Nothing Special   »   [go: up one dir, main page]

JP2002353530A - Laminated electromechanical energy conversion element and manufacturing method therefor - Google Patents

Laminated electromechanical energy conversion element and manufacturing method therefor

Info

Publication number
JP2002353530A
JP2002353530A JP2001152512A JP2001152512A JP2002353530A JP 2002353530 A JP2002353530 A JP 2002353530A JP 2001152512 A JP2001152512 A JP 2001152512A JP 2001152512 A JP2001152512 A JP 2001152512A JP 2002353530 A JP2002353530 A JP 2002353530A
Authority
JP
Japan
Prior art keywords
hole
outer diameter
energy conversion
laminated
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001152512A
Other languages
Japanese (ja)
Other versions
JP5062927B2 (en
Inventor
Yutaka Maruyama
裕 丸山
Nobuyuki Kojima
信行 小島
Toru Ezaki
徹 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Taiheiyo Cement Corp
Original Assignee
Canon Inc
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Taiheiyo Cement Corp filed Critical Canon Inc
Priority to JP2001152512A priority Critical patent/JP5062927B2/en
Priority to US10/102,730 priority patent/US6933657B2/en
Publication of JP2002353530A publication Critical patent/JP2002353530A/en
Application granted granted Critical
Publication of JP5062927B2 publication Critical patent/JP5062927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated piezoelectric element using a through-hole capable of miniaturizing an oscillatory wave motor. SOLUTION: The laminated piezoelectric element is provided, where a plurality of electrode regions 4 and 5 of a plurality of piezoelectric layers 2 and 3 are connected using a through-hole 6; the through-hole 6 is formed into a semicircle so as to be exposed to the outside diameter part, so that the area of an insulation part around the through-hole 6 is reduced to be as small as possible, resulting in an enlarged area of effective piezoelectric active part of the laminated piezoelectric element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧電素子等の積層電
気−機械エネルギー変換素子およびこの積層電気−機械
エネルギー変換素子の製造方法に関するもので、とく
に、積層化された積層電気−機械エネルギー変換素子の
層間の接続を図るスルーホールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electro-mechanical energy conversion element such as a piezoelectric element and a method of manufacturing the laminated electro-mechanical energy conversion element, and more particularly to a laminated electro-mechanical energy conversion element. And a through hole for connection between layers.

【0002】[0002]

【従来の技術】従来、電気−機械エネルギー変換機能を
有する圧電材料は様々な圧電素子や圧電装置として多種
多様に用いられている。とりわけ、最近の傾向として、
これらの圧電素子や圧電装置は、単一の板状で使うので
はなく、薄いシ−ト状で多数枚重ねて積層化した構造が
使われるようになってきた。
2. Description of the Related Art Conventionally, piezoelectric materials having an electric-mechanical energy conversion function have been used in a wide variety of piezoelectric elements and piezoelectric devices. Above all, as a recent trend,
These piezoelectric elements and piezoelectric devices are not used in a single plate shape but in a thin sheet shape in which a large number of piezoelectric elements and piezoelectric devices are stacked.

【0003】これは、単一の板状の圧電素子と比べ、積
層化によって、低い印加電圧で大きな変形歪や大きな力
が得られることが大きな理由である。さらに、シ−ト成
形法や積層化の製造方法が普及し、一層あたりの厚さを
薄くし、小型で高性能な積層化された圧電素子や圧電装
置が容易に作れるようになってきたためである。
[0003] This is largely due to the fact that a large deformation strain and a large force can be obtained with a low applied voltage by lamination as compared with a single plate-shaped piezoelectric element. Further, sheet molding and lamination manufacturing methods have become widespread, and the thickness of each layer has been reduced, so that small-sized, high-performance laminated piezoelectric elements and piezoelectric devices can be easily manufactured. is there.

【0004】例えば、振動波駆動装置の一つの例である
振動波モ−タ用の積層圧電素子として、特開平6―77
550号公報、特開平6―120580号公報、特開平
8―213664号公報等が提案されている。また。そ
の他の例として振動ジャイロ用、圧電トランス用の積層
圧電素子なども数多く提案されている。
For example, a laminated piezoelectric element for a vibration wave motor, which is one example of a vibration wave driving device, is disclosed in JP-A-6-77.
550, JP-A-6-120580, JP-A-8-213664 and the like have been proposed. Also. As other examples, many laminated piezoelectric elements for a vibrating gyroscope and a piezoelectric transformer have been proposed.

【0005】このような種々の用途に使用される積層化
された電気―機械エネルギー変換素子は、電極領域を形
成した電気―機械エネルギー変換機能を有する層状の材
料を複数層重ねた構造であり、つまり、代表的な例とし
ては、電極材料で形成された電極の層(以下、内部電極
と呼ぶ)を表面に設けた圧電セラミックスの層(以下、
圧電層と呼ぶ)を複数層重ねた構造となっている。
[0005] The laminated electro-mechanical energy conversion element used for such various uses has a structure in which a plurality of layered materials having an electro-mechanical energy conversion function in which an electrode region is formed are stacked. That is, as a typical example, a piezoelectric ceramic layer (hereinafter, referred to as an internal electrode) provided on the surface of an electrode layer formed of an electrode material (hereinafter, referred to as an internal electrode) is provided.
(Called a piezoelectric layer).

【0006】そして、最近は、積層化された複数の内部
電極を接続するための層間配線として、圧電層の層内に
穴を設け電極材料を埋め込んだスルーホール(またはバ
イヤホ−ルと言う)を、例えば、特開平6―12058
0号公報、特開平8―213664号公報等のように用
いるのが、より一般的になってきた。なお、特開平6―
77550号公報は外部に層間配線としての外部電極を
用いた例である。
Recently, as an interlayer wiring for connecting a plurality of laminated internal electrodes, a through hole (or a via hole) in which a hole is formed in a layer of a piezoelectric layer and an electrode material is embedded is provided. For example, for example, see JP-A-6-12058.
No. 0, JP-A-8-213664 and the like have become more common. Note that Japanese Patent Laid-Open No. 6-
Japanese Patent Application Laid-Open No. 77550 discloses an example in which an external electrode as an interlayer wiring is used outside.

【0007】これは、製造装置や製造技術の向上で、ス
ルーホールの位置決めが高精度になったことで、電気的
な接続に対するの信頼性が高くなったこと、さらに、ス
ルーホールを用いることで素子の小型化が図れることな
ど利点があるためである。
This is because the reliability of the electrical connection has been improved by improving the precision of the positioning of the through hole due to the improvement of the manufacturing apparatus and the manufacturing technology, and further, by using the through hole. This is because there are advantages such as downsizing of the element.

【0008】図8は特開平8―213664号公報に記
載の従来の積層圧電素子を示したもので、積層圧電素子
31は内部電極を接続するために、全てスルーホール1
6を用いており、図9のように振動波モ−タ40に組み
込まれて、例えばカメラ用レンズのオ−トフォ−カスの
モ−タとして既に実用化されている。
FIG. 8 shows a conventional laminated piezoelectric element described in Japanese Patent Application Laid-Open No. Hei 8-213664. The laminated piezoelectric element 31 has a through hole 1 for connecting internal electrodes.
As shown in FIG. 9, it is incorporated in a vibration wave motor 40 and has already been put to practical use, for example, as an autofocus motor for a camera lens.

【0009】図8において、中心部に貫通孔が形成され
た円板形状の積層圧電素子31は、内径側に黒丸で示す
スルーホール36を形成し、積層化された圧電層間の導
通を得るようにしたものである。積層圧電素子31を構
成する2種の圧電層32、33の表面には4分割された
内部電極(電極パタ−ン)34(34−1、34−2、
34−3、34−4)と、35(35−1、35−2、
35−3、35−4)が設けられている。そして、表面
層の第1層以下は、第2層から第25層まで、圧電層3
2と33が交互に配置されている。各圧電層の内径側に
は図中黒丸で示すスルーホール36が形成され、1枚お
きに重ねられた各圧電層32における各内部電極34の
分割された4つの電極部34(34−1、34−2、3
4−3、34−4)が重ねられた方向で導通するように
4本のスルーホールが電極部に設けられている。
In FIG. 8, in a disc-shaped laminated piezoelectric element 31 having a through hole formed in the center, a through hole 36 indicated by a black circle is formed on the inner diameter side so as to obtain conduction between the laminated piezoelectric layers. It was made. On the surfaces of the two types of piezoelectric layers 32 and 33 constituting the laminated piezoelectric element 31, four divided internal electrodes (electrode patterns) 34 (34-1, 34-2,
34-3, 34-4) and 35 (35-1, 35-2,
35-3, 35-4) are provided. The first and lower surface layers are the piezoelectric layers 3 from the second layer to the twenty-fifth layer.
2 and 33 are arranged alternately. A through hole 36 indicated by a black circle in the figure is formed on the inner diameter side of each piezoelectric layer, and four divided electrode portions 34 (34-1, 34-1) of each internal electrode 34 in each of the piezoelectric layers 32 stacked alternately. 34-2, 3
4-3, 34-4) are provided in the electrode portion so as to conduct in the direction in which they overlap.

【0010】また、もう一方の各圧電層33において
も、同様に各内部電極35の分割された4つの電極部3
5(35−1、35−2、35−3、35−4)が重ね
られた方向で導通するように、さらに4本のスルーホー
ルが電極部に設けられている。ただし、第25層はその
下にはもう層がないのでスルーホールは設けられていな
い。
Similarly, in each of the other piezoelectric layers 33, the four divided electrode portions 3 of the internal electrodes 35 are similarly formed.
Four through holes are further provided in the electrode portion so as to conduct in the direction in which 5 (35-1, 35-2, 35-3, 35-4) are overlapped. However, since the 25th layer has no layer below it, no through hole is provided.

【0011】そして、これら8本のスルーホール36は
互いに独立し非導通となっており、積層圧電素子31の
表面でスルーホール36の端部を露出し表面電極37を
形成している。また、各内部電極34,35は外径、内
径の縁までは形成されて居らず、外径、内径の縁には未
電極領域がある。
The eight through holes 36 are independent of each other and are non-conductive, and the surface electrodes 37 are formed by exposing the ends of the through holes 36 on the surface of the laminated piezoelectric element 31. Further, each of the internal electrodes 34 and 35 is not formed up to the outer diameter and inner diameter edges, and there is a non-electrode region at the outer diameter and inner diameter edges.

【0012】このように構成された図8の積層圧電素子
31は、以下のような分極処理が施され、振動波駆動装
置としての振動波モ−タに適した振動を起こすようにな
っている。
The thus constituted laminated piezoelectric element 31 shown in FIG. 8 is subjected to the following polarization treatment so as to generate vibration suitable for a vibration wave motor as a vibration wave driving device. .

【0013】積層圧電素子31において、素子内部の各
圧電層33の内部電極35は4分割された電極部35
(35−1、35−2、35−3、35−4)からな
り、180度の位置関係にある電極部35−1、35−
3と電極部35−2、35−4の2つを互いに分極極性
が異なるように、+(プラス)と―(マイナス)に分極
している。
In the laminated piezoelectric element 31, the internal electrode 35 of each piezoelectric layer 33 inside the element is divided into four divided electrode portions 35.
(35-1, 35-2, 35-3, 35-4), and the electrode portions 35-1, 35-
3 and two electrode portions 35-2 and 35-4 are polarized to + (plus) and-(minus) so that the polarization polarities are different from each other.

【0014】すなわち、図に示したように、電極部35
−1、35−3がA+,A?、電極部35−2、35−
4がB+,B?として、各々A相、B相とし、これらに
対向する圧電層32の内部電極34の4分割された電極
部34(34−1、34−2、34−3、34−4)も
同じく180度の位置にある電極部34−1、34−3
と電極部34−2、34−4の2つをAG相、BG相と
し、電気的にグランドとしている。
That is, as shown in FIG.
-1, 35-3 are A +, A? , Electrode portions 35-2, 35-
4 is B +, B? The A-phase and the B-phase, respectively, and the four divided electrode portions 34 (34-1, 34-2, 34-3, 34-4) of the internal electrode 34 of the piezoelectric layer 32 facing them are also 180 degrees. Electrode portions 34-1 and 34-3 at positions
And two of the electrode portions 34-2 and 34-4 are set to an AG phase and a BG phase, and are electrically grounded.

【0015】図9は、積層圧電素子31を振動体41に
組み込んだ振動波駆動装置としての棒状の振動波モ−タ
40の断面図である。積層圧電素子31は、振動体41
の弾性体である金属部品42と43の間に、外部電源と
接続する配線基板38と直接接触し、ボルト44により
挟持されている。そして、積層圧電素子31の8個の表
面電極37と配線基板38の電極パタ−ンは電気的に接
続される。
FIG. 9 is a sectional view of a rod-shaped vibration wave motor 40 as a vibration wave driving device in which the laminated piezoelectric element 31 is incorporated in a vibration body 41. The laminated piezoelectric element 31 includes a vibrating body 41
Are in direct contact with the wiring board 38 connected to an external power supply and are clamped by bolts 44 between the metal parts 42 and 43 which are elastic bodies. Then, the eight surface electrodes 37 of the laminated piezoelectric element 31 and the electrode patterns of the wiring board 38 are electrically connected.

【0016】棒状振動波モ−タ40の駆動原理は、積層
圧電素子31を組み込んだ振動体41に、直交する2つ
の曲げ振動を発生させ、これと加圧接触するロ−タ47
を摩擦力により駆動させるものである。
The driving principle of the rod-shaped vibrating wave motor 40 is as follows. Two orthogonal bending vibrations are generated in the vibrating body 41 in which the laminated piezoelectric element 31 is incorporated, and the rotor 47 is brought into pressure contact with the bending vibrations.
Is driven by a frictional force.

【0017】すなわち、A相、B相に対向するAG相、
BG相をグランドとし、A相に振動体の固有振動数とほ
ぼ一致した高周波電圧を印加、さらに、A相と空間位相
位置の90度異なるB相に、A相とは電気的に90度位
相の異なる同じ振動数の高周波電圧を印加し、振動体4
1に発生する2つの曲げ振動の合成により駆動振動を得
る。
That is, the AG phase opposed to the A phase and the B phase,
The BG phase is set to the ground, and a high-frequency voltage substantially equal to the natural frequency of the vibrating body is applied to the A phase. Further, the B phase, which differs from the A phase by 90 degrees in the spatial phase position, is electrically shifted by 90 degrees from the A phase. And applying a high-frequency voltage having the same frequency but different
A driving vibration is obtained by synthesizing two bending vibrations generated in (1).

【0018】そして、振動体41に発生する駆動振動に
より、金属部品42の一方の面に、バネ45、バネ支持
体46を介して加圧接触するロ−タ47を摩擦駆動し、
ロ−タ47と一体に回転する出力部材としてのギア48
により駆動力が出力される。
The rotor 47, which comes into pressure contact with one surface of the metal component 42 via a spring 45 and a spring support 46, is frictionally driven by the drive vibration generated in the vibrator 41,
Gear 48 as an output member that rotates integrally with the rotor 47
Outputs a driving force.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、さらに
小型の振動波モ−タを開発するために、従来の振動波モ
−タを検討したところ、積層圧電素子には次の課題があ
ることがわかってきた。
However, when a conventional vibration wave motor was examined in order to develop a more compact vibration wave motor, it was found that the laminated piezoelectric element had the following problems. Have been.

【0020】スルーホールを用いた積層圧電素子は、ス
ルーホールとこのスルーホールとは基本的に導通させな
い別の内部電極の電極部とを非導通とするために、スル
ーホールの周囲に絶縁部(図8において未電極形成部3
9の領域)を設ける必要がある。
In a laminated piezoelectric element using a through-hole, an insulating portion (around the through-hole) is provided around the through-hole in order to make the through-hole and the electrode portion of another internal electrode that is basically not conductive from the through-hole. In FIG. 8, the non-electrode forming portion 3
9 areas).

【0021】積層圧電素子を、図8の従来の電極の構成
のように、内径側にスルーホールを形成したまま、積層
圧電素子の外径を小さくすると、スルーホールの周囲に
は円形状の絶縁部があるため、振動波モ−タを駆動する
ために必要な圧電活性部(内部電極34,35の各電極
部に挟まれた部分)の領域を充分に広く取ることが出来
ない。これでは、小型の振動波モ−タの性能はほとんど
期待できないことがわかった。
When the outer diameter of the laminated piezoelectric element is reduced while the through hole is formed on the inner diameter side as in the conventional electrode configuration shown in FIG. 8, a circular insulating material is formed around the through hole. Therefore, the area of the piezoelectric active portion (the portion between the internal electrodes 34 and 35) required for driving the vibration wave motor cannot be made sufficiently large. In this case, it was found that the performance of the small vibration wave motor could hardly be expected.

