Nothing Special   »   [go: up one dir, main page]

JP2002212198A - Method for separating nucleic acid and carrier for separating nucleic acid - Google Patents

Method for separating nucleic acid and carrier for separating nucleic acid

Info

Publication number
JP2002212198A
JP2002212198A JP2001006367A JP2001006367A JP2002212198A JP 2002212198 A JP2002212198 A JP 2002212198A JP 2001006367 A JP2001006367 A JP 2001006367A JP 2001006367 A JP2001006367 A JP 2001006367A JP 2002212198 A JP2002212198 A JP 2002212198A
Authority
JP
Japan
Prior art keywords
nucleic acid
solid phase
nucleic acids
water
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001006367A
Other languages
Japanese (ja)
Inventor
Kakun Han
可君 范
Mitsuhiro Murata
充弘 村田
Ikuno Higa
郁乃 比嘉
Mikio Hikata
幹雄 日方
Kouei Satou
功栄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2001006367A priority Critical patent/JP2002212198A/en
Publication of JP2002212198A publication Critical patent/JP2002212198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for rapidly and simply separating a high-purity nucleic acid in a large amount from a sample containing the nucleic acid and to obtain a solid phase used for the separation. SOLUTION: This method for separating the nucleic acid from the sample is characterized by bringing the sample containing the nucleic acid into contact with a water-insoluble solid phase having unevennesses on the surface in the presence of a water-soluble organic solvent, adsorbing the nucleic acid on the solid phase and thereby separating the nucleic acid from the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、核酸を含有する試
料から、迅速、簡便に高純度核酸を大量に分離する方法
およびこの分離に用いる固体相に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for rapidly and simply separating a large amount of high-purity nucleic acid from a nucleic acid-containing sample and a solid phase used for the separation.

【0002】[0002]

【従来の技術】核酸を含有する試料から核酸を得る方法
としては、フェノール・クロロホルム抽出法が古くから
利用されてきた。この方法はフェノール・クロロホルム
を用いて蛋白質、脂質等の水難溶性検体成分を変性、溶
解、または沈殿させ、核酸を水相に溶解する溶解度の違
いを利用する。また、有毒な有機溶媒を使用せず、カオ
トロピック溶液を利用して蛋白質、脂質等の夾雑物を水
相に可溶化し、核酸をシリカビーズに吸着させて、固相
で回収した後、核酸を水相に回収するBoom法などが知ら
れている。しかし、それらの方法では、抽出された核酸
をポリメラーゼ連鎖反応(PCR)の鋳型として使用す
る場合、または制限酵素で消化する場合、核酸溶液に残
存するフェノール・クロロホルムやカオトロピックイオ
ンにより、酵素反応が阻害されることがある。その場
合、エタノール沈殿や限外ろ過、カラムクロマトグラフ
ィー等より核酸の再度精製を施す必要があった。また、
フェノール・クロロホルムが有毒のため、使用場所、実
験設備の制限があり、かつ、数回も要する遠心分離のた
め、機械化での対応が難しかった。また、カオトロピッ
ク溶液とシリカ固体相を用いる方法では、処理できる検
体量が1ml未満であり、検体の容量が増えれば、回収さ
れる核酸純度が著しく低下する傾向にある。これは使用
するシリカ固体相の吸着能に起因する。シリカ固体相の
表面積を増やせば、カオトロピックイオンの残存量も固
体相の容量と共に増えるので、有効な回避策にはならな
い。また、特開平8−173159に示された様に、核
酸を含有する溶解物にカチオン性の高分子であるポリエ
チレンイミンを添加して、核酸との水不溶性の塩を形成
させ、沈殿物を回収する方法が提案されているが、この
方法では、沈殿物から核酸を回収する方法として、水酸
化ナトリウム溶液などの強塩基性溶液を沈殿に加えてポ
リエチレンイミンと核酸とを解離させる操作、ポリエチ
レンイミンと核酸との再結合を防ぐためにアニオン界面
活性剤の溶液を添加する操作、溶液のpHを中和する操作
が必要であり、簡便であるとは言い難い。また、水酸化
ナトリウム溶液などのアルカリの添加は核酸の加水分解
を招く危険があり、さらに、混在するポリエチレンイミ
ン、アニオン界面活性剤はPCR反応などの酵素反応を阻
害するが、除去することが困難であり、PCR反応に供す
る場合には、その阻害効果が無視できるまで希釈する必
要があるが、核酸含量が少ない場合はその検出を妨げか
ねなかった。また、核酸含有溶液をエタノール溶液で沈
殿し、ガラス棒で巻き取ることも古く知られている(例
えば、阿南功一編 基礎生化学実験法-2 丸善 1974)。
この方法はガラスと核酸の親和性に基づく因子もある
が、より決定的な要素は核酸沈殿物によるガラス棒への
物理的な、幾何学的な絡み合いが強い。つまり、核酸の
沈殿量が少ないとき、または、沈殿するほどの核酸量が
ないとき、同じエタノール溶液に核酸があっても、ガラ
ス棒による核酸の巻き取りはできない。核酸とガラス棒
の親和性が低い故に、巻き取った核酸の純度が低く、核
酸以外の蛋白質等の混入が見られるため、実質的な応用
はできなかった。
2. Description of the Related Art As a method for obtaining a nucleic acid from a sample containing the nucleic acid, a phenol / chloroform extraction method has been used for a long time. This method uses phenol / chloroform to denature, dissolve, or precipitate poorly water-soluble analyte components such as proteins and lipids, and uses the difference in solubility to dissolve nucleic acids in an aqueous phase. Also, without using toxic organic solvents, solutes such as proteins and lipids are solubilized in the aqueous phase using a chaotropic solution, the nucleic acids are adsorbed on silica beads, and the nucleic acids are collected in a solid phase. The Boom method of recovering in the aqueous phase is known. However, in these methods, when the extracted nucleic acid is used as a template for polymerase chain reaction (PCR) or when digested with a restriction enzyme, the enzyme reaction is inhibited by phenol / chloroform or chaotropic ions remaining in the nucleic acid solution. May be done. In that case, it was necessary to purify the nucleic acid again by ethanol precipitation, ultrafiltration, column chromatography or the like. Also,
Since phenol and chloroform are toxic, there are restrictions on the place of use and experimental equipment, and centrifugation, which requires several times, has made it difficult to cope with mechanization. Further, in the method using a chaotropic solution and a silica solid phase, the amount of a specimen that can be treated is less than 1 ml, and as the volume of the specimen increases, the purity of the recovered nucleic acid tends to be significantly reduced. This is due to the adsorption capacity of the silica solid phase used. Increasing the surface area of the silica solid phase is not an effective workaround because the residual amount of chaotropic ions increases with the capacity of the solid phase. As shown in JP-A-8-173159, a cationic polymer, polyethyleneimine, is added to a nucleic acid-containing lysate to form a water-insoluble salt with the nucleic acid, and the precipitate is recovered. In this method, as a method for recovering nucleic acid from the precipitate, an operation of adding a strongly basic solution such as sodium hydroxide solution to the precipitate to dissociate the polyethyleneimine and the nucleic acid, An operation of adding a solution of an anionic surfactant and an operation of neutralizing the pH of the solution are required in order to prevent recombination between the solution and the nucleic acid, and it is hardly simple. Also, the addition of an alkali such as a sodium hydroxide solution may cause hydrolysis of nucleic acids, and furthermore, mixed polyethyleneimine and anionic surfactants inhibit enzymatic reactions such as PCR, but are difficult to remove. When used in a PCR reaction, dilution must be performed until its inhibitory effect can be neglected. However, when the nucleic acid content is low, its detection may be hindered. It has long been known that a nucleic acid-containing solution is precipitated with an ethanol solution and wound up with a glass rod (for example, Koichi Anan, Basic Biochemistry Experimental Method-2, Maruzen 1974).
This method also has factors based on the affinity of the nucleic acid for glass and nucleic acid, but the more critical factor is the strong physical and geometric entanglement of the nucleic acid precipitate with the glass rod. That is, when the amount of precipitated nucleic acid is small, or when the amount of nucleic acid is not enough to precipitate, even if the nucleic acid is present in the same ethanol solution, the nucleic acid cannot be wound by the glass rod. Since the affinity between the nucleic acid and the glass rod is low, the purity of the wound nucleic acid is low, and contamination of proteins and the like other than the nucleic acid is observed.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来のフェノール
・クロロホルムのような有毒溶媒を使用せず、また、カオトロ
ピックのような腐食性試薬も使用せず、高純度核酸を迅
速、簡便、かつ自動化できる方法で血液、細胞、組織、
植物等のソースから大量に抽出、精製する手段を提供す
る。
SUMMARY OF THE INVENTION The present invention does not use a toxic solvent such as conventional phenol / chloroform and does not use a corrosive reagent such as chaotropic agent. Blood, cells, tissues,
A means for extracting and purifying a large amount from a source such as a plant is provided.

【0004】[0004]

【課題を解決するための手段】本発明は、水溶性有機溶
媒の存在下、核酸を含む試料と表面に凹凸を有する固体
相(以下、単に「固体相」という)とを接触させ、核酸
を前記固体相に吸着させることにより核酸を試料から分
離することを特徴とする核酸の分離方法を提供するもの
である。
According to the present invention, a nucleic acid-containing sample is brought into contact with a solid phase having irregularities on its surface (hereinafter simply referred to as "solid phase") in the presence of a water-soluble organic solvent to convert the nucleic acid. An object of the present invention is to provide a method for separating nucleic acids, comprising separating nucleic acids from a sample by causing the nucleic acids to adsorb to the solid phase.

【0005】本発明の固体相を形成する材料は水に不溶
であればよい。ここでいう水不溶性とは、具体的に水、
他のいかなる水可溶性組成を含む水溶液に溶解しない固
相を意味する。具体的に無機化合物、金属、金属酸化
物、有機化合物またはこれらを組み合わせた複合材料を
含む。無機化合物としては、ガラス、アルミナ、窒化珪
素など、金属としてはステンレス、ジルコニアなど、有
機化合物としてはポリスチレン、ポリプロピレン、ポリ
エチレン、ポリアミド、ポリメチルメタクリレートなど
のポリマーを挙げることができる。これらのなかでは有
機ポリマー、特にポリスチレンが好ましい。本発明の固
体相の表面凹凸は通常の表面粗さの最大高さ表現法で表
すと、その最大高さは0.005-100μmにあることが好ま
しい。最大高さが0.005μm未満または100μmを超える
と、核酸の初期析出物のサイズと合わず、効率的な核酸
抽出ができないため好ましくない。ここでいう最大高さ
とは、JIS規格(B0601)で定義されている表面粗さの表
現方法である。具体的には例えば、触針法で固体相表面
の粗さを測定し、得られた凹凸表面曲線の一部規準長さ
を選択し、その部分の最大凹凸部を含むように平行な2
直線を引き、この2直線の間隔を最大高さの値とするも
のである。本発明の固体相は使用する素材によって、表
面を凹凸化する方法が異なる。例えば、ガラスなどの無
機材料の場合、曇りガラスの製造方法であるフッ酸処理
をそのまま転用することができる。また、有機ポリマー
の場合、成形されたポリマー表面をサンドパーパーで研
磨する方法、または、研磨機にかける等の方法が利用で
きる。固体相表面に凹凸を持たせることにより、固体相
の比表面積を増やすことにもなる。本発明の固体相の形
状は粒子、チューブ、プレート、管、容器等が挙げら、
特に粒子が好ましい。粒子の形状としては、例えば球
形、立方形、楕円形、あるいは直方形等も用いることが
できる。本発明の固体相が粒子である場合、粒子のスト
ークス直径は通常0.01mm〜50mmであり、特に0.05〜15mm
が好ましい。粒子のストークス直径が0.01mm未満である
と、固体相の分散安定性が難しくなり、一方、50mmを超
えると、固体相のハンドリング、特に自動化におけるハ
ンドリングが現行機器での対応が困難となる。本発明で
いうストークス直径とは、固体相が粒子の場合の有効径
であり、球状以外の形状を持固体相の直径は、ストーク
ス法則に従って求められた直径を同一ストークス直径を
もつ球状担体の直径と見なした。
[0005] The material for forming the solid phase of the present invention may be insoluble in water. The term water-insoluble as used herein specifically refers to water,
A solid phase that does not dissolve in an aqueous solution containing any other water-soluble composition is meant. Specifically, it includes an inorganic compound, a metal, a metal oxide, an organic compound, or a composite material combining these. Examples of the inorganic compound include glass, alumina, silicon nitride, and the like; examples of the metal include stainless steel and zirconia; and examples of the organic compound include polymers such as polystyrene, polypropylene, polyethylene, polyamide, and polymethyl methacrylate. Of these, organic polymers, especially polystyrene, are preferred. When the surface roughness of the solid phase of the present invention is represented by a normal maximum expression method of surface roughness, the maximum height is preferably 0.005 to 100 μm. If the maximum height is less than 0.005 μm or exceeds 100 μm, the size does not match the size of the initial precipitate of nucleic acid, and efficient nucleic acid extraction cannot be performed. The maximum height is a method of expressing surface roughness defined in the JIS standard (B0601). Specifically, for example, the roughness of the solid phase surface is measured by a stylus method, a part of the obtained irregular surface curve is selected as a reference length, and the parallel two-dimensional length including the maximum irregular part of the part is selected.
A straight line is drawn, and the interval between the two straight lines is used as the maximum height value. In the solid phase of the present invention, the method of making the surface uneven is different depending on the material used. For example, in the case of an inorganic material such as glass, hydrofluoric acid treatment, which is a method for producing frosted glass, can be diverted as it is. In the case of an organic polymer, a method in which the surface of the formed polymer is polished with a sandper or a method in which the surface is polished is used. Providing the surface of the solid phase with irregularities also increases the specific surface area of the solid phase. The shape of the solid phase of the present invention includes particles, tubes, plates, tubes, containers and the like,
Particles are particularly preferred. As the shape of the particles, for example, a spherical shape, a cubic shape, an elliptical shape, a rectangular shape, or the like can be used. When the solid phase of the present invention is particles, the Stokes diameter of the particles is usually 0.01 mm to 50 mm, particularly 0.05 to 15 mm.
Is preferred. When the Stokes diameter of the particles is less than 0.01 mm, the dispersion stability of the solid phase becomes difficult. On the other hand, when the Stokes diameter exceeds 50 mm, handling of the solid phase, particularly in automation, becomes difficult with current equipment. The Stokes diameter in the present invention is an effective diameter when the solid phase is a particle, and the diameter of the solid phase having a shape other than spherical is the diameter of a spherical carrier having the same Stokes diameter as the diameter determined according to Stokes law. Was considered.

【0006】本発明において水溶性有機溶媒は、メタノ
ール、エタノール、プロパノール、プロパノール、イソ
プロパノール、ブタノール、2−ブタノールからなる群
から選択される。その中で特にエタノール、イソプロパ
ノールが好ましい。これら水溶性有機溶媒の核酸抽出時
の濃度は20〜99重量%、好ましくは40〜95重量%である。
また、必要に応じて、水溶性有機溶媒に塩、界面活性剤
などを添加しても良い。例えば、ナトリウム塩、カリウ
ム塩、マグネシウム塩、またはドテシルスルホン酸ナト
リウムが挙げられる。添加する塩の濃度は、0.1〜50m
M、特に0.5〜10mMであることがより好ましい。塩濃度が
0.1mM未満になると、添加塩の核酸析出効果が小さくな
り、0.50mMを超えると、核酸以外の水親和性の高い蛋白
質等の析出も引き起こすので好ましくない。また、界面
活性剤の濃度は0.01〜1重量%、特に0.05〜0.5重量%であ
ることがより好ましい。界面活性剤の濃度が0.01重量%
未満になると、疎水性蛋白質のミセル効果が弱くなり、
1重量%を超えると、界面活性剤の析出を引き起こすので
好ましくない。なお、上記塩および界面活性剤の濃度は
試料と水溶性有機溶媒との総量を基準としたものであ
る。
In the present invention, the water-soluble organic solvent is selected from the group consisting of methanol, ethanol, propanol, propanol, isopropanol, butanol and 2-butanol. Among them, ethanol and isopropanol are particularly preferred. The concentration of these water-soluble organic solvents at the time of nucleic acid extraction is 20 to 99% by weight, preferably 40 to 95% by weight.
If necessary, a salt, a surfactant and the like may be added to the water-soluble organic solvent. For example, a sodium salt, a potassium salt, a magnesium salt, or sodium dotesylsulfonate is used. The concentration of the salt to be added is 0.1-50m
M, particularly preferably 0.5 to 10 mM. Salt concentration
When the concentration is less than 0.1 mM, the effect of the added salt to precipitate nucleic acids is reduced, and when the concentration exceeds 0.50 mM, precipitation of proteins and the like having high water affinity other than nucleic acids is not preferred. Further, the concentration of the surfactant is preferably 0.01 to 1% by weight, more preferably 0.05 to 0.5% by weight. Surfactant concentration of 0.01% by weight
When it is less than the above, the micelle effect of the hydrophobic protein is weakened,
If it exceeds 1% by weight, precipitation of the surfactant is caused, which is not preferable. The concentrations of the salt and the surfactant are based on the total amount of the sample and the water-soluble organic solvent.

【0007】本発明の核酸を含む試料とは、血液、組
織、細胞培養液、細菌含有液からなる群から選ばれた検
体の細胞を溶解したものであり、具体的には、上記検体
から公知の方法で核酸含有細胞を分離する。例えば、血
液の場合、全血を遠心分離して、採取したパフィコート
(リンパ球より形成される層)を塩化アンモニアで溶血
した後、回収したリンパ球の細胞を溶解してから本発明
の試料として使用する。また、組織細胞を対象とする場
合に、それぞれの組織に適する公知の方法または市販キ
ットを使用することもできる。
[0007] The sample containing the nucleic acid of the present invention is obtained by lysing cells of a sample selected from the group consisting of blood, tissue, cell culture solution, and bacteria-containing solution. Nucleic acid-containing cells are separated by the method described above. For example, in the case of blood, the whole blood is centrifuged, the collected puffy coat (layer formed of lymphocytes) is hemolyzed with ammonia chloride, and the collected lymphocyte cells are lysed before being used as a sample of the present invention. use. In the case of targeting tissue cells, a known method or a commercially available kit suitable for each tissue can also be used.

【0008】細胞の溶解操作は、検体細胞の種類によっ
て異なるが、公知の適応方法を用いることができる。例
えば浸透圧を利用する細胞膜破壊方法、物理的なエネル
ギーを利用する超音波法、界面活性剤を利用するなどの
化学的方法またはこれらの組み合わせを利用しても良
い。特に化学的方法によっては、添加する試薬よっては
核酸とガラスの親和力に影響を与えるものもあるので、
アニオン系界面活性剤、特にドデシルスルホン酸ナトリ
ウムが好ましい。界面活性剤の濃度は0.1〜10重量、特
に0.25〜5重量%が好ましい。また、核酸と蛋白質の分離
度を上げるために、細胞溶解物を蛋白質分解酵素で処理
することもできる。また、DNAとRNAの区別をより完成度
の高いものにするために、DNA分解酵素またはRNA分解酵
素を用いてDNAまたはRNAの消化を行ってから残りのRNA
またはDNAの抽出を実施しもよい。
[0008] The operation of lysing the cells varies depending on the type of the specimen cells, but a known adaptation method can be used. For example, a cell membrane destruction method using osmotic pressure, an ultrasonic method using physical energy, a chemical method using a surfactant, or a combination thereof may be used. In particular, depending on the chemical method, some reagents may affect the affinity between nucleic acid and glass.
Anionic surfactants, especially sodium dodecyl sulfonate, are preferred. The concentration of the surfactant is preferably 0.1 to 10% by weight, particularly preferably 0.25 to 5% by weight. Further, in order to increase the degree of separation between nucleic acid and protein, the cell lysate can be treated with a protease. Also, in order to make the distinction between DNA and RNA more complete, digest the DNA or RNA with a DNAse or RNase and then use the remaining RNA.
Alternatively, DNA extraction may be performed.

【0009】本発明では、水溶性有機溶媒の存在下、核
酸を含む試料と固体相とを接触させることによって、核
酸が固体相に吸着される。核酸を含む試料、固体相およ
び水溶性有機溶媒の混合順については限定されない。固
体相は、その形状および表面粗さによって異なるが、ビ
ーズ状の場合、一般的に試料5mlにつき1〜20個程
度使用することができる。核酸の固体相への吸着に要す
る時間は、水溶性有機溶媒、核酸を含む試料および固体
相を混合後、通常0.5〜20分、好ましくは5〜15分であ
る。また、吸着温度は10〜60℃、好ましくは15〜40℃
である。特にゲノムのような長い核酸を抽出するとき、
吸着工程時間を長くすることが好ましい。吸着工程にお
いて反応液を攪拌する場合には、通常0.5〜20回転/分、
好ましくは1〜5回転/分の速度である。
In the present invention, the nucleic acid is adsorbed on the solid phase by bringing the sample containing the nucleic acid into contact with the solid phase in the presence of the water-soluble organic solvent. The mixing order of the sample containing the nucleic acid, the solid phase, and the water-soluble organic solvent is not limited. The solid phase varies depending on its shape and surface roughness, but in the case of beads, generally about 1 to 20 particles per 5 ml of sample can be used. The time required for adsorption of the nucleic acid to the solid phase is usually 0.5 to 20 minutes, preferably 5 to 15 minutes after mixing the water-soluble organic solvent, the sample containing the nucleic acid and the solid phase. The adsorption temperature is 10 to 60 ° C, preferably 15 to 40 ° C.
It is. Especially when extracting long nucleic acids such as genomes
It is preferable to lengthen the adsorption step time. When stirring the reaction solution in the adsorption step, usually 0.5 to 20 rotations / minute,
Preferably, the speed is 1 to 5 revolutions / minute.

【0010】核酸の固体相への吸着工程が終了後、反応
液から固体相を分離し、分離した固体相を洗浄する。洗
浄液としては、吸着工程で使用した水溶性有機溶媒と同
じ溶媒であっても、その他の水溶性有機溶媒であっても
よい。また、核酸の固体相への吸着が維持できるなら、
必要に応じて水溶性有機溶媒濃度を低くしても良い。
After the step of adsorbing the nucleic acid to the solid phase is completed, the solid phase is separated from the reaction solution, and the separated solid phase is washed. The washing liquid may be the same solvent as the water-soluble organic solvent used in the adsorption step, or may be another water-soluble organic solvent. Also, if the adsorption of nucleic acids to the solid phase can be maintained,
If necessary, the concentration of the water-soluble organic solvent may be reduced.

【0011】固体相に吸着した核酸は前記洗浄後、乾燥
する。乾燥温度は通常室温ないし60℃が好ましく、乾
燥時間は5〜20分であることが好ましい。ここで、乾燥
方法としては風乾が好ましい。乾燥した固体相に滅菌蒸
留水Tris-塩酸/EDTA緩衝液を加え、攪拌することで固体
相に吸着した核酸を液層に溶出することができる。
The nucleic acid adsorbed on the solid phase is dried after the washing. The drying temperature is usually preferably from room temperature to 60 ° C., and the drying time is preferably from 5 to 20 minutes. Here, air drying is preferable as the drying method. The nucleic acid adsorbed on the solid phase can be eluted into the liquid layer by adding sterile distilled water Tris-HCl / EDTA buffer to the dried solid phase and stirring.

【0012】本発明の実施において核酸量が少ない時
に、バッチ法の実施が好ましいが、核酸量が多いとき、
核酸抽出率を上げるために、カラム方式が好ましい。使
用する固体相の粒径は実施形態によって選ぶことができ
る。
In the practice of the present invention, when the amount of nucleic acid is small, it is preferable to carry out the batch method.
To increase the nucleic acid extraction rate, a column method is preferable. The particle size of the solid phase used can be selected according to the embodiment.

【0013】[0013]

【実施例】以下、本発明の実施例について説明するが、
本発明はこれら実施例に限定されるものではない。な
お、本実施例中、部および%は重量換算である。 実施例1 全血の試料の試料調製 ヘパリン入りの全血10mlを3000回転x10分で遠心
し、血漿と血球を分離した。血漿を除去した後、パフィ
コート2mlを回収した。2mlパフィコートに8mlの0.2M塩
化アモニウムを加え、ゆっくり2-3回攪拌した後、氷水
に10分静置し、溶血を行った。続いて3000回転x5分
でリンパ球沈殿を回収し、回収リンパ球をPBSで2回洗
浄した後、細胞をカウントしたところ、107/mlであっ
た。 リンパ球の細胞溶解 上記で採取したリンパ球200ulを取り、20mM Tris-HCl
(pH8)/0.2MNaCl/0.2%SDS/10mM CaCl2/0.1%proteinase K
溶液を同量200ulを加えて、軽く攪拌した後に、50℃で
1時間インキュベートし、核酸含有試料を得た。光学顕
微鏡で確認したところ、この操作により、リンパ球の残
骸が殆ど無くなり透明な均一溶液となった。 核酸の分離 上記で得た核酸含有試料200μlを含むチューブにエタ
ノール溶液500μlを加え、ストークス直径6mmのポリス
チレンビーズ(イムノケミカル社製、表面粗さの最大高
さ5μm)を3ヶ加えて、室温で10分ゆっくり回転攪
拌した。 続いて上澄を捨て、0.5mlの70%エタノー
ルを加え、3回上下攪拌してから、上澄を捨てた。ポリ
スチレンビーズをチューブ内で10間静置し、ポリスチ
レンビーズ周辺のエタノール溶液が蒸発したことを確認
してから、100μlのTE緩衝液を加え、室温で10分イン
キュベートし、核酸の溶出を行った。回収されたDNA量
を260nmの紫外吸光度(A260)から算出し、純度を260nmと
280nmの吸光度の比(A260/A280)、及び0.8%アガロースゲ
ル電気泳動で確認し、さらに回収したDNA1μgを0.
2単位の制限酵素HindIIIにより消化し、酵素処理後の
消化結果も電気泳動で確認した。
Hereinafter, embodiments of the present invention will be described.
The present invention is not limited to these examples. In the examples, parts and% are by weight. Example 1 Sample preparation of a sample of whole blood 10 ml of heparin-containing whole blood was centrifuged at 3000 rpm for 10 minutes to separate plasma and blood cells. After removing the plasma, 2 ml of puffy coat was collected. To 2 ml of puffy coat, 8 ml of 0.2 M amonium chloride was added, and the mixture was slowly stirred 2-3 times, and then left standing in ice water for 10 minutes to perform hemolysis. Subsequently lymphocytes precipitate was collected at 3000 rpm x5 minutes, after recovered lymphocytes were washed twice with PBS, and were counted cells was 10 7 / ml. Lysis of lymphocytes Take 200ul of lymphocytes collected above, and add 20mM Tris-HCl
(pH8) /0.2MNaCl/0.2%SDS/10mM CaCl2 / 0.1% proteinase K
After adding 200 ul of the same volume to the solution and gently stirring, the mixture was incubated at 50 ° C. for 1 hour to obtain a nucleic acid-containing sample. When confirmed by an optical microscope, this operation resulted in almost no debris of the lymphocytes and a transparent homogeneous solution. Separation of nucleic acid To a tube containing 200 μl of the nucleic acid-containing sample obtained above, 500 μl of an ethanol solution was added, and three polystyrene beads having a Stokes diameter of 6 mm (manufactured by Immunochemical Co., Ltd., maximum surface roughness of 5 μm) were added. The mixture was slowly rotated and stirred for 10 minutes. Subsequently, the supernatant was discarded, 0.5 ml of 70% ethanol was added, and the mixture was stirred up and down three times, and then the supernatant was discarded. The polystyrene beads were allowed to stand in the tube for 10 minutes, and after confirming that the ethanol solution around the polystyrene beads had evaporated, 100 μl of TE buffer was added, and the mixture was incubated at room temperature for 10 minutes to elute nucleic acids. The amount of recovered DNA was calculated from the ultraviolet absorbance at 260 nm (A260), and the purity was determined to be 260 nm.
The ratio of absorbance at 280 nm (A260 / A280) and 0.8% agarose gel electrophoresis were confirmed.
It was digested with 2 units of restriction enzyme HindIII, and the digestion results after the enzyme treatment were also confirmed by electrophoresis.

【0014】実施例2 実施例1において、実施例1エタノールのかわりにイ
ソプロプルアルコールを使用した以外の操作は実施例1
と全く同様に行った。回収されたDNA量を実施例1と
同様にして確認した。
Example 2 Example 1 was the same as Example 1 except that isopropyl alcohol was used instead of ethanol.
And went exactly the same. The amount of the recovered DNA was confirmed in the same manner as in Example 1.

【0015】実施例3 実施例1において、実施例1と同様の核酸含有試料を
200ulを含むチューブにプロパノール溶液500ulを加え、
直径10mmのアルミナボール(タキザワ理化社製、表面粗
さの最大高さ0.01μm )を1ヶ加えて、室温で10分
ゆっくり回転攪拌した以外は実験例1と全く同様に核酸
の分離を行った。回収されたDNA量を実施例1と同様
にして確認した。
Example 3 In Example 1, the same nucleic acid-containing sample as in Example 1 was used.
Add 500ul propanol solution to the tube containing 200ul,
A nucleic acid was separated in exactly the same manner as in Experimental Example 1 except that one alumina ball having a diameter of 10 mm (manufactured by Takizawa Rika Co., Ltd., maximum height of surface roughness: 0.01 μm) was added and the mixture was slowly rotated and stirred at room temperature for 10 minutes. . The amount of the recovered DNA was confirmed in the same manner as in Example 1.

【0016】実施例4 実施例1において実施例1で核酸含有試料200ulを含
むチューブにメタノール溶液2000ulを加え、直径20mmの
ジルコニアボール(ニッカドー社製、表面粗さの最大高
さ10μm )を1ヶ加えて、室温で10分ゆっくり回転
攪拌した以外は実験例1と全く同様に核酸の分離を行っ
た。回収されたDNA量を実施例1と同様にして確認し
た。
Example 4 In Example 1, 2000 μl of a methanol solution was added to the tube containing 200 μl of the nucleic acid-containing sample in Example 1, and one zirconia ball (Nikkado, maximum surface roughness 10 μm) having a diameter of 20 mm was added. In addition, nucleic acids were separated in exactly the same manner as in Experimental Example 1 except that the mixture was slowly rotated and stirred at room temperature for 10 minutes. The amount of the recovered DNA was confirmed in the same manner as in Example 1.

【0017】実施例5 実施例1において、実施例1で核酸含有試料を200ul
を含むチューブにペンタノール溶液200ulを加え、直径
0.5mmの窒化珪素ホ゛ール(井口盛栄堂、表面粗さの最大高
さ0.05μm )を10ヶ加えて、室温で10分ゆっくり
回転攪拌した以外は実験例1と全く同様に核酸の分離を
行った。回収されたDNA量を実施例1と同様にして確
認した。
Example 5 In Example 1, 200 μl of the nucleic acid-containing sample was used in Example 1.
Add 200ul of pentanol solution to the tube containing
Nucleic acids were separated in exactly the same manner as in Experimental Example 1 except that ten 0.5-mm silicon nitride balls (Iguchi Seimeido, maximum surface roughness of 0.05 μm) were added, and the mixture was slowly rotated and stirred at room temperature for 10 minutes. . The amount of the recovered DNA was confirmed in the same manner as in Example 1.

【0018】参考例 実施例1で得たと同様の核酸含有試料を200ulをフェノール
・クロロホルム法で抽出した。抽出方法はMolecule Clo
ning(J. Sambrook著、CSH出版)に従った。回収された
DNA量を実施例1と同様にして確認した。 比較例 実施例1において、実施例1核酸含有試料を200ulを
含むチューブにエタノール溶液2000ulを加え、直径6.4m
mのナイロンヒ゛ース゛(井口盛栄堂、表面粗さの最大高さ0.
005μm )を3ヶ加えて、室温で10分ゆっくり回転攪
拌した以外は実験例1と全く同様に核酸の分離を行っ
た。回収されたDNA量を実施例1と同様にして確認し
た。
Reference Example 200 ul of the same nucleic acid-containing sample as that obtained in Example 1 was extracted by the phenol / chloroform method. Extraction method is Molecule Clo
ning (J. Sambrook, CSH Publishing). The amount of the recovered DNA was confirmed in the same manner as in Example 1. Comparative Example In Example 1, 2000 μl of an ethanol solution was added to a tube containing 200 μl of the nucleic acid-containing sample of Example 1, and the diameter was 6.4 m.
m nylon pace (Iguchi Seikeido, maximum surface roughness 0.
005 μm), and nucleic acids were separated in exactly the same manner as in Experimental Example 1 except that the mixture was slowly rotated and stirred at room temperature for 10 minutes. The amount of the recovered DNA was confirmed in the same manner as in Example 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】ミクロンオーダーの凸凹は特に核酸の初
期段階析出物とサイズ的に合致するので、核酸と本発明
固相固体相のミクロ的な接触効果を著しくエンハンス働
きがある。本発明は水溶性有機溶媒中にある核酸と核酸
以外成分の析出速度の違い、析出物の形成速度の違いを
利用し、核酸の初期析出物を本発明の固相固体相表面に
吸着させ、他成分との分離を可能にした。本発明の核酸
の分離方法を用いることにより、試料から、迅速、簡便
に高純度核酸を大量に精製することができ、遺伝子工
学、遺伝子診断、遺伝子治療、ゲノム化学、ゲノム創薬
等の分野に広く応用ができる。
The unevenness on the order of microns is particularly consistent in size with the initial precipitates of nucleic acids, so that the microscopic contact effect between the nucleic acids and the solid phase of the present invention is significantly enhanced. The present invention utilizes the difference in the deposition rates of nucleic acids and components other than nucleic acids in a water-soluble organic solvent, the difference in the rate of formation of precipitates, and allows the initial precipitates of nucleic acids to be adsorbed on the solid phase surface of the solid phase of the present invention, Separation from other components was enabled. By using the nucleic acid separation method of the present invention, a large amount of high-purity nucleic acid can be rapidly and easily purified from a sample, and is used in fields such as genetic engineering, genetic diagnosis, gene therapy, genomic chemistry, and genomic drug discovery. Can be widely applied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日方 幹雄 東京都中央区築地二丁目11番24号ジェイエ スアール株式会社内 (72)発明者 佐藤 功栄 茨城県猿島群総和町大字下大野字高谷2965 −37 Fターム(参考) 4B024 AA11 AA20 CA02 HA11 HA19 HA20 4C057 AA05 BB02 BB05 DD01 MM02 MM04 4D017 AA03 BA07 CA01 CA05 CA13 CB01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mikio Hijikata Within JAE S.R. Co., Ltd., 2-11-24 Tsukiji, Chuo-ku, Tokyo (72) Inventor Koei Sato Takatani 2965 −37 F term (reference) 4B024 AA11 AA20 CA02 HA11 HA19 HA20 4C057 AA05 BB02 BB05 DD01 MM02 MM04 4D017 AA03 BA07 CA01 CA05 CA13 CB01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水溶性有機溶媒の存在下、核酸を含む試
料と表面に凹凸を有する水不溶性固体相を接触させ、核
酸を前記固体相に吸着させることにより核酸を試料から
分離することを特徴とする核酸の分離方法。
1. A method comprising separating a nucleic acid from a sample by bringing a sample containing nucleic acids into contact with a water-insoluble solid phase having irregularities on its surface in the presence of a water-soluble organic solvent, and adsorbing the nucleic acids to the solid phase. A method for separating nucleic acids.
【請求項2】 固体相の凹凸が最大高さ法で表した場合
の表面粗さで0.005-100μmであることを特徴とする請
求項1記載の核酸の分離方法。
2. The method for separating nucleic acids according to claim 1, wherein the unevenness of the solid phase has a surface roughness of 0.005 to 100 μm when expressed by the maximum height method.
【請求項3】 前記固体相がストークス直径0.01mm〜50
mmの粒子であることを特徴とする請求項1記載の核酸の
分離方法。
3. The method according to claim 1, wherein the solid phase has a Stokes diameter of 0.01 mm to 50 mm.
2. The method for separating nucleic acids according to claim 1, wherein the particles are mm particles.
【請求項4】 前記水溶性有機溶媒が、メタノール、エ
タノール、プロパノール、イソプロパノール、ブタノー
ル、2−ブタノール、ペンタノール、2-ペンタノールか
らなる群から選択されることを特徴とする請求項1記載
の核酸の分離方法。
4. The method according to claim 1, wherein the water-soluble organic solvent is selected from the group consisting of methanol, ethanol, propanol, isopropanol, butanol, 2-butanol, pentanol and 2-pentanol. A method for separating nucleic acids.
【請求項5】 表面に凹凸を有する水不溶性固体相から
なる核酸分離用担体。
5. A carrier for nucleic acid separation comprising a water-insoluble solid phase having irregularities on the surface.
JP2001006367A 2001-01-15 2001-01-15 Method for separating nucleic acid and carrier for separating nucleic acid Pending JP2002212198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006367A JP2002212198A (en) 2001-01-15 2001-01-15 Method for separating nucleic acid and carrier for separating nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006367A JP2002212198A (en) 2001-01-15 2001-01-15 Method for separating nucleic acid and carrier for separating nucleic acid

Publications (1)

Publication Number Publication Date
JP2002212198A true JP2002212198A (en) 2002-07-31

Family

ID=18874264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006367A Pending JP2002212198A (en) 2001-01-15 2001-01-15 Method for separating nucleic acid and carrier for separating nucleic acid

Country Status (1)

Country Link
JP (1) JP2002212198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211973A (en) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd Method for separating and purifying nucleic acid
WO2006104166A1 (en) * 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology Support for crystallization separation and method of separating compound
WO2009154046A1 (en) * 2008-06-18 2009-12-23 日立マクセル株式会社 Surface-roughened high-density functional particle, method for producing the same, and method for processing target substance using the same
CN108124454A (en) * 2015-04-23 2018-06-05 Aj耶拿检疫有限公司 By the method and kit of rough surface quick separating nucleic acid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006211973A (en) * 2005-02-04 2006-08-17 Fuji Photo Film Co Ltd Method for separating and purifying nucleic acid
JP4568614B2 (en) * 2005-02-04 2010-10-27 富士フイルム株式会社 Nucleic acid separation and purification method
WO2006104166A1 (en) * 2005-03-29 2006-10-05 National University Corporation, Tokyo University Of Agriculture And Technology Support for crystallization separation and method of separating compound
WO2009154046A1 (en) * 2008-06-18 2009-12-23 日立マクセル株式会社 Surface-roughened high-density functional particle, method for producing the same, and method for processing target substance using the same
JP2010000409A (en) * 2008-06-18 2010-01-07 Hitachi Maxell Ltd Surface-roughened high-density functional particle, method for producing the same and method for treating target substance by using the same
CN108124454A (en) * 2015-04-23 2018-06-05 Aj耶拿检疫有限公司 By the method and kit of rough surface quick separating nucleic acid
JP2018520696A (en) * 2015-04-23 2018-08-02 エイ・ジェイ イヌスクリーン ゲゼルシャフト ミット ベシュレンクテル ハフツングAJ Innuscreen GmbH Method and test kit for rapid isolation of nucleic acids with rough surfaces

Similar Documents

Publication Publication Date Title
JP4175670B2 (en) Isolation of solid phase nucleic acids
JP3787354B2 (en) Nucleic acid isolation method
US5010183A (en) Process for purifying DNA and RNA using cationic detergents
US5596092A (en) Extraction of genomic DNA from blood using cationic detergents
JP2703114B2 (en) Polymer isolation method using magnetically attractable beads that do not specifically bind to polymer
JP3761573B2 (en) A general method for the isolation and purification of nucleic acids from a very wide variety of starting materials that are extremely small and very strongly contaminated
US5972613A (en) Methods of nucleic acid isolation
US20090069554A1 (en) Method for isolating nucleic acids comprising the use of ethylene glycol multimers
US20020106686A1 (en) Methods and reagents for the isolation of nucleic acids
US7888006B2 (en) Method for isolating DNA from biological samples
CA2549985C (en) Formulations and methods for denaturing proteins
JP2008518618A (en) Compositions and methods for purifying nucleic acids from stabilizing reagents
US20040157223A1 (en) Chemical treatment of biological samples for nucleic acid extraction and kits therefor
CN111961663A (en) Genome magnetic bead extraction kit and extraction method
JPH09327291A (en) Extraction and purification of rna
CN110088282B (en) Method for separating high purity nucleic acid by magnetic particles
JP2003235555A (en) Method for isolating single-stranded nucleic acid and/or double-stranded nucleic acid
WO2001062976A1 (en) Rapid nucleic acid separation, isolation and purification methods
JP2009065849A (en) Method for extracting nucleic acid
JP2002212198A (en) Method for separating nucleic acid and carrier for separating nucleic acid
JP2003204799A (en) Method for separating nucleic acid from leucocyte- containing sample
EP4163371A1 (en) Nucleic acid extraction method and application
JP2002209580A (en) Method for isolating nucleic acid and globular carrier
CN115725565A (en) Method and kit for extracting endotoxin-removed plasmid
CN115011588B (en) Bacterial genome DNA extraction kit and using method thereof