Nothing Special   »   [go: up one dir, main page]

JP2002223014A - Magnetic detector - Google Patents

Magnetic detector

Info

Publication number
JP2002223014A
JP2002223014A JP2001019152A JP2001019152A JP2002223014A JP 2002223014 A JP2002223014 A JP 2002223014A JP 2001019152 A JP2001019152 A JP 2001019152A JP 2001019152 A JP2001019152 A JP 2001019152A JP 2002223014 A JP2002223014 A JP 2002223014A
Authority
JP
Japan
Prior art keywords
metal layer
thin film
layer
ferromagnetic thin
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001019152A
Other languages
Japanese (ja)
Inventor
Yuichiro Murata
雄一朗 村田
Yasutoshi Suzuki
康利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001019152A priority Critical patent/JP2002223014A/en
Publication of JP2002223014A publication Critical patent/JP2002223014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic detector provided with a good contact and a good adhesion property. SOLUTION: A reducing metal layer 7 consisting of titanium(Ti) which operates strong reduction and an oxide of which becomes a conductor is formed on a surface of a ferromagnetic thin film 5 to a thickness of 200 Å or over between a step of forming contact holes 10 and a step of forming a barrier meal layer 8. An Ni-Fe oxide film formed on the surface of the ferromagnetic thin film 5 is reduced by the reducing metal layer 7 and the oxide reduced and involved by the metal layer 7 becomes a conductor. As a result, a good contact can be attained and an adhesion property between the ferromagnetic thin film 5 and the barrier metal layer 8 can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気検出装置に関
し、特にそのセンシング部のコンタクトに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detection device, and more particularly, to a contact of a sensing unit.

【0002】[0002]

【従来技術】従来、強磁性体薄膜の磁界方向と電流方向
のなす角度によって抵抗値が変化することを利用し、被
検出対象の運動等を検出するMRE(強磁性磁気抵抗素
子)がある。
2. Description of the Related Art Conventionally, there is an MRE (ferromagnetic magnetoresistive element) for detecting a motion or the like of an object to be detected by utilizing the fact that a resistance value changes depending on an angle between a magnetic field direction and a current direction of a ferromagnetic thin film.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のMRE
の構造は、電極の下地の層が非常に酸化しやすいNi−
Feによって形成されているため、コンタクトが不安定
になるという問題が生じている。
However, the conventional MRE
The structure of Ni- is based on Ni-
Since it is formed of Fe, there is a problem that the contact becomes unstable.

【0004】また、Ni−Fe層に酸化層ができること
により、Ni−Fe層と電極との密着性が悪化し、浮
き、剥離が発生するという問題が生じている。
[0004] In addition, the formation of an oxide layer on the Ni-Fe layer deteriorates the adhesion between the Ni-Fe layer and the electrode, and causes a problem of floating and peeling.

【0005】そこで本発明は、上記問題点に鑑み、良好
なコンタクトと密着性とを備えた磁気検出装置を提供す
ることを目的とする。
In view of the above problems, an object of the present invention is to provide a magnetic detection device having good contact and good adhesion.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の磁気検
出装置は、還元作用のあるメタル層を、強磁性体薄膜層
と電極層との間に形成することを特徴とする。
According to a first aspect of the present invention, there is provided a magnetic detecting device, wherein a metal layer having a reducing action is formed between a ferromagnetic thin film layer and an electrode layer.

【0007】よって、強磁性体薄膜層の表面に形成され
る酸化膜をメタル層が還元し、メタル層が還元して取込
んだ酸化物は導体となり、良好なコンタクトを達成する
とともに、強磁性体薄膜層と電極層との密着性が向上す
る。
Accordingly, the oxide layer formed on the surface of the ferromagnetic thin film layer is reduced by the metal layer, and the oxide obtained by the reduction of the metal layer becomes a conductor. The adhesion between the body thin film layer and the electrode layer is improved.

【0008】請求項2に記載の磁気検出装置は、メタル
層の膜厚を200Å以上にすることを特徴とする。
According to a second aspect of the present invention, in the magnetic detection device, the thickness of the metal layer is set to 200 ° or more.

【0009】メタル層の膜厚が薄いと均一な膜にならず
塊(島状)になってしまい、また、100Å程度の膜厚
であっても均一な膜にはなるが、下部に形成された強磁
性体薄膜層の凹凸も考慮すると、膜としての機能を果た
すためには200Å以上必要になる。
When the thickness of the metal layer is small, the metal layer does not become a uniform film but becomes a lump (island). Even if the thickness is about 100 °, the film becomes a uniform film. In consideration of the unevenness of the ferromagnetic thin film layer, 200 ° or more is required to fulfill the function as a film.

【0010】請求項3に記載の磁気検出装置は、強磁性
体薄膜層とメタル層との間に、導電性のあるメタル層の
酸化物を備えることを特徴とする。
According to a third aspect of the present invention, there is provided a magnetic detecting device, wherein an oxide of a conductive metal layer is provided between the ferromagnetic thin film layer and the metal layer.

【0011】導電性のある酸化物を備えることで、良好
なコンタクトを達成することが可能となる。
Providing a conductive oxide makes it possible to achieve good contact.

【0012】[0012]

【発明の実施の形態】従来、MREは、磁界の振れ角が
小さい場合に出力変化が小さいという欠点があるため、
基板上に短絡電極を設けることにより、電流のベクトル
を磁化ベクトルに対して45°方向に流し、傾きが急峻
な特性を得るバーバーポール構造を用いている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Conventionally, the MRE has a disadvantage that the output change is small when the deflection angle of the magnetic field is small.
By providing a short-circuit electrode on the substrate, a current vector flows in a direction of 45 ° with respect to the magnetization vector, and a barber pole structure that obtains a characteristic with a steep inclination is used.

【0013】そこで、まずバーバーポール構造の原理つ
いて図1を用いて説明する。図1(a)から図1(d)
は汎用的なMREの磁界強度特性を示し、図2(a)か
ら図2(f)はバーバーポール型MREの磁界強度特性
を示す。
The principle of the barber pole structure will now be described with reference to FIG. 1 (a) to 1 (d)
2 shows the magnetic field strength characteristics of a general-purpose MRE, and FIGS. 2A to 2F show the magnetic field strength characteristics of a Barber pole type MRE.

【0014】尚、図中の実線矢印は磁化ベクトルを表
し、点線矢印は電流ベクトルを表し、白抜きの矢印は外
部磁界Hの強さを表している。また、1は長方形状のM
REであり、2は基板上に設けられた短絡電極である。
The solid arrows in the figure represent the magnetization vectors, the dotted arrows represent the current vectors, and the white arrows represent the strength of the external magnetic field H. 1 is a rectangular M
RE is a short-circuit electrode provided on the substrate.

【0015】図1(a)に示されるように、従来のMR
Eにおいて、磁界のない場合、磁化は形状異方性により
長手方向を向いており、磁化ベクトルと電流ベクトルと
のなす角度θは0°()である。しかし、図1(b)
や図1(c)に示されるように、外部磁界Hを強くして
いくと、磁化ベクトルと電流ベクトルとのなす角度θ
は、徐々に大きくなりθ=90°()で飽和する。
[0015] As shown in FIG.
In E, in the absence of a magnetic field, the magnetization is oriented in the longitudinal direction due to shape anisotropy, and the angle θ between the magnetization vector and the current vector is 0 ° (). However, FIG.
As shown in FIG. 1 and FIG. 1C, when the external magnetic field H is increased, the angle θ between the magnetization vector and the current vector is increased.
Gradually increases and saturates at θ = 90 ° ().

【0016】図1(d)に示されるように、MREで
は、この磁気ベクトルと電流ベクトルとのなす角度θが
抵抗値を決めており、やの近辺では磁界変化の割合
に対して抵抗値の変化が少なく、角度θが45°()
の近辺で効率よく抵抗値が変化する。
As shown in FIG. 1D, in the MRE, the angle θ between the magnetic vector and the current vector determines the resistance value. Little change, angle θ is 45 ° ()
The resistance value changes efficiently in the vicinity of.

【0017】そこで、図2(a)から図2(e)に示さ
れるように、短絡電極2を用いて、磁化ベクトルに対し
て電流ベクトル方向を斜め45°方向に向けておくこと
で、図2(f)に示されるように、磁界のない場合にお
いて図1(b)の領域を使用し、効率のよい抵抗変化を
得ることを可能にしたのが、バーバーポール型MREで
ある。
Therefore, as shown in FIGS. 2 (a) to 2 (e), by using the short-circuit electrode 2, the current vector direction is obliquely 45 ° with respect to the magnetization vector. As shown in FIG. 2 (f), a barber-pole type MRE makes it possible to obtain an efficient resistance change using the region of FIG. 1 (b) in the absence of a magnetic field.

【0018】バーバーポール型MREでは、外部磁界H
を強くしていくと、磁化ベクトルと電流ベクトルとのな
す角度θは、からに示すとおりで(f)を見てわか
るように付近の弱磁界で効率よく抵抗が変化する。
In the Barber pole type MRE, the external magnetic field H
As the angle θ between the magnetization vector and the current vector is increased, the resistance changes efficiently with a weak magnetic field in the vicinity as shown in FIG.

【0019】次に、図3(a)に本実施形態の平面図を
示し、(b)にA−A’の断面図を示す。
Next, FIG. 3A shows a plan view of the present embodiment, and FIG. 3B shows a cross-sectional view taken along the line AA '.

【0020】以下、本実施形態の製造工程について説明
する。
Hereinafter, the manufacturing process of this embodiment will be described.

【0021】まず、図3(b)に示されるように、シリ
コン基板3上にシリコン酸化膜4を形成する。次に、磁
気抵抗素子膜には、磁歪の小さいNi−Feからなる強
磁性体薄膜5を形成する。その表面を酸化膜や窒化膜な
どからなる絶縁分離層6で覆い、その絶縁分離層6にコ
ンタクトホール10を開口する。
First, as shown in FIG. 3B, a silicon oxide film 4 is formed on a silicon substrate 3. Next, a ferromagnetic thin film 5 made of Ni—Fe having small magnetostriction is formed on the magnetoresistive element film. The surface is covered with an insulating separation layer 6 made of an oxide film, a nitride film or the like, and a contact hole 10 is opened in the insulating separation layer 6.

【0022】この際に、強磁性体薄膜5の形成からコン
タクトホール10の形成までの工程中、O2アッシング
での自然酸化膜などが形成されることにより、強磁性体
薄膜5の表面に一切酸化膜を形成させないのは非常に困
難である。
At this time, during the process from the formation of the ferromagnetic thin film 5 to the formation of the contact hole 10, a natural oxide film or the like is formed by O 2 ashing, so that the surface of the ferromagnetic thin film 5 is completely removed. It is very difficult not to form an oxide film.

【0023】そこで、次に形成されるチタンタングステ
ン(TiW)からなるバリアメタル層8を形成する前
に、還元作用が強く酸化物が導体となるチタン(Ti)
からなる還元メタル層7を200Å以上形成する。
Therefore, before forming the barrier metal layer 8 made of titanium tungsten (TiW) to be formed next, titanium (Ti), which has a strong reducing action and has an oxide as a conductor, is formed.
A reduced metal layer 7 of 200 ° or more is formed.

【0024】よって、強磁性体薄膜5の表面に形成され
るNi−Fe酸化膜を、還元メタル層7が還元し、還元
メタル層7が還元して取込んだ酸化物は導体となるた
め、良好なコンタクトを達成するとともに、強磁性体薄
膜5と、次に形成されるバリアメタル層8との密着性が
向上する。
Therefore, since the reduced metal layer 7 reduces the Ni—Fe oxide film formed on the surface of the ferromagnetic thin film 5 and the reduced metal layer 7 reduces and takes in the oxide, it becomes a conductor. As well as achieving good contact, the adhesion between the ferromagnetic thin film 5 and the subsequently formed barrier metal layer 8 is improved.

【0025】ここで、還元メタル層7を200Å以上形
成する理由として、あまり薄いと均一な膜にならず塊
(島状)になってしまう。また、100Å程度でも均一
な膜にはなるが、下の強磁性体薄膜層5の凹凸も考慮す
ると、膜として機能させるためには、200Å以上必要
となる。
Here, the reason why the reduced metal layer 7 is formed at 200 ° or more is that if it is too thin, it does not become a uniform film but becomes a lump (island shape). Although a uniform film can be obtained even at about 100 °, considering the unevenness of the ferromagnetic thin film layer 5 below, 200 ° or more is required to function as a film.

【0026】その後、バリアメタル層8と、外部と電気
的接続をするために電極メタル層9を形成する。バリア
メタル層8は、還元メタル層7と電極層9とが合金にな
るのを防ぐために形成される。
Thereafter, an electrode metal layer 9 is formed to electrically connect the barrier metal layer 8 to the outside. Barrier metal layer 8 is formed to prevent reduction metal layer 7 and electrode layer 9 from becoming an alloy.

【0027】尚、本発明は、上記実施形態に限られるも
のではなく、様々な態様に適用可能である。
The present invention is not limited to the above embodiment, but can be applied to various aspects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】汎用的なMREの磁界強度特性を示す図であ
る。
FIG. 1 is a diagram showing a magnetic field strength characteristic of a general-purpose MRE.

【図2】バーバーポール型MREの磁界強度特性を示す
図である。
FIG. 2 is a diagram showing a magnetic field strength characteristic of a Barber pole type MRE.

【図3】(a)は本実施形態のバーバーポール型MRE
の構造の平面図を、(b)は断面図を示す図である。
FIG. 3A is a barber pole type MRE of the present embodiment.
FIG. 3B is a plan view of the structure of FIG.

【符号の簡単な説明】[Brief description of reference numerals]

1…MRE、 2…短絡電極、 3…シリコン基板、 4…シリコン酸化膜、 5…強磁性体薄膜(Ni−Fe)、 6…絶縁分離層、 7…還元メタル層(Ti)、 8…バリアメタル層(TiW)、 9…電極層(Al−Si)、 10…コンタクトホール DESCRIPTION OF SYMBOLS 1 ... MRE, 2 ... Short circuit electrode, 3 ... Silicon substrate, 4 ... Silicon oxide film, 5 ... Ferromagnetic thin film (Ni-Fe), 6 ... Insulation separation layer, 7 ... Reduced metal layer (Ti), 8 ... Barrier Metal layer (TiW), 9 ... electrode layer (Al-Si), 10 ... contact hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成された強磁性体薄膜層と、 前記強磁性体薄膜層上に形成されるとともに開口領域を
有する絶縁層と、 前記開口領域上に形成されるとともに還元作用のあるメ
タル層と、 前記メタル層上に形成された電極層とを備えることを特
徴とする磁気検出装置。
1. A ferromagnetic thin film layer formed on a substrate, an insulating layer formed on the ferromagnetic thin film layer and having an opening region, and formed on the opening region and having a reducing action. A magnetic detection device comprising: a certain metal layer; and an electrode layer formed on the metal layer.
【請求項2】 前記メタル層は膜厚が200Å以上であ
ることを特徴とする請求項1に記載の磁気検出装置。
2. The magnetic detection device according to claim 1, wherein the metal layer has a thickness of 200 ° or more.
【請求項3】 前記強磁性体薄膜層と前記メタル層との
間に導電性のある前記メタル層の酸化物を備えることを
特徴とする請求項1に記載の磁気検出装置。
3. The magnetic detection device according to claim 1, further comprising an oxide of the metal layer having conductivity between the ferromagnetic thin film layer and the metal layer.
JP2001019152A 2001-01-26 2001-01-26 Magnetic detector Pending JP2002223014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019152A JP2002223014A (en) 2001-01-26 2001-01-26 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019152A JP2002223014A (en) 2001-01-26 2001-01-26 Magnetic detector

Publications (1)

Publication Number Publication Date
JP2002223014A true JP2002223014A (en) 2002-08-09

Family

ID=18885084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019152A Pending JP2002223014A (en) 2001-01-26 2001-01-26 Magnetic detector

Country Status (1)

Country Link
JP (1) JP2002223014A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194690A (en) * 1986-02-20 1987-08-27 Fujitsu Ltd Magnetic reluctance element
JPH0191438A (en) * 1987-10-02 1989-04-11 Toshiba Corp Manufacture of semiconductor device
JPH06260446A (en) * 1993-03-05 1994-09-16 Sony Corp Manufacture of wiring structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194690A (en) * 1986-02-20 1987-08-27 Fujitsu Ltd Magnetic reluctance element
JPH0191438A (en) * 1987-10-02 1989-04-11 Toshiba Corp Manufacture of semiconductor device
JPH06260446A (en) * 1993-03-05 1994-09-16 Sony Corp Manufacture of wiring structure

Similar Documents

Publication Publication Date Title
US6174737B1 (en) Magnetic random access memory and fabricating method thereof
US6153443A (en) Method of fabricating a magnetic random access memory
EP1054449B1 (en) Magnetic random access memory and fabricating method thereof
US7402529B2 (en) Method of applying cladding material on conductive lines of MRAM devices
US6674664B2 (en) Circuit selected joint magnetoresistive junction tunneling-giant magnetoresistive effects memory cells
US6426620B1 (en) Magnetic field sensing element and device having magnetoresistance element and integrated circuit formed on the same substrate
US7129534B2 (en) Magneto-resistive memory and method of manufacturing the same
US6639765B2 (en) Magnetoresistive element and magnetoresistive device using the same
JPH0444353B2 (en)
JP2001068761A (en) Magnetic element with improved magnetic field response characteristic and its manufacture
TW200301479A (en) Magentic memory device having soft reference layer
WO1994011889A1 (en) Magnetoresistive structure with alloy layer
JP2003188360A (en) Magnetic memory cell
US6493194B1 (en) Thin film magnetic head
US6850057B2 (en) Barber pole structure for magnetoresistive sensors and method of forming same
US4223292A (en) Hall element
JP2000099923A (en) Magnetic tunnel element and its manufacturing method
JP2002223014A (en) Magnetic detector
CN206059436U (en) Integrated-type magnetic switch
US7001777B1 (en) Method of manufacturing a magnetic tunnel junction device
JP2001119082A (en) Magnetoresistive element
CN106229406A (en) Integrated-type magnetic switch and manufacture method thereof
JP2010199320A (en) Method of manufacturing silicon spin conducting element, and silicon spin conducting element
US7579196B2 (en) Interconnect connecting a diffusion metal layer and a power plane metal and fabricating method thereof
JP2932824B2 (en) Magnetoresistive sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615