【0022】本出願に係る発明は、さらなる小型の振動
波モ−タの性能向上に対して、有効な積層電気−機械エ
ネルギー変換素子およびその製造方法を提供しようとす
るものである。
It is an object of the present invention to provide a laminated electro-mechanical energy conversion element and a method of manufacturing the same which are effective for improving the performance of a further small vibration wave motor.

【0023】[0023]

【課題を解決するための手段】第1の発明は、複数の電
極領域を形成した電気−機械エネルギー変換機能を有す
る材料を複数層重ね、前記複数層の各複数の電極領域間
をスルーホールを用いて接続した積層電気?機械エネル
ギー変換素子において、少なくとも複数の前記スルーホ
ールは、外径または内径、もしくは外径と内径に形成さ
れ、前記スルーホールに充填された充填物が外径または
内径の端面に臨むことを特徴とする。
According to a first aspect of the present invention, a plurality of layers having a plurality of electrode regions and having an electromechanical energy conversion function are stacked, and a through hole is formed between each of the plurality of electrode regions. Stacked electricity connected using? In the mechanical energy conversion element, at least a plurality of the through holes are formed in an outer diameter or an inner diameter, or an outer diameter and an inner diameter, and the filler filled in the through hole faces an end surface of the outer diameter or the inner diameter. I do.

【0024】第2の発明は、上記第1の発明で、前記ス
ルーホールは、略長円形状に形成されていることを特徴
とする。
In a second aspect based on the first aspect, the through hole is formed in a substantially elliptical shape.

【0025】第3の発明は、上記いずれかの発明で、外
径部または内径部に形成されたスルーホールの端面から
外部との導通を図れるようにしたことを特徴とする。
According to a third aspect of the present invention, in any one of the above-described aspects, conduction from the outside can be achieved from an end face of a through hole formed in the outer diameter portion or the inner diameter portion.

【0026】第4の発明は、上記いずれかの発明で、ス
ルーホールの周囲の絶縁部は、積層電気−機械エネルギ
ー変換素子の外径部または内径部のスルーホールを中心
に略同心に形成されていること特徴とする。
According to a fourth aspect of the present invention, in any one of the above aspects, the insulating portion around the through hole is formed substantially concentrically around the through hole at the outer or inner diameter portion of the laminated electro-mechanical energy conversion element. The feature is that.

【0027】第5の発明は、上記いずれかの発明で、複
数の前記層における各複数の電極領域は、スルーホール
とその周囲の絶縁部を除き、積層圧電素子の外径または
内径の縁まで達していることを特徴とする。
According to a fifth aspect of the present invention, in any one of the above-mentioned inventions, each of the plurality of electrode regions in the plurality of layers excluding a through hole and an insulating portion around the through hole extends to an outer or inner edge of the laminated piezoelectric element. It is characterized by reaching.

【0028】第6の発明は、上記第4の発明で、前記最
上層と最下層には前記スルーホールを形成していないこ
とを特徴とする。
According to a sixth aspect, in the fourth aspect, the through hole is not formed in the uppermost layer and the lowermost layer.

【0029】第7の発明は、上記第1または第2の発明
で、外径部端面に臨む1層または複数層での前記スルー
ホールを目印として用いたことを特徴とするもので、目
視などで、素子の識別や素子の円周方向の位置を判断し
たりすることが可能である。
According to a seventh aspect of the present invention, in the first or second aspect, the through hole in one or more layers facing the end face of the outer diameter portion is used as a mark. Thus, it is possible to identify the element and determine the position of the element in the circumferential direction.

【0030】第8の発明は、片面に内部電極が形成され
た完成品の外径よりも大きいサイズのグリーンシートを
重ね合わせ、完成品の外径または内径位置を略中心とす
るスルーホールを形成し、前記スルーホールに充填材を
充填したものを積層体とし、前記積層体を焼成後、外径
部に機械加工を施して所定の外径を得るようにしたこと
を特徴とする積層電気−機械エネルギー変換素子の製造
方法とするものである。
According to an eighth aspect of the present invention, a green sheet having a size larger than the outer diameter of the finished product in which the internal electrodes are formed on one surface is overlapped to form a through-hole substantially at the center of the outer or inner diameter of the finished product. A laminated body obtained by filling the through hole with a filler to form a laminated body, firing the laminated body, and machining the outer diameter portion to obtain a predetermined outer diameter. This is a method for manufacturing a mechanical energy conversion element.

【0031】第9の発明は、片面に内部電極が形成され
た完成品の外径よりも大きいサイズのグリーンシートを
重ね合わせ、完成品の略外径位置に僅かに重なり合った
部分を有する2つのスルーホールをほぼ径方向に並んで
形成し、前記スルーホールに充填材を充填たものを積層
体とし、前記積層体を焼成後、外径部に機械加工を施し
て所定の外径を得るようにしたことを特徴とする積層電
気−機械エネルギー変換素子の製造方法とするものであ
る。
According to a ninth aspect of the present invention, a green sheet having a size larger than the outer diameter of a finished product having an internal electrode formed on one surface is overlapped, and two green sheets having portions slightly overlapping substantially at the outer diameter position of the finished product are provided. The through-holes are formed substantially in the radial direction, and a laminate obtained by filling the through-holes with a filler is formed into a laminate, and after firing the laminate, the outer diameter portion is machined to obtain a predetermined outer diameter. And a method for manufacturing a laminated electro-mechanical energy conversion element.

【0032】[0032]

【発明の実施の形態】(第1の実施の形態)図1は本発
明の第1の実施の形態を示す。本実施の形態の積層電気
−機械エネルギー変換素子としての積層圧電素子1は、
中心部に形成された貫通孔を内径部とし、スルーホール
を用いて、積層された圧電層間の導通を得るようにした
ものである。そして、積層圧電素子1の直径は後述する
ように、従来例より小型化した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 shows a first embodiment of the present invention. The laminated piezoelectric element 1 as the laminated electro-mechanical energy conversion element of the present embodiment includes:
The through hole formed in the center portion is used as the inner diameter portion, and conduction between the stacked piezoelectric layers is obtained by using the through hole. The diameter of the laminated piezoelectric element 1 is smaller than that of the conventional example, as described later.

【0033】図1に示すように、積層圧電素子1を構成
する2種の圧電層2と3の表面には、直径部分を直交す
るようにして十字形に形成されたスリット(未電極形成
部)を介して、内部電極4と5が電極部4−1,4−
2,4−3,4−4と、電極部5−1,5−2,5−3,
5−4に4分割され、表面層(最上層)である第1層以
下で、1層おきに第2層から第25層まで交互に圧電層
2と3が配置されている。そして、各内部電極は、各層
を構成する円板形状の圧電体の外径および内径の縁まで
達している。
As shown in FIG. 1, slits (not-electrode-forming portions) formed in a cross shape with the diameter portions orthogonal to each other are formed on the surfaces of the two types of piezoelectric layers 2 and 3 constituting the laminated piezoelectric element 1. ), The internal electrodes 4 and 5 are connected to the electrode portions 4-1 and 4-
2,4-3,4-4 and the electrode parts 5-1,5-2,5-3,
The piezoelectric layers 2 and 3 are alternately arranged from the second layer to the 25th layer in every other layer below the first layer which is the surface layer (uppermost layer). Each internal electrode reaches the outer and inner edges of the disk-shaped piezoelectric body constituting each layer.

【0034】各圧電層の外径端には、図中黒丸で示す4
個のスルーホール6が形成されている。すなわち、1層
おきの各圧電層2の各内部電極4の4つに分割された各
電極部4−1、4−2、4−3、4−4が重ねられた状
態で導通するように4本のスルーホール6を設けた。
The outer diameter end of each piezoelectric layer is indicated by a black circle 4 in the figure.
The individual through holes 6 are formed. That is, each of the electrode portions 4-1 4-2, 4-3, and 4-4, which are divided into four of the internal electrodes 4 of the piezoelectric layers 2 of every other layer, are electrically connected to each other in a stacked state. Four through holes 6 were provided.

【0035】また、各圧電層2の間に配置されたもう一
方の各圧電層3の各内部電極5の4つに分割された電極
部5−1、5−2、5−3、5−4が重ねられた状態で
導通するように、さらに4本のスルーホール6を設け
た。ただし、第25層だけはその下の層には導通する必
要がないのでスルーホールは設けられていない。これら
8本のスルーホール6は互いに独立し非導通とした。
The electrode portions 5-1, 5-2, 5-3, and 5- are divided into four internal electrodes 5 of each of the other piezoelectric layers 3 disposed between the piezoelectric layers 2. Four more through-holes 6 were provided so as to conduct when the four were superposed. However, since only the 25th layer does not need to be electrically connected to the layer below it, no through hole is provided. These eight through holes 6 are independent of each other and are non-conductive.

【0036】また、これら8本の各スルーホール6は積
層圧電素子1の表面にスルーホール6の端部を露出しス
ルーホール径と同じ大きさの8個の表面電極7を形成し
ている。
Each of the eight through holes 6 exposes an end of the through hole 6 on the surface of the laminated piezoelectric element 1 to form eight surface electrodes 7 having the same size as the diameter of the through hole.

【0037】上記のような構成にした後、以下のような
従来例と同じように分極処理を行い、振動波モ−タに適
した分極極性を与えた。すなわち、積層圧電素子1にお
いて、内部の圧電層3の内部電極5の4分割された電極
部5−1、5−2、5−3、5−4を、180度の位置
関係にある電極部5−1、5−3と5−2、5−4の各
2つの電極部が互いに分極極性が+(プラス)と−(マ
イナス)とに異なるように分極した。
After the above configuration, polarization processing was performed in the same manner as in the following conventional example to give a polarization polarity suitable for the vibration wave motor. That is, in the laminated piezoelectric element 1, the four divided electrode portions 5-1, 5-2, 5-3 and 5-4 of the internal electrode 5 of the internal piezoelectric layer 3 are connected to the electrode portions having a positional relationship of 180 degrees. The two electrode portions 5-1 and 5-3 and 5-2 and 5-4 were polarized so that the polarization polarities were different from each other to + (plus) and-(minus).

【0038】すなわち、図示したように、電極部5−
1、5−3がA+、A−と5−2、5−4がB+,B
?、そして各々A相、B相とした。そいて、これらに対
向する圧電層2の内部電極4の4分割された電極部4−
1、4−2、4−3、4−4も同じく180度の位置に
ある電極部4−1、4−3と4−2、4−4を各々AG
相、BG相とし、電気的にグランドとした。
That is, as shown in FIG.
1, 5-3 are A +, A- and 5-2, 5-4 are B +, B
? , And A and B phases, respectively. Then, the four divided electrode portions 4 of the internal electrodes 4 of the piezoelectric layer 2 facing these are formed.
1, 4-2, 4-3, and 4-4 are also connected to the electrode units 4-1 and 4-3 and 4-2 and 4-4 at the positions of 180 degrees, respectively.
And BG phases, and electrically grounded.

【0039】図3は積層圧電素子1を、従来と構造的に
はほぼ同じであるが、直径の小さい棒状の小型振動波モ
−タ20を構成する振動体21に組み込んだ図である。
FIG. 3 is a view in which the laminated piezoelectric element 1 is incorporated in a vibrating body 21 constituting a rod-shaped small vibrating wave motor 20, which is substantially the same in structure as the conventional one, but has a small diameter.

【0040】積層圧電素子1は、振動体21の弾性体で
ある金属部品22,23とボルト24により、配線基板
8が積層圧電素子1と機械的に密着するようにして締め
付けた。
The laminated piezoelectric element 1 was fastened by metal parts 22 and 23 which are elastic bodies of the vibrating body 21 and bolts 24 so that the wiring board 8 was in close mechanical contact with the laminated piezoelectric element 1.

【0041】配線基板8は配線用の電極パタ−ンが設け
られており、積層圧電素子1の各々の表面電極7と電気
的に導通し外部電源と接続が図られている。配線基板8
は通常使用されている厚さ25μmのポリイミドからな
るシ−トに厚さ35μmの銅箔を配線用のパタ−ニング
したものである。
The wiring substrate 8 is provided with wiring electrode patterns, and is electrically connected to each surface electrode 7 of the laminated piezoelectric element 1 so as to be connected to an external power supply. Wiring board 8
Is obtained by patterning a commonly used 25 .mu.m thick polyimide sheet on a 35 .mu.m thick copper foil for wiring.

【0042】そして、従来例と同じように、A相、B相
に対向するAG相、BG相をグランドとして、A相に振
動体の固有振動数とほぼ一致した高周波電圧を印加し、
さらに、A相と空間位相位置の90度異なるB相に、A
相とは電気的に90度位相の異なる同一振動数の高周波
電圧を印加した。こうして、振動体21の2つの曲げ振
動の合成により得られる駆動振動により、バネ30、バ
ネ支持体31を介して、弾性体である22の一方の面に
加圧接触したロ−タ27を摩擦力により駆動し、ロ−タ
27と一体に回転する出力部材としてのギア28により
駆動力が出力される。
Then, similarly to the conventional example, a high frequency voltage substantially matching the natural frequency of the vibrating body is applied to the A phase with the AG phase and the BG phase facing the A phase and the B phase as grounds.
Further, the A phase is shifted to the B phase having a spatial phase position different by 90 degrees from the A phase.
A high frequency voltage having the same frequency, which is electrically different from the phase by 90 degrees, was applied. In this manner, the rotor 27 which has come into pressure contact with one surface of the elastic member 22 through the spring 30 and the spring support member 31 by the driving vibration obtained by combining the two bending vibrations of the vibrating member 21 rubs. The driving force is output by a gear 28 as an output member which is driven by force and rotates integrally with the rotor 27.

【0043】本実施の形態の積層圧電素子は、具体的に
は、外径が6mm、内径が1.7mm、厚さが約1.6mm、
圧電層の厚さが約60μm、内部電極の厚さが2から3μ
mとし、圧電層の全層数は25層、内部電極は24層とし
た。また、スルーホールの直径は0.35mmである。ま
た、弾性体である金属部品22,23の外径も同じ6mm
である。
Specifically, the laminated piezoelectric element of the present embodiment has an outer diameter of 6 mm, an inner diameter of 1.7 mm, a thickness of about 1.6 mm,
The thickness of the piezoelectric layer is about 60 μm, and the thickness of the internal electrode is 2 to 3 μm.
m, the total number of piezoelectric layers was 25, and the internal electrodes were 24. The diameter of the through hole is 0.35 mm. The outer diameter of the metal parts 22 and 23 which are elastic bodies is the same 6 mm.
It is.

【0044】前述の従来例の積層圧電素子は、外径が10
mm、内径が2.8mm、厚さが約2.3mm、圧電層の厚さ
が約90μm、内部電極の厚さが2から3μmで、圧電層
の全層数は25層であった。
The above-described conventional laminated piezoelectric element has an outer diameter of 10 mm.
mm, the inner diameter was 2.8 mm, the thickness was about 2.3 mm, the thickness of the piezoelectric layer was about 90 μm, the thickness of the internal electrode was 2 to 3 μm, and the total number of piezoelectric layers was 25.

【0045】本実施の積層圧電素子は従来例より外径を
小さくし、さらに、一層あたりの厚さも薄くしている。
The laminated piezoelectric element of the present embodiment has a smaller outer diameter and a smaller thickness per layer than the conventional example.

【0046】本実施の形態の積層圧電素子の製造法は、
圧電層となる、圧電セラミックス粉末と有機バインダ−
からなるグリ−シ−ト上に、はじめに、スルーホールを
作るための孔を開け、その孔に銀・パラジウム粉末ペ−
ストを充填し、次に内部電極となる銀・パラジウム粉末
ペ−ストをスクリ−ン印刷で形成し、各々を重ね、加熱
しながら加圧し積層化した。そして、焼成前に内径部を
機械加工で開けた。その後、鉛雰囲気中で、約1100
℃で焼成し、焼成後、分極した後、両面ラップ加工を行
い、最後に外径部を機械(研削)加工で加工し製作し
た。
The method for manufacturing the laminated piezoelectric element of the present embodiment is as follows.
Piezoelectric ceramic powder and organic binder for the piezoelectric layer
First, a hole for making a through-hole was made on a grease sheet made of silver and palladium powder.
The paste was filled, and then a silver / palladium paste serving as an internal electrode was formed by screen printing. Then, the inner diameter was opened by machining before firing. Then, in a lead atmosphere, about 1100
After sintering at ℃, after sintering, polarization, double-sided lapping was performed, and finally the outer diameter portion was processed by mechanical (grinding) processing to produce.

【0047】なお、上記圧電層となるグリ−ンシ−ト
は、1枚の大きなものから複数個を得るようにしてお
り、例えば、四角形に形成され、これを重ね合わせたも
のを焼成し、焼成後に外形部を円形形状に機械加工を施
すようにしている。したがって、積層圧電素子1の完成
品において、スルーホール6は圧電層2、3の外形端に
半円形状に形成されているが、スルーホール6の焼成前
における状態は、図7(a)に示すように、外形端とな
る位置を中心に斜線で示す円形(焼成前に直径0.35m
m)に形成され、最後に機械加工で外径を円形に形成す
ることで、スルーホール6が二重斜線で示す略半円形状
に形成される。
A plurality of green sheets to be used as the piezoelectric layer are obtained from a single large sheet. Later, the outer part is machined into a circular shape. Therefore, in the finished product of the laminated piezoelectric element 1, the through hole 6 is formed in a semicircular shape at the outer end of the piezoelectric layers 2 and 3, but the state before firing of the through hole 6 is shown in FIG. As shown in the figure, a circle (shown as 0.35 m in diameter before firing)
m), and finally, the outer diameter is formed into a circular shape by machining, whereby the through hole 6 is formed in a substantially semicircular shape indicated by double oblique lines.

【0048】本実施の形態では外径のところをねらって
スルーホールを形成した。現状、製造上のスルーホール
の外径に対する位置精度は、最終的に、機械加工後で±
0.1mmであり、スルーホール内の充電物が削れ取られ
ないようにスルーホールの直径をやや大きくし0.35mm
とした。
In this embodiment, a through hole is formed aiming at the outer diameter. At present, the positional accuracy with respect to the outside diameter of the through hole in manufacturing is
0.1mm, the diameter of the through hole is slightly increased to 0.35mm so that the charged material in the through hole is not scraped off
And

【0049】また、このスルーホールの周囲の略1/4円
形形状の絶縁部の半径は、外径上のスルーホールから約
0.6mmとした。ちなみに、電極層を分けるスリットも
約0.4mmである。
The radius of the approximately 1/4 circular insulating portion around the through hole is approximately equal to the radius of the through hole on the outer diameter.
0.6 mm. By the way, the slit separating the electrode layers is about 0.4 mm.

【0050】これらの値は使用時に確実に絶縁が取れる
寸法であり、積層圧電素子の製造上の各電極部やスルー
ホールの位置ずれや使用条件などを考慮して決める値で
ある。将来には、製造技術の改良により、さらに小さく
したい。
These values are dimensions that ensure insulation during use, and are values determined in consideration of the positional deviation of each electrode portion and through hole in the production of the laminated piezoelectric element, the use conditions, and the like. In the future, we want to make it even smaller by improving manufacturing technology.

【0051】このように、本実施の形態の積層圧電素子
1は、スルーホール6と表面電極7を素子の外径端部に
形成し、スルーホールの周囲に形成された絶縁部の面積
をほぼ半減状態に減少させている。さらに、内部電極は
外径と内径端まで領域(図1のハッチングした領域)を
広げている。
As described above, in the laminated piezoelectric element 1 according to the present embodiment, the through hole 6 and the surface electrode 7 are formed at the outer diameter end of the element, and the area of the insulating portion formed around the through hole is substantially reduced. It has been reduced to half. Further, the internal electrode extends a region (hatched region in FIG. 1) to the outer diameter and the inner diameter end.

【0052】この結果、振動波モ−タの性能(回転数と
トルク)や効率を予想どおり向上させることができた。
As a result, the performance (rotational speed and torque) and efficiency of the vibration wave motor could be improved as expected.

【0053】(第2の実施の形態)図2は本発明の第2
の実施の形態を示す。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
An embodiment will be described.

【0054】本実施の形態の積層圧電素子11は、スル
ーホールを内径と外径にそれぞれ形成したものである。
その他の形態や駆動法、製造法などはすべて第1の実施
の形態と同じである。
The laminated piezoelectric element 11 of this embodiment has through holes formed in the inner diameter and the outer diameter, respectively.
Other modes, driving methods, manufacturing methods, and the like are all the same as those of the first embodiment.

【0055】図2に示すように、積層圧電素子11を構
成する2種の圧電層12と13の表面にはスリット(未
電極形成部)を介して、内部電極14と15が4分割さ
れ、第1層以下、1層おきに交互に圧電層12と13が
配置されている。そして、内部電極は外径端および内径
端まで達している。
As shown in FIG. 2, the internal electrodes 14 and 15 are divided into four on the surfaces of the two types of piezoelectric layers 12 and 13 constituting the laminated piezoelectric element 11 through slits (non-electrode forming portions). The piezoelectric layers 12 and 13 are alternately arranged every other layer from the first layer. The internal electrode has reached the outer diameter end and the inner diameter end.

【0056】各圧電層の外径端部および内径端部には図
中黒丸で示すスルーホール16が形成されており、外形
端部に形成されたスルーホール16は第1の実施の形態
と同様に形成され、内径端部に形成されたスルーホール
16は外形端部に形成されるスルーホールと同様にして
形成されている。
At the outer diameter end and inner diameter end of each piezoelectric layer, through holes 16 indicated by black circles in the figure are formed, and the through holes 16 formed at the outer ends are the same as those in the first embodiment. The through hole 16 formed at the inner diameter end is formed in the same manner as the through hole formed at the outer end.

【0057】図3は、積層圧電素子11を、棒状振動波
モ−タ20を構成する振動体21に組み込んだ図であ
る。積層圧電素子11は配線基板18を挟み、振動体2
1の金属部品22,23と全面で接触し、ボルト23に
より締め付けられている。
FIG. 3 is a diagram in which the laminated piezoelectric element 11 is incorporated in a vibrating body 21 constituting a rod-shaped vibrating wave motor 20. The laminated piezoelectric element 11 sandwiches the wiring board 18 and
The first metal parts 22 and 23 are in full contact with each other and are fastened by bolts 23.

【0058】本実施の形態の積層圧電素子は第1の実施
の形態の積層圧電素子と異なり、内径にもスルーホール
を有している。これは、複数のスルーホールを外径側と
内径側に分散させることで、配線基板18上の、配線用
の電極パタ−ンのスペ−スに余裕ができ、設計が簡単に
なる利点がある。小型振動波モ−タを開発する上で、こ
れの実用上の効果は大きい。
The laminated piezoelectric element of the present embodiment differs from the laminated piezoelectric element of the first embodiment in that the laminated piezoelectric element also has a through hole in the inner diameter. This is because, by dispersing a plurality of through-holes on the outer diameter side and the inner diameter side, the wiring electrode pattern on the wiring board 18 can have a sufficient space and the design is simplified. . In developing a small vibration wave motor, this has a great practical effect.

【0059】以上の結果、小型の振動波モ−タの性能
(回転数とトルク)、さらに、モ−タ効率も向上した。
As a result, the performance (rotational speed and torque) of the small vibration wave motor and the motor efficiency were improved.

【0060】なお、図2に示す実施の形態では、略半円
形状となるスルーホールを内径端部と外形端部にそれぞ
れ形成したが、全てのスルーホールを内径端側に設けて
も良い。しかし、前述したように、小径化での内径周辺
はかなり面積が小さくなり、配線基板の配線用の電極パ
タ−ンの設計は相当めんどうになる。よって、好ましく
は、スルーホールは外径、または、外径と内径に分散さ
せた方が良い。
In the embodiment shown in FIG. 2, through holes having a substantially semicircular shape are formed at the inner diameter end and the outer diameter end, however, all through holes may be provided at the inner diameter end. However, as described above, the area around the inner diameter due to the reduction in diameter becomes considerably small, and the design of the electrode pattern for wiring of the wiring board becomes considerably troublesome. Therefore, it is preferable to disperse the through holes in the outer diameter or the outer diameter and the inner diameter.

【0061】(第3の実施の形態)図4は本発明の第3
の実施の形態を示す。
(Third Embodiment) FIG. 4 shows a third embodiment of the present invention.
An embodiment will be described.

【0062】図4に示すように、本実施の形態の積層圧
電素子10は、第1層のスルーホールのない圧電層9を
除き、図1に示す第1の実施の形態における積層圧電素
子1と同じように、第1層以下で1層おきに第2層から
第25層まで、交互に圧電層2と3が配置されている。
ただし、第25層は最終層であり、その下の層には導通
する必要がないのでスルーホールは設けられていない。
As shown in FIG. 4, the laminated piezoelectric element 10 according to the first embodiment shown in FIG. 1 has the same structure as that of the first embodiment shown in FIG. Similarly to the above, the piezoelectric layers 2 and 3 are alternately arranged from the second layer to the 25th layer every other layer below the first layer.
However, the 25th layer is the final layer, and there is no need to conduct electricity to the layer below it, so that no through hole is provided.

【0063】そして、積層圧電素子10は、第1層と第
25層以外の外周面にはスルーホールの断面を露出して
いる。その他の形態や駆動法、製造法などはすべて第1
の実施の形態と同じである。
In the laminated piezoelectric element 10, the cross section of the through hole is exposed on the outer peripheral surface other than the first and 25th layers. All other forms, driving methods, manufacturing methods, etc. are the first
This is the same as the embodiment.

【0064】図5は、図4に示す積層圧電素子10を棒
状振動波モ−タ20´を構成する振動体21´に組み込
んだ図で、積層圧電素子10は、振動体20´の弾性体
である金属部品22,23と端面で接触し、ボルト23
により締め付けられている。
FIG. 5 is a view in which the laminated piezoelectric element 10 shown in FIG. 4 is incorporated in a vibrating body 21 'constituting a rod-shaped vibrating wave motor 20'. The laminated piezoelectric element 10 is an elastic body of the vibrating body 20 '. Contact with the metal parts 22 and 23 which are
Is tightened.

【0065】そして、積層圧電素子10の外周部は、ス
ルーホール6の断面が線状をして露出しているので、図
3と異なり、配線基板19を巻き付け、この露出したス
ルーホールと外部との導通を図っている。配線基板19
の電極パタ−ンは各8本のスルーホールの断面と振動波
モ−タを駆動されるように繋がれる。
Since the cross-section of the through-hole 6 is linearly exposed at the outer peripheral portion of the laminated piezoelectric element 10, unlike FIG. 3, a wiring board 19 is wound around and the exposed through-hole is connected to the outside. Is conducted. Wiring board 19
The electrode patterns are connected so as to drive the vibration wave motor with the cross section of each of the eight through holes.

【0066】第1の実施の形態のように配線基板8を弾
性体である金属部品と積層圧電素子の間に挟むと、配線
基板は通常のポリイミド樹脂であるから、振動減衰が大
きく、その結果、振動波モ−タの性能や効率は悪くな
る。とくに、小型の振動波モ−タではこのようなわずか
な振動減衰の影響も大きいので、本実施の形態のよう
に、配線基板を挟まない方法は小型振動波モ−タにとっ
て非常に有益である。
When the wiring board 8 is sandwiched between the elastic metal component and the laminated piezoelectric element as in the first embodiment, the wiring board is made of a normal polyimide resin, so that the vibration attenuation is large. However, the performance and efficiency of the vibration wave motor deteriorate. In particular, such a small vibration wave motor has a great influence of such a slight vibration damping. Therefore, the method of not sandwiching the wiring board as in the present embodiment is very useful for the small vibration wave motor. .

【0067】以上のように、本実施の形態は小型の振動
波モ−タの性能向上にとって効果が大きい。
As described above, this embodiment is highly effective for improving the performance of a small vibration wave motor.

【0068】ここで、配線基板との導通を取る際、露出
させるスルーホールは積層圧電素子の全層出す必要は無
く、ただ1層のスルーホールの断面であっても導通は取
れる。また、露出させるスルーホールの層の位置も、各
スルーホール毎に異なっていても良い。これらは配線基
板の電極パタ−ンを設計する上でたいへん都合が良い。
Here, when establishing conduction with the wiring board, it is not necessary to expose the through-holes exposed in all layers of the laminated piezoelectric element, and conduction can be achieved even with a cross section of only one layer of through-holes. Further, the position of the layer of the through hole to be exposed may be different for each through hole. These are very convenient in designing the electrode pattern of the wiring board.

【0069】ただし、外径にスルーホールを設けない層
が増えると、本来の積層圧電素子の圧電活性部である内
部電極の面積を減るので、モ−タの性能が落ちる点に注
意する必要がある。
However, it should be noted that if the number of layers having no through holes in the outer diameter increases, the area of the internal electrodes, which are the piezoelectric active portions of the original laminated piezoelectric element, decreases, and the performance of the motor decreases. is there.

【0070】(第4の実施の形態)図6は本発明の第4
の実施の形態を示す。
(Fourth Embodiment) FIG. 6 shows a fourth embodiment of the present invention.
An embodiment will be described.

【0071】本実施の形態の積層圧電素子1′は、外観
上は本発明の第1の実施の形態の積層圧電素子1と同じ
である。図6に示すように、積層圧電素子1′は、図1
の積層圧電素子1と同じように、第1層以下で1層おき
に第2層から第25層まで、交互に圧電層2′と3′が
配置されている。
The laminated piezoelectric element 1 'of this embodiment is the same in appearance as the laminated piezoelectric element 1 of the first embodiment of the present invention. As shown in FIG. 6, the laminated piezoelectric element 1 '
The piezoelectric layers 2 'and 3' are alternately arranged from the second layer to the twenty-fifth layer every other layer below the first layer, similarly to the laminated piezoelectric element 1 of the first embodiment.

【0072】ただし、スルーホールの形状は第1の実施
の形態とは異なる。第1の実施の形態における積層圧電
素子1のスルーホール6は、図7(a)に示すように、ス
ルーホール6は直径0.35mmの円形状であった。しかし
ながら、スルーホールの直径が0.35mmほど以上の大き
さになると、製造上、中に充填する電極材料が多くなり
コストアップになるとか、クラックの発生が起こりやす
くなる傾向もある。
However, the shape of the through hole is different from that of the first embodiment. As shown in FIG. 7A, the through-hole 6 of the laminated piezoelectric element 1 according to the first embodiment had a circular shape with a diameter of 0.35 mm as shown in FIG. However, when the diameter of the through-hole is about 0.35 mm or more, the number of electrode materials to be filled in the through-hole is increased in manufacturing, so that the cost is increased, and cracks tend to occur easily.

【0073】そこで、本実施の形態では、図7(b)に
示すように、直径の小さい2つのスルーホールを積層圧
電素子の半径方向にわずかに重なる部分を有するように
して並べて形成した。なお、この重なる部分は、圧電層
2´、3´の外形線を挟んで内外の等距離にそれぞれ中
心を有するスルーホール6´が重なった部分である。
Therefore, in the present embodiment, as shown in FIG. 7B, two through holes having a small diameter are formed side by side so as to have a portion slightly overlapping in the radial direction of the laminated piezoelectric element. The overlapping portion is a portion where the through-holes 6 ′ having respective centers at equal distances inside and outside the piezoelectric layers 2 ′ and 3 ′ with the outer lines sandwiched therebetween are overlapped.

【0074】このように2つのスルーホール6´を径方
向概略沿って、僅かに重なる部分を有するように並べて
形成することにより、焼成後は、中に充填した電極材料
や圧電層自体の収縮でほぼ長円形状をしたスルーホール
になる。
By arranging the two through-holes 6 ′ in such a manner as to have a slightly overlapping portion along the radial direction, after firing, the electrode material filled therein and the piezoelectric layer itself shrink. It becomes a through-hole with a substantially oval shape.

【0075】なお、本実施の形態ではスルーホールの直
径は0.2mmとした。
In this embodiment, the diameter of the through hole is set to 0.2 mm.

【0076】このように、スルーホールを半径方向に長
軸を有するほぼ長円形状にすることで、製造上、スルー
ホールの位置精度が多少悪くなっても、外径端部や内径
端部にスルーホールを形成することが容易になる。な
お、その他の形態や製造法、駆動法などはすべて第1の
実施の形態と同じである。
As described above, by forming the through-hole into a substantially elliptical shape having a major axis in the radial direction, even if the positional accuracy of the through-hole is slightly deteriorated in manufacturing, the through-hole can be formed at the outer diameter end or the inner diameter end. It becomes easy to form a through hole. The other modes, manufacturing methods, driving methods, and the like are all the same as those of the first embodiment.

【0077】本実施の形態における積層圧電素子1´
は、図3に示す上記した第1の実施の形態と同様に棒状
振動波モ−タに組込むことができ、この場合、積層圧電
素子1′は、振動体21の弾性体である金属部品22,
23とボルト24により、配線基板8が積層圧電素子1
と機械的に密着するようにして締め付けた。
The multilayer piezoelectric element 1 ′ in the present embodiment
Can be incorporated in a rod-shaped vibrating wave motor in the same manner as in the first embodiment shown in FIG. 3, and in this case, the laminated piezoelectric element 1 'is a metal part 22 which is an elastic body of the vibrating body 21. ,
23 and bolts 24, the wiring board 8 is
It was tightened so as to be in close mechanical contact with.

【0078】なお、本実施の形態における積層圧電素子
に形成するスルーホールの形成方法を第2、第3の実施
の形態に適用しても良い。
The method of forming through holes formed in the laminated piezoelectric element according to the present embodiment may be applied to the second and third embodiments.

【0079】以上の結果、第1の実施の例と全く同じよ
うに、振動波モ−タの性能、モ−タ効率は良好であっ
た。
As a result, just as in the first embodiment, the performance and motor efficiency of the vibration wave motor were good.

【0080】(第5の実施の形態)前述の実施の形態の
説明のように、積層圧電素子の外径部の露出したスルー
ホールは簡単に素子に作りこむことができる。たとえ
ば、図8の従来例に追加して示した、外径部の露出した
スルーホール50は、振動波モータの組み立て時の積層
圧電素子の円周方向の位置決め用の目印(マーク)とす
ることもでき、素子を側面から見て判断できる。
(Fifth Embodiment) As described in the foregoing embodiment, the exposed through-holes of the outer diameter portion of the laminated piezoelectric element can be easily formed in the element. For example, the exposed through-hole 50 of the outer diameter portion, which is additionally shown in the conventional example of FIG. 8, is used as a mark for circumferentially positioning the laminated piezoelectric element when assembling the vibration wave motor. Can be determined from the side of the device.

【0080】本来、目印であるから、スルーホールの数
は1本または判断可能な複数本とし、目視などで識別で
きるだけの層数に設ければ良い。つまり、最低1層か複
数層に設ければ良い。その他、外観からは識別できな
い、異なる種類の積層圧電素子などの識別にも有効であ
る。なお、従来は、積層圧電素子の位置決めには最上層
に、別の識別用のスルーホールを設け、目印にして、積
層圧電素子の上から見て判断し位置決めしていた。
Since the number of through-holes is originally a mark, the number of through-holes may be one or a plurality of discriminable ones, and the through-holes may be provided in the number of layers that can be visually identified. That is, at least one layer or a plurality of layers may be provided. In addition, the present invention is also effective for identifying different types of laminated piezoelectric elements and the like that cannot be identified from the appearance. Conventionally, in order to position the laminated piezoelectric element, another through hole for identification is provided in the uppermost layer, and the position is determined by using the mark as a mark when viewed from above the laminated piezoelectric element.

【0081】[0081]

【発明の効果】以上、説明したように本発明によれば、
積層圧電素子等の積層電気−機械エネルギー変換素子の
小型化に際し、従来のスルーホールの信頼性を確保した
まま、積層圧電素子の有効な圧電活性部の面積を拡大
し、さらに、外周部に露出したスルーホールの断面に配
線基板を取り付け、外部との導通を図ることも可能であ
る。配線基板による振動減衰の影響も少なくでき、小型
の振動波モ−タの性能向上に大きく寄与するものであ
る。また、目印としても有効である。
As described above, according to the present invention,
When miniaturizing a laminated electro-mechanical energy conversion element such as a laminated piezoelectric element, the area of the effective piezoelectric active portion of the laminated piezoelectric element is enlarged while maintaining the reliability of the conventional through-hole, and further exposed to the outer periphery. It is also possible to attach a wiring board to the cross section of the through-hole to achieve electrical continuity with the outside. The influence of the vibration damping by the wiring board can be reduced, which greatly contributes to the improvement of the performance of the small vibration wave motor. It is also effective as a mark.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す積層圧電素子
の斜視図とその分解斜視図。
FIG. 1 is a perspective view of a laminated piezoelectric element showing a first embodiment of the present invention, and an exploded perspective view thereof.

【図2】本発明の第2の実施の形態を示す積層圧電素子
の斜視図とその分解斜視図。
FIGS. 2A and 2B are a perspective view and an exploded perspective view of a laminated piezoelectric element showing a second embodiment of the present invention.

【図3】図1と図6の積層圧電素子を組み込んだ振動波
モ−タの断面図。
FIG. 3 is a cross-sectional view of a vibration wave motor incorporating the laminated piezoelectric element of FIGS. 1 and 6;

【図4】本発明の第3の実施の形態を示す積層圧電素子
の斜視図とその分解斜視図。
FIGS. 4A and 4B are a perspective view and an exploded perspective view of a laminated piezoelectric element showing a third embodiment of the present invention.

【図5】図4の積層圧電素子を組み込んだ振動波モ−タ
の断面図。
FIG. 5 is a sectional view of a vibration wave motor incorporating the laminated piezoelectric element of FIG. 4;

【図6】本発明の第4の実施の形態を示す積層圧電素子
の斜視図とその分解斜視図。
FIG. 6 is a perspective view of a laminated piezoelectric element showing a fourth embodiment of the present invention, and an exploded perspective view thereof.

【図7】(a)(b)はスルーホールの形成方法を示す
図。
FIGS. 7A and 7B are diagrams showing a method of forming a through hole.

【図8】従来の積層圧電素子の斜視図とその分解斜視
図。
FIG. 8 is a perspective view of a conventional laminated piezoelectric element and an exploded perspective view thereof.

【図9】図8の積層圧電素子を組み込んだ振動波モ−タ
の断面図
FIG. 9 is a sectional view of a vibration wave motor incorporating the laminated piezoelectric element of FIG. 8;

【符号の説明】[Explanation of symbols]

1、1′、10、11 積層圧電素子 2、3、2′、3′、12、13 圧電層 4、5、14、15 内部電極 6、6′、16 スルーホール 7、7′、17 表面電極 8、18、19 配線基板 20、20′ 振動波モ−タ 21、21′ 振動子 50 目印用のスルーホール 1, 1 ', 10, 11 Multilayer piezoelectric element 2, 3, 2', 3 ', 12, 13 Piezoelectric layer 4, 5, 14, 15 Internal electrode 6, 6', 16 Through hole 7, 7 ', 17 Surface Electrodes 8, 18, 19 Wiring board 20, 20 'Vibration wave motor 21, 21' Vibrator 50 Through hole for mark

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小島 信行 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 江崎 徹 千葉県東金市小沼田1568−4 太平洋セメ ント株式会社内 Fターム(参考) 5H680 AA06 AA19 BB16 BC01 CC02 DD01 DD15 DD23 DD27 DD37 DD53 DD66 DD73 DD83 DD92 DD95 FF04 FF08 FF17 FF33 GG11 GG42  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Nobuyuki Kojima 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (72) Inventor Tohru Ezaki 1568-4 Onumada, Togane, Chiba Pref. Company F term (reference) 5H680 AA06 AA19 BB16 BC01 CC02 DD01 DD15 DD23 DD27 DD37 DD53 DD66 DD73 DD83 DD92 DD95 FF04 FF08 FF17 FF33 GG11 GG42

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数の電極領域を形成した電気−機械エ
ネルギー変換機能を有する材料を複数層重ね、前記複数
層の各複数の電極領域間をスルーホールを用いて接続し
た積層電気?機械エネルギー変換素子において、 少なくとも複数の前記スルーホールは、外径または内
径、もしくは外径と内径に形成され、前記スルーホール
に充填された充填物が外径または内径の端面に臨むこと
を特徴とする積層電気−機械エネルギー変換素子。
1. A laminated electric device in which a plurality of layers having a plurality of electrode regions and having an electro-mechanical energy conversion function are stacked, and the plurality of electrode regions of the plurality of layers are connected using through holes. In the mechanical energy conversion element, at least a plurality of the through-holes are formed in an outer diameter or an inner diameter, or an outer diameter and an inner diameter, and the filler filled in the through-hole faces an end surface of the outer diameter or the inner diameter. Laminated electrical-mechanical energy conversion element.
【請求項2】 前記スルーホールは、略長円形状に形成
されていることを特徴とする請求項1に記載の積層電気
−機械エネルギー変換素子。
2. The laminated electromechanical energy conversion device according to claim 1, wherein the through hole is formed in a substantially elliptical shape.
【請求項3】 外径部または内径部に形成されたスルー
ホールの端面から外部との導通を図れるようにしたこと
を特徴とする請求項1または2に記載の積層電気−機械
エネルギー変換素子。
3. The multilayer electromechanical energy conversion device according to claim 1, wherein conduction from the outside is achieved from an end face of a through hole formed in the outer diameter portion or the inner diameter portion.
【請求項4】 スルーホールの周囲の絶縁部は、積層電
気−機械エネルギー変換素子の外径部または内径部のス
ルーホールを中心に略同心に形成されていることを特徴
とする請求項1、2または3に記載の積層電気−機械エ
ネルギー変換素子。
4. The insulating part around the through hole is formed substantially concentrically around the through hole of the outer diameter part or the inner diameter part of the laminated electro-mechanical energy conversion element. 4. The laminated electro-mechanical energy conversion device according to 2 or 3.
【請求項5】 複数の前記層における各複数の電極領域
は、スルーホールとその周囲の絶縁部を除き、積層圧電
素子の外径または内径の縁まで達していることを特徴と
する請求項1から4のいずれかに記載の積層電気?機械
エネルギー変換素子。
5. The device according to claim 1, wherein each of the plurality of electrode regions in the plurality of layers extends to an outer or inner edge of the laminated piezoelectric element except for a through hole and an insulating portion around the through hole. The laminated electricity according to any of the above items 4 to 4? Mechanical energy conversion element.
【請求項6】 前記最上層と最下層には前記スルーホー
ルを形成していないことを特徴とする請求項4に記載の
積層電気−機械エネルギー変換素子。
6. The multilayer electromechanical energy conversion device according to claim 4, wherein the through hole is not formed in the uppermost layer and the lowermost layer.
【請求項7】 外径部端面に臨む1層または複数層での
前記スルーホールを目印として用いたことを特徴とする
請求項1又は2に記載の積層電気−機械エネルギー変換素
子。
7. The multilayer electromechanical energy conversion device according to claim 1, wherein the through hole in one or more layers facing the end face of the outer diameter portion is used as a mark.
【請求項8】 片面に内部電極が形成された完成品の外
径よりも大きいサイズのグリーンシートを重ね合わせ、
完成品の外径または内径位置を略中心とするスルーホー
ルを形成し、前記スルーホールに充填材を充填したもの
を積層体とし、前記積層体を焼成後、外径部に機械加工
を施して所定の外径を得るようにしたことを特徴とする
積層電気−機械エネルギー変換素子の製造方法。
8. A green sheet having a size larger than the outer diameter of a finished product having an internal electrode formed on one side thereof,
Forming a through hole with the outer diameter or inner diameter position substantially at the center of the finished product, forming a through-hole filled with a filler as a laminate, firing the laminate, and subjecting the outer diameter portion to machining. A method for manufacturing a laminated electro-mechanical energy conversion element, wherein a predetermined outer diameter is obtained.
【請求項9】 片面に内部電極が形成された完成品の外
径よりも大きいサイズのグリーンシートを重ね合わせ、
完成品の略外径位置に僅かに重なり合った部分を有する
2つのスルーホールをほぼ径方向に並んで形成し、前記
スルーホールに充填材を充填たものを積層体とし、前記
積層体を焼成後、外径部に機械加工を施して所定の外径
を得るようにしたことを特徴とする積層電気−機械エネ
ルギー変換素子の製造方法。
9. A green sheet having a size larger than an outer diameter of a finished product having an internal electrode formed on one side thereof is superimposed,
Two through-holes having portions slightly overlapping each other at substantially the outer diameter position of the finished product are formed substantially in a line in the radial direction, and the through-hole filled with a filler is formed into a laminate, and the laminate is fired. A method for producing a laminated electromechanical energy conversion element, wherein a predetermined outer diameter is obtained by machining the outer diameter portion.
JP2001152512A 2001-03-30 2001-05-22 Vibration wave drive Expired - Fee Related JP5062927B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001152512A JP5062927B2 (en) 2001-05-22 2001-05-22 Vibration wave drive
US10/102,730 US6933657B2 (en) 2001-03-30 2002-03-22 Stacked electro-mechanical energy conversion element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152512A JP5062927B2 (en) 2001-05-22 2001-05-22 Vibration wave drive

Publications (2)

Publication Number Publication Date
JP2002353530A true JP2002353530A (en) 2002-12-06
JP5062927B2 JP5062927B2 (en) 2012-10-31

Family

ID=18997166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152512A Expired - Fee Related JP5062927B2 (en) 2001-03-30 2001-05-22 Vibration wave drive

Country Status (1)

Country Link
JP (1) JP5062927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050242A (en) * 2003-05-22 2011-03-10 Seiko Instruments Inc Ultrasonic motor, and electronic device and stage with the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158285A (en) * 1984-08-28 1986-03-25 Nippon Soken Inc Laminated piezo-electric body
JPS62139371A (en) * 1985-12-13 1987-06-23 Nec Corp Lamination type piezoelectric element
JPH07221360A (en) * 1994-02-01 1995-08-18 Fuji Elelctrochem Co Ltd Manufacture of layered electrostriction/piezoelectric element
JPH08213664A (en) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd Multilayered ceramics piezoelectric element
JPH08308268A (en) * 1995-04-28 1996-11-22 Canon Inc Laminated type piezoelectric element and its polarization treatment method, oscillatory wave motor, and driver
JPH118261A (en) * 1997-06-13 1999-01-12 Matsushita Electric Works Ltd Manufacture of semiconductor device
JPH11252956A (en) * 1998-03-02 1999-09-17 Star Micronics Co Ltd Laminated piezoelectric element and ultrasonic motor using the same
JP2000058933A (en) * 1998-08-12 2000-02-25 Olympus Optical Co Ltd Stacked piezoelectric element, and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158285A (en) * 1984-08-28 1986-03-25 Nippon Soken Inc Laminated piezo-electric body
JPS62139371A (en) * 1985-12-13 1987-06-23 Nec Corp Lamination type piezoelectric element
JPH07221360A (en) * 1994-02-01 1995-08-18 Fuji Elelctrochem Co Ltd Manufacture of layered electrostriction/piezoelectric element
JPH08213664A (en) * 1995-01-31 1996-08-20 Nippon Cement Co Ltd Multilayered ceramics piezoelectric element
JPH08308268A (en) * 1995-04-28 1996-11-22 Canon Inc Laminated type piezoelectric element and its polarization treatment method, oscillatory wave motor, and driver
JPH118261A (en) * 1997-06-13 1999-01-12 Matsushita Electric Works Ltd Manufacture of semiconductor device
JPH11252956A (en) * 1998-03-02 1999-09-17 Star Micronics Co Ltd Laminated piezoelectric element and ultrasonic motor using the same
JP2000058933A (en) * 1998-08-12 2000-02-25 Olympus Optical Co Ltd Stacked piezoelectric element, and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050242A (en) * 2003-05-22 2011-03-10 Seiko Instruments Inc Ultrasonic motor, and electronic device and stage with the same
JP2011061220A (en) * 2003-05-22 2011-03-24 Seiko Instruments Inc Laminated piezoelectric element, ultrasonic motor, electronic apparatus, stage, and method of manufacturing laminated piezoelectric element

Also Published As

Publication number Publication date
JP5062927B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4881062B2 (en) Multilayer piezoelectric element, manufacturing method thereof, and vibration wave driving device
US7233096B2 (en) Multilayer piezoelectric element and vibration-wave drive device
US6559574B2 (en) Stacked electro-mechanical energy conversion element and vibration wave driving device using the same
JP3311446B2 (en) Ultrasonic motor
JP2004297951A (en) Ultrasonic vibrator and ultrasonic motor
US6114798A (en) Stacked element and vibration drive device
US6191520B1 (en) Electro-mechanical energy conversion element and vibration type driving device
JP4328113B2 (en) Ultrasonic motor
US6747397B2 (en) Stacked type electro-mechanical energy conversion element and vibration wave driving apparatus using the same
JP4871593B2 (en) Vibrator and vibration wave drive device
US6933657B2 (en) Stacked electro-mechanical energy conversion element and method of manufacturing the same
JP3311034B2 (en) Laminated piezoelectric element, method for manufacturing laminated piezoelectric element, vibration wave driving device, and apparatus equipped with vibration wave driving device
JP2002353530A (en) Laminated electromechanical energy conversion element and manufacturing method therefor
JP4878691B2 (en) Multilayer electromechanical energy conversion element
JPH11187677A (en) Oscillating device, oscillating type drive device and device therewith
JP3313782B2 (en) Multilayer piezoelectric element, method of manufacturing the same, method of polarization, vibration wave driving device, and equipment equipped with vibration wave driving device
JP5465274B2 (en) Manufacturing method of laminated piezoelectric element
JP2000277823A (en) Laminated piezoelectric vibrator, ultrasonic motor and piezoelectric actuator using the vibrator, and electronic apparatus using the motor and actuator
JP3059038B2 (en) Laminated piezoelectric element, vibration wave driving device, and device equipped with vibration wave driving device
JP4658530B2 (en) Ultrasonic vibrator and ultrasonic motor using the same
JP2004335554A (en) Method of manufacturing laminated electric energy/mechanical energy transducer
JP3432056B2 (en) Laminated piezoelectric element, method of manufacturing laminated piezoelectric element, vibration device using laminated piezoelectric element, and driving device using the same
JP2003046156A (en) Laminated electro-mechanical energy transducer and oscillatory wave drive device
JP2006186099A (en) Laminated piezoelectric element and oscillatory wave driving device
JPH05146181A (en) Manufacture of piezoelectric vibrator for ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5062927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees