Nothing Special   »   [go: up one dir, main page]

JP2002219464A - Electrolytic treatment method and system - Google Patents

Electrolytic treatment method and system

Info

Publication number
JP2002219464A
JP2002219464A JP2001022135A JP2001022135A JP2002219464A JP 2002219464 A JP2002219464 A JP 2002219464A JP 2001022135 A JP2001022135 A JP 2001022135A JP 2001022135 A JP2001022135 A JP 2001022135A JP 2002219464 A JP2002219464 A JP 2002219464A
Authority
JP
Japan
Prior art keywords
water
activated carbon
treated
electrode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001022135A
Other languages
Japanese (ja)
Inventor
Kazuhiro Baba
和宏 馬場
Takayuki Saito
貴之 齋藤
Toru Suganuma
徹 菅沼
Yuichi Asai
裕一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Ameniplantex Ltd
Original Assignee
NEC Corp
NEC Ameniplantex Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Ameniplantex Ltd filed Critical NEC Corp
Priority to JP2001022135A priority Critical patent/JP2002219464A/en
Publication of JP2002219464A publication Critical patent/JP2002219464A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic treatment method and system which improves an electrolytic treatment efficiency of nitrogen compound ion contained in the water to be treated by using an electrolytic treatment system of a simple structure without enlarging its scale. SOLUTION: This system comprises a measure to charge a nitrogen compound-containing water 7 to be treated into an electrolytic cell 6, a measure to apply a prescribed voltage to solid activated carbon electrodes 1-4 through the use of a direct current power source 9 and reverse polarity of voltage, and a measure to discharge a water treated by electrolytic treatment. By reversing the polarity of applied voltage more than once using a switching device, the oxidation and reduction reactions in each electrode are switched over alternately and the nitrogen oxide contained in the water to be treated is reduced or the nitrogen reductant is oxidized and eliminated in the form of nitrogen gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排水の処理装置お
よび処理方法に関し、特に、硝酸イオンやアンモニウム
イオン等の窒素化合物含有水を電気化学的に酸化もしく
は還元して窒素ガスとして除去するための電解処理装置
および電解処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for treating wastewater, and more particularly to an apparatus for electrochemically oxidizing or reducing water containing nitrogen compounds such as nitrate ions and ammonium ions to remove it as nitrogen gas. The present invention relates to an electrolytic treatment apparatus and an electrolytic treatment method.

【0002】[0002]

【従来の技術】地下水や工業排水中に含まれる硝酸性窒
素等の窒素酸化物やアンモニウム等の窒素還元物を除去
する方法として、従来から、 1)窒素成分を消費する微生物を用いて、酸化分解する
方法、 2)次亜塩素酸、過酸化水素、酸素等の酸化剤により参
加する方法、 3)銅、鉛等の触媒を添加し、高温高圧下で酸化する方
法、 4)逆浸透膜を使用して加圧濾過する方法、 5)電極間に多数のイオン交換膜を配し、電気泳動によ
りイオンを分離する電気透析法、 などが知られている。
2. Description of the Related Art Conventionally, methods for removing nitrogen oxides such as nitrate nitrogen and nitrogen reductants such as ammonium contained in groundwater and industrial wastewater include the following: 1) Oxidation using microorganisms consuming nitrogen components. Decomposition method, 2) Participation with an oxidizing agent such as hypochlorous acid, hydrogen peroxide, oxygen, etc. 3) Method of adding a catalyst such as copper or lead and oxidizing under high temperature and pressure, 4) Reverse osmosis membrane And 5) an electrodialysis method in which a large number of ion exchange membranes are arranged between electrodes to separate ions by electrophoresis.

【0003】しかしながら、これらの方法では、反応の
制御が困難であると同時に、酸化剤や触媒の添加により
新たな二次生成物が発生するという問題があった。そこ
で、これらの問題を解決する手段として、近年、電気分
解を利用した方法が提案されている。
[0003] However, these methods have a problem that it is difficult to control the reaction, and at the same time, a new secondary product is generated by adding an oxidizing agent or a catalyst. Therefore, as a means for solving these problems, a method utilizing electrolysis has recently been proposed.

【0004】たとえば、特開平11−226576号公
報では、イオン交換膜を利用した電気分解により、陽極
での窒素酸化物の酸化ないしは窒素還元物の還元、ある
いはそれらを組み合わせた反応により、窒素化合物中の
窒素を窒素ガスとして液中から除去する方法が開示され
ている。また、特開平11−347558号公報では、
イオン交換膜と還元能を有する触媒を担持した陰極を用
いて電気分解を行うことにより、地下水中の窒素酸化物
を還元し、窒素ガスとして除去する方法が開示されてい
る。これら公知例において、たとえばアンモニウムイオ
ンのような窒素還元物は、陽極において以下に示される
化学反応により窒素ガスとして被処理水から除去され
る。
For example, in Japanese Patent Application Laid-Open No. 11-226576, the oxidation of nitrogen oxides or the reduction of nitrogen reductants at the anode by electrolysis using an ion-exchange membrane, or a reaction combining them, causes nitrogen compounds to be dissolved in a nitrogen compound. A method for removing nitrogen from a liquid as nitrogen gas is disclosed. In JP-A-11-347558,
A method is disclosed in which electrolysis is carried out using an ion exchange membrane and a cathode carrying a catalyst having a reducing ability to reduce nitrogen oxides in groundwater and remove them as nitrogen gas. In these known examples, nitrogen reductants such as ammonium ions are removed from the water to be treated as nitrogen gas by the following chemical reaction at the anode.

【0005】 2HO→4H+O+4e (1) 4NH +3O2→2N↑+4H+6HO (2)2H 2 O → 4H + + O 2 + 4e (1) 4NH 4 + + 3O 2 → 2N 2 ↑ + 4H + + 6H 2 O (2)

【0006】すなわち、水の電気分解により、陽極表面
で発生した酸素ガスによってアンモニウムイオンが酸化
されて窒素ガス、水素イオンおよび水が生成するもので
ある。また、硝酸イオンや亜硝酸イオンといった窒素酸
化物は、陰極において以下に示される化学反応により窒
素ガスとして被処理水から除去される。
That is, ammonium ions are oxidized by oxygen gas generated on the anode surface by electrolysis of water to produce nitrogen gas, hydrogen ions and water. Nitrogen oxides such as nitrate ions and nitrite ions are removed from the water to be treated as nitrogen gas by the following chemical reaction at the cathode.

【0007】 2H+2e→H (3) 2NO +5H→N↑+2OH+4HO (4) 2NO +3H→N↑+2OH+2HO (5)2H + + 2e → H 2 (3) 2NO 3 + 5H 2 → N 2 ↑ + 2OH + 4H 2 O (4) 2NO 2 + 3H 2 → N 2 ↑ + 2OH + 2H 2 O (5)

【0008】すなわち、水の電気分解により陰極表面で
発生した水素ガスによって硝酸イオン、亜硝酸イオンが
還元されて、窒素ガス、水酸イオンおよび水が生成する
ものである。このように、電気分解を利用した処理方法
における生成物は窒素ガスと水であり、新たに処理すべ
き二次生成物も生じないため、優れた処理方法であると
いえる。
That is, nitrate ions and nitrite ions are reduced by hydrogen gas generated on the cathode surface by electrolysis of water to generate nitrogen gas, hydroxyl ions and water. As described above, the products in the processing method using electrolysis are nitrogen gas and water, and there is no secondary product to be newly processed. Therefore, it can be said that this is an excellent processing method.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来の電解処理方法では以下に述べるような欠点がある。
However, the above-mentioned conventional electrolytic processing method has the following disadvantages.

【0010】すなわち、電解処理装置の陽極において
は、水が酸化されることによって発生した酸素を利用し
て窒素還元物の酸化を行っている。これらの窒素還元物
は、反応式(2)から明らかなように、陽イオンの形で
存在する場合が多い。したがって、電気分解を行う際に
は、陽極の近傍には主に陰イオンが存在し、電極界面で
電気二重層を形成しており、陽イオンは陽極から離れた
沖合に多数存在する。一方、反応式(1)で示される水
の電気分解は電極表面で起こるため、発生する酸素も電
極近傍に限られてしまう。このように、酸化されるべき
窒素還元物と酸化剤である酸素の存在場所が異なるため
に反応効率が悪く、十分に処理するためには時間がかか
り、すなわち過剰な電力が必要となる。
[0010] That is, at the anode of the electrolytic treatment apparatus, the oxygen generated by the oxidation of water is used to oxidize the nitrogen reduced product. These nitrogen reduced products are often present in the form of cations, as is apparent from the reaction formula (2). Therefore, when performing electrolysis, anions are mainly present near the anode, an electric double layer is formed at the electrode interface, and a large number of cations are present offshore away from the anode. On the other hand, since the electrolysis of water represented by the reaction formula (1) occurs on the electrode surface, the generated oxygen is also limited to the vicinity of the electrode. As described above, the locations where the nitrogen reductant to be oxidized and the oxygen serving as the oxidizing agent are different from each other, so that the reaction efficiency is low, and it takes time to perform the treatment sufficiently, that is, excessive power is required.

【0011】同様に、陰極においては、水中の水素イオ
ンが還元されることによって発生した水素を利用して窒
素酸化物の還元を行っている。これらの窒素酸化物は反
応式(4)、(5)から明らかなように、陰イオンの形
で存在する場合が多い。したがって、電気分解を行う際
には、陰極の近傍には陽イオンが存在し、電極界面で電
気二重層を形成しており、陰イオンは陰極から離れた沖
合に多数存在する。一方、反応式(3)で示される水の
電気分解は陰極表面で起こるため、発生する水素も陰極
近傍に限られてしまう。このように、還元されるべき窒
素酸化物と還元剤である水素の存在場所が異なるため反
応効率が悪く、十分に処理するためには時間がかかり、
すなわち過剰な電力が必要となる。
Similarly, in the cathode, nitrogen oxides are reduced using hydrogen generated by reduction of hydrogen ions in water. As is clear from the reaction formulas (4) and (5), these nitrogen oxides are often present in the form of anions. Therefore, when performing electrolysis, cations are present near the cathode, an electric double layer is formed at the electrode interface, and many anions are present offshore away from the cathode. On the other hand, since the electrolysis of water represented by the reaction formula (3) occurs on the surface of the cathode, the generated hydrogen is also limited to the vicinity of the cathode. Thus, the reaction efficiency is poor due to the different locations of the nitrogen oxides to be reduced and the hydrogen that is the reducing agent, and it takes time to perform sufficient treatment,
That is, excessive power is required.

【0012】更に、上記従来の電解処理装置では、陽イ
オンが陰極に、陰イオンが陽極に移動することによりさ
らに反応効率が低下することを防止するためにイオン交
換膜を用いており、電解処理装置の規模もその分大きく
なるとともに、コストも増大するといった欠点もある。
Further, in the above-mentioned conventional electrolytic processing apparatus, an ion exchange membrane is used to prevent the reaction efficiency from further lowering due to the cations moving to the cathode and the anions moving to the anode. There are drawbacks in that the scale of the device is correspondingly increased and the cost is increased.

【0013】また、従来は電気分解用の電極の極性は固
定されており、すなわち、電解処理中は一対の電極のう
ち一方は陽極のみ、他方は陰極のみとして使用される。
特開平11−347558号公報にあるように、窒素酸
化物が過還元されてアンモニウムイオンになるようなこ
とが起こった場合は、陽極と陰極との間がイオン交換膜
で遮られているため、陰極での処理水を別途設けた通水
システムを利用して陽極室で酸化処理しなくてはなら
ず、電解処理装置の規模が大きくなり、コストも増大す
る。
Conventionally, the polarity of the electrode for electrolysis is fixed, that is, one of the pair of electrodes is used only as an anode and the other as only a cathode during the electrolytic treatment.
As disclosed in JP-A-11-347558, when the nitrogen oxides are overreduced to become ammonium ions, the gap between the anode and the cathode is blocked by the ion exchange membrane. Oxidation treatment must be performed in the anode chamber using a water flow system separately provided with treated water at the cathode, which increases the scale of the electrolytic treatment apparatus and increases costs.

【0014】さらに、従来の電気分解用電極は、例えば
白金、銅、チタンといったような金属の板ないしはメッ
シュが利用されている。電解処理の効率は水の電気分解
によって発生する酸素や水素の体積が多い方が高くなる
ため、電極面積が大きい方が望ましいが、メッシュ状に
してもその表面積の増加には限界があり、装置の規模と
のトレードオフで電極面積が制限されるといった問題も
あった。
Further, as the conventional electrode for electrolysis, a metal plate or a mesh such as platinum, copper or titanium is used. The larger the volume of oxygen or hydrogen generated by the electrolysis of water, the higher the efficiency of the electrolytic treatment. Therefore, it is desirable that the electrode area be large. However, even if the mesh is used, the increase in the surface area is limited. There is also a problem that the electrode area is limited by a trade-off with the size of the electrode.

【0015】本発明は、上記問題点に鑑みてなされたも
のであって、その主たる目的は、電解処理装置の規模を
大きくすることなく、簡単な構造で処理液中に含まれる
窒素化合物イオンの電解処理効率を高めることができる
電解処理方法および処理装置を提供することにある。
The present invention has been made in view of the above problems, and a main object of the present invention is to provide a simple structure of nitrogen compound ions contained in a processing solution without increasing the scale of an electrolytic processing apparatus. An object of the present invention is to provide an electrolytic processing method and a processing apparatus capable of improving the electrolytic processing efficiency.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するた
め、本発明の電解処理方法は、電気分解を利用して、被
処理水に含有される不純物イオンを酸化もしくは還元し
て除去する電解処理方法において、対向する電極間に印
加する電圧の極性を一回以上反転して、各々の電極に吸
着した前記不純物イオンと水の電気分解により生じた水
素又は酸素とを反応させるものである。
In order to achieve the above object, an electrolytic treatment method according to the present invention uses electrolytic treatment to oxidize or reduce impurity ions contained in water to be treated by electrolysis to remove them. In the method, the polarity of a voltage applied between opposing electrodes is inverted at least once, and the impurity ions adsorbed on each electrode react with hydrogen or oxygen generated by electrolysis of water.

【0017】また、本発明の電解処理方法は、被処理水
を電気分解により酸化もしくは還元処理して、前記被処
理水に含有される窒素化合物イオンを除去する電解処理
方法において、対向する電極間に印加する電圧の極性を
一回以上反転して、前記被処理水中の窒素酸化物を還
元、ないしは窒素還元物を酸化し、窒素ガスとして除去
するものである。
[0017] In the electrolytic treatment method of the present invention, the water to be treated is oxidized or reduced by electrolysis to remove nitrogen compound ions contained in the water to be treated. The polarity of the voltage applied to the to-be-processed water is inverted at least once to reduce nitrogen oxides in the water to be treated or oxidize reduced nitrogen products and remove them as nitrogen gas.

【0018】本発明においては、前記対向する電極に印
加する電圧を、前記電極にイオンが吸着可能な電圧と、
水の電気分解が生じる電圧との間で変化させる構成とす
ることができる。
In the present invention, the voltage applied to the opposite electrode is defined as a voltage at which ions can be adsorbed on the electrode.
It can be configured to change between a voltage at which electrolysis of water occurs.

【0019】また、本発明においては、前記窒素酸化物
が、硝酸イオン又は亜硝酸イオンからなる負イオンを含
み、前記窒素還元物が、アンモニウムイオンからなる正
イオンを含むことが好ましい。
In the present invention, it is preferable that the nitrogen oxide contains a negative ion consisting of a nitrate ion or a nitrite ion, and the nitrogen reduced product contains a positive ion consisting of an ammonium ion.

【0020】また、本発明の電解処理装置は、不純物イ
オンを含有する被処理水を電解槽に注入する手段と、前
記電解槽中に配設された対向する電極に所定の電圧を印
加する手段と、電解処理を行った前記被処理水を排出す
る手段とを少なくとも有する電解処理装置において、前
記電解処理装置に、更に、前記対向する電極に印加する
電圧の極性を切り替える手段を備え、該切り替え手段に
より印加電圧の極性を一回以上反転させることにより、
各々の電極に吸着した前記不純物イオンと水の電気分解
により生じた水素又は酸素とが反応し、前記被処理水中
の前記不純物イオンが除去されるものである。
Further, the electrolytic treatment apparatus of the present invention comprises a means for injecting the water to be treated containing impurity ions into an electrolytic cell, and a means for applying a predetermined voltage to opposing electrodes provided in the electrolytic cell. And means for discharging the water to be treated after the electrolytic treatment, wherein the electrolytic treatment apparatus further comprises means for switching the polarity of a voltage applied to the opposing electrode, By inverting the polarity of the applied voltage at least once by means,
The impurity ions adsorbed on each electrode react with hydrogen or oxygen generated by the electrolysis of water to remove the impurity ions in the water to be treated.

【0021】また、本発明の電解処理装置は、窒素化合
物を含有する被処理水を電解槽に注入する手段と、前記
電解槽中に配設された対向する電極に所定の電圧を印加
する手段と、電解処理を行った前記被処理水を排出する
手段とを少なくとも有する電解処理装置において、前記
電解処理装置に、更に、前記対向する電極に印加する電
圧の極性を切り替える手段を備え、該切り替え手段によ
り印加電圧の極性を一回以上反転させることにより、前
記被処理水中の窒素酸化物が還元、ないしは窒素還元物
が酸化され、窒素ガスとして除去されるものである。
Further, the electrolytic treatment apparatus of the present invention comprises means for injecting water to be treated containing a nitrogen compound into an electrolytic cell, and means for applying a predetermined voltage to opposing electrodes provided in the electrolytic cell. And means for discharging the water to be treated after the electrolytic treatment, wherein the electrolytic treatment apparatus further comprises means for switching the polarity of a voltage applied to the opposing electrode, By inverting the polarity of the applied voltage at least once by means, nitrogen oxides in the water to be treated are reduced or nitrogen reduced products are oxidized and removed as nitrogen gas.

【0022】本発明においては、前記対向する電極の少
なくとも一方が、電気伝導性を有する固体状活性炭を含
むことが好ましく、該固体状活性炭電極としては、 1)活性炭粉末ないしは繊維状活性炭と有機系ないしは
無機系バインダーを混合した後、焼成して得られた炭素
複合材、 2)活性炭粉末ないしは繊維状活性炭とポリアセン構造
を有する炭素との炭素複合材、 3)活性炭繊維、 4)活性炭粉末ないしは繊維状活性炭と樹脂繊維を混合
・抄紙して得られた不織布、のいずれかの材料を使用す
る構成とすることができる。
In the present invention, it is preferable that at least one of the opposed electrodes contains a solid activated carbon having electrical conductivity. The solid activated carbon electrodes include: 1) activated carbon powder or fibrous activated carbon and an organic system Or a carbon composite obtained by mixing and baking an inorganic binder, 2) activated carbon powder or a carbon composite of fibrous activated carbon and carbon having a polyacene structure, 3) activated carbon fiber, 4) activated carbon powder or fiber It is possible to adopt a configuration using any material of a nonwoven fabric obtained by mixing and forming paper-like activated carbon and resin fibers.

【0023】また、本発明においては、前記固体状活性
炭電極の抵抗率が、1Ωcm以下であり、前記固体状活
性炭電極の比表面積が、100m/g以上であること
が好ましい。
In the present invention, the resistivity of the solid activated carbon electrode is preferably 1 Ωcm or less, and the specific surface area of the solid activated carbon electrode is preferably 100 m 2 / g or more.

【0024】さらに、本発明においては、前記固体状活
性炭電極の表面の少なくとも一部に、白金、金、銀、イ
リジウム、パラジウム、ロジウム、ルテニウム、オスミ
ウムの少なくとも一種類の金属が被覆あるいは担持され
ていることが好ましい。
Further, in the present invention, at least a part of the surface of the solid activated carbon electrode is coated or supported with at least one metal of platinum, gold, silver, iridium, palladium, rhodium, ruthenium, and osmium. Is preferred.

【0025】[0025]

【発明の実施の形態】以下、本発明の一実施の形態に係
る窒素化合物含有水の電解処理方法について、図面を参
照しながら述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for electrolytically treating nitrogen compound-containing water according to one embodiment of the present invention will be described below with reference to the drawings.

【0026】図1は、本発明の窒素化合物含有水の電解
処理方法ならびに電解処理装置を説明するための概略構
成図である。図1において、1〜4は固体状活性炭電
極、5は電解液、6は電解槽、7は被処理水、8は還元
又は酸化された処理水、9は直流電源、10a〜10f
は直流電源の極性を切り換えるためのスイッチの接点で
ある。被処理水7は硝酸イオンや亜硝酸イオンといった
窒素酸化物による陰イオンとアンモニウムイオンといっ
た窒素還元物による陽イオンの少なくとも一方を含むも
のとする。
FIG. 1 is a schematic configuration diagram for explaining an electrolytic treatment method and an electrolytic treatment device of the nitrogen compound-containing water of the present invention. In FIG. 1, 1 to 4 are solid activated carbon electrodes, 5 is an electrolytic solution, 6 is an electrolytic cell, 7 is water to be treated, 8 is treated or reduced or oxidized water, 9 is a DC power supply, and 10a to 10f.
Is a switch contact for switching the polarity of the DC power supply. The water 7 to be treated contains at least one of an anion formed by a nitrogen oxide such as a nitrate ion or a nitrite ion and a cation formed by a reduced nitrogen such as an ammonium ion.

