Nothing Special   »   [go: up one dir, main page]

JP2002231929A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JP2002231929A
JP2002231929A JP2001029148A JP2001029148A JP2002231929A JP 2002231929 A JP2002231929 A JP 2002231929A JP 2001029148 A JP2001029148 A JP 2001029148A JP 2001029148 A JP2001029148 A JP 2001029148A JP 2002231929 A JP2002231929 A JP 2002231929A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
solid
trench
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001029148A
Other languages
Japanese (ja)
Other versions
JP4654521B2 (en
JP2002231929A5 (en
Inventor
Tomohiro Shiiba
智宏 椎葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001029148A priority Critical patent/JP4654521B2/en
Publication of JP2002231929A publication Critical patent/JP2002231929A/en
Publication of JP2002231929A5 publication Critical patent/JP2002231929A5/ja
Application granted granted Critical
Publication of JP4654521B2 publication Critical patent/JP4654521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Element Separation (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and surely separate each photoelectric transducer element to prevent decline in resolution or mixing of colors even if small-size photoelectric transducer elements are arranged in high concentration. SOLUTION: A solid-state image pickup device 2 comprises a plurality of photoelectric transducer elements 106 which are arranged in proximity to each other on a silicon semiconductor substrate 104, with each photoelectric transducer element 106 comprising a p-type region 115 and an n-type region 116 which are locally deposited in layers on the surface of the semiconductor substrate 104. On the surface of the semiconductor substrate around each photoelectric transducer element 106, a trench 8 which reaches a deeper position than a bottom 6 of the n-type region 116 is formed. Each trench 8 is so formed as to surround the photoelectric transducer element 106 except on the corresponding vertical electric charge transfer register 108 side. A silicon oxide film 10 is deposited on the inner surface of each trench 8, and each trench 8 is filled with a metal material for reflecting light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体撮像素子に関す
るものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a solid-state imaging device.

【0002】[0002]

【従来の技術】図2は従来の固体撮像素子の一例を示す
平面図、図3は図2における点線の矩形領域Rを詳しく
示す部分拡大平面図、図4の(A)は図3におけるA−
A’線に沿った部分断面側面図、図4の(B)は図3に
おけるB−B’線に沿った部分断面側面図である。
2. Description of the Related Art FIG. 2 is a plan view showing an example of a conventional solid-state imaging device. FIG. −
FIG. 4B is a partial cross-sectional side view taken along the line BB ′ in FIG. 3.

【0003】図2に示した固体撮像素子102は一例と
してインターライン型の固体撮像素子であり、シリコン
から成る半導体基板104上に多数の光電変換素子10
6を相互に間隔をおきマトリクス状に配列して構成され
ている。そして光電変換素子106の各列ごとに垂直電
荷転送レジスター108が、光電変換素子106の列方
向(矢印V)に延設され、垂直電荷転送レジスター10
8の一端部に水平電荷転送レジスター110が、光電変
換素子106の行方向(矢印H)に延設されている。水
平電荷転送レジスター110の一方の端部にはアンプ部
112が形成されている。
The solid-state image sensor 102 shown in FIG. 2 is, for example, an interline solid-state image sensor, and a large number of photoelectric conversion elements 10 are mounted on a semiconductor substrate 104 made of silicon.
6 are arranged in a matrix at intervals. Then, a vertical charge transfer register 108 is provided for each column of the photoelectric conversion elements 106 in the column direction of the photoelectric conversion elements 106 (arrow V).
A horizontal charge transfer register 110 is provided at one end of 8 in the row direction of the photoelectric conversion element 106 (arrow H). An amplifier 112 is formed at one end of the horizontal charge transfer register 110.

【0004】このような構成において、各列の各光電変
換素子106が光を受けて生成した電荷は、光電変換素
子106と垂直電荷転送レジスター108との間に介在
する不図示の読み出し領域を経て、対応する垂直電荷転
送レジスター108に出力され、垂直電荷転送レジスタ
ー108はこの電荷を順次、水平電荷転送レジスター1
10に向けて転送する。水平電荷転送レジスター110
は各垂直電荷転送レジスター108から電荷を受け取っ
てアンプ部112に転送し、アンプ部112は転送され
てきた電荷にもとづき出力端子114を通じて映像信号
を出力する。
In such a configuration, the electric charge generated by each photoelectric conversion element 106 in each column receiving light passes through a read area (not shown) interposed between the photoelectric conversion element 106 and the vertical charge transfer register 108. Are output to the corresponding vertical charge transfer register 108, and the vertical charge transfer register 108 sequentially transfers the charges to the horizontal charge transfer register 1.
Transfer to 10. Horizontal charge transfer register 110
Receives the charge from each vertical charge transfer register 108 and transfers it to the amplifier unit 112, and the amplifier unit 112 outputs a video signal through the output terminal 114 based on the transferred charge.

【0005】断面図を参照して光電変換素子106周辺
を詳しく説明すると、図4の(B)に示したように、光
電変換素子106はp型の半導体基板104の表面部に
局所的に積層されたp型領域115およびn型領域11
6を含み、図4の(B)ではその左側の半導体基板表面
部に、対応する垂直電荷転送レジスター108が形成さ
れている。垂直電荷転送レジスター108の上には第2
層目の転送電極118が絶縁膜120を介して形成さ
れ、その上には絶縁膜120を介して遮光膜122が形
成されている。
The periphery of the photoelectric conversion element 106 will be described in detail with reference to a cross-sectional view. As shown in FIG. 4B, the photoelectric conversion element 106 is locally laminated on the surface of a p-type semiconductor substrate 104. P-type region 115 and n-type region 11
In FIG. 4B, a corresponding vertical charge transfer register 108 is formed on the left surface of the semiconductor substrate in FIG. The second on the vertical charge transfer register 108
The transfer electrode 118 of the layer is formed with the insulating film 120 interposed therebetween, and the light shielding film 122 is formed thereon with the insulating film 120 interposed therebetween.

【0006】また、図4の(B)において光電変換素子
106の右側にはチャネルストップ領域として高濃度の
p型不純物をたとえばイオン注入法により導入したp型
領域124が形成されている。このp型領域124は、
図3に示したように、平面視では各光電変換素子106
を、垂直電荷転送レジスター108側を除いて囲む形で
形成されている。
In FIG. 4B, on the right side of the photoelectric conversion element 106, a p-type region 124 in which a high concentration p-type impurity is introduced by, for example, an ion implantation method is formed as a channel stop region. This p-type region 124
As shown in FIG. 3, each photoelectric conversion element 106 is viewed in plan.
Is formed in a shape surrounding the vertical charge transfer register 108 except for the vertical charge transfer register 108 side.

【0007】したがって、光電変換素子106の列方向
の断面では、図4の(A)に示したように、隣接する光
電変換素子106の間にチャネルストップ領域としての
p型領域124が配置されている。また、図4の(A)
に示した断面位置では、p型領域124の上に第1層目
の転送電極126、および第2層目の転送電極118が
絶縁膜120を介して積層され、その上を遮光膜122
が覆っている。
Accordingly, in the cross section in the column direction of the photoelectric conversion elements 106, as shown in FIG. 4A, a p-type region 124 as a channel stop region is arranged between the adjacent photoelectric conversion elements 106. I have. In addition, FIG.
In the cross-sectional position shown in FIG. 7, a first-layer transfer electrode 126 and a second-layer transfer electrode 118 are stacked on a p-type region 124 with an insulating film 120 interposed therebetween.
Is covering.

【0008】[0008]

【発明が解決しようとする課題】上述のように各光電変
換素子106の周囲、すなわち画素の周囲に高濃度の不
純物によるp型領域124を形成することで画素間に高
いポテンシャルバリアが生成され、各画素が分離され
る。その結果、各光電変換素子106が受光して生成し
た信号電荷は各光電変換素子106ごとに独立して垂直
電荷転送レジスター108に供給されることになる。
As described above, a high potential barrier is generated between the pixels by forming the p-type region 124 around each of the photoelectric conversion elements 106, that is, around the pixels by the high concentration impurity. Each pixel is separated. As a result, the signal charge generated by receiving light by each photoelectric conversion element 106 is supplied to the vertical charge transfer register 108 independently for each photoelectric conversion element 106.

【0009】しかしながら、このp型領域124による
ポテンシャルバリアは基板表面から深い位置へ向かうに
したがってしだいに均一化される。そのため、光電変換
素子106のn型領域116が深く形成されるような構
造の場合には、p型領域124が充分に作用せず、隣接
する光電変換素子106間で信号電荷が混合する結果と
なる。このような信号電荷の混合が発生すると固体撮像
素子102の解像度が低下し、またカラー画像を撮影す
る固体撮像素子の場合には、隣接する光電変換素子10
6は相互に異なる色に対応しているため画素間の混色が
発生してしまう。
However, the potential barrier due to the p-type region 124 is gradually made uniform from the surface of the substrate toward a deep position. Therefore, in the case of a structure in which the n-type region 116 of the photoelectric conversion element 106 is formed deep, the p-type region 124 does not sufficiently act, and the result is that signal charges are mixed between the adjacent photoelectric conversion elements 106. Become. When such mixing of the signal charges occurs, the resolution of the solid-state imaging device 102 is reduced. In the case of a solid-state imaging device that captures a color image, the adjacent photoelectric conversion device 10 is used.
Since 6 corresponds to different colors, color mixture between pixels occurs.

【0010】この問題は、高エネルギーでp型不純物を
導入し、p型領域124を深く形成することで回避でき
る。しかし、高エネルギーのイオン注入は制御性が悪
く、横方向への広がりも大きいことから、光電変換素子
106が高密度で配列され個々の光電変換素子106の
サイズが小さい場合には、この手法を用いることは困難
である。さらに、イオン注入時のマスキングのためのレ
ジスト層は、高エネルギーのイオン注入に耐えられるよ
う厚く形成しなければならず、この点からも微細加工が
難しくなり、光電変換素子106のサイズが小さい場合
にはp型領域124を深く形成することは困難である。
This problem can be avoided by introducing a p-type impurity with high energy and forming the p-type region 124 deep. However, high-energy ion implantation has poor controllability and wide spread in the lateral direction. Therefore, when the photoelectric conversion elements 106 are arranged at high density and the size of each photoelectric conversion element 106 is small, this method is used. It is difficult to use. Furthermore, a resist layer for masking at the time of ion implantation must be formed thick enough to withstand high-energy ion implantation. In this respect, fine processing is difficult, and when the size of the photoelectric conversion element 106 is small, In such a case, it is difficult to form the p-type region 124 deep.

【0011】本発明はこのような問題を解決するために
なされたもので、その目的は、サイズの小さい光電変換
素子を高密度で配列する場合でも、各光電変換素子を容
易かつ確実に分離して信号電荷の混合にともなう解像度
の低下や混色を防止できる固体撮像素子を提供すること
にある。
The present invention has been made to solve such a problem, and an object of the present invention is to separate each photoelectric conversion element easily and reliably even when small-sized photoelectric conversion elements are arranged at high density. It is another object of the present invention to provide a solid-state imaging device capable of preventing a reduction in resolution and color mixing due to mixing of signal charges.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため、半導体基板上に相互に近接して配列された複
数の光電変換素子を備え、前記光電変換素子は前記半導
体基板の表面部に局所的に積層された第1導電型および
第2導電型の領域を含み、前記第2導電型の領域は前記
半導体基板の表面側に形成されている固体撮像素子であ
って、各光電変換素子の周囲の半導体基板表面部に、前
記第1導電型の領域の底部より深い位置に至るトレンチ
が形成されていることを特徴とする。
In order to achieve the above object, the present invention comprises a plurality of photoelectric conversion elements arranged on a semiconductor substrate in close proximity to each other, and the photoelectric conversion elements are arranged on a surface of the semiconductor substrate. A region of the first conductivity type and a region of the second conductivity type which are locally laminated on the semiconductor substrate, wherein the region of the second conductivity type is a solid-state imaging device formed on the surface side of the semiconductor substrate, A trench is formed in a surface portion of the semiconductor substrate around the element, the trench reaching a position deeper than a bottom of the first conductivity type region.

【0013】このように本発明の固体撮像素子では、各
光電変換素子の周囲の半導体基板表面部に、前記第1導
電型の領域の底部より深い位置に至るトレンチが形成さ
れているので、各光電変換素子により生成された信号電
荷は、このトレンチにより阻止されて、隣接する他の光
電変換素子による信号電荷と混合することがない。その
結果、解像度が低下したり画素間で混色が起こるといっ
た問題は発生しない。
As described above, in the solid-state imaging device of the present invention, the trench is formed in the surface of the semiconductor substrate around each photoelectric conversion element so as to reach a position deeper than the bottom of the first conductivity type region. The signal charge generated by the photoelectric conversion element is blocked by the trench and does not mix with the signal charge generated by another adjacent photoelectric conversion element. As a result, problems such as a decrease in resolution and color mixing between pixels do not occur.

【0014】[0014]

【発明の実施の形態】次に本発明の実施の形態例につい
て図面を参照して説明する。図1の(A)および(B)
は本発明による固体撮像素子の一例を示す部分断面側面
図である。図中、図2ないし図4と同一の要素には同一
の符号が付されている。ここで説明する実施の形態例と
しての固体撮像素子は、一例としてインターライン型の
固体撮像素子であり、基本的な構成は図2に示した固体
撮像素子102と同様の構成となっている。すなわち、
シリコンから成る半導体基板上に多数の光電変換素子を
相互に間隔をおきマトリクス状に配列して構成され、光
電変換素子の各列ごとに垂直電荷転送レジスターが、光
電変換素子の列方向に延設され、垂直電荷転送レジスタ
ーの一端部に水平電荷転送レジスターが配置されてい
る。また水平電荷転送レジスターの一方の端部にはアン
プ部が形成されている。なお、光電変換素子はここでは
フォトダイオードであるとする。
Embodiments of the present invention will be described below with reference to the drawings. (A) and (B) of FIG.
FIG. 1 is a partial cross-sectional side view showing an example of a solid-state imaging device according to the present invention. In the drawings, the same elements as those in FIGS. 2 to 4 are denoted by the same reference numerals. The solid-state imaging device according to the embodiment described here is an interline solid-state imaging device as an example, and has a basic configuration similar to that of the solid-state imaging device 102 illustrated in FIG. That is,
A large number of photoelectric conversion elements are arranged in a matrix at intervals on a semiconductor substrate made of silicon. A vertical charge transfer register extends in the column direction of the photoelectric conversion elements for each column of the photoelectric conversion elements. A horizontal charge transfer register is disposed at one end of the vertical charge transfer register. An amplifier is formed at one end of the horizontal charge transfer register. It is assumed here that the photoelectric conversion element is a photodiode.

【0015】そして、図1の(A)は図4の(A)と同
様、光電変換素子の列方向における光電変換素子周辺の
詳しい断面を示し、図1の(B)は図4の(B)と同
様、光電変換素子の行方向における光電変換素子周辺の
詳しい断面を示している。本実施の形態例は、チャネル
ストップ領域としてトレンチを形成する点で、従来の固
体撮像素子と異なっている。すなわち、図1の(A)、
(B)に示したように、実施の形態例の固体撮像素子2
では、n型領域116(本発明に係わる第1導電型の領
域)およびp型領域115(本発明に係わる第2導電型
の領域)から成る光電変換素子106のそれぞれの周囲
の半導体基板表面部に、n型領域116の底部6より深
い位置に至るトレンチ8が形成されている。
FIG. 1A shows a detailed cross section around the photoelectric conversion element in the column direction of the photoelectric conversion element, similarly to FIG. 4A, and FIG. 2) shows a detailed cross section around the photoelectric conversion element in the row direction of the photoelectric conversion element. This embodiment is different from the conventional solid-state imaging device in that a trench is formed as a channel stop region. That is, (A) of FIG.
As shown in (B), the solid-state imaging device 2 of the embodiment is illustrated.
Here, the semiconductor substrate surface around each of the photoelectric conversion elements 106 including the n-type region 116 (the region of the first conductivity type according to the present invention) and the p-type region 115 (the region of the second conductivity type according to the present invention) A trench 8 reaching a position deeper than the bottom 6 of the n-type region 116 is formed.

【0016】トレンチ8は、従来の固体撮像素子におけ
るp型領域124と同様の位置に形成されており、した
がって平面視においても図3に示した従来の固体撮像素
子102のp型領域124と同様、垂直電荷転送レジス
ター108と、同垂直電荷転送レジスター108に対応
する光電変換素子106との間の箇所を除いて、光電変
換素子106を囲む形で形成されている。
The trench 8 is formed at the same position as the p-type region 124 in the conventional solid-state image pickup device. Therefore, the same as the p-type region 124 of the conventional solid-state image pickup device 102 shown in FIG. , Except for a portion between the vertical charge transfer register 108 and the photoelectric conversion element 106 corresponding to the vertical charge transfer register 108.

【0017】トレンチ8の内面には、図1の(A)およ
び(B)に示したように、本実施の形態例では絶縁膜1
0が被着され、そして内側に金属材料12が充填されて
いる。トレンチ8の内面に被着させる上記絶縁膜10
は、たとえば、半導体基板104の熱酸化によるシリコ
ンの酸化膜として形成することができ、トレンチ8内に
充填する金属材料12はたとえばアルミニウムを堆積さ
せることで形成することができる。
As shown in FIGS. 1A and 1B, the insulating film 1 is formed on the inner surface of the trench 8 in this embodiment.
0 is deposited and the metal material 12 is filled inside. The insulating film 10 deposited on the inner surface of the trench 8
Can be formed, for example, as a silicon oxide film by thermal oxidation of semiconductor substrate 104, and metal material 12 filling trench 8 can be formed, for example, by depositing aluminum.

【0018】また、光電変換素子106と、隣接するト
レンチ8との間における半導体基板表面部に、高濃度の
不純物を含むp型領域14(本発明に係わる第2導電型
の領域)が比較的浅く形成されている。このp型領域1
4は、光電変換素子106と、対応する垂直電荷転送レ
ジスター108との間の箇所を除いて、光電変換素子1
06の周囲に形成されている。
A p-type region 14 (a region of the second conductivity type according to the present invention) containing a high concentration of impurity is relatively formed in the surface of the semiconductor substrate between the photoelectric conversion element 106 and the adjacent trench 8. It is formed shallow. This p-type region 1
4 is a photoelectric conversion element 1 except for a portion between the photoelectric conversion element 106 and the corresponding vertical charge transfer register 108.
06 is formed.

【0019】電極や遮光膜に関しては従来の固体撮像素
子と同様であり、図1の(B)に示したように、垂直電
荷転送レジスター108の上に第2層目の転送電極11
8が絶縁膜120を介して形成され、その上に絶縁膜1
20を介して遮光膜122が形成されている。また、図
1の(A)に示した断面位置では、トレンチ8およびp
型領域14の上に転送電極126、118が絶縁膜12
0を介して積層され、その上を遮光膜122が覆ってい
る。
The electrodes and the light-shielding film are the same as those of the conventional solid-state imaging device, and as shown in FIG. 1B, the second-layer transfer electrode 11 is placed on the vertical charge transfer register 108.
8 is formed via the insulating film 120, and the insulating film 1 is formed thereon.
The light-shielding film 122 is formed with the intermediary of the light-shielding film 20. Further, at the cross-sectional position shown in FIG.
The transfer electrodes 126 and 118 are formed on the
0, and a light-shielding film 122 covers the layers.

【0020】このように本実施の形態例の固体撮像素子
2では、光電変換素子106のそれぞれの周囲の半導体
基板表面部に、光電変換素子106を構成するn型領域
116の底部6より深い位置に至るトレンチ8が形成さ
れているので、各光電変換素子106により生成された
信号電荷は、このトレンチ8により阻止されて、隣接す
る他の光電変換素子106による信号電荷と混合するこ
とがない。そのため、解像度が低下したり画素間で混色
が起こるといった問題は発生しない。
As described above, in the solid-state imaging device 2 of the present embodiment, the position deeper than the bottom 6 of the n-type region 116 constituting the photoelectric conversion element 106 is provided on the surface of the semiconductor substrate around each of the photoelectric conversion elements 106. Is formed, the signal charge generated by each photoelectric conversion element 106 is blocked by the trench 8 and does not mix with the signal charge generated by another adjacent photoelectric conversion element 106. Therefore, problems such as a decrease in resolution and color mixing between pixels do not occur.

【0021】また、本実施の形態例では、トレンチ8内
に金属材料12が充填されているので、受光部16に斜
めに入射した光、あるいは光電変換素子106内などで
散乱した光は、光電変換素子106の側部から出射した
後、金属材料12の側面で反射されて再度光電変換素子
106内に入射し、その結果、光電変換素子106の感
度が向上する。
In this embodiment, since the metal material 12 is filled in the trench 8, the light obliquely incident on the light receiving section 16 or the light scattered in the photoelectric conversion element 106, etc. After being emitted from the side of the conversion element 106, it is reflected on the side surface of the metal material 12 and reenters the photoelectric conversion element 106, and as a result, the sensitivity of the photoelectric conversion element 106 is improved.

【0022】このようなトレンチ8は、エッチングなど
従来から広く用いられている技術により容易に形成する
ことができる。具体的には、たとえば、転送電極12
6、118や斜光膜122を形成する前の段階で、まず
従来通り、たとえばイオン注入法によってp型領域14
を形成する。その後、半導体基板表面にたとえばシリコ
ン窒化膜を形成し、パターン化してトレンチ8の形成箇
所のみ開口させ、そしてこのパターン化したシリコン窒
化膜をマスクとして選択的エッチング(たとえばドライ
エッチング)を行い、トレンチ8を必要な深さに形成す
る。
Such a trench 8 can be easily formed by a widely used technique such as etching. Specifically, for example, the transfer electrode 12
6, 118 and before forming the oblique light film 122, the p-type region 14 is formed by a conventional method, for example, by ion implantation.
To form Thereafter, a silicon nitride film, for example, is formed on the surface of the semiconductor substrate and patterned to open only the location where the trench 8 is to be formed. Then, selective etching (for example, dry etching) is performed using the patterned silicon nitride film as a mask. To the required depth.

【0023】本実施の形態例の固体撮像素子2では、ト
レンチ8の形成がこのように容易であることから、サイ
ズの小さい光電変換素子106を高密度で配列するよう
な場合でも、各光電変換素子106を確実に分離して解
像度の低下や混色を防止することができる。
In the solid-state imaging device 2 of the present embodiment, since the formation of the trench 8 is so easy, even when the photoelectric conversion elements 106 having a small size are arranged at a high density, each photoelectric conversion element can be formed. The elements 106 can be surely separated to prevent a decrease in resolution and color mixing.

【0024】なお、本実施の形態例では、トレンチ8内
に金属材料12を充填するとしたが、金属材料12を充
填せず、絶縁材料を充填したり、あるいは空洞構造とす
ることも可能である。その場合にも、トレンチ8はチャ
ネルストップ領域としての機能を果たすため、各光電変
換素子106により生成された信号電荷は、トレンチ8
により阻止されて、隣接する他の光電変換素子106に
よる信号電荷と混合することがない。そのため、解像度
が低下したり画素間で混色が起こるといった問題は発生
しない。ただし、光電変換素子106の側部などから出
射した光がトレンチ部で反射して再度光電変換素子10
6内に入射するという作用は得られないか、あるい弱ま
るので、この点では、高い光反射率を得るためにトレン
チ8内に金属材料12を充填する構造とすることが望ま
しい。
In this embodiment, the metal material 12 is filled in the trench 8. However, the metal material 12 may not be filled, but an insulating material may be filled or a hollow structure may be used. . Also in this case, since the trench 8 functions as a channel stop region, the signal charge generated by each photoelectric conversion element 106
, And do not mix with signal charges from other adjacent photoelectric conversion elements 106. Therefore, problems such as a decrease in resolution and color mixing between pixels do not occur. However, light emitted from the side of the photoelectric conversion element 106 is reflected at the trench portion and is again reflected on the photoelectric conversion element 10.
In this respect, it is desirable to adopt a structure in which the metal material 12 is filled in the trench 8 in order to obtain a high light reflectivity, since the effect of entering into the inside 6 is not obtained or is weakened.

【0025】本実施の形態例では、トレンチ8とともに
p型領域14をも形成するとしたが、このp型領域14
を形成する目的は画素を分離することではなく、光電変
換素子106を構成するn型領域116の下方に溜まっ
た正孔を速やかに排出するためのものである。したがっ
て、特に深いものとする必要はなく、その形成は容易で
ある。トレンチ8を形成する際にシリコン窒化膜による
マスクを用いるとしたが、マスクの材料としては、エッ
チングの際に半導体基板104よりエッチングレートが
低い材料であれば、必ずしもシリコン窒化膜でなくても
よい。
In this embodiment, the p-type region 14 is formed together with the trench 8.
The purpose of forming is not to separate the pixels but to quickly discharge holes collected below the n-type region 116 constituting the photoelectric conversion element 106. Therefore, it is not particularly necessary to make it deep, and the formation is easy. Although a mask made of a silicon nitride film is used when forming the trench 8, a material of the mask is not necessarily a silicon nitride film as long as the material has a lower etching rate than the semiconductor substrate 104 at the time of etching. .

【0026】また、本実施の形態例では、光電変換素子
106はマトリクス状に配列されているとしたが、リニ
アイメージセンサーなどのように、光電変換素子が直線
的に配列されている場合にも本発明は有効であり、各光
電変換素子106の周囲にトレンチを形成することで同
様の効果を得ることができる。本実施の形態例では、固
体撮像素子2は、インターライン型であるとしたが、以
上の説明から明らかなように本発明が各光電変換素子1
06周辺の構造に係わるものであるため、電荷の転送方
式がインターライン型以外の方式であっても本発明は適
用可能である。
In the present embodiment, the photoelectric conversion elements 106 are arranged in a matrix. However, even in the case where the photoelectric conversion elements are linearly arranged as in a linear image sensor or the like. The present invention is effective, and a similar effect can be obtained by forming a trench around each photoelectric conversion element 106. In the present embodiment, the solid-state imaging device 2 is of the interline type. However, as will be apparent from the above description, the present invention is applied to each photoelectric conversion device 1.
The present invention is applicable to a structure other than the interline type since the charge transfer method is related to the structure around the address line 06.

【0027】[0027]

【発明の効果】以上説明したように本発明の固体撮像素
子では、各光電変換素子の周囲の半導体基板表面部に、
光電変換素子を構成する第1導電型の領域の底部より深
い位置に至るトレンチが形成されているので、各光電変
換素子により生成された信号電荷は、このトレンチによ
り阻止されて、隣接する他の光電変換素子による信号電
荷と混合することがない。その結果、解像度が低下した
り画素間で混色が起こるといった問題は発生しない。そ
して、上記トレンチはエッチングなど従来から広く用い
られている技術により容易に形成することができるの
で、サイズの小さい光電変換素子を高密度で配列するよ
うな場合でも解像度の低下や混色を確実に防止すること
ができる。
As described above, in the solid-state imaging device of the present invention, the surface of the semiconductor substrate around each photoelectric conversion element is
Since the trench is formed to a position deeper than the bottom of the first conductivity type region constituting the photoelectric conversion element, the signal charge generated by each photoelectric conversion element is blocked by this trench, and the other adjacent charge is blocked. There is no mixing with the signal charge by the photoelectric conversion element. As a result, problems such as a decrease in resolution and color mixing between pixels do not occur. And since the above-mentioned trench can be easily formed by a conventionally widely used technique such as etching, even when small-sized photoelectric conversion elements are arranged at a high density, a reduction in resolution and color mixing are reliably prevented. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)および(B)は本発明による固体撮像素
子の一例を示す部分断面側面図である。
FIGS. 1A and 1B are partial cross-sectional side views showing an example of a solid-state imaging device according to the present invention.

【図2】従来の固体撮像素子の一例を示す平面図であ
る。
FIG. 2 is a plan view illustrating an example of a conventional solid-state imaging device.

【図3】図2の固体撮像素子の一部を詳しく示す部分拡
大平面図である。
FIG. 3 is a partially enlarged plan view showing a part of the solid-state imaging device of FIG. 2 in detail;

【図4】(A)は図3におけるA−A’線に沿った部分
断面側面図、(B)は図3におけるB−B’線に沿った
部分断面側面図である。
4A is a partial sectional side view taken along line AA ′ in FIG. 3, and FIG. 4B is a partial sectional side view taken along line BB ′ in FIG.

【符号の説明】[Explanation of symbols]

2……固体撮像素子、6……底部、8……トレンチ、1
0……絶縁膜、12……金属材料、14……p型領域、
16……受光部、102……固体撮像素子、104……
半導体基板、106……光電変換素子、108……垂直
電荷転送レジスター、110……水平電荷転送レジスタ
ー、112……アンプ部、114……出力端子、115
……p型領域、116……n型領域、118……転送電
極、120……絶縁膜、122……遮光膜、124……
p型領域、126……転送電極。
2 ... solid-state image sensor, 6 ... bottom, 8 ... trench, 1
0 ... insulating film, 12 ... metal material, 14 ... p-type region,
16 light receiving section, 102 solid-state imaging device, 104
Semiconductor substrate, 106 photoelectric conversion element, 108 vertical charge transfer register, 110 horizontal charge transfer register, 112 amplifier section, 114 output terminal, 115
... p-type region, 116 ... n-type region, 118 ... transfer electrode, 120 ... insulating film, 122 ... light shielding film, 124 ...
p-type region, 126... transfer electrode.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に相互に近接して配列され
た複数の光電変換素子を備え、前記光電変換素子は前記
半導体基板の表面部に局所的に積層された第1導電型お
よび第2導電型の領域を含み、前記第2導電型の領域は
前記半導体基板の表面側に形成されている固体撮像素子
であって、 各光電変換素子の周囲の半導体基板表面部に、前記第1
導電型の領域の底部より深い位置に至るトレンチが形成
されていることを特徴とする固体撮像素子。
1. A semiconductor device comprising: a plurality of photoelectric conversion elements arranged in close proximity to each other on a semiconductor substrate, wherein the photoelectric conversion elements are of a first conductivity type and a second conductivity type locally laminated on a surface portion of the semiconductor substrate. A solid-state imaging device formed on the surface side of the semiconductor substrate, wherein the second conductivity type region includes a first conductive type region,
A solid-state imaging device, wherein a trench reaching a position deeper than a bottom of a conductive type region is formed.
【請求項2】 前記トレンチの内面に絶縁膜が被着され
ていることを特徴とする請求項1記載の固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein an insulating film is provided on an inner surface of said trench.
【請求項3】 前記トレンチの内側に金属材料が充填さ
れていることを特徴とする請求項2記載の固体撮像素
子。
3. The solid-state imaging device according to claim 2, wherein a metal material is filled inside the trench.
【請求項4】 前記トレンチの内側に絶縁材料が充填さ
れていることを特徴とする請求項1記載の固体撮像素
子。
4. The solid-state imaging device according to claim 1, wherein an insulating material is filled inside said trench.
【請求項5】 前記半導体基板はシリコンから成り、前
記絶縁膜はシリコンの酸化物により形成されていること
を特徴とする請求項2記載の固体撮像素子。
5. The solid-state imaging device according to claim 2, wherein the semiconductor substrate is made of silicon, and the insulating film is made of silicon oxide.
【請求項6】 前記金属材料はアルミニウムであること
を特徴とする請求項3記載の固体撮像素子。
6. The solid-state imaging device according to claim 3, wherein said metal material is aluminum.
【請求項7】 前記光電変換素子と、同光電変換素子に
隣接する前記トレンチとの間の半導体基板表面部に、高
濃度の第2導電型の不純物を含む領域が形成されている
ことを特徴とする請求項1記載の固体撮像素子。
7. A semiconductor substrate surface portion between the photoelectric conversion element and the trench adjacent to the photoelectric conversion element, wherein a region containing a high-concentration second conductivity type impurity is formed. The solid-state imaging device according to claim 1.
【請求項8】 前記光電変換素子は前記半導体基板上に
マトリクス状に配列され、前記光電変換素子の各列ごと
に垂直電荷転送レジスターが前記光電変換素子の列方向
に延設され、前記垂直電荷転送レジスターは対応する列
の前記光電変換素子から電荷を取り込んで転送し、前記
トレンチは、前記垂直電荷転送レジスターと、同垂直電
荷転送レジスターに対応する前記光電変換素子との間の
箇所を除いて、前記光電変換素子の周囲に形成されてい
ることを特徴とする請求項1記載の固体撮像素子。
8. The photoelectric conversion elements are arranged in a matrix on the semiconductor substrate, and a vertical charge transfer register is provided for each column of the photoelectric conversion elements so as to extend in a column direction of the photoelectric conversion elements. The transfer register takes in and transfers charges from the photoelectric conversion elements in a corresponding column, and the trench excludes a portion between the vertical charge transfer register and the photoelectric conversion element corresponding to the vertical charge transfer register. 2. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is formed around the photoelectric conversion element.
JP2001029148A 2001-02-06 2001-02-06 Solid-state imaging device and manufacturing method of solid-state imaging device Expired - Fee Related JP4654521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001029148A JP4654521B2 (en) 2001-02-06 2001-02-06 Solid-state imaging device and manufacturing method of solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001029148A JP4654521B2 (en) 2001-02-06 2001-02-06 Solid-state imaging device and manufacturing method of solid-state imaging device

Publications (3)

Publication Number Publication Date
JP2002231929A true JP2002231929A (en) 2002-08-16
JP2002231929A5 JP2002231929A5 (en) 2008-03-06
JP4654521B2 JP4654521B2 (en) 2011-03-23

Family

ID=18893527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001029148A Expired - Fee Related JP4654521B2 (en) 2001-02-06 2001-02-06 Solid-state imaging device and manufacturing method of solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4654521B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123538A (en) * 2003-10-20 2005-05-12 Sony Corp Solid imaging device and its manufacturing method
KR100678269B1 (en) 2004-10-18 2007-02-02 삼성전자주식회사 Fabricating method of the cmos image sensor and image sensor using the same
KR100748326B1 (en) * 2001-06-26 2007-08-09 매그나칩 반도체 유한회사 Image sensor and fabricating method of the same
US7351598B2 (en) 2005-02-01 2008-04-01 Sony Corporation Solid-stage image pickup device and method for producing the same
JP2009224408A (en) * 2008-03-13 2009-10-01 Canon Inc Photoelectric conversion device, imaging system and method of manufacturing photoelectric conversion device
JP2010067827A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Solid-state imaging device and imaging apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286782A (en) * 1976-01-13 1977-07-19 Nec Corp Production of semiconductor integrated circuit
JPS60147131A (en) * 1984-01-11 1985-08-03 Seiko Epson Corp Semiconductor device
JPH01161757A (en) * 1987-12-18 1989-06-26 Nec Corp Solid-state image pickup element
JPH02105460A (en) * 1988-10-14 1990-04-18 Olympus Optical Co Ltd Manufacture of solid-state image sensing device
JPH03273679A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device
JPH03273678A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5286782A (en) * 1976-01-13 1977-07-19 Nec Corp Production of semiconductor integrated circuit
JPS60147131A (en) * 1984-01-11 1985-08-03 Seiko Epson Corp Semiconductor device
JPH01161757A (en) * 1987-12-18 1989-06-26 Nec Corp Solid-state image pickup element
JPH02105460A (en) * 1988-10-14 1990-04-18 Olympus Optical Co Ltd Manufacture of solid-state image sensing device
JPH03273679A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device
JPH03273678A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Solid-state image sensing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748326B1 (en) * 2001-06-26 2007-08-09 매그나칩 반도체 유한회사 Image sensor and fabricating method of the same
JP4496753B2 (en) * 2003-10-20 2010-07-07 ソニー株式会社 Solid-state imaging device and manufacturing method thereof
JP2005123538A (en) * 2003-10-20 2005-05-12 Sony Corp Solid imaging device and its manufacturing method
KR100678269B1 (en) 2004-10-18 2007-02-02 삼성전자주식회사 Fabricating method of the cmos image sensor and image sensor using the same
US7351598B2 (en) 2005-02-01 2008-04-01 Sony Corporation Solid-stage image pickup device and method for producing the same
US7898000B2 (en) 2005-02-01 2011-03-01 Sony Corporation Solid-state image pickup device and method for producing the same
US7943962B2 (en) 2005-02-01 2011-05-17 Sony Corporation Solid-state image pickup device and method for producing the same
US8652864B2 (en) 2005-02-01 2014-02-18 Sony Corporation Solid-state image pickup device and method for producing the same
US8741681B2 (en) 2005-02-01 2014-06-03 Sony Corporation Solid-state image pickup device and method for producing the same
US9620545B2 (en) 2005-02-01 2017-04-11 Sony Semiconductor Solutions Corporation Solid-state image pickup device and method for producing the same
JP2009224408A (en) * 2008-03-13 2009-10-01 Canon Inc Photoelectric conversion device, imaging system and method of manufacturing photoelectric conversion device
US8110859B2 (en) 2008-03-13 2012-02-07 Canon Kabushiki Kaisha Antireflection portion in a shallow isolation trench for a photoelectric conversion device
JP2010067827A (en) * 2008-09-11 2010-03-25 Fujifilm Corp Solid-state imaging device and imaging apparatus

Also Published As

Publication number Publication date
JP4654521B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US8487357B2 (en) Solid state imaging device having high sensitivity and high pixel density
JPH02267966A (en) Solid-state image pick-up device and its manufacture
JP3225939B2 (en) Solid-state imaging device and manufacturing method thereof
KR19990067469A (en) Charge-coupled device and manufacturing method thereof
JP2002231929A (en) Solid-state image pickup device
KR100228037B1 (en) Solid-state image sensor and method of manufacturing the same
JP2003060192A (en) Method for manufacturing solid-state image pickup device
JP5030323B2 (en) Solid-state image sensor
JPH08255888A (en) Solid state image sensor and fabrication thereof
US6753558B2 (en) Solid state image sensor
JPS63312669A (en) Solid-state image sensor
JPH03161970A (en) Solid-state image sensing device
JP3465655B2 (en) Solid-state imaging device
JPS62206878A (en) Solid-state image pickup element
US20240355853A1 (en) Photodetection device and electronic device
JP3562128B2 (en) Solid-state imaging device
JP2012204492A (en) Solid state image pickup device
JPS60173978A (en) Solid-state image pickup device
JP2671151B2 (en) Semiconductor device
JPH04354161A (en) Solid-state image sensing element
JPH02278767A (en) Solid-state image sensing device
JPH0964333A (en) Solid-state image sensing device and its manufacture
JPH08330561A (en) Solid-state image pickup device
JPH0465165A (en) Charge coupled device and manufacture thereof
JP2001077340A (en) Solid-state image sensing device and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees