくは不飽和の炭化水素基、
フェニル基、又は炭素数1乃至6の直鎖状もしくは分岐
状の飽和又は不飽和のアルコキシ基を表わす。R1、R2
及びR3が表わすアルキル基又はアルコキシ基の鎖中に
は、カルボニル結合、エーテル結合、エステル結合、ア
ミド結合、イミノ結合を含んでもよい。)で表される化
合物であり、さらに好ましくは、
Embedded image(Where R1, RTwoAre each independently a hydrogen atom, carbon number 1
To 6 linear or branched saturated or unsaturated
Hydrocarbon group, linear or branched having 1 to 6 carbon atoms
Saturated or unsaturated alkoxy group, hydroxyl group, halogen atom
Child, nitro group, cyano group, trihalomethyl group, phenyl
Or a substituted phenyl group, or R 1And RTwoIs
Bonding to each other at any position to form at least one or more 5
A two- or seven-membered ring forming a saturated or unsaturated cyclic structure;
A valent group may be formed. X is S, O, Se, Te or
NRThreeAnd RThreeIs a hydrogen atom, a linear chain having 1 to 6 carbon atoms
Or branched saturated or unsaturated hydrocarbon groups,
A phenyl group, or a straight or branched chain having 1 to 6 carbon atoms
Represents a saturated or unsaturated alkoxy group. R1, RTwo
And RThreeIn the chain of the alkyl or alkoxy group represented by
Represents a carbonyl bond, an ether bond, an ester bond,
It may contain a mid bond or an imino bond. )
Compound, and more preferably,

【0050】下記一般式(II)、The following general formula (II):

【化6】 (式中、R1、R2は各々独立して、水素原子、炭素数1
乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和の
炭化水素基、炭素数1乃至6の直鎖状もしくは分岐状の
飽和又は不飽和のアルコキシ基、水酸基、ハロゲン原
子、ニトロ基、シアノ基、トリハロメチル基、フェニル
基、又は置換フェニル基を表わすか、又はR 1及びR2
互いに任意の位置で結合して、少なくとも1つ以上の5
〜7員環の飽和もしくは不飽和の環状構造を形成する二
価の基を形成してもよい。R3は水素原子、炭素数1乃
至6の直鎖状もしくは分岐状の飽和もしくは不飽和の炭
化水素基、フェニル基、又は炭素数1乃至6の直鎖状も
しくは分岐状の飽和又は不飽和のアルコキシ基を表わ
す。R1、R2及びR3が表わすアルキル基又はアルコキ
シ基の鎖中には、カルボニル結合、エーテル結合、エス
テル結合、アミド結合、イミノ結合を含んでもよい。)
で表される化合物であり、また下記一般式(III)、
Embedded image(Where R1, RTwoAre each independently a hydrogen atom, carbon number 1
To 6 linear or branched saturated or unsaturated
Hydrocarbon group, linear or branched having 1 to 6 carbon atoms
Saturated or unsaturated alkoxy group, hydroxyl group, halogen atom
Child, nitro group, cyano group, trihalomethyl group, phenyl
Or a substituted phenyl group, or R 1And RTwoIs
Bonding to each other at any position to form at least one or more 5
A two- or seven-membered ring forming a saturated or unsaturated cyclic structure;
A valent group may be formed. RThreeIs a hydrogen atom and has 1 carbon atom
6 to 6 linear or branched saturated or unsaturated charcoals
A hydride group, a phenyl group, or a linear group having 1 to 6 carbon atoms
Or a branched, saturated or unsaturated alkoxy group.
You. R1, RTwoAnd RThreeAn alkyl group or alkoxy represented by
A carbonyl bond, an ether bond, an S
It may contain a tell bond, an amide bond, and an imino bond. )
And a compound represented by the following general formula (III):

【0051】[0051]

【化7】 (式中、R4及びR5は、各々独立して水素原子、炭素数
1乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和
の炭化水素基、又は炭素数1乃至6の炭化水素基が互い
に任意の位置で結合して、2つの酸素元素を含む少なく
とも1つ以上の5〜7員環の飽和炭化水素の環状構造を
形成する置換基を表わす。また、前記環状構造には置換
されていてもよいビニレン結合を有するもの、置換され
ていてもよいフェニレン構造のものが含まれる。)で表
されるチオフェン誘導体も有効に使用される。
Embedded image (Wherein R 4 and R 5 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, or a hydrocarbon group having 1 to 6 carbon atoms) Represents a substituent which bonds to each other at an arbitrary position to form a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon ring containing two oxygen elements, and the cyclic structure is substituted. And a phenylene structure which may be substituted.) Are also effectively used.

【0052】さらに前記一般式(I)と前記一般式(I
I)における好ましいR1及びR2としては、各々独立し
て、水素原子、炭素数1乃至3の直鎖状もしくは分岐状
の飽和もしくは不飽和の炭化水素基、炭素数1乃至3の
直鎖状もしくは分岐状の飽和又は不飽和のアルコキシ
基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチ
ル基がよく、またR3は水素原子、炭素数1乃至3の直
鎖状もしくは分岐状の飽和もしくは不飽和の炭化水素
基、又は炭素数1乃至3の直鎖状もしくは分岐状の飽和
又は不飽和のアルコキシ基がよい。前記一般式(III)
における好ましいR4及びR5としては、各々独立して水
素原子、炭素数1乃至3の直鎖状もしくは分岐状の飽和
もしくは不飽和の炭化水素基、又は炭素数1乃至3の炭
化水素基が互いに任意の位置で結合して、2つの酸素元
素を含む少なくとも1つ以上の5〜7員環の飽和炭化水
素の環状構造を形成する置換基がよい。
Further, the above-mentioned general formula (I) and the above-mentioned general formula (I
Preferred R 1 and R 2 in I) are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 3 carbon atoms, or a linear chain having 1 to 3 carbon atoms. R 3 is a hydrogen atom, a linear or branched saturated or unsaturated, saturated or unsaturated alkoxy group, halogen atom, nitro group, cyano group, trihalomethyl group. An unsaturated hydrocarbon group or a linear or branched saturated or unsaturated alkoxy group having 1 to 3 carbon atoms is preferred. The general formula (III)
As preferred R 4 and R 5 in, each independently represents a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 3 carbon atoms, or a hydrocarbon group having 1 to 3 carbon atoms. A substituent which bonds to each other at an arbitrary position to form a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon containing two oxygen elements is preferable.

【0053】本発明においては、上記重合性化合物の中
から特にアニリン、ピロール、N−メチルピロール、3
−メチルピロール、3,4−ジメチルピロール、3,4
−ジオキシチオフェン、イソチナナフテンが電導度の高
い導電性高分子を与えるので好ましい。
In the present invention, aniline, pyrrole, N-methylpyrrole, 3
-Methylpyrrole, 3,4-dimethylpyrrole, 3,4
-Dioxythiophene and isotinanaphthene are preferred because they provide a conductive polymer having high conductivity.

【0054】本発明の正極活物質の製造方法において、
使用される酸化剤としては、例えば、MnO2、FeC
3、FeClO4、Fe(有機酸アニオン)塩等のFe
(III)系化合物、無水塩化アルミニウム/塩化第一
銅、アルカリ金属過硫酸塩、過硫酸アンモニウム塩、過
酸化物、過マンガン酸カリウム、2,3−ジクロロ−
5,6−ジシアノ−1,4−ベンゾキノン(DDQ)、
テトラクロロ−1,4−ベンゾキノン、テトラシアノ−
1,4−ベンゾキノン、よう素、臭素からなる群より選
ばれた少なくとも1種が挙げられる。
In the method for producing a positive electrode active material of the present invention,
Examples of the oxidizing agent used include MnO 2 , FeC
Fe such as l 3 , FeClO 4 , Fe (organic acid anion) salt
(III) compound, anhydrous aluminum chloride / cuprous chloride, alkali metal persulfate, ammonium persulfate, peroxide, potassium permanganate, 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ),
Tetrachloro-1,4-benzoquinone, tetracyano-
At least one selected from the group consisting of 1,4-benzoquinone, iodine, and bromine is used.

【0055】次に、導電性高分子をリチウム、マンガン
及び酸素を主体とする複合酸化物に被覆(堆積)する正
極活物質の製造方法についてより詳細に以下に説明す
る。導電性高分子とマンガン酸化物を含む正極活物質の
製造方法において、マンガン酸化物がリチウム、マンガ
ン及び酸素を主体とする複合酸化物であって、この粉体
又はその造粒物又はそれらの成型体を、前記酸化剤を溶
解した溶液に浸漬し、次いで前記重合性化合物を滴下し
ながら複合酸化物表面に導電性高分子を堆積することが
できる。
Next, a method for producing a positive electrode active material in which a conductive polymer is coated (deposited) on a composite oxide mainly composed of lithium, manganese and oxygen will be described in more detail below. In the method for producing a positive electrode active material containing a conductive polymer and a manganese oxide, the manganese oxide is a composite oxide mainly composed of lithium, manganese, and oxygen, and the powder or the granulated product thereof or the molding thereof. The body can be immersed in a solution in which the oxidizing agent is dissolved, and then the conductive polymer can be deposited on the surface of the composite oxide while the polymerizable compound is dropped.

【0056】ここで、使用できる溶液は、酸化剤を溶解
できるものなら何でも良く限定されないが、例えば水、
炭素数1乃至6を有する第1、第2、第3アルコール
類、テトラヒドロフラン(THF)、ジオキサン等の含
酸素化合物、アセトニトリル、ベンゾニトリル等のニト
リル化合物、ニトロメタン、ニトロベンゼン等のニトロ
化合物、ジメチルホルムアルデヒド(DMF)、ジメチ
ルスルホキシド(DMSO)、クロロホルム、ジクロロ
メタン、テトラクロロエタン等の塩素含有化合物、ベン
ゼン、トルエン、キシレン等の芳香族化合物などからな
る群より選ばれた少なくとも1種を使用することができ
る。本発明の製造方法において、複合酸化物に溶媒中で
の分散濃度は、経済的使用可能な分散濃度であれば良
く、溶媒1ml当たり、例えば0.0001〜1g/m
l、好ましくは0.001〜0.5g/ml、さらに好
ましくは0.01〜0.3g/mlが設定される。
The solution that can be used is not particularly limited as long as it can dissolve the oxidizing agent.
Primary, secondary, and tertiary alcohols having 1 to 6 carbon atoms, oxygen-containing compounds such as tetrahydrofuran (THF) and dioxane, nitrile compounds such as acetonitrile and benzonitrile, nitro compounds such as nitromethane and nitrobenzene, and dimethylformaldehyde ( DMF), dimethyl sulfoxide (DMSO), at least one selected from the group consisting of chlorine-containing compounds such as chloroform, dichloromethane and tetrachloroethane, and aromatic compounds such as benzene, toluene and xylene can be used. In the production method of the present invention, the dispersion concentration of the composite oxide in the solvent may be any economically usable dispersion concentration, for example, 0.0001 to 1 g / m3 per 1 ml of the solvent.
1, preferably 0.001 to 0.5 g / ml, more preferably 0.01 to 0.3 g / ml.

【0057】本発明の製造方法において使用される重合
性化合物の濃度は、化学的に重合しえる濃度であれば良
く、例えば10-6〜1モル濃度、好ましくは10-5
0.5モル濃度、さらに好ましくは10-4〜0.2モル
濃度が設定される。酸化剤は、滴下する重合性化合物に
対して1〜10倍モル等量、好ましくは1〜5倍モル等
量、特に好ましくは1〜2倍モル等量の範囲で使用され
る。1倍モル等量未満では、未反応の重合性化合物が残
存してしまい、また10倍モル等量を越える場合は酸化
剤が多く残存するばかりか、重合性化合物をさらに酸化
してしまい、電導度の点で好ましくない。重合性化合物
は、後記する高分子の被覆量P(質量%)とリチウム、マ
ンガン及び酸素を主体とする複合酸化物の比表面積S(m
2/g)との比P/Sを満足するように制御されて使用され
る。
The concentration of the polymerizable compound used in the production method of the present invention may be a concentration capable of chemically polymerizing, for example, 10 -6 to 1 mol, preferably 10 -5 to 1 mol.
The concentration is set to 0.5 molar, more preferably 10 -4 to 0.2 molar. The oxidizing agent is used in an amount of 1 to 10 molar equivalents, preferably 1 to 5 molar equivalents, particularly preferably 1 to 2 molar equivalents, based on the polymerizable compound to be dropped. If the molar amount is less than 1 molar equivalent, unreacted polymerizable compound remains. If the molar amount exceeds 10 molar equivalents, not only a large amount of the oxidizing agent remains but also the polymerizable compound is further oxidized, resulting in a poor conductivity. It is not preferable in terms of degree. The polymerizable compound has a coating amount P (% by mass) of a polymer described later and a specific surface area S (m) of a composite oxide mainly composed of lithium, manganese, and oxygen.
2 / g) and is controlled so as to satisfy the ratio P / S.

【0058】重合性化合物の重合反応を行う反応温度
は、使用する重合性化合物や溶媒、酸化剤の組み合わせ
によって決められるものであり、特に限定されないが、
通常−20〜150℃、好ましくは0〜100℃、特に
好ましくは10〜80℃の範囲で行われる。−20℃よ
り低い反応温度では重合反応が遅く、また使用できる溶
媒も凝固点の点から制約される。150℃より高い反応
温度では重合反応すぎ、また副次的な副反応を伴い期待
される化学構造の重合体はできない。重合性化合物の重
合反応を行う反応時間は、使用する重合性化合物や溶
媒、酸化剤、反応温度の組み合わせよって決められるも
のであり、限定されないが、通常10秒〜24時間、好
ましくは1分〜10時間、特に好ましくは5分〜6時間
の範囲で行われる。10秒より短い反応時間では重合反
応が充分ではなく重合物量が不十分である。24時間よ
り長い反応時間では、製造に伴う時間が長くなり経済的
ではない。重合方法において、リチウム、マンガン及び
酸素を主体とする複合酸化物の表面に堆積せず溶媒に残
存した重合物は、篩処理や濾過、洗浄等により分離され
る。
The reaction temperature for carrying out the polymerization reaction of the polymerizable compound is determined by the combination of the polymerizable compound used, the solvent and the oxidizing agent, and is not particularly limited.
The reaction is usually carried out at a temperature in the range of -20 to 150 ° C, preferably 0 to 100 ° C, particularly preferably 10 to 80 ° C. At a reaction temperature lower than −20 ° C., the polymerization reaction is slow, and the solvent that can be used is restricted in terms of the freezing point. At a reaction temperature higher than 150 ° C., a polymerization reaction is too much, and a polymer having an expected chemical structure cannot be obtained with a secondary side reaction. The reaction time for carrying out the polymerization reaction of the polymerizable compound is determined by the combination of the polymerizable compound used, the solvent, the oxidizing agent and the reaction temperature, and is not limited, but is usually from 10 seconds to 24 hours, preferably from 1 minute to The reaction is performed for 10 hours, particularly preferably for 5 minutes to 6 hours. If the reaction time is shorter than 10 seconds, the polymerization reaction is not sufficient and the amount of the polymer is insufficient. If the reaction time is longer than 24 hours, the time required for the production becomes longer, and it is not economical. In the polymerization method, the polymer remaining on the solvent without depositing on the surface of the composite oxide mainly composed of lithium, manganese and oxygen is separated by sieving, filtration, washing or the like.

【0059】次に、重合性化合物としてピロールを例に
酸処理したスピネル型LiMn24系複合酸化物への堆
積方法について説明する。スピネル型LiMn24系複
合酸化物の粉体又はその造粒物又はそれらの成型体を純
水に添加し、撹拌しながら以下の所定量の酸を滴下す
る。酸量は、例えばピロール1モルに対して8グラム当
量以下の範囲内で滴下するのが好ましい。酸の滴下後、
撹拌しながら所定量のピロールを水溶液で添加し、複合
酸化物表面に化学的酸化重合する。ポリピロール被覆複
合酸化物をろ過して分離し、乾燥して本発明の正極活物
質を得る。
Next, a method of depositing on an acid-treated spinel-type LiMn 2 O 4 -based composite oxide using pyrrole as an example of the polymerizable compound will be described. A powder of the spinel-type LiMn 2 O 4 -based composite oxide, a granulated product thereof, or a molded product thereof is added to pure water, and the following predetermined amount of acid is added dropwise with stirring. The amount of the acid is preferably added dropwise within a range of, for example, 8 gram equivalents or less per 1 mol of pyrrole. After the acid dripping,
A predetermined amount of pyrrole is added as an aqueous solution with stirring, and the surface of the composite oxide is chemically oxidized and polymerized. The polypyrrole-coated composite oxide is separated by filtration and dried to obtain the positive electrode active material of the present invention.

【0060】本発明の正極活物質の製造方法において、
導電性高分子の堆積は、リチウム、マンガン及び酸素を
主体とする複合酸化物の重量当たりの導電性高分子被覆
量をP(質量%)とした場合、リチウム、マンガン及び
酸素を主体とする複合酸化物の比表面積S(m2/g)に対し
て、P/S比が5×10-3≦P/S≦10、好ましくは0.
3≦P/S≦3の範囲、さらに好ましくは1≦P/S≦3
の範囲で行うのが望ましい。P/Sが5×10-3未満で
は、リチウム、マンガン及び酸素を主体とする複合酸化
物表面の被覆が十分とは言えず、P/Sが10を越える
場合では、正極活物質当りの容量が小さくなってしま
う。
In the method for producing a positive electrode active material according to the present invention,
The deposition of the conductive polymer is performed using a composite mainly composed of lithium, manganese, and oxygen, assuming that the amount of the conductive polymer coated per unit weight of the composite oxide mainly composed of lithium, manganese, and oxygen is P (% by mass). With respect to the specific surface area S (m 2 / g) of the oxide, the P / S ratio is 5 × 10 −3 ≦ P / S ≦ 10, preferably 0.
3 ≦ P / S ≦ 3, more preferably 1 ≦ P / S ≦ 3
It is desirable to carry out within the range. If the P / S is less than 5 × 10 −3 , the surface of the composite oxide mainly composed of lithium, manganese and oxygen cannot be said to be sufficient, and if the P / S exceeds 10, the capacity per positive electrode active material will be insufficient. Becomes smaller.

【0061】さらに好ましくは、リチウム、マンガン及
び酸素を主体とする複合酸化物に対して、ポリピロール
被覆量P(質量%)が0.05≦P≦10、好ましくは
0.2≦P≦5、さらに好ましくは0.5≦P(質量%)
≦2である。被覆量が0.05質量%よりも少ないと、
正極活物質表面を十分に被覆しにくくなるし、逆に10
質量%よりも越えると、正極活物質当りの容量に影響す
るからである。
More preferably, the polypyrrole coating amount P (% by mass) is 0.05 ≦ P ≦ 10, preferably 0.2 ≦ P ≦ 5, based on the composite oxide mainly containing lithium, manganese and oxygen. More preferably, 0.5 ≦ P (% by mass)
≦ 2. If the coating amount is less than 0.05% by mass,
It becomes difficult to sufficiently cover the surface of the positive electrode active material.
This is because if it exceeds the mass%, the capacity per positive electrode active material is affected.

【0062】本発明において、ポリピロールの堆積量と
その同定にはTG−MAS(示差熱天秤−質量分析同時
測定装置)で定量することは可能である。ピロール1モ
ルに対して酸量を8グラム当量以下の範囲内で滴下する
のは、酸量が8グラム当量を超えると正極活物質当りの
容量が小さくなってしまう。好ましくは添加予定のピロ
ール1モルに対して酸量が5〜8グラム当量、さらに好
ましくは、5〜6グラム当量である。酸量が5グラム当
量よりも少ないと添加したピロール全てを化学酸化重合
できず不均一な被覆になりやすいし、不用なピロールが
残りやすいので、正極活物質当りの容量とMn溶出量に
影響を与えるからである。
In the present invention, the amount of polypyrrole deposited and its identification can be determined by TG-MAS (differential thermal balance-mass spectrometry simultaneous measurement device). When the amount of acid is dropped within the range of 8 gram equivalent or less per 1 mol of pyrrole, the capacity per cathode active material becomes small when the amount of acid exceeds 8 gram equivalent. Preferably, the acid amount is 5 to 8 gram equivalents, more preferably 5 to 6 gram equivalents, per mol of pyrrole to be added. If the acid amount is less than 5 gram equivalents, all of the added pyrrole cannot be chemically oxidized and polymerized, resulting in a non-uniform coating, and unnecessary pyrrole is apt to remain, thus affecting the capacity per cathode active material and the amount of Mn eluted. Because it gives.

【0063】次に、本発明の前記正極活物質を非水二次
電池の正極材料として使用する方法を説明する。正極材
料は、前記正極活物質とカーボンブラック又は黒鉛など
の導電性付与剤、及びポリフツ化ビニリデンなどのバイ
ンダー(結合材)を溶解した溶液(例えば、N−メチル
ピロリドンなど)を所定割合で混練して電極ペーストと
して集電体に塗布し、次いで乾燥後にロールプレスなど
で加圧して製造する。集電体には、アルミニウム、ステ
ンレス、チタン等の公知な金属製集電体が使用される。
Next, a method of using the positive electrode active material of the present invention as a positive electrode material of a non-aqueous secondary battery will be described. The positive electrode material is prepared by kneading a solution (for example, N-methylpyrrolidone) in which a solution (for example, N-methylpyrrolidone) in which the positive electrode active material, a conductivity imparting agent such as carbon black or graphite, and a binder (binding material) such as polyvinylidene fluoride are dissolved is mixed at a predetermined ratio. Then, it is applied to a current collector as an electrode paste, and then dried and then pressed by a roll press or the like to produce the electrode paste. As the current collector, a known metal current collector such as aluminum, stainless steel, or titanium is used.

【0064】本発明の非水二次電池において使用される
電解液中の電解質塩としては、フッ素を含有する公知な
リチウム塩が使用できる。例えば、LiPF6、LiB
4、LiN(CF3SO22、LiAsF6、LiCF3
SO3、LiC49SO3などが使用できる。非水二次電
池の電解液は、前記フッ素を含有する公知なリチウム塩
の少なくとも1種の電解質を非水系電解液に溶解して用
いる。前記非水系電解液の非水電解液には、化学的及び
電気化学的に安定で非プロトン性であれば限定されず使
用できる。例えば、炭酸ジメチル、炭酸プロピレン、炭
酸エチレン、炭酸メチルエチル、炭酸メチルプロピル、
炭酸メチルイソプロピル、炭酸メチルブチル、炭酸ジエ
チル、炭酸エチルプロピル、炭酸ジイソプロピル、炭酸
ジブチル、炭酸1,2−ブチレン、炭酸エチルイソプロ
ピル、炭酸エチルブチル等の炭酸エステル類が例示され
る。また、トリエチレングリコールメチルエーテル、テ
トラエチレングリコールジメチルエーテル等のオリゴエ
ーテル類、プロピオン酸メチル、蟻酸メチル等の脂肪族
エステル類、ベンゾニトリル、トルニトリル等の芳香族
ニトリル類、ジメチルホルムアミド等のアミド類、ジメ
チルスルホキシド等のスルホキシド類、γーブチロラク
トン等のラクトン類、スルホラン等の硫黄化合物、Nー
ビニルピロリドン、Nーメチルピロリドン、リン酸エス
テル類等も例示できる。なかでも、本発明では炭酸エス
テル類、脂肪族エステル類、エーテル類が好ましい。
As the electrolyte salt in the electrolyte used in the non-aqueous secondary battery of the present invention, a known lithium salt containing fluorine can be used. For example, LiPF 6 , LiB
F 4 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiCF 3
SO 3 and LiC 4 F 9 SO 3 can be used. As the electrolyte for the non-aqueous secondary battery, at least one electrolyte of the known lithium salt containing fluorine is used by dissolving it in a non-aqueous electrolyte. The non-aqueous electrolyte of the non-aqueous electrolyte can be used without limitation as long as it is chemically and electrochemically stable and aprotic. For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl ethyl carbonate, methyl propyl carbonate,
Carbonic esters such as methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, and ethyl butyl carbonate are exemplified. Oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether; aliphatic esters such as methyl propionate and methyl formate; aromatic nitriles such as benzonitrile and tolunitrile; amides such as dimethylformamide; Sulfoxides such as sulfoxide, lactones such as γ-butyrolactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters can also be exemplified. Of these, carbonates, aliphatic esters, and ethers are preferred in the present invention.

【0065】本発明の非水二次電池において使用される
負極には、リチウムイオンを可逆的に吸蔵放出可能な材
料であれば特に制限はなく、例えば、リチウム金属、リ
チウム合金、炭素材料(黒鉛を含む)、金属カルコゲン
等が使用できる。
The negative electrode used in the nonaqueous secondary battery of the present invention is not particularly limited as long as it is a material capable of inserting and extracting lithium ions reversibly. For example, lithium metal, lithium alloy, carbon material (graphite) And metal chalcogens can be used.

【0066】次に、電極特性の評価方法に一例について
説明する。正極活物質、導電材としてキャボット製バル
カンXC−72(アセチレンブラック)、結着剤として
四フッ化エチレン樹脂(PTFE)を質量比で、50:
34:16の割合で混合し、その混合物をトルエンで1
2時間膨潤する。膨潤した混合物をアルミニウムエキス
バンドメタルからなる集電体上に塗り、2t/cm2
加圧成形し、トルエンを乾燥して正極とする。一方、負
極としては、リチウム箔を用いる。電解液としては、炭
酸プロピレン(PC)と炭酸ジメチル(DMC)を体積
比で1対2の割合で混合した混合液にLiPF6を1モ
ル/リットルの濃度で溶解したものを用いる。セパレー
ターとしては、ポリプロピレン製のものを用い、負極の
デンドライト生成が原因のマイクロショートを防止する
目的で、補強材としてアドバンテック東洋(株)製のシ
リカ繊維濾紙QR−100も併用する。これら正極、負
極、電解液、セパレーターと補強材を用いて、2016
型コイン電池を作製し、60℃に設定した恒温槽内で3
0回の充電・放電サイクル試験を行う。測定条件は、定
電流定電圧充電−定電流放電、充電及び放電レート1C
(充電開始から2.5時間で充電休止)、走査電圧3.
1V〜4.3Vである。
Next, an example of a method for evaluating electrode characteristics will be described. The cathode active material, Vulcan XC-72 (acetylene black) manufactured by Cabot as a conductive material, and ethylene tetrafluoride resin (PTFE) as a binder at a mass ratio of 50:
The mixture was mixed at a ratio of 34:16 and the mixture was mixed with toluene for 1 hour.
Swell for 2 hours. The swollen mixture is applied onto a current collector made of an aluminum extract band metal, molded under pressure at 2 t / cm 2 , and toluene is dried to obtain a positive electrode. On the other hand, a lithium foil is used as the negative electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixture of propylene carbonate (PC) and dimethyl carbonate (DMC) at a volume ratio of 1: 2 is used. A separator made of polypropylene is used as the separator, and silica fiber filter paper QR-100 manufactured by Advantech Toyo Co., Ltd. is also used as a reinforcing material for the purpose of preventing micro short circuit caused by dendrite generation of the negative electrode. By using these positive electrode, negative electrode, electrolytic solution, separator and reinforcing material, 2016
A coin-type coin battery is manufactured and placed in a thermostat set at 60 ° C.
Perform 0 charge / discharge cycle tests. Measurement conditions are: constant current constant voltage charge-constant current discharge, charge and discharge rate 1C
(Charge pauses 2.5 hours after the start of charging), scanning voltage 3.
1V to 4.3V.

【0067】また、上記二次電池の構成において、イオ
ン伝導性を有する高分子固体電解質も使用できる。 例
えばポリフッ化ビニリデン(PVDF)やポリエチレンオ
キサイド(PEO)、ポリアクリロニトリル及びこれら誘
導体等の熱可塑性ポリマーに上記Li塩及び/又は電解
液を溶解したものや、ポリエチレンオキサイドジアクリ
レートのような多官能エチレンオキサイドオリゴマーと
上記Li塩及び/又は電解液の混合物を加熱や活性光線
で網目状に架橋硬化したものが挙げられる。
In the configuration of the secondary battery, a solid polymer electrolyte having ion conductivity can also be used. For example, polyvinylidene fluoride (PVDF) and polyethylene oxide (PEO), thermoplastic polymers such as polyacrylonitrile and their derivatives and the above-mentioned Li salt and / or dissolved in an electrolytic solution, or polyfunctional ethylene oxide such as polyethylene oxide diacrylate A mixture obtained by cross-linking and curing a mixture of an oligomer and the above-mentioned Li salt and / or electrolyte solution by heating or actinic rays is used.

【0068】[0068]

【実施例】実施例1 硝酸リチウムと二酸化マンガンとをボールミルで混合
し、大気雰囲気中800℃で48時間反応させ、Li
1.1Mn1.94を合成した。これをボールミルで粉砕
し、一次粒子径0.4〜1μm、平均一次粒子径0.6
μm、格子定数8.231Å、BET比表面積S=0.
5m2/gのLi1.1Mn1.94の粉体を得た。そして、こ
の粉体5gを純水100mlに添加し0.5時間撹拌
後、撹拌しながら0.1N−硝酸水溶液を40.2ml
(ピロールの5.4倍グラム当量)を少量づつ滴下し
て、スピネル型マンガン酸化物の表面をλ−MnO2に変換
した。滴下後、撹拌を続けながらピロール0.05g
(0.745ミリモル)を含有する10mlの水溶液を
添加して、Li1.1Mn1.94の表面にポリピロールを
形成した。得られたリチウム、マンガン、酸素を主体と
するマンガン酸化物と導電性高分子との複合体をろ過・
洗浄して110℃で乾燥し、この複合体からなる正極活
物質を4.8g得た。
EXAMPLE 1 Lithium nitrate and manganese dioxide were mixed in a ball mill and reacted at 800 ° C. for 48 hours in an air atmosphere.
1.1 Mn 1.9 O 4 was synthesized. This was pulverized by a ball mill to have a primary particle diameter of 0.4 to 1 μm and an average primary particle diameter of 0.6.
μm, lattice constant 8.231 °, BET specific surface area S = 0.
5 m 2 / g of Li 1.1 Mn 1.9 O 4 powder was obtained. Then, 5 g of this powder was added to 100 ml of pure water, and after stirring for 0.5 hour, 40.2 ml of a 0.1N aqueous solution of nitric acid was stirred while stirring.
(5.4 times gram equivalent of pyrrole) was added dropwise little by little to convert the surface of the spinel-type manganese oxide into λ-MnO 2 . After dropping, while stirring, 0.05 g of pyrrole
(0.745 mmol) was added to form polypyrrole on the surface of Li 1.1 Mn 1.9 O 4 . Filtration of the resulting composite of lithium, manganese, manganese oxide mainly composed of oxygen and conductive polymer
After washing and drying at 110 ° C., 4.8 g of a positive electrode active material comprising the composite was obtained.

【0069】次に得られた正極活物質の一部を熱重量分
析(TGと略する;窒素下、室温〜600℃迄、加熱速
度は20℃/min.)で調べたところ、600℃迄にポリ
ピロールは全て熱分解して消滅、これによりポリピロー
ル被覆分に相当する比率Pが1質量%であったことがわ
かった。複合酸化物上に被覆されたポリピロールは0.
047gであった。以上のことから、P/Sの比は2で
あった。得られた正極活物質をSEMで観察したとこ
ろ、正極活物質の一次粒子表面が粒状のポリピロールで
被覆されていることをわかった。
Next, a part of the obtained positive electrode active material was analyzed by thermogravimetric analysis (abbreviated as TG; from room temperature to 600 ° C. under nitrogen, at a heating rate of 20 ° C./min.). In addition, it was found that all the polypyrrole disappeared due to thermal decomposition, whereby the ratio P corresponding to the polypyrrole coating amount was 1% by mass. The polypyrrole coated on the composite oxide was 0.1%.
It was 047 g. From the above, the P / S ratio was 2. Observation of the obtained positive electrode active material by SEM showed that the surface of the primary particles of the positive electrode active material was covered with granular polypyrrole.

【0070】次に、得られた正極活物質を正極活物質:
アセチレンブラック:四フッ化エチレン樹脂(PTF
E)=50:34:16の配合比率としてミキサー混合
後、トルエンでPTFEを膨潤し、これをアルミメッシ
ュ集電体に塗布し、トルエンを蒸発させた後、2t/cm2
で加圧プレスして正極用電極材料とした。得られた正極
用電極材料を30mm角に打ち抜いた後にこれを正極用
電極とした。この正極用電極とリチウム箔の負極と、炭
酸プロピレン(PC)と炭酸ジメチル(DMC)を体積
比で1:2の割合で混合した非水系電解液にLiPF6
を1モル/リットルの濃度で溶解したものを電解液とし
て用い、アルミラミネート袋を外装袋とした非水系二次
電池(以下ラミ袋電池と記載)を組み立てた。
Next, the obtained positive electrode active material was used as a positive electrode active material:
Acetylene black: tetrafluoroethylene resin (PTF
E) = 50: 34: 16 after mixing with a mixer, PTFE was swelled with toluene, applied to an aluminum mesh current collector, and toluene was evaporated, and then 2 t / cm 2.
To produce a positive electrode material. The obtained positive electrode material was punched into a 30 mm square, and this was used as a positive electrode. LiPF 6 was added to the nonaqueous electrolyte obtained by mixing the positive electrode, the negative electrode of lithium foil, propylene carbonate (PC) and dimethyl carbonate (DMC) at a volume ratio of 1: 2.
Was dissolved at a concentration of 1 mol / liter, and a non-aqueous secondary battery (hereinafter, referred to as a Lami bag battery) was assembled using an aluminum laminate bag as an outer bag.

【0071】得られたラミ袋電池に対し、60℃環境下
での充放電サイクル試験を実施した。即ち、試験の条件
として、充放電レート1C(クーロン)、電圧範囲3.
1〜4.3V、環境温度60℃に設定し、30サイクル
充放電を繰り返した。そして、ラミ袋電池を解体し電解
液及び負極中の残存Mn量を分析し、正極中に含まれる
総Mn量に対する重量%を計算した。この電池の初期容
量は110mAh/gであって、30サイクル後のMn溶出
量は0.31%と極めて少なかった。
The obtained lami bag battery was subjected to a charge / discharge cycle test in a 60 ° C. environment. That is, the test conditions include a charge / discharge rate of 1 C (coulomb) and a voltage range of 3.
The temperature was set at 1 to 4.3 V and the ambient temperature was 60 ° C., and charge and discharge were repeated for 30 cycles. Then, the Lami bag battery was disassembled, and the amount of residual Mn in the electrolytic solution and the negative electrode was analyzed, and the weight% with respect to the total amount of Mn contained in the positive electrode was calculated. The initial capacity of this battery was 110 mAh / g, and the amount of Mn eluted after 30 cycles was as extremely small as 0.31%.

【0072】実施例2 0.1N−硝酸水溶液40.2mlの代わりに0.1N
−の硝酸水溶液56.6ml(ピロールの7.6倍グラ
ム当量)を用いた以外は、実施例1と同様にして実施し
た。その結果、被覆した全ポリピロール被覆量は0.0
48gであった。電池の初期容量は106mAh/gであっ
て、30サイクル後のMn溶出量は0.40%と少なか
った。得られた正極活物質のポリピロール被覆量を実施
例1と同様に熱重量分析(TG)で調べたところ、P=
0.99質量%であった(P/S=1.98)。
Example 2 Instead of 40.2 ml of 0.1N-nitric acid aqueous solution, 0.1N
The procedure was carried out in the same manner as in Example 1 except that 56.6 ml of an aqueous nitric acid solution (-7.6 g equivalent of pyrrole) was used. As a result, the total polypyrrole coating amount was 0.0
It was 48 g. The initial capacity of the battery was 106 mAh / g, and the elution amount of Mn after 30 cycles was as small as 0.40%. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis (TG) in the same manner as in Example 1.
0.99% by mass (P / S = 1.98).

【0073】実施例3 0.1N−硝酸水溶液40.2mlの代わりに0.1N
−の硝酸水溶液26.1ml(ピロールの3.5倍グラ
ム当量)を用いた以外は、実施例1と同様にして実施し
た。その結果、被覆したポリピロール被覆量は0.02
9gであった。電池の初期容量105mAh/gであって、
30サイクル後のMn溶出量は0.51%と少なかっ
た。得られた正極活物質のポリピロール被覆量を実施例
1と同様に熱重量分析で調べたところ、P=0.60質
量%であった(P/S=1.20)。
Example 3 Instead of 40.2 ml of 0.1N-nitric acid aqueous solution, 0.1N
The procedure was performed in the same manner as in Example 1 except that 26.1 ml of a nitric acid aqueous solution (3.5 times gram equivalent of pyrrole) was used. As a result, the coated polypyrrole coverage was 0.02
9 g. The initial capacity of the battery is 105 mAh / g,
The Mn elution amount after 30 cycles was as small as 0.51%. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 0.60% by mass (P / S = 1.20).

【0074】実施例4 0.1N−硝酸水溶液40.2mlの代わりに0.1N
−の硝酸水溶液56.3ml(ピロールの5.4倍グラ
ム当量)を用いたこと、及びピロール0.05gを含有
する10mlの水溶液の代わりにピロール0.07gを
含有する水溶液10mlを用いたこと以外は、実施例1
と同様にして実施した。その結果被覆したポリピロール
被覆量は0.069gであった。電池の初期容量は10
9mAh/gであって、30サイクル後のMn溶出量は0.
19%と極めて少なかった。得られた正極活物質のポリ
ピロール被覆量を実施例1と同様に熱重量分析で調べた
ところ、P=1.4質量%であった(P/S=2.8
0)。
Example 4 Instead of 40.2 ml of 0.1N aqueous nitric acid solution, 0.1N
Except that 56.3 ml of an aqueous nitric acid solution (equivalent to 5.4 times gram of pyrrole) was used, and 10 ml of an aqueous solution containing 0.07 g of pyrrole was used instead of 10 ml of an aqueous solution containing 0.05 g of pyrrole. Example 1
It carried out similarly to. As a result, the coated amount of the coated polypyrrole was 0.069 g. The initial capacity of the battery is 10
It was 9 mAh / g, and the amount of Mn eluted after 30 cycles was 0.1.
It was extremely low at 19%. The polypyrrole coating amount of the obtained positive electrode active material was determined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 1.4% by mass (P / S = 2.8).
0).

【0075】実施例5 0.1N−硝酸水溶液40.2mlの代わりに0.1N
−の硝酸水溶液9.2ml(ピロールの5.4倍グラム
当量)を用いたこと、及びピロール0.05gを含有す
る10mlの水溶液の代わりにピロール0.0115g
を含有する水溶液10mlを用いたこと以外は、実施例
1と同様にして実施した。その結果、被覆したポリピロ
ール被覆量は0.0115gであった。電池の初期容量
は110mAh/gであって、30サイクル後のMn溶出量
は0.53%と極めて少なかった。得られた正極活物質
のポリピロール被覆量を実施例1と同様に熱重量分析で
調べたところ、P=0.23質量%であった(P/S=
0.46)。
Example 5 Instead of 40.2 ml of 0.1N-nitric acid aqueous solution, 0.1N
Using 9.2 ml of an aqueous nitric acid solution (5.4 gram equivalents of pyrrole) and 0.0115 g of pyrrole instead of 10 ml of an aqueous solution containing 0.05 g of pyrrole
Was carried out in the same manner as in Example 1 except that 10 ml of an aqueous solution containing was used. As a result, the coated amount of polypyrrole was 0.0115 g. The initial capacity of the battery was 110 mAh / g, and the amount of Mn eluted after 30 cycles was as extremely small as 0.53%. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 0.23% by mass (P / S =
0.46).

【0076】実施例6 リチウム、マンガン及び酸素を主体とする複合酸化物と
して、炭酸リチウムと炭酸マンガンと気相法アルミナを
ボールミルで混合し、大気雰囲気中750℃で20時間
反応させ、Li1. 02Al0.1Mn1. 884(比表面積S=
4.3m2/g、8.225Å)を合成した。この複合酸化
物5gを用い、0.1N−硝酸水溶液を40.2mlの
代わりに0.1N−硝酸水溶液を58.3ml(ピロー
ルの5.4倍グラム当量)を用いたこと、及びピロール
を0.05g含有した水溶液10mlの代わりにピロー
ル0.115gを含有する水溶液10mlを用いたこと
以外は、実施例1と同様にして実施した。その結果、被
覆したポリピロール被覆量は0.073gであった。電
池の初期容量は122mAh/gであって、30サイクル後
のMn溶出量は、ピロール被覆しなかった場合が3.1
2%であったのに対して0.55%と少なかった。得ら
れた正極活物質のポリピロール被覆量を実施例1と同様
に熱重量分析したところ、1.47質量%であった(P
/S=0.34)。
Example 6 As a composite oxide mainly composed of lithium, manganese and oxygen, lithium carbonate, manganese carbonate and vapor-phase alumina were mixed in a ball mill and reacted at 750 ° C. in the atmosphere for 20 hours to obtain Li 1. 02 Al 0.1 Mn 1. 88 O 4 ( specific surface area S =
4.3 m 2 / g, 8.225 °). Using 5 g of this composite oxide, 58.3 ml of a 0.1 N aqueous solution of nitric acid (5.4 gram equivalent of pyrrole) instead of 40.2 ml of a 0.1 N aqueous solution of nitric acid, and The procedure was performed in the same manner as in Example 1, except that 10 ml of an aqueous solution containing 0.115 g of pyrrole was used instead of 10 ml of an aqueous solution containing 0.05 g. As a result, the coating amount of the coated polypyrrole was 0.073 g. The initial capacity of the battery was 122 mAh / g, and the amount of Mn eluted after 30 cycles was 3.1 in the case without pyrrole coating.
It was as low as 0.55% compared to 2%. The amount of polypyrrole coated on the obtained positive electrode active material was subjected to thermogravimetric analysis in the same manner as in Example 1, and was found to be 1.47% by mass (P
/S=0.34).

【0077】実施例7 0.1N−硝酸水溶液9.2mlの代わりに1N−の硝
酸水溶液31.2ml(ピロールの5.4倍グラム当
量)を用いたこと、ピロール0.115gを含有する水
溶液10mlの代わりにピロール0.387gを含有す
る水溶液50mlを用いたこと以外は、実施例5と同様
にして行った。その結果、被覆したポリピロール被覆量
は0.386gであった。電池の初期容量は116mAh/
gであって、30サイクル後のMn溶出量は、0.20
%と極めて少なかった。得られた正極活物質のポリピロ
ール被覆量を実施例1と同様に熱重量分析で調べたとこ
ろ、P=7.74質量%であった(P/S=1.8
0)。
Example 7 Instead of 9.2 ml of 0.1N aqueous nitric acid solution, 31.2 ml of 1N aqueous nitric acid solution (5.4 equivalents of pyrrole) was used, and 10 ml of aqueous solution containing 0.115 g of pyrrole was used. Was carried out in the same manner as in Example 5, except that 50 ml of an aqueous solution containing 0.387 g of pyrrole was used instead of. As a result, the coated amount of polypyrrole was 0.386 g. Battery initial capacity is 116mAh /
g, and the amount of Mn eluted after 30 cycles is 0.20
% Was extremely low. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 7.74% by mass (P / S = 1.8).
0).

【0078】実施例8 NiとMnの複合炭酸塩と炭酸リチウムをボールミルで
混合し、大気雰囲気中450℃〜700℃の温度(昇温
速度3℃/min.)で焼成と粉砕混合を3回繰り返して、
リチウム、マンガン及び酸素を主体とする複合酸化物の
LiNi0. 5Mn1 . 54(比表面積S=7m2/g)を合成
した。この複合酸化物5gを用いたこと、及び0.1N
−硝酸水溶液40.2mlの代わりに1N−の硝酸水溶
液19.3ml(ピロールの5.4倍グラム当量)を用
いたこと、ピロール0.05gを含有する水溶液10m
lの代わりにピロール0.24g含有する水溶液10m
lを用いたこと、及び60℃環境下での充放電サイクル
試験の走査電圧を3.1〜4.3Vの代わりに3.5〜
5.2Vとしたこと以外は、実施例1と同様にして行っ
た。
Example 8 A composite carbonate of Ni and Mn and lithium carbonate were mixed in a ball mill, and calcined and crushed and mixed three times at a temperature of 450 ° C. to 700 ° C. (heating rate of 3 ° C./min.) In an air atmosphere. repeat,
Lithium, was synthesized LiNi 0. 5 Mn 1 of the composite oxide mainly composed of manganese and oxygen. 5 O 4 (specific surface area S = 7m 2 / g). 5 g of this composite oxide was used, and 0.1 N
19.3 ml of 1N aqueous nitric acid solution (5.4 g equivalent of pyrrole) instead of 40.2 ml of aqueous nitric acid solution, 10 m aqueous solution containing 0.05 g of pyrrole
10 m aqueous solution containing 0.24 g of pyrrole instead of 1
and the scan voltage in the charge / discharge cycle test under a 60 ° C. environment was changed to 3.5 to 3.5 V instead of 3.1 to 4.3 V.
Except having set it to 5.2V, it carried out similarly to Example 1.

【0079】その結果、被覆したポリピロール被覆量は
0.24gであった。電池の初期容量は、ポリピロール
被覆しなかった場合が130mAh/gであったのに対して
127mAh/gとあまり変わらなかった。また、30サイ
クル後のMn溶出量は、ピロール被覆しなかった場合が
11%であったのに対して1.3%と激減した。得られ
た正極活物質のポリピロール被覆量を実施例1と同様に
熱重量分析で調べたところ、P=4.8質量%であった
(P/S=0.69)。
As a result, the coated amount of polypyrrole was 0.24 g. The initial capacity of the battery was 127 mAh / g, which was not so different from 130 mAh / g without polypyrrole coating. Further, the elution amount of Mn after 30 cycles was drastically reduced to 1.3%, compared to 11% in the case of not coating with pyrrole. The polypyrrole coating amount of the obtained positive electrode active material was determined by thermogravimetric analysis in the same manner as in Example 1. As a result, P was 4.8% by mass (P / S = 0.69).

【0080】比較例1 ポリピロールによる被覆をしなかったこと以外は、実施
例1と同様にして行った。電池の初期容量は109mAh/g
であったが、30サイクル後のMn溶出量は1.83%
と極めて多かった。 実施例9 実施例1に記載の方法で製造したLi1.1Mn1.94
粉体を使用した。この粉体5gと塩化第2鉄0.24g
(1.49ミリモル)を乾燥クロロホルム100mlに
投入し、次いでピロール0.05g(0.745ミリモ
ル)を含有する10mlのクロロホルム溶液を滴下し
て、Li1.1Mn1.94の表面にポリピロールを形成し
た。得られたリチウム、マンガン、酸素を主体とするマ
ンガン酸化物と導電性高分子との複合体をろ過しクロロ
ホルム洗浄して110℃で乾燥し、この複合体からなる
正極活物質を4.5g得た。
Comparative Example 1 The procedure of Example 1 was repeated, except that the coating with polypyrrole was not carried out. The initial capacity of the battery is 109mAh / g
However, the eluted amount of Mn after 30 cycles was 1.83%
It was extremely many. Example 9 A powder of Li 1.1 Mn 1.9 O 4 produced by the method described in Example 1 was used. 5 g of this powder and 0.24 g of ferric chloride
(1.49 mmol) was added to 100 ml of dry chloroform, and then 10 ml of a chloroform solution containing 0.05 g (0.745 mmol) of pyrrole was added dropwise to form polypyrrole on the surface of Li 1.1 Mn 1.9 O 4 . . The resulting composite of a manganese oxide mainly composed of lithium, manganese, and oxygen and a conductive polymer was filtered, washed with chloroform, and dried at 110 ° C. to obtain 4.5 g of a positive electrode active material including the composite. Was.

【0081】正極活物質の製造方法以外は実施例1と同
様にして、電池評価した。その結果、被覆したポリピロ
ール被覆量は0.038gであった。電池の初期容量
は、114mAh/gであって、30サイクル後のMn溶出
量は、0.51%であった。得られた正極活物質のポリ
ピロール被覆量を実施例1と同様に熱重量分析で調べた
ところ、P=0.8質量%であった(P/S=1.
6)。
The battery was evaluated in the same manner as in Example 1 except for the method for producing the positive electrode active material. As a result, the coated amount of polypyrrole was 0.038 g. The initial capacity of the battery was 114 mAh / g, and the Mn elution amount after 30 cycles was 0.51%. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1. As a result, P was 0.8% by mass (P / S = 1.
6).

【0082】実施例10 実施例1に記載の方法で製造したLi1.1Mn1.94
粉体を使用した。この粉体5gを純水100mlに添加
し0.5時間撹拌後、撹拌しながら0.1N−硫酸水溶
液を40.2ml(イソチアナフテンの8.1倍グラム
当量)を少量づつ滴下して、スピネル型マンガン酸化物
の表面をλ−MnO2に変換した。この粉体を濾過・分取
し、大気中300℃で加熱してλ-MnO2をβ-MnO2に変換
した。熱処理を行って、本発明の正極活物質を得た。得
られた正極活物質の細孔を測定したところ、50〜32
0オングストロームの細孔が生成していることが分かっ
た。また、得られた正極活物質をX線回折法により測定
したところ、β−MnO 2由来のX線ピークが2θ=3
0゜付近に検出された。
Example 10 Li produced by the method described in Example 11.1Mn1.9OFourof
Powder was used. Add 5g of this powder to 100ml of pure water
After stirring for 0.5 hour, while stirring, aqueous 0.1N-sulfuric acid
40.2 ml of the solution (8.1 times gram of isothianaphthene)
(Equivalent) is added dropwise little by little, and spinel-type manganese oxide
Surface of λ-MnOTwoWas converted to Filter and sort this powder
Λ-MnOTwoTo β-MnOTwoConversion to
did. Heat treatment was performed to obtain a positive electrode active material of the present invention. Profit
When the pores of the obtained positive electrode active material were measured, 50 to 32
It turns out that 0 angstrom pores are formed
Was. In addition, the obtained positive electrode active material was measured by an X-ray diffraction method.
As a result, β-MnO TwoThe derived X-ray peak is 2θ = 3
It was detected near 0 °.

【0083】この複合酸化物の粉体5gと塩化第2鉄
0.24g(1.49ミリモル)をアルゴン雰囲気下、
乾燥ニトロメタン100mlに投入し、次いでJ. Org.
Chem.49 (1984) 3382誌に記載の方法で製造したイソチ
アナフテン0.067g(0.5ミリモル)を含有する
10mlのニトロメタン溶液を滴下して、Li1.1Mn1
.94の表面にポリイソチアナフテンを形成した。得ら
れたリチウム、マンガン、酸素を主体とするマンガン酸
化物とポリイソチアナフテンとの複合体をろ過し、ニト
ロメタンで洗浄して110℃で乾燥し、正極活物質を
4.9g得た。
5 g of this composite oxide powder and 0.24 g (1.49 mmol) of ferric chloride were placed under an argon atmosphere.
Pour into 100 ml of dry nitromethane and then J. Org.
Chem. 49 (1984) 10 ml of a nitromethane solution containing 0.067 g (0.5 mmol) of isothianaphthene prepared by the method described in 3382 was added dropwise to Li 1.1 Mn 1.
Polyisothianaphthene was formed on the surface of .9 O 4 . The obtained composite of a manganese oxide mainly composed of lithium, manganese and oxygen and polyisothianaphthene was filtered, washed with nitromethane, and dried at 110 ° C. to obtain 4.9 g of a positive electrode active material.

【0084】正極活物質の製造方法以外は実施例1と同
様にして、電池評価した。その結果、被覆したポリイソ
チアナフテン被覆量は0.06gであった。電池の初期
容量は、109mAh/gであって、30サイクル後のMn
溶出量は、0.50%であった。得られた正極活物質の
ポリイソチアナフテン被覆量を実施例1と同様に熱重量
分析で調べたところ、P=1.2質量%であった(P/
S=2.4)。
The battery was evaluated in the same manner as in Example 1 except for the method for producing the positive electrode active material. As a result, the coating amount of the coated polyisothianaphthene was 0.06 g. The initial capacity of the battery was 109 mAh / g, and Mn after 30 cycles.
The elution amount was 0.50%. The polyisothianaphthene coating amount of the obtained positive electrode active material was determined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 1.2% by mass (P /
S = 2.4).

【0085】実施例11 ピロールをチオフェンに代えた以外は実施例9と同様に
して実施した。その結果、被覆したポリチオフェン被覆
量は0.04gであった。電池の初期容量は、109mA
h/gであって、30サイクル後のMn溶出量は、0.5
2%であった。得られた正極活物質のポリチオフェン被
覆量を実施例1と同様に熱重量分析で調べたところ、P
=0.8質量%であった(P/S=1.6)。
Example 11 The same operation as in Example 9 was carried out except that pyrrole was replaced with thiophene. As a result, the coating amount of the coated polythiophene was 0.04 g. The initial capacity of the battery is 109mA
h / g, and the elution amount of Mn after 30 cycles is 0.5
2%. The polythiophene coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1.
= 0.8% by mass (P / S = 1.6).

【0086】実施例12 実施例1に記載の方法で製造したLi1.1Mn1.94
粉体を使用した。この粉体5gと過硫酸アンモニウム
0.40g(1.49ミリモル)を(溶媒純水)100
mlに分散し、次いで3,4−ジオキシエチレンチオフ
ェン0.05g(0.35ミリモル)を含有する10m
lのイソプロパノール溶液を滴下して、Li1.1Mn1.9
4の表面にポリ(3,4−ジオキシエチレンチオフェ
ン)(PDET)を形成した。得られたリチウム、マン
ガン、酸素を主体とするマンガン酸化物と導電性高分子
との複合体をろ過し同じ溶媒で洗浄して110℃で乾燥
し、この複合体からなる正極活物質を4.8g得た。正
極活物質の製造方法以外は実施例1と同様にして、電池
評価した。
Example 12 The powder of Li 1.1 Mn 1.9 O 4 produced by the method described in Example 1 was used. 5 g of this powder and 0.40 g (1.49 mmol) of ammonium persulfate were added to 100 parts of (solvent pure water).
10m containing 0.05 g (0.35 mmol) of 3,4-dioxyethylenethiophene
l of isopropanol solution was added dropwise to obtain Li 1.1 Mn 1.9
To form a poly (3,4-dioxyethylenethiophene) (PDET) on the surface of the O 4. The obtained composite of a manganese oxide mainly composed of lithium, manganese, and oxygen and a conductive polymer is filtered, washed with the same solvent, and dried at 110 ° C. to obtain a positive electrode active material composed of the composite. 8 g were obtained. The battery was evaluated in the same manner as in Example 1 except for the method for producing the positive electrode active material.

【0087】その結果、被覆した全PDET被覆量は
0.05gであった。電池の初期容量は、112mAh/g
であって、30サイクル後のMn溶出量は、0.48%
であった。得られた正極活物質のPDET被覆量を実施
例1と同様に熱重量分析で調べたところ、P=1質量%
であった(P/S=2)。
As a result, the total amount of the coated PDET was 0.05 g. The initial capacity of the battery is 112mAh / g
The Mn elution amount after 30 cycles was 0.48%
Met. When the PDET coverage of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1, P = 1% by mass
(P / S = 2).

【0088】実施例13 Li/Mnモル比が0.51の組成となるように炭酸マ
ンガンと炭酸リチウムをボールミルで混合し、大気雰囲
気中650℃で4時間保持して反応させた。得られた反
応物を水に分散して湿式ボールミルで粉砕して、平均粒
子径を0.15μmにした。この粉砕粉に、Bi/Mn
のモル比が0.0026の割合となるように平均粒子径
が2μmの酸化ビスマスを添加混合して、不二パウダル
(株)社製スパルタンリューザーRMO−6Hで造粒し
た。粉砕した反応物と酸化ビスマスの混合粉100重量
部に対して造粒助剤としてポリビニルアルコール1.5
重量部を水溶液に溶かして添加し、16分間造粒した。
得られた造粒物をミキサーで軽く解砕・粉砕し、風力分
級機で平均粒子径20μmに整粒した。整粒した造粒物
を大気中500℃で2時間保持して脱脂処理(ポリビニ
ルアルコールを分解)後、大気雰囲気中750℃で20
時間焼成して、比表面積1.6m2/gのスピネル構造
を有する複合酸化物を得た。
Example 13 Manganese carbonate and lithium carbonate were mixed in a ball mill so that the composition ratio of Li / Mn was 0.51, and the mixture was reacted at 650 ° C. for 4 hours in an air atmosphere. The obtained reaction product was dispersed in water and pulverized with a wet ball mill to adjust the average particle size to 0.15 μm. Bi / Mn is added to this ground powder.
Was mixed with bismuth oxide having an average particle diameter of 2 μm so that the molar ratio became 0.0026, and the mixture was granulated with a Spartan Luzer RMO-6H manufactured by Fuji Paudal Co., Ltd. Polyvinyl alcohol 1.5 as a granulation aid was added to 100 parts by weight of the mixed powder of the crushed reactant and bismuth oxide.
A part by weight was dissolved in an aqueous solution and added, followed by granulation for 16 minutes.
The obtained granules were lightly crushed and pulverized with a mixer, and sized with an air classifier to an average particle diameter of 20 μm. The sized granules are held in the air at 500 ° C. for 2 hours, and then subjected to a degreasing treatment (decomposing polyvinyl alcohol).
By firing for a time, a composite oxide having a spinel structure with a specific surface area of 1.6 m 2 / g was obtained.

【0089】実施例1に記載のLi1.1Mn1.94の粉
体を、この複合酸化物に代えた以外実施例1と同様な方
法で電池評価した。その結果、被覆したポリピロール被
覆量は0.049gであった。電池の初期容量は、11
5mAh/gであって、30サイクル後のMn溶出量は、
0.55%であった。得られた正極活物質のポリピロー
ル被覆量を実施例1と同様に熱重量分析で調べたとこ
ろ、P=0.98質量%であった(P/S=0.6
1)。実施例及び比較例の結果を表1、表2にまとめ
た。
The battery was evaluated in the same manner as in Example 1 except that the powder of Li 1.1 Mn 1.9 O 4 described in Example 1 was replaced with this composite oxide. As a result, the coating amount of the coated polypyrrole was 0.049 g. The initial capacity of the battery is 11
5 mAh / g, and the amount of Mn eluted after 30 cycles was:
0.55%. The polypyrrole coating amount of the obtained positive electrode active material was examined by thermogravimetric analysis in the same manner as in Example 1. As a result, P = 0.98% by mass (P / S = 0.6).
1). Tables 1 and 2 summarize the results of Examples and Comparative Examples.

【0090】[0090]

【表1】 [Table 1]

【表2】 [Table 2]

【0091】[0091]

【効果】リチウム、マンガン及び酸素を主体とする複合
酸化物表面に化学酸化重合でポリピロール等のπ電子共
役構造を有する導電性高分子を被覆することで従来にな
くMn溶出の少ない非水電解質二次電池用正極活物質が
得られることを見出した。また、特に特定量の導電性高
分子を被覆すること、化学酸化重合の際に特定量の酸を
添加することにより、高容量の非水電解質二次電池用正
極活物質が得られることも見出した。かかる非水電解質
二次電池用正極活物質の発明により、高容量で、かつ高
温環境下でもMn溶出量が少なくサイクル特性に優れる
高性能な非水電解質二次電池を提供する。
[Effect] By coating a conductive polymer having a π-electron conjugated structure such as polypyrrole on the surface of a composite oxide mainly composed of lithium, manganese and oxygen by chemical oxidation polymerization, a non-aqueous electrolyte with less elution of Mn than ever before. It has been found that a positive electrode active material for a secondary battery can be obtained. In addition, they found that a high-capacity positive electrode active material for a nonaqueous electrolyte secondary battery can be obtained by coating a specific amount of a conductive polymer, and adding a specific amount of an acid during chemical oxidation polymerization. Was. According to the invention of the positive electrode active material for a non-aqueous electrolyte secondary battery, a high-performance non-aqueous electrolyte secondary battery having a high capacity, a small amount of Mn elution even under a high-temperature environment, and excellent cycle characteristics is provided.

【0092】[0092]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で観察したSEM写真である。FIG. 1 is an SEM photograph observed in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/40 H01M 10/40 Z Fターム(参考) 4G048 AA04 AA05 AB04 AC06 AD03 AD06 AE05 5H029 AJ02 AJ05 AJ13 AK03 AL04 AL07 AL12 AM03 AM04 AM07 BJ04 BJ12 CJ00 CJ02 CJ08 CJ12 CJ14 DJ00 DJ08 DJ16 DJ17 EJ13 HJ02 HJ05 HJ07 HJ13 HJ14 5H050 AA05 AA07 AA18 BA15 CA00 CA09 CB05 CB08 CB12 DA02 DA09 DA10 EA00 EA27 EA28 FA17 FA18 FA19 GA00 GA02 GA05 GA06 GA10 GA12 GA14 GA15 GA22 GA27 HA02 HA05 HA07 HA13 HA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/40 H01M 10/40 Z F term (Reference) 4G048 AA04 AA05 AB04 AC06 AD03 AD06 AE05 5H029 AJ02 AJ05 AJ13 AK03 AL04 AL07 AL12 AM03 AM04 AM07 BJ04 BJ12 CJ00 CJ02 CJ08 CJ12 CJ14 DJ00 DJ08 DJ16 DJ17 EJ13 HJ02 HJ05 HJ07 HJ13 HJ14 5H050 AA05 AA07 AA18 BA15 CA00 CA09 CB05 CB08 CB12 DA02 DA09 GA02 GA09 FA10 GA18 GA02 GA09 GA22 GA27 HA02 HA05 HA07 HA13 HA14

Claims (27)

【特許請求の範囲】[Claims] 【請求項1】π電子共役系構造を有する導電性高分子と
マンガン酸化物を含む正極活物質の製造方法において、
マンガン酸化物がリチウム、マンガン及び酸素を主体と
する複合酸化物であり、重合性化合物を化学的酸化重合
して該複合酸化物表面に導電性高分子を被覆することを
特徴とする正極活物質の製造方法。
1. A method for producing a positive electrode active material containing a conductive polymer having a π-electron conjugated structure and manganese oxide,
A positive electrode active material, wherein the manganese oxide is a composite oxide mainly composed of lithium, manganese and oxygen, and the surface of the composite oxide is coated with a conductive polymer by chemically oxidizing and polymerizing a polymerizable compound; Manufacturing method.
【請求項2】リチウム、マンガン及び酸素を主体とする
複合酸化物が、LiMn 24、LixMn3-X4
(0.9<x<1.2)、Li1+XMn2-x-yy4(式
中、MはMnの一部をCr、Co、Al、Ni、V、Fe、Mg、Tiか
らなる群より選ばれた少なくとも1種の異種元素Mで置
き換えたものであり、xは−0.1<x≦0.2の範
囲、yは0<y≦0.2の範囲である。)、LiMnO
2及びLixMn2-x-yMyO2(式中、MはMn元素の一部
をCr、Co、Al、Ni、V、Fe、Mg、Tiからなる群より選ば
れた少なくとも1種の異種元素Mで置き換えたものであ
り、xは−0.1<x≦0.1の範囲、yは0<y≦
0.1の範囲である。)から選ばれた1種の複合酸化物
を含むものである請求項1に記載の正極活物質の製造方
法。
2. Mainly lithium, manganese and oxygen
The composite oxide is LiMn TwoOFour, LixMn3-XOFour 
(0.9 <x <1.2), Li1 + XMn2-xyMyOFour(formula
Where M is Cr, Co, Al, Ni, V, Fe, Mg, Ti
At least one different element M selected from the group consisting of
X is in the range of -0.1 <x ≦ 0.2
The box y is in the range of 0 <y ≦ 0.2. ), LiMnO
TwoAnd LixMnTwo-x-yMyOTwo(Where M is part of the Mn element
Selected from the group consisting of Cr, Co, Al, Ni, V, Fe, Mg, Ti
Replaced by at least one different element M
X is in the range of −0.1 <x ≦ 0.1, and y is 0 <y ≦
It is in the range of 0.1. 1) a composite oxide selected from
The method for producing a positive electrode active material according to claim 1, comprising:
Law.
【請求項3】リチウム、マンガン及び酸素を主体とする
複合酸化物が、8.240Å以下の格子定数を有するス
ピネル型酸化物を含む複合酸化物である請求項1又は2
に記載の正極活物質の製造方法。
3. A composite oxide comprising a spinel-type oxide having a lattice constant of 8.240 ° or less, wherein the composite oxide mainly composed of lithium, manganese and oxygen is a composite oxide.
3. The method for producing a positive electrode active material according to item 1.
【請求項4】リチウム、マンガン及び酸素を主体とする
複合酸化物が、一次粒子径0.1μm〜1μmの粒子を
含む複合酸化物である請求項1乃至3のいずれか1項に
記載の正極活物質の製造方法。
4. The positive electrode according to claim 1, wherein the composite oxide mainly composed of lithium, manganese, and oxygen is a composite oxide containing particles having a primary particle size of 0.1 μm to 1 μm. Active material manufacturing method.
【請求項5】リチウム、マンガン及び酸素を主体とする
複合酸化物が、粒子径3μm〜50μmの造粒物を含む
複合酸化物であることを特徴とする請求項1乃至5のい
ずれか1項に記載の正極活物質の製造方法。。
5. The composite oxide according to claim 1, wherein the composite oxide mainly composed of lithium, manganese and oxygen is a composite oxide containing a granulated substance having a particle diameter of 3 μm to 50 μm. 3. The method for producing a positive electrode active material according to item 1. .
【請求項6】造粒物が、リチウム、マンガン及び酸素を
主体とする複合酸化物の粉砕物に、550℃〜900℃
の温度で溶融する酸化物又はその酸化物になりうる元素
又は該元素を含む化合物、もしくはリチウム又はマンガ
ンと固溶又は反応して溶融する酸化物又はその酸化物に
なりうる元素又は該元素を含む化合物の燒結促進助剤を
添加・混合して造粒されたものである請求項5に記載の
正極活物質の製造方法。
6. A granulated product comprising a crushed product of a composite oxide mainly composed of lithium, manganese and oxygen at 550 ° C. to 900 ° C.
Containing an oxide or an element that can become an oxide thereof or a compound containing the element, or an oxide that can be dissolved or react with lithium or manganese to melt or an element that can become an oxide thereof or the above element The method for producing a positive electrode active material according to claim 5, wherein the mixture is granulated by adding and mixing a sintering promoting aid of the compound.
【請求項7】リチウム、マンガン及び酸素を主体とする
複合酸化物が、30Å〜400Åの範囲の細孔を有する
複合酸化物を含むものである請求項1乃至6のいずれか
1項に記載の正極活物質の製造方法。
7. The positive electrode active material according to claim 1, wherein the composite oxide mainly composed of lithium, manganese and oxygen contains a composite oxide having pores in a range of 30 ° to 400 °. The method of manufacturing the substance.
【請求項8】重合性化合物を化学的酸化重合する手段
が、該複合酸化物を溶媒中で、酸化剤と重合性化合物を
接触させて反応せしめることを特徴とする請求項1乃至
7のいずれか1項に記載の正極活物質の製造方法。
8. The method according to claim 1, wherein the means for chemically oxidatively polymerizing the polymerizable compound reacts the composite oxide by contacting the oxidizing agent with the polymerizable compound in a solvent. 9. The method for producing a positive electrode active material according to claim 1.
【請求項9】酸化剤が、MnO2、Fe(III)系化合物、
無水塩化アルミニウム/塩化第一銅、アルカリ金属過硫
酸塩、過硫酸アンモニウム塩、過酸化物、過マンガン酸
カリウム、2,3−ジクロロ−5,6−ジシアノ−1,
4−ベンゾキノン(DDQ)、テトラクロロ−1,4−
ベンゾキノン、テトラシアノ−1,4−ベンゾキノン、
よう素、臭素からなる群より選ばれた少なくとも1種で
あることを特徴とする請求項8に記載の正極活物質の製
造方法。
9. The method according to claim 9, wherein the oxidizing agent is MnO 2 , an Fe (III) -based compound,
Anhydrous aluminum chloride / cuprous chloride, alkali metal persulfate, ammonium persulfate, peroxide, potassium permanganate, 2,3-dichloro-5,6-dicyano-1,
4-benzoquinone (DDQ), tetrachloro-1,4-
Benzoquinone, tetracyano-1,4-benzoquinone,
The method for producing a positive electrode active material according to claim 8, wherein the method is at least one selected from the group consisting of iodine and bromine.
【請求項10】MnO2が、リチウム、マンガン及び酸素を
主体とする複合酸化物のスピネル型LiMn24系複合
酸化物に酸を反応させて該複合酸化物の表面に生成させ
たMnO2であることを特徴とする請求項9に記載の正極活
物質の製造方法。
10. MnO 2 is lithium, MnO 2 was reacted spinel LiMn 2 O 4 based acid composite oxide composite oxide based on manganese, and oxygen is generated on the surface of the composite oxide The method for producing a positive electrode active material according to claim 9, wherein:
【請求項11】MnO2が、λ-MnO2である請求項10に
記載の正極活物質の製造方法。
11. The method for producing a positive electrode active material according to claim 10, wherein MnO 2 is λ-MnO 2 .
【請求項12】MnO2が、リチウム、マンガン及び酸素を
主体とする複合酸化物のスピネル型LiMn24系複合
酸化物に酸を反応させ、次いで該複合酸化物を200℃
以上、400℃未満の温度で熱処理して得られたβ-M
nO2であることを特徴とする請求項9に記載の正極活
物質の製造方法。
12. MnO 2 reacts an acid with a spinel-type LiMn 2 O 4 -based composite oxide composed mainly of lithium, manganese and oxygen, and then reacts the composite oxide at 200 ° C.
As described above, β-M obtained by heat treatment at a temperature of less than 400 ° C.
The method for producing a positive electrode active material according to claim 9, characterized in that a nO 2.
【請求項13】酸が、塩酸、臭化水素酸、沃化水素酸、
フッ酸、硝酸、クロロ硫酸、フルオロ硫酸、アミド硫
酸、硫酸、リン酸、過塩素酸、メタンスルホン酸、エタ
ンスルホン酸、プロパンスルホン酸、ベンゼンスルホン
酸、トルエンスルホン酸、ナフタレンスルホン酸、ナフ
タレンジスルホン酸、トリフルオロ酢酸、トリクロロ酢
酸、蟻酸、シュウ酸から選ばれた少なくとも1種である
請求項10乃至12のいずれか1項に記載の正極活物質
の製造方法。
13. The method according to claim 12, wherein the acid is hydrochloric acid, hydrobromic acid, hydroiodic acid,
Hydrofluoric acid, nitric acid, chlorosulfuric acid, fluorosulfuric acid, amidosulfuric acid, sulfuric acid, phosphoric acid, perchloric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid The method for producing a positive electrode active material according to any one of claims 10 to 12, wherein the method is at least one selected from trifluoroacetic acid, trichloroacetic acid, formic acid, and oxalic acid.
【請求項14】重合性化合物が、アニリン、複素五員環
式化合物、イソチアナフテン、1,3−ジヒドロイソチ
アナフテン、1,3−ジヒドロイソチアナフテン−2−
スルホキシド及びそれらの誘導体からなる群より選ばれ
た少なくとも1種である請求項1乃至13のいずれか1
項に記載の正極活物質の製造方法。
14. The polymerizable compound is aniline, a five-membered heterocyclic compound, isothianaphthene, 1,3-dihydroisothianaphthene, 1,3-dihydroisothianaphthene-2-.
14. The method according to claim 1, which is at least one selected from the group consisting of sulfoxides and derivatives thereof.
13. The method for producing a positive electrode active material according to item 10.
【請求項15】重合性化合物が、下記一般式(I) 【化1】 (式中、R1、R2は各々独立して、水素原子、炭素数1
乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和の
炭化水素基、炭素数1乃至6の直鎖状もしくは分岐状の
飽和又は不飽和のアルコキシ基、水酸基、ハロゲン原
子、ニトロ基、シアノ基、トリハロメチル基、フェニル
基、又は置換フェニル基を表わすか、又はR 1及びR2
互いに任意の位置で結合して、少なくとも1つ以上の5
〜7員環の飽和もしくは不飽和の環状構造を形成する二
価の基を形成してもよい。XはS、O、Se、Te又は
NR3を表わし、R3は水素原子、炭素数1乃至6の直鎖
状もしくは分岐状の飽和もしくは不飽和の炭化水素基、
フェニル基、又は炭素数1乃至6の直鎖状もしくは分岐
状の飽和又は不飽和のアルコキシ基を表わす。R1、R2
及びR3が表わすアルキル基又はアルコキシ基の鎖中に
は、カルボニル結合、エーテル結合、エステル結合、ア
ミド結合、イミノ結合を含んでもよい。)である請求項
1乃至13のいずれか1項に記載の正極活物質の製造方
法。
15. A polymerizable compound represented by the following general formula (I):(Where R1, RTwoAre each independently a hydrogen atom, carbon number 1
To 6 linear or branched saturated or unsaturated
Hydrocarbon group, linear or branched having 1 to 6 carbon atoms
Saturated or unsaturated alkoxy group, hydroxyl group, halogen atom
Child, nitro group, cyano group, trihalomethyl group, phenyl
Or a substituted phenyl group, or R 1And RTwoIs
Bonding to each other at any position to form at least one or more 5
A two- or seven-membered ring forming a saturated or unsaturated cyclic structure;
A valent group may be formed. X is S, O, Se, Te or
NRThreeAnd RThreeIs a hydrogen atom, a linear chain having 1 to 6 carbon atoms
Or branched saturated or unsaturated hydrocarbon groups,
A phenyl group, or a straight or branched chain having 1 to 6 carbon atoms
Represents a saturated or unsaturated alkoxy group. R1, RTwo
And RThreeIn the chain of the alkyl or alkoxy group represented by
Represents a carbonyl bond, an ether bond, an ester bond,
It may contain a mid bond or an imino bond. )
14. A method for producing the positive electrode active material according to any one of 1 to 13.
Law.
【請求項16】重合性化合物が、下記一般式(III) 【化2】 (式中、R4及びR5は、各々独立して水素原子、炭素数
1乃至6の直鎖状もしくは分岐状の飽和もしくは不飽和
の炭化水素基、又は炭素数1乃至6の炭化水素基が互い
に任意の位置で結合して、2つの酸素元素を含む少なく
とも1つ以上の5〜7員環の飽和炭化水素の環状構造を
形成する置換基を表わす。また、前記環状構造には置換
されていてもよいビニレン結合を有するもの、置換され
ていてもよいフェニレン構造のものが含まれる。)であ
る請求項1乃至13のいずれか1項に記載の正極活物質
の製造方法。
16. A polymerizable compound represented by the following general formula (III): (Wherein R 4 and R 5 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms, or a hydrocarbon group having 1 to 6 carbon atoms) Represents a substituent which bonds to each other at an arbitrary position to form a cyclic structure of at least one or more 5- to 7-membered saturated hydrocarbon ring containing two oxygen elements, and the cyclic structure is substituted. The method for producing a positive electrode active material according to any one of claims 1 to 13, which includes a compound having a vinylene bond and a compound having a phenylene structure which may be substituted.
【請求項17】重合性化合物が、ピロールである請求項
1乃至13のいずれか1項に記載の正極活物質の製造方
法。
17. The method for producing a positive electrode active material according to claim 1, wherein the polymerizable compound is pyrrole.
【請求項18】導電性高分子の堆積が、リチウム、マン
ガン及び酸素を主体とする複合酸化物に対する導電性高
分子被覆量をP(質量%)とした場合、リチウム、マン
ガン及び酸素を主体とする複合酸化物の比表面積S(m2/
g)に対して、P/S比が5×10-3≦P/S≦10の範囲であ
ることを特徴とする請求項1乃至17のいずれか1項に
記載の正極活物質の製造方法。
18. The method according to claim 18, wherein the deposition of the conductive polymer is carried out in the case where the amount of the conductive polymer coated on the composite oxide mainly composed of lithium, manganese and oxygen is P (% by mass). Specific surface area S (m 2 /
The method for producing a positive electrode active material according to any one of claims 1 to 17, wherein the P / S ratio is in a range of 5 × 10 −3 ≦ P / S ≦ 10 with respect to g). .
【請求項19】導電性高分子の被覆量P(質量%)が、
0.05≦P≦10の範囲であることを特徴とする請求
項1乃至18の何れか1項に記載の正極活物質の製造方
法。
19. The coating amount P (% by mass) of the conductive polymer is
The method for producing a positive electrode active material according to claim 1, wherein the range is 0.05 ≦ P ≦ 10.
【請求項20】重合性化合物がピロールであって、添加
する酸量がピロール1モルに対して8グラム当量以下で
あることを特徴とする請求項10乃至13に記載の正極
活物質の製造方法。
20. The method for producing a positive electrode active material according to claim 10, wherein the polymerizable compound is pyrrole, and the amount of the acid to be added is not more than 8 gram equivalent to 1 mol of pyrrole. .
【請求項21】請求項1乃至20のいずれか1項に記載
の正極活物質の製造方法によって製造された正極活物
質。
21. A positive electrode active material produced by the method for producing a positive electrode active material according to any one of claims 1 to 20.
【請求項22】表面にMnO2層を有する、リチウム、
マンガン及び酸素を主体とする複合酸化物に化学的酸化
重合で生成した導電性高分子が被覆された正極活物質。
22. Lithium having a MnO 2 layer on its surface,
A positive electrode active material in which a composite oxide mainly composed of manganese and oxygen is coated with a conductive polymer formed by chemical oxidation polymerization.
【請求項23】リチウム、マンガン及び酸素を主体とす
る複合酸化物が、スピネル型LiMn24系複合酸化物
である請求項22に記載の正極活物質。
23. The positive electrode active material according to claim 22, wherein the composite oxide mainly composed of lithium, manganese and oxygen is a spinel type LiMn 2 O 4 composite oxide.
【請求項24】導電性高分子で被覆された形状が、粒状
である請求項21乃至は23の何れか1項に記載の正極
活物質。
24. The positive electrode active material according to claim 21, wherein the shape coated with the conductive polymer is granular.
【請求項25】請求項21乃至24に記載の正極活物
質、導電性付与剤、バインダー及び有機バインダーを溶
解又は膨潤する溶媒を含むことを特徴とする正極用ペー
スト。
25. A paste for a positive electrode, comprising a solvent which dissolves or swells the positive electrode active material according to claim 21 to 24, a conductivity imparting agent, a binder and an organic binder.
【請求項26】請求項21乃至24に記載の正極活物
質、導電性付与剤、バインダー及び集電体からなる正
極。
26. A positive electrode comprising the positive electrode active material according to claim 21, a conductivity-imparting agent, a binder and a current collector.
【請求項27】請求項21乃至24に記載の正極活物質
を含む正極、Liイオンを含む電解質、非水電解液及び
Liイオンを吸蔵・放出可能な負極からなる非水電解質
二次電池。
27. A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material according to claim 21; an electrolyte containing Li ions; a non-aqueous electrolyte; and a negative electrode capable of inserting and extracting Li ions.
JP2001095981A 2001-03-27 2001-03-29 Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same Pending JP2002358959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095981A JP2002358959A (en) 2001-03-27 2001-03-29 Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001091438 2001-03-27
JP2001-91438 2001-03-27
JP2001095981A JP2002358959A (en) 2001-03-27 2001-03-29 Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2002358959A true JP2002358959A (en) 2002-12-13

Family

ID=26612270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095981A Pending JP2002358959A (en) 2001-03-27 2001-03-29 Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2002358959A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362934A (en) * 2003-06-04 2004-12-24 Sony Corp Positive electrode material and battery
JP2007520038A (en) * 2004-01-28 2007-07-19 コミッサリア ア レネルジー アトミーク COMPOSITE MATERIAL CONTAINING ELECTRODE ACTIVE COMPOUND AND CONDUCTIVE COMPOUND, such as CARBON, METHOD FOR PREPARING COMPOSITE MATERIAL FOR LITHOCY
JP2009512988A (en) * 2005-10-27 2009-03-26 ビーワイディー カンパニー リミテッド Method for preparing positive electrode material for lithium ion battery
JP2009117241A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery and its manufacturing method, and positive electrode for lithium secondary battery active material and lithium secondary battery using positive electrode
WO2010016545A1 (en) 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
JP2011108505A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Lithium ion secondary battery
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions
JP2012038508A (en) * 2010-08-05 2012-02-23 Sharp Corp Positive electrode active material and nonaqueous secondary battery with positive electrode containing the same
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2014182895A (en) * 2013-03-18 2014-09-29 Nippon Shokubai Co Ltd Binder for electrode composition for battery
JP2014526783A (en) * 2011-09-13 2014-10-06 ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッド Battery positive electrode
WO2014185460A1 (en) * 2013-05-15 2014-11-20 三井造船株式会社 Positive electrode material for secondary batteries, method for producing positive electrode material for secondary batteries, and secondary battery
WO2015084940A1 (en) * 2013-12-03 2015-06-11 Zimmerman Michael A Solid, ionically conducting polymer material, and applications
JP2015225761A (en) * 2014-05-27 2015-12-14 株式会社カネカ Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
JP2016524275A (en) * 2013-07-04 2016-08-12 エルジー・ケム・リミテッド Positive electrode mixture with improved conductivity, positive electrode including the same, and electrochemical element
JP2017054637A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
US9847551B2 (en) 2012-06-08 2017-12-19 Nec Corporation Lithium-ion secondary battery
KR20190057588A (en) * 2017-11-20 2019-05-29 주식회사 엘지화학 Metal oxide coated with conductive polymer, electrode for electrochemical device comprising the same, and method of producing the metal oxide
EP3453067A4 (en) * 2016-05-06 2019-11-20 Ionic Materials, Inc. Solid ionically conducting polymer material
US10553901B2 (en) 2015-06-04 2020-02-04 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
KR20200123808A (en) 2018-04-23 2020-10-30 가부시키가이샤 무라타 세이사쿠쇼 Lithium ion secondary battery
CN113130873A (en) * 2021-05-20 2021-07-16 武汉科技大学 Porous bismuth-carbon material, preparation method and application thereof
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
CN114628677A (en) * 2020-12-03 2022-06-14 南京大学 Copper-doped potassium manganate electrode material, preparation method thereof and application thereof in potassium ion battery
US11605819B2 (en) 2015-06-08 2023-03-14 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery
JP7562488B2 (en) 2021-08-02 2024-10-07 株式会社東芝 Positive electrode, secondary battery, battery pack and vehicle

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362934A (en) * 2003-06-04 2004-12-24 Sony Corp Positive electrode material and battery
JP2007520038A (en) * 2004-01-28 2007-07-19 コミッサリア ア レネルジー アトミーク COMPOSITE MATERIAL CONTAINING ELECTRODE ACTIVE COMPOUND AND CONDUCTIVE COMPOUND, such as CARBON, METHOD FOR PREPARING COMPOSITE MATERIAL FOR LITHOCY
JP2009512988A (en) * 2005-10-27 2009-03-26 ビーワイディー カンパニー リミテッド Method for preparing positive electrode material for lithium ion battery
JP2009117241A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery and its manufacturing method, and positive electrode for lithium secondary battery active material and lithium secondary battery using positive electrode
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions
US8568617B2 (en) 2008-08-06 2013-10-29 National Institute Of Advanced Industrial Science And Technology Method of producing electrode material precursor and electrode material using the electrode material precursor
WO2010016545A1 (en) 2008-08-06 2010-02-11 独立行政法人産業技術総合研究所 Method for manufacturing electrode material precursor and method for manufacturing electrode material using the obtained electrode material precursor
JP2010040357A (en) * 2008-08-06 2010-02-18 National Institute Of Advanced Industrial & Technology Method for manufacturing electrode material precursor, and method for manufacturing electrode material using the same
JP2011108505A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Lithium ion secondary battery
JP2012038508A (en) * 2010-08-05 2012-02-23 Sharp Corp Positive electrode active material and nonaqueous secondary battery with positive electrode containing the same
WO2012165422A1 (en) * 2011-05-31 2012-12-06 日本ゼオン株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
CN103563133A (en) * 2011-05-31 2014-02-05 日本瑞翁株式会社 Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive elect
JPWO2012165422A1 (en) * 2011-05-31 2015-02-23 日本ゼオン株式会社 Composite particle for lithium secondary battery positive electrode, method for producing composite particle for lithium secondary battery positive electrode, method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2014526783A (en) * 2011-09-13 2014-10-06 ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッド Battery positive electrode
US11152657B2 (en) 2012-04-11 2021-10-19 Ionic Materials, Inc. Alkaline metal-air battery cathode
US10741877B1 (en) 2012-04-11 2020-08-11 Ionic Materials, Inc. Solid electrolyte high energy battery
US12074274B2 (en) 2012-04-11 2024-08-27 Ionic Materials, Inc. Solid state bipolar battery
US11949105B2 (en) 2012-04-11 2024-04-02 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
US11749833B2 (en) 2012-04-11 2023-09-05 Ionic Materials, Inc. Solid state bipolar battery
US11611104B2 (en) 2012-04-11 2023-03-21 Ionic Materials, Inc. Solid electrolyte high energy battery
US11145857B2 (en) 2012-04-11 2021-10-12 Ionic Materials, Inc. High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
US11319411B2 (en) 2012-04-11 2022-05-03 Ionic Materials, Inc. Solid ionically conducting polymer material
US9847551B2 (en) 2012-06-08 2017-12-19 Nec Corporation Lithium-ion secondary battery
JP2014182895A (en) * 2013-03-18 2014-09-29 Nippon Shokubai Co Ltd Binder for electrode composition for battery
JPWO2014185460A1 (en) * 2013-05-15 2017-02-23 三井造船株式会社 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
CN105409034A (en) * 2013-05-15 2016-03-16 三井造船株式会社 Positive electrode material for secondary batteries, method for producing positive electrode material for secondary batteries, and secondary battery
WO2014185460A1 (en) * 2013-05-15 2014-11-20 三井造船株式会社 Positive electrode material for secondary batteries, method for producing positive electrode material for secondary batteries, and secondary battery
JP2018088413A (en) * 2013-07-04 2018-06-07 エルジー・ケム・リミテッド Conductivity improved positive electrode mixture, positive electrode with the same, and electrochemical element
US10056604B2 (en) 2013-07-04 2018-08-21 Lg Chem, Ltd. Cathode material composite having improved conductivity, cathode and electrochemical device having the same
JP2016524275A (en) * 2013-07-04 2016-08-12 エルジー・ケム・リミテッド Positive electrode mixture with improved conductivity, positive electrode including the same, and electrochemical element
US9742008B2 (en) 2013-12-03 2017-08-22 Ionic Materials, Inc. Solid, ionically conducting polymer material, and methods and applications for same
CN111341979A (en) * 2013-12-03 2020-06-26 离子材料公司 Solid ionically conductive polymer material and uses thereof
WO2015084940A1 (en) * 2013-12-03 2015-06-11 Zimmerman Michael A Solid, ionically conducting polymer material, and applications
US10811688B2 (en) 2013-12-03 2020-10-20 Ionic Materials, Inc. Solid, ionically conducting polymer material, and methods and applications for same
CN106165154A (en) * 2013-12-03 2016-11-23 离子材料公司 Solid ion conductive polymeric material and application thereof
US10559827B2 (en) 2013-12-03 2020-02-11 Ionic Materials, Inc. Electrochemical cell having solid ionically conducting polymer material
JP2015225761A (en) * 2014-05-27 2015-12-14 株式会社カネカ Electrode active material mixture, electrode manufactured by use thereof, and nonaqueous electrolyte secondary battery
US11114655B2 (en) 2015-04-01 2021-09-07 Ionic Materials, Inc. Alkaline battery cathode with solid polymer electrolyte
US10553901B2 (en) 2015-06-04 2020-02-04 Ionic Materials, Inc. Lithium metal battery with solid polymer electrolyte
US11342559B2 (en) 2015-06-08 2022-05-24 Ionic Materials, Inc. Battery with polyvalent metal anode
US11605819B2 (en) 2015-06-08 2023-03-14 Ionic Materials, Inc. Battery having aluminum anode and solid polymer electrolyte
JP2017054637A (en) * 2015-09-08 2017-03-16 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
WO2017094416A1 (en) * 2015-12-02 2017-06-08 日本電気株式会社 Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
US10833369B2 (en) 2015-12-02 2020-11-10 Nec Corporation Positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and methods for producing these
EP3453067A4 (en) * 2016-05-06 2019-11-20 Ionic Materials, Inc. Solid ionically conducting polymer material
JP2020528393A (en) * 2017-11-20 2020-09-24 エルジー・ケム・リミテッド A method for producing a metal oxide coated with a conductive polymer, an electrode for an electrochemical element containing the same, and a metal oxide coated with a conductive polymer.
JP7062183B2 (en) 2017-11-20 2022-05-06 エルジー エナジー ソリューション リミテッド A method for producing a metal oxide coated with a conductive polymer, an electrode for an electrochemical element containing the same, and a metal oxide coated with a conductive polymer.
KR102534625B1 (en) * 2017-11-20 2023-05-18 주식회사 엘지에너지솔루션 Metal oxide coated with conductive polymer, electrode for electrochemical device comprising the same, and method of producing the metal oxide
US11870062B2 (en) 2017-11-20 2024-01-09 Lg Energy Solution, Ltd. Metal oxide coated with conductive polymer, electrode for electrochemical device comprising the same, and method of producing the metal oxide
KR20190057588A (en) * 2017-11-20 2019-05-29 주식회사 엘지화학 Metal oxide coated with conductive polymer, electrode for electrochemical device comprising the same, and method of producing the metal oxide
EP3787073A4 (en) * 2018-04-23 2022-05-18 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
KR20200123808A (en) 2018-04-23 2020-10-30 가부시키가이샤 무라타 세이사쿠쇼 Lithium ion secondary battery
CN114628677A (en) * 2020-12-03 2022-06-14 南京大学 Copper-doped potassium manganate electrode material, preparation method thereof and application thereof in potassium ion battery
CN113130873A (en) * 2021-05-20 2021-07-16 武汉科技大学 Porous bismuth-carbon material, preparation method and application thereof
JP7562488B2 (en) 2021-08-02 2024-10-07 株式会社東芝 Positive electrode, secondary battery, battery pack and vehicle

Similar Documents

Publication Publication Date Title
JP2002358959A (en) Positive electrode active substance, its manufacturing method and paste, positive electrode and non-aqueous electrolyte secondary battery using the same
US6986968B2 (en) Cathode active material for lithium secondary cell and method for manufacturing the same
CN100422077C (en) Composite graphite particle, its production method, Li ion secondary battery cathode material and Li ion secondary battery
JP2011103305A (en) Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
US20010014421A1 (en) Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same
KR20150062123A (en) Cathode active material, secondary battery comprising the same, and preparation method thereof
EP3719890A1 (en) Negative electrode active substance and production method therefor
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
EP4379856A1 (en) Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
KR102172026B1 (en) Active material precursor and preparing method thereof
KR100951698B1 (en) Separator material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP5409601B2 (en) Method for producing metal oxide with high lithium content
EP0986121B1 (en) Electrode for non-aqueous electrolyte battery
JP4029195B2 (en) Method for producing positive electrode for non-aqueous electrolyte battery
KR20190052184A (en) Precursor of positive electrode active material for secondary battery and positive electrode active material prepared by the same
WO1998054768A1 (en) Electrode for non-aqueous electrolytic cells
JPH1145716A (en) Manufacture of electrode for nonaqueous electrolytic battery
CN107814417A (en) For the cobalt/cobalt oxide of lithium secondary battery, its preparation method, lithium and cobalt oxides and lithium secondary battery
JP2002151065A (en) Negative electrode active material and non-aqueous electrolyte battery
KR20170034212A (en) Composite anode active material, lithium battery including the same, and method of preparing the composite anode active material
JP2003068307A (en) Method for manufacturing composite for electrode material having polymer containing quinoxaline structure, composite for electrode material obtained by the manufacturing method, electrode comprising the composite for electrode material, manufacturing method of electrode and battery comprising the electrode
JPH08162161A (en) Organic electrolytic battery
JP3858088B2 (en) Method for producing homogeneously shaped lithium manganese oxide