【0027】本発明で利用できる固体状活性炭電極1〜
4は、以下のような特性が要求される。まず、第一に、
極めて大きな比表面積を持つことであり、BET法で測
定した値が100m/g以上、さらには1000m/g以
上が望ましく、これらの値より比表面積が小さいと十分
なイオンの吸着性能が得られない。第2に、一定の形状
と機械的強度を保持した状態で、電気伝導度が高く通電
が可能であることである。このために必要な抵抗率は、
1Ωcm以下、さらには0.1Ωcm以下が望ましく、これ
らの値よりも抵抗率が大きいと、十分な酸化還元電流が
流れないために分解反応の効率が低下するばかりでな
く、ジュール熱による温度上昇により電極の劣化や最悪
の場合は破損する恐れがある。
The solid activated carbon electrodes 1 to 1 which can be used in the present invention
No. 4 is required to have the following characteristics. First of all,
It has an extremely large specific surface area, and the value measured by the BET method is preferably 100 m 2 / g or more, more preferably 1000 m 2 / g or more. I can't. Secondly, it is possible to conduct electricity with high electric conductivity while maintaining a certain shape and mechanical strength. The resistivity required for this is
If the resistivity is higher than these values, a sufficient oxidation-reduction current does not flow, thereby lowering the efficiency of the decomposition reaction and also increasing the temperature due to Joule heat. The electrodes may be deteriorated or, in the worst case, damaged.

【0028】これらの特性を有する固体状活性炭には、 1)活性炭粉末ないしは繊維状活性炭と有機系ないしは
無機系バインダーを混合した後、焼成して得られた炭素
複合材、 2)活性炭粉末ないしは繊維状活性炭とポリアセン構造
を有する炭素との炭素複合材、 3)活性炭繊維、 4)活性炭粉末ないしは繊維状活性炭と樹脂繊維を混合
・抄紙して得られた不織布、のような種類がある。
The solid activated carbon having these properties includes: 1) a carbon composite material obtained by mixing an activated carbon powder or a fibrous activated carbon with an organic or inorganic binder and then firing; 2) an activated carbon powder or a fiber Carbon composite material of fibrous activated carbon and carbon having a polyacene structure, 3) activated carbon fiber, 4) non-woven fabric obtained by mixing and papermaking activated carbon powder or fibrous activated carbon and resin fiber.

【0029】これらの固体状活性炭の比表面積や電気抵
抗、機械的強度等の諸特性は、原料や製造条件によって
制御可能である。その際、電気抵抗を小さくするため
に、他の電極特性を損なわない範囲内で金属やピッチ系
炭素等の導電性付与剤を添加しても構わない。さらに、
電解処理の効率を増加させるために、窒素化合物の酸化
還元反応を促進する触媒を固体状活性炭電極表面に担持
することも有効である。
Various properties such as the specific surface area, electric resistance and mechanical strength of these solid activated carbons can be controlled by the raw materials and production conditions. At that time, in order to reduce the electric resistance, a conductivity-imparting agent such as a metal or pitch-based carbon may be added as long as other electrode characteristics are not impaired. further,
In order to increase the efficiency of the electrolytic treatment, it is also effective to support a catalyst for promoting the oxidation-reduction reaction of the nitrogen compound on the surface of the solid activated carbon electrode.

【0030】触媒としては、白金、金、銀、イリジウ
ム、パラジウム、ロジウム、ルテニウム、オスミウムと
いった、いわゆる貴金属が望ましい。担持する方法とし
ては、固体状活性炭を製造時に同時に混入させてもよい
し、製造後に、例えば蒸着法、スパッタ法、CVD法、
メッキ法等で表面の一部または全部を覆うように堆積さ
せてもよいが、いずれの方法においても活性炭の優れた
吸着特性を損なわないような条件を選択することが重要
である。
As the catalyst, so-called noble metals such as platinum, gold, silver, iridium, palladium, rhodium, ruthenium and osmium are desirable. As a supporting method, solid activated carbon may be mixed at the same time as the production, or after the production, for example, a vapor deposition method, a sputtering method, a CVD method,
It may be deposited so as to cover part or all of the surface by plating or the like, but it is important to select conditions that do not impair the excellent adsorption characteristics of activated carbon in any method.

【0031】次に、被処理水7に含まれる窒素化合物含
有水の処理方法について述べる。まず、第1の工程とし
て、被処理水7中のイオンを固体状活性炭の極めて広い
面積を持つ表面に吸着させる工程を行う。例えば、直流
電源9において接点10aと10e、10dと10fを
接続し、固体状活性炭電極(以下、電極と記載する)1
および3を陽極として正電圧を印加、電極2および4を
陰極として負電圧を印加する。このとき、被処理水7中
のアンモニウムイオン等の陽イオンは陰極側に、硝酸イ
オン、亜硝酸イオンといった負イオンは陽極側に移動
し、それぞれ電極表面に吸着する。このときの電極に印
加する電圧は、それぞれのイオンが電極表面に十分吸着
できる電圧であればよく、その際に水の電気分解が同時
に起こっても特に問題はない。
Next, a method for treating the nitrogen compound-containing water contained in the water 7 to be treated will be described. First, as a first step, a step of adsorbing ions in the water 7 to be treated on the surface of the solid activated carbon having an extremely large area is performed. For example, in a DC power supply 9, the contacts 10a and 10e, 10d and 10f are connected, and a solid activated carbon electrode (hereinafter, referred to as an electrode) 1 is connected.
A positive voltage is applied using the electrodes 2 and 4 as anodes, and a negative voltage is applied using the electrodes 2 and 4 as cathodes. At this time, cations such as ammonium ions in the water 7 to be treated move to the cathode side, and negative ions such as nitrate ions and nitrite ions move to the anode side, and are respectively adsorbed on the electrode surface. The voltage applied to the electrode at this time may be any voltage at which each ion can be sufficiently adsorbed on the surface of the electrode, and there is no particular problem if electrolysis of water occurs at the same time.

【0032】引き続いて、電極に印加する電圧の極性を
すみやかに反転し、水の電気分解を行い、そこで発生し
たガスと電極に吸着したイオンとを反応させ、窒素と水
に分解する工程を行う。具体的には、直流電源9におい
て接点10cと10e、10bと10fに接続を切り換
え、電極1および3を陰極、電極2および4を陽極に反
転させる。この時の電圧は、水の電気分解が十分に起こ
り、各電極から気泡が確認できる電圧が好ましく、前述
した吸着工程での電圧と異なっても構わない。
Subsequently, the polarity of the voltage applied to the electrode is immediately reversed, electrolysis of water is performed, and a gas generated there is reacted with ions adsorbed on the electrode to decompose into nitrogen and water. . Specifically, in the DC power supply 9, the connection is switched to the contacts 10c and 10e, 10b and 10f, and the electrodes 1 and 3 are inverted to the cathode and the electrodes 2 and 4 are inverted to the anode. The voltage at this time is preferably a voltage at which water electrolysis sufficiently occurs and bubbles can be confirmed from each electrode, and may be different from the voltage in the above-described adsorption step.

【0033】この工程では、前述した反応式(1)、
(2)が陽極で、反応式(3)〜(5)が陰極で起こ
る。すなわち、従来の電解処理法とは異なり、酸化され
るべきイオンと酸素ガス(酸化剤)、あるいは還元され
るべきイオンと水素ガス(還元剤)が共に電極近傍に存
在するために極めて効率よく反応が進行するため、反応
時間あるいは電力を最小に抑制することが可能となる。
In this step, the above-mentioned reaction formula (1)
(2) occurs on the anode, and the reaction formulas (3) to (5) occur on the cathode. That is, unlike the conventional electrolytic treatment method, the ions to be oxidized and the oxygen gas (oxidizing agent) or the ions to be reduced and the hydrogen gas (reducing agent) are both present in the vicinity of the electrode, so that the reaction is extremely efficient. Proceeds, it is possible to minimize the reaction time or electric power.

【0034】なお、この工程では吸着工程とは電極電位
の符号が逆になるため、各電極に吸着していたイオンは
表面から脱着することになるが、活性炭のもつ複雑な細
孔構造により拡散しにくいため、電極電位の符号を切り
換えても対向電極まで到達しにくく、従来のようにイオ
ン交換膜を設ける必要がなく、装置コストを低く抑える
ことが可能となる。また、たとえ対向電極まで到達した
としても、上述した工程を繰り返し行うことにより、目
的とするイオンを完全に除去することができる。
In this step, since the sign of the electrode potential is opposite to that in the adsorption step, the ions adsorbed on each electrode are desorbed from the surface, but the ions are diffused due to the complicated pore structure of the activated carbon. Therefore, even if the sign of the electrode potential is switched, it is difficult to reach the counter electrode even if the sign of the electrode potential is switched, and it is not necessary to provide an ion exchange membrane as in the conventional case, and the apparatus cost can be reduced. Further, even if the ions reach the counter electrode, the target ions can be completely removed by repeating the above-described steps.

【0035】さらに、1つの電極が交互に陽極と陰極と
になるため、過酸化や過還元が起こったとしても従来の
公知例のように、片側の電極が設置されている電解槽の
処理水をもう一方の電極が設置されている槽へ移す必要
もなく、装置がコンパクトなる。ただし、処理水の条件
やその他の状況等の理由により、電極間にイオン交換膜
を設けても動作には何ら支障はない。
Further, since one electrode is alternately used as an anode and a cathode, even if peroxidation or overreduction occurs, the treated water in an electrolytic cell provided with one electrode is disposed as in the conventional known example. Need not be transferred to the tank in which the other electrode is installed, and the apparatus becomes compact. However, even if an ion exchange membrane is provided between the electrodes, there is no hindrance to the operation for reasons such as the condition of the treated water and other conditions.

【0036】このように、本発明の一実施の形態に係る
窒素化合物含有水の電解処理方法及び処理装置によれ
ば、陽極又は陰極の少なくとも一方に電気伝導性を有す
る固体状活性炭電極を備え、電極に印加する電圧の極性
を反転させることにより、窒素酸化物イオン又は窒素還
元物イオンと、水の電気分解で生じる水素又は酸素との
酸化還元反応効率を高めることができる。
As described above, according to the method and apparatus for electrolytically treating nitrogen compound-containing water according to one embodiment of the present invention, at least one of the anode and the cathode is provided with a solid activated carbon electrode having electrical conductivity. By inverting the polarity of the voltage applied to the electrode, the oxidation-reduction reaction efficiency between nitrogen oxide ions or nitrogen reductant ions and hydrogen or oxygen generated by electrolysis of water can be increased.

【0037】また、印加電圧の極性の反転により、過酸
化や過還元が起こった場合でも、処理水をイオン交換膜
で遮られた電解槽室間で移送させる必要がなくなり、電
解処理装置の構造を簡略化することができ、コストの低
減を図ることができる。更に、固体状活性炭電極を採用
することにより、電極の面積を著しく増大させることが
できるため、電解処理の効率をより高めることができ
る。
In addition, even when peroxidation or overreduction occurs due to the reversal of the polarity of the applied voltage, there is no need to transfer the treated water between the electrolytic cell chambers shielded by the ion exchange membrane. Can be simplified, and the cost can be reduced. Further, by employing a solid activated carbon electrode, the area of the electrode can be significantly increased, and thus the efficiency of the electrolytic treatment can be further increased.

【0038】なお、上記説明では、処理水に含まれる窒
素化合物イオンを除去する場合について記載したが、本
発明は上記実施の形態に限定されるものではなく、電気
分解によって処理可能な他の不純物イオンを除去する場
合に適用することができる。また、はじめに電極へのイ
オンの吸着を行い、次に水の電気分解およびイオンの酸
化・還元反応を行ったが、最初に水の電気分解を行って
酸素や水素を発生させてもよく、はじめに印加する直流
電圧の極性は、上述と逆であっても何ら問題がないこと
は言うまでもない。
In the above description, the case where the nitrogen compound ions contained in the treated water are removed has been described. However, the present invention is not limited to the above embodiment, and other impurities which can be treated by electrolysis can be used. It can be applied when removing ions. In addition, first, ions were adsorbed to the electrodes, and then electrolysis of water and oxidation / reduction reactions of ions were performed. However, electrolysis of water may be performed first to generate oxygen or hydrogen. It goes without saying that there is no problem even if the polarity of the applied DC voltage is opposite to that described above.

【0039】更に、酸化還元反応時における直流電源9
の電圧は、酸化還元電流が変化しても一定となるよう、
すなわち定電圧動作としてもよいし、電流値が一定とな
るよう定電流動作としてもよい。定電流動作を用いた場
合には、反応が進みイオン濃度が減少すると電圧が上昇
することを利用して、反応がほぼ完了する時点を電圧変
化でモニターできるという利点がある。
Further, the DC power supply 9 during the oxidation-reduction reaction
Voltage is constant so that the redox current changes,
That is, it may be a constant voltage operation or a constant current operation so that the current value is constant. When the constant current operation is used, there is an advantage that the point at which the reaction is almost completed can be monitored by a change in voltage by utilizing the fact that the voltage increases when the reaction proceeds and the ion concentration decreases.

【0040】[0040]

【実施例】上記した本発明の実施の形態についてさらに
詳細に説明すべく、本発明の実施例について具体的に説
明する。
EXAMPLES In order to describe the above-described embodiment of the present invention in more detail, examples of the present invention will be specifically described.

【0041】[実施例1]本発明の第1の実施例では、
電極1〜4として活性炭とポリアセン構造を有する炭素
による炭素複合材(鐘紡製、商品名ベルパール)を固体
状活性炭に用いて、図1に示す電解処理装置を製作し
た。この炭素複合材の比表面積は1500m /g、抵抗
率は0.12Ωcmであった。また、全電極面積は28cm
とした。被処理水7として液温25℃、100mg/Lの
KNO溶液を100mL電解槽6に注入した。
[Embodiment 1] In the first embodiment of the present invention,
Activated carbon and carbon having a polyacene structure as electrodes 1-4
Solid carbon composite (Kanebo, trade name Bellpearl)
Electrolytic treatment device shown in Fig. 1
Was. The specific surface area of this carbon composite material is 1500 m 2/ g, resistance
The rate was 0.12 Ωcm. The total electrode area is 28cm
2And The water to be treated 7 has a liquid temperature of 25 ° C. and 100 mg / L.
KNO3The solution was injected into the 100 mL electrolytic cell 6.

【0042】そして、はじめに、電極1および3を正
極、電極2および4を負極として、10Vの電圧を印加
し、それぞれの電極表面にイオンを吸着させた。つい
で、電源電圧を10Vに保持したまま、電極の極性を反
転させ、電流密度0.8〜3.0mA/cmの条件で12
0分間電解処理した。この時の硝酸イオン濃度を図2に
示す。図2から分かるように、1回の電極極性反転によ
るイオン吸着−酸化還元プロセスで、約70%の硝酸イ
オンを除去することができ、本発明の効果を実証するこ
とができた。
First, a voltage of 10 V was applied with the electrodes 1 and 3 as positive electrodes and the electrodes 2 and 4 as negative electrodes, and ions were adsorbed on the respective electrode surfaces. Then, while maintaining the power supply voltage at 10 V, the polarity of the electrode was inverted, and the current density was adjusted to 0.8 to 3.0 mA / cm 2 for 12 minutes.
Electrolyzed for 0 minutes. FIG. 2 shows the nitrate ion concentration at this time. As can be seen from FIG. 2, about 70% of nitrate ions could be removed by one ion adsorption-redox process by reversing the polarity of the electrode, thereby demonstrating the effect of the present invention.

【0043】[実施例2]本発明の第2の実施例では、
繊維状活性炭にフェノール系樹脂からなるバインダーを
混合・焼成して得られた固体状活性炭(比表面積:11
50m/cm、抵抗率:0.5Ωcm)の表面に、スパッタ
法により白金を約100オングストローム(10nm)
成膜したものを電極1〜4として用いた。この電極表面
を走査型電子顕微鏡で観察したところ、白金は電極表面
に島状に成長しており、その表面被覆率は10%未満で
あった。
Embodiment 2 In the second embodiment of the present invention,
Solid activated carbon (specific surface area: 11) obtained by mixing and firing a binder made of phenolic resin with fibrous activated carbon
50 m 2 / cm, resistivity: 0.5 Ωcm), about 100 angstrom (10 nm) of platinum by sputtering.
The films formed were used as electrodes 1 to 4. Observation of this electrode surface with a scanning electron microscope revealed that platinum had grown in an island shape on the electrode surface, and its surface coverage was less than 10%.

【0044】この電極1〜4を用いて、第1の実施例と
同じ装置、同じ条件で電解処理を行ったところ、82%
の硝酸イオン除去率が得られ、触媒を固体状活性炭電極
表面に被覆することにより、電解処理の効率が増加する
ことを確認した。
Electrolysis was performed using the electrodes 1 to 4 in the same apparatus and under the same conditions as in the first embodiment.
It was confirmed that nitrate ion removal rate was obtained, and the efficiency of the electrolytic treatment was increased by coating the catalyst on the surface of the solid activated carbon electrode.

【0045】[実施例3]本発明の第3の実施例では、
被処理水7中の窒素濃度をより効率的に減少させるため
に、第1の実施例と同じ電極1〜4を使用し、電極極性
反転によるイオン吸着−酸化還元プロセスを3回繰り返
し行った。その結果を図3に示す。図3から分かるよう
に、反応時間120分後に硝酸イオンとして90%以上
の除去率が得られ、極性の反転を繰り返すことによっ
て、窒素化合物の処理効果が増大することを確認した。
Embodiment 3 In the third embodiment of the present invention,
In order to more efficiently reduce the nitrogen concentration in the water to be treated 7, the same electrodes 1 to 4 as in the first embodiment were used, and the ion adsorption-redox process by reversing the electrode polarity was repeated three times. The result is shown in FIG. As can be seen from FIG. 3, a removal rate of 90% or more as nitrate ions was obtained after a reaction time of 120 minutes, and it was confirmed that the effect of treating the nitrogen compound was increased by repeating the reversal of the polarity.

【0046】[実施例4]本発明の第4の実施例では、
被処理水7中の窒素濃度をより効率的に減少させるため
に、電極1〜4の間に陽イオン交換膜11〜13を設け
た処理装置を作製した。その概略構成を図4に示す。本
処理装置では、固体状活性炭電極として、比表面積80
0m/cm、抵抗率0.2Ωcmの不織布を用いた。他の条
件を第1の実施例と同様にして電解処理を行ったとこ
ろ、硝酸イオン濃度として約70%の除去率が得られ
た。
[Embodiment 4] In the fourth embodiment of the present invention,
In order to more efficiently reduce the nitrogen concentration in the water 7 to be treated, a treatment apparatus in which cation exchange membranes 11 to 13 were provided between the electrodes 1 to 4 was manufactured. FIG. 4 shows a schematic configuration thereof. In this treatment apparatus, the solid activated carbon electrode has a specific surface area of 80.
A nonwoven fabric having 0 m 2 / cm and a resistivity of 0.2 Ωcm was used. When the electrolytic treatment was performed under the same conditions as in the first embodiment, a removal rate of about 70% was obtained as the nitrate ion concentration.

【0047】[0047]

【発明の効果】以上説明したように、本発明の窒素化合
物含有水の電解処理方法および処理装置によれば、陽極
又は陰極の少なくとも一方に電気伝導性を有する固体状
活性炭電極を用い、極性切り替え手段によって電極に印
加する電圧の極性を反転させることにより、窒素酸化物
イオン又は窒素還元物イオンと、水の電気分解で生じる
水素又は酸素との酸化還元反応の効率を高めることがで
きる。
As described above, according to the method and apparatus for electrolytically treating nitrogen compound-containing water of the present invention, at least one of the anode and the cathode uses a solid activated carbon electrode having electrical conductivity, and the polarity is switched. By inverting the polarity of the voltage applied to the electrode by the means, the efficiency of the oxidation-reduction reaction between nitrogen oxide ions or nitrogen reductant ions and hydrogen or oxygen generated by the electrolysis of water can be increased.

【0048】また、印加電圧の極性の反転により、過酸
化や過還元が起こった場合でも、処理水をイオン交換膜
で遮られた電解槽室間で移送させる必要がなくなり、電
解処理装置の構造を簡略化、コストの低減を図ることが
でき、更に、電極として固体状活性炭電極を採用するこ
とにより、電極の表面積を著しく増大させることがで
き、電解処理の効率をより高めることができる。
In addition, even if peroxidation or overreduction occurs due to the reversal of the polarity of the applied voltage, there is no need to transfer the treated water between the electrolytic cell chambers shielded by the ion exchange membrane. Can be simplified and the cost can be reduced. Further, by employing a solid activated carbon electrode as the electrode, the surface area of the electrode can be significantly increased, and the efficiency of the electrolytic treatment can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解処理装置の概略構成を示す図であ
る。
FIG. 1 is a diagram showing a schematic configuration of an electrolytic processing apparatus of the present invention.

【図2】本発明の第1の実施例の効果を説明するための
図であり、電解槽内の被処理水中の硝酸イオン濃度の経
時変化を示すグラフである。
FIG. 2 is a diagram for explaining an effect of the first embodiment of the present invention, and is a graph showing a temporal change of a nitrate ion concentration in water to be treated in an electrolytic cell.

【図3】本発明の第3の実施例の効果を説明するための
図であり、電解槽内の被処理水中の硝酸イオン濃度の経
時変化を示すグラフ。
FIG. 3 is a graph for explaining the effect of the third embodiment of the present invention, and is a graph showing a change with time of a nitrate ion concentration in water to be treated in an electrolytic cell.

【図4】本発明の第4の実施例に係る電解処理装置の概
略構成を示す図である。
FIG. 4 is a diagram showing a schematic configuration of an electrolytic processing apparatus according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、2、3、4 固体活性炭電極 5 電解液 6 電解槽 6a〜6d 電解槽室(陰極室または陽極室) 7 被処理水 8 還元または酸化された処理水 9 直流電源 10a〜10f 直流電源の極性切り替えスイッチの接
点 11、12、13 陽イオン交換膜
1, 2, 3, 4 Solid activated carbon electrode 5 Electrolyte 6 Electrolyzer 6a to 6d Electrolyzer chamber (cathode chamber or anode chamber) 7 Water to be treated 8 Reduced or oxidized treated water 9 DC power supply 10a to 10f DC power supply Contact of polarity change switch 11, 12, 13 Cation exchange membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋藤 貴之 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 菅沼 徹 神奈川県川崎市中原区下沼部1933番地10 日本電気環境エンジニアリング株式会社内 (72)発明者 浅井 裕一 神奈川県川崎市中原区下沼部1933番地10 日本電気環境エンジニアリング株式会社内 Fターム(参考) 4D061 DA08 DB19 DC14 DC15 EA02 EA03 EA04 EB02 EB05 EB13 EB14 EB20 EB29 EB30 EB35 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takayuki Saito 5-7-1 Shiba, Minato-ku, Tokyo Within NEC Corporation (72) Inventor Toru Suganuma 1933-1033 Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa NEC Within Environmental Engineering Co., Ltd. (72) Inventor Yuichi Asai 1933-10 Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa F-term within NEC Environmental Engineering Co., Ltd. 4D061 DA08 DB19 DC14 DC15 EA02 EA03 EA04 EB02 EB05 EB13 EB14 EB20 EB29 EB30 EB35

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】電気分解を利用して、被処理水に含有され
る不純物イオンを酸化もしくは還元して除去する電解処
理方法において、 対向する電極間に印加する電圧の極性を一回以上反転し
て、各々の電極に吸着した前記不純物イオンと水の電気
分解により生じた水素又は酸素とを反応させることを特
徴とする電解処理方法。
In an electrolytic treatment method for removing impurity ions contained in water to be treated by oxidation or reduction by utilizing electrolysis, the polarity of a voltage applied between opposed electrodes is inverted at least once. And reacting the impurity ions adsorbed on each electrode with hydrogen or oxygen generated by electrolysis of water.
【請求項2】被処理水を電気分解により酸化もしくは還
元処理して、前記被処理水に含有される窒素化合物イオ
ンを除去する電解処理方法において、 対向する電極間に印加する電圧の極性を一回以上反転し
て、前記被処理水中の窒素酸化物を還元、ないしは窒素
還元物を酸化し、窒素ガスとして除去することを特徴と
する電解処理方法。
2. An electrolytic treatment method for oxidizing or reducing water to be treated by electrolysis to remove nitrogen compound ions contained in the water to be treated, wherein the polarity of a voltage applied between opposed electrodes is one. An electrolytic treatment method characterized by reducing the nitrogen oxides in the water to be treated or oxidizing the reduced nitrogen products and removing them as nitrogen gas by inverting the treated water at least once.
【請求項3】前記対向する電極の少なくとも一方が、電
気伝導性を有する固体状活性炭を含むことを特徴とする
請求項1又は2に記載の電解処理方法。
3. The electrolytic processing method according to claim 1, wherein at least one of the opposing electrodes contains solid activated carbon having electrical conductivity.
【請求項4】前記対向する電極に印加する電圧を、前記
電極にイオンが吸着可能な電圧と、水の電気分解が生じ
る電圧との間で変化させることを特徴とする請求項1乃
至3のいずれか一に記載の電解処理方法。
4. The method according to claim 1, wherein the voltage applied to the opposite electrode is changed between a voltage at which ions can be adsorbed on the electrode and a voltage at which water electrolysis occurs. The electrolytic treatment method according to any one of the above.
【請求項5】前記窒素酸化物が、硝酸イオン又は亜硝酸
イオンからなる負イオンを含むことを特徴とする請求項
2乃至4のいずれか一に記載の電解処理方法。
5. The electrolytic processing method according to claim 2, wherein the nitrogen oxide contains a negative ion composed of a nitrate ion or a nitrite ion.
【請求項6】前記窒素還元物が、アンモニウムイオンか
らなる正イオンを含むことを特徴とする請求項2乃至4
のいずれか一に記載の電解処理方法。
6. A method according to claim 2, wherein said nitrogen reduced product contains a positive ion comprising an ammonium ion.
The electrolytic treatment method according to any one of the above.
【請求項7】不純物イオンを含有する被処理水を電解槽
に注入する手段と、前記電解槽中に配設された対向する
電極に所定の電圧を印加する手段と、電解処理を行った
前記被処理水を排出する手段とを少なくとも有する電解
処理装置において、 前記電解処理装置に、更に、前記対向する電極に印加す
る電圧の極性を切り替える手段を備え、該切り替え手段
により印加電圧の極性を一回以上反転させることによ
り、各々の電極に吸着した前記不純物イオンと水の電気
分解により生じた水素又は酸素とが反応し、前記被処理
水中の前記不純物イオンが除去されることを特徴とする
電解処理装置。
7. A means for injecting water to be treated containing impurity ions into an electrolytic cell, a means for applying a predetermined voltage to opposing electrodes provided in the electrolytic cell, and a means for performing the electrolytic treatment. An electrolyzing apparatus having at least means for discharging water to be treated, wherein the electrolyzing apparatus further comprises means for switching the polarity of the voltage applied to the opposed electrode, and the switching means sets the polarity of the applied voltage to one. By performing the inversion more than once, the impurity ions adsorbed on each electrode react with hydrogen or oxygen generated by electrolysis of water, and the impurity ions in the water to be treated are removed. Processing equipment.
【請求項8】窒素化合物を含有する被処理水を電解槽に
注入する手段と、前記電解槽中に配設された対向する電
極に所定の電圧を印加する手段と、電解処理を行った前
記被処理水を排出する手段とを少なくとも有する電解処
理装置において、 前記電解処理装置に、更に、前記対向する電極に印加す
る電圧の極性を切り替える手段を備え、該切り替え手段
により印加電圧の極性を一回以上反転させることによ
り、前記被処理水中の窒素酸化物が還元、ないしは窒素
還元物が酸化され、窒素ガスとして除去されることを特
徴とする電解処理装置。
8. A means for injecting water to be treated containing a nitrogen compound into an electrolytic cell, means for applying a predetermined voltage to opposing electrodes provided in the electrolytic cell, and means for performing the electrolytic treatment. An electrolyzing apparatus having at least means for discharging water to be treated, wherein the electrolyzing apparatus further comprises means for switching the polarity of the voltage applied to the opposed electrode, and the switching means sets the polarity of the applied voltage to one. An electrolytic treatment apparatus characterized in that the nitrogen oxides in the water to be treated are reduced or the nitrogen reduced product is oxidized and removed as nitrogen gas by inverting the treated water more than once.
【請求項9】前記対向する電極の少なくとも一方が、電
気伝導性を有する固体状活性炭を含むことを特徴とする
請求項7又は8に記載の電解処理方法。
9. The electrolytic processing method according to claim 7, wherein at least one of the opposing electrodes contains a solid activated carbon having electrical conductivity.
【請求項10】前記固体状活性炭電極が、活性炭粉末な
いしは繊維状活性炭と、有機系ないしは無機系バインダ
ーとを混合した後、焼成して形成された炭素複合材を含
むことを特徴とする請求項9記載の電解処理装置。
10. The solid activated carbon electrode contains a carbon composite material formed by mixing activated carbon powder or fibrous activated carbon with an organic or inorganic binder and then firing. An electrolytic processing apparatus according to claim 9.
【請求項11】前記固体状活性炭電極が、活性炭粉末な
いしは繊維状活性炭と、ポリアセン構造を有する炭素と
の炭素複合材を含むことを特徴とする請求項9記載の電
解処理装置。
11. The electrolytic processing apparatus according to claim 9, wherein said solid activated carbon electrode includes a carbon composite material of activated carbon powder or fibrous activated carbon and carbon having a polyacene structure.
【請求項12】前記固体状活性状炭電極が、活性炭繊維
を含むことを特徴とする請求項9記載の電解処理装置。
12. The electrolytic treatment apparatus according to claim 9, wherein said solid activated carbon electrode contains activated carbon fibers.
【請求項13】前記固体状活性炭電極が、活性炭粉末な
いしは繊維状活性炭と、樹脂繊維を混合、抄紙して得ら
れた不織布とを含むことを特徴とする請求項9記載の電
解処理装置。
13. The electrolytic treatment apparatus according to claim 9, wherein said solid activated carbon electrode includes activated carbon powder or fibrous activated carbon, and a non-woven fabric obtained by mixing and making resin fibers.
【請求項14】前記固体状活性炭電極の抵抗率が、1Ω
cm以下であることを特徴とする請求項9乃至13のい
ずれか一に記載の電解処理装置。
14. The solid activated carbon electrode has a resistivity of 1 Ω.
The electrolytic treatment apparatus according to any one of claims 9 to 13, wherein the diameter is not more than cm.
【請求項15】前記固体状活性炭電極の比表面積が、1
00m/g以上であることを特徴とする請求項9乃至
14のいずれか一に記載の電解処理装置。
15. The specific activated carbon electrode having a specific surface area of 1
Electrolytic processing apparatus according to any one of claims 9 to 14, characterized in that 00m 2 / g or more.
【請求項16】前記固体状活性炭電極の表面の少なくと
も一部に、白金、金、銀、イリジウム、パラジウム、ロ
ジウム、ルテニウム、オスミウムの少なくとも一種類の
金属が被覆あるいは担持されていることを特徴とする請
求項9乃至15のいずれか一に記載の電解処理装置。
16. The solid activated carbon electrode is characterized in that at least a part of the surface of the solid activated carbon electrode is coated or supported with at least one metal selected from platinum, gold, silver, iridium, palladium, rhodium, ruthenium and osmium. The electrolytic processing apparatus according to any one of claims 9 to 15, wherein:
JP2001022135A 2001-01-30 2001-01-30 Electrolytic treatment method and system Withdrawn JP2002219464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022135A JP2002219464A (en) 2001-01-30 2001-01-30 Electrolytic treatment method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022135A JP2002219464A (en) 2001-01-30 2001-01-30 Electrolytic treatment method and system

Publications (1)

Publication Number Publication Date
JP2002219464A true JP2002219464A (en) 2002-08-06

Family

ID=18887586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022135A Withdrawn JP2002219464A (en) 2001-01-30 2001-01-30 Electrolytic treatment method and system

Country Status (1)

Country Link
JP (1) JP2002219464A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006326403A (en) * 2005-05-23 2006-12-07 National Institute Of Advanced Industrial & Technology Method and apparatus for treating water by using porous carbon electrode
JP2007521402A (en) * 2003-12-31 2007-08-02 ザ・ビーオーシー・グループ・インコーポレーテッド Method for treating metal-containing solution
JP2012094461A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Fuel cell system and operation method thereof
WO2013028757A1 (en) * 2011-08-22 2013-02-28 Zbb Energy Corporation Reversible polarity operation and switching method for znbr flow battery connected to a common dc bus
WO2013085022A1 (en) * 2011-12-09 2013-06-13 パナソニック株式会社 Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus
KR20140027649A (en) * 2012-08-27 2014-03-07 한국전력공사 Method for electrochemical water treatment using carbon electrodes and system thereof
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
WO2015076123A1 (en) * 2013-11-19 2015-05-28 ユニチカ株式会社 Deionizing sheet for use in electrode in flow-through-type capacitor
US9577242B2 (en) 2011-08-22 2017-02-21 Ensync, Inc. Internal header flow divider for uniform electrolyte distribution
US20210139351A1 (en) * 2017-03-06 2021-05-13 Evoqua Water Technologies Llc Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521402A (en) * 2003-12-31 2007-08-02 ザ・ビーオーシー・グループ・インコーポレーテッド Method for treating metal-containing solution
JP2006326403A (en) * 2005-05-23 2006-12-07 National Institute Of Advanced Industrial & Technology Method and apparatus for treating water by using porous carbon electrode
JP4553199B2 (en) * 2005-05-23 2010-09-29 独立行政法人産業技術総合研究所 Water treatment method and apparatus using porous carbon electrode
US9570753B2 (en) 2009-01-16 2017-02-14 Ensync, Inc. Reversible polarity operation and switching method for ZnBr flow battery when connected to common DC bus
JP2012094461A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Fuel cell system and operation method thereof
WO2013028757A1 (en) * 2011-08-22 2013-02-28 Zbb Energy Corporation Reversible polarity operation and switching method for znbr flow battery connected to a common dc bus
US9577242B2 (en) 2011-08-22 2017-02-21 Ensync, Inc. Internal header flow divider for uniform electrolyte distribution
JP5655161B2 (en) * 2011-12-09 2015-01-14 パナソニック株式会社 Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus
WO2013085022A1 (en) * 2011-12-09 2013-06-13 パナソニック株式会社 Nitrate reduction method, nitrate reduction catalyst, nitrate reduction electrode, fuel cell, and water treatment apparatus
KR20140027649A (en) * 2012-08-27 2014-03-07 한국전력공사 Method for electrochemical water treatment using carbon electrodes and system thereof
KR101914027B1 (en) * 2012-08-27 2019-01-14 한국전력공사 Method for electrochemical water treatment using carbon electrodes and system thereof
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
WO2015076123A1 (en) * 2013-11-19 2015-05-28 ユニチカ株式会社 Deionizing sheet for use in electrode in flow-through-type capacitor
US20210139351A1 (en) * 2017-03-06 2021-05-13 Evoqua Water Technologies Llc Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation
US11795074B2 (en) 2017-03-06 2023-10-24 Evoqua Water Technologies Llc Half-cell electrochemical configurations for self-cleaning electrochlorination devices
US11802063B2 (en) * 2017-03-06 2023-10-31 Evoqua Water Technologies Llc Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation

Similar Documents

Publication Publication Date Title
JP4116726B2 (en) Electrochemical treatment method and apparatus
JP3859358B2 (en) Electrolyzed water production equipment
EP2925677B1 (en) Efficient treatment of wastewater using electrochemical cell
Sun et al. Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO2 anode: Optimization and mechanism
Wang et al. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater
US5894077A (en) Radioactive effluent treatment
US20120024719A1 (en) Removal of metals from water
JP5764474B2 (en) Electrolytic synthesis apparatus, electrolytic treatment apparatus, electrolytic synthesis method, and electrolytic treatment method
Nabizadeh Chianeh et al. Decolorization of azo dye CI Acid Red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodes
GB2490913A (en) A method for producing ozone from an electrochemical cell where the electrodes can be cleaned through reversing the electrode polarity
JP2002219464A (en) Electrolytic treatment method and system
CN114504952B (en) Double-sided conductive film filter assembly and water purifying method
Liu et al. Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes
CN106830204B (en) Method and device for degrading pollutants in water by exciting permanganate through electrochemical cathode
CN114671495B (en) Preparation method and application of high-activity stable anode material
JP4782793B2 (en) Improved COD removal method for electrochemical oxidation
JP3493242B2 (en) Method and apparatus for electrochemical recovery of nitrate
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP3324943B2 (en) Equipment for producing water for cleaning glass substrates or silicon substrates
KR101879152B1 (en) Anode, manufacturing method thereof, and electrolysis apparatus comprising the same
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
JP3673000B2 (en) Electrolyzer for electrolyzed water production
Weinberg Electrosynthesis technology

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401