Nothing Special   »   [go: up one dir, main page]

JP2002201070A - Silicon carbide sintered compact and its manufacturing method - Google Patents

Silicon carbide sintered compact and its manufacturing method

Info

Publication number
JP2002201070A
JP2002201070A JP2000397429A JP2000397429A JP2002201070A JP 2002201070 A JP2002201070 A JP 2002201070A JP 2000397429 A JP2000397429 A JP 2000397429A JP 2000397429 A JP2000397429 A JP 2000397429A JP 2002201070 A JP2002201070 A JP 2002201070A
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
carbon
present
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000397429A
Other languages
Japanese (ja)
Other versions
JP4803877B2 (en
Inventor
Osamu Himeno
修 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000397429A priority Critical patent/JP4803877B2/en
Publication of JP2002201070A publication Critical patent/JP2002201070A/en
Application granted granted Critical
Publication of JP4803877B2 publication Critical patent/JP4803877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve wetting property of silicon carbide sintered compact mixed with boron or carbon as sintering assistant, to formed films or various kinds of adhesives. SOLUTION: The silicon carbide sintered compact having pores with mean diameter of 5-40 μm, the mean crystal grain diameter of which is 5-40 μm, and the relative density of which is 90-99.5%, is formed with fine ruggedness by eliminating grain boundary layer on surface part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結体表面に化学
的若しくは物理的にコーティングを行う用途に用いる炭
化珪素質焼結体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide sintered body used for coating a surface of a sintered body chemically or physically and a method for producing the same.

【0002】[0002]

【従来の技術】1974年に米国のProchazka
によりサブミクロン粒径のβ−SiCに焼結助剤として
少量のホウ素と炭素を添加することにより緻密な焼結体
となることを発表して以来、炭化珪素焼結体は、高温、
高応力負荷条件を克服できる材料として広く一般に用い
られてきた。
BACKGROUND OF THE INVENTION In 1974, Prochazka of the United States
Has announced that adding a small amount of boron and carbon as a sintering aid to β-SiC with a submicron particle size will result in a dense sintered body.
It has been widely and commonly used as a material capable of overcoming high stress loading conditions.

【0003】また、一般的に緻密化が進むほど、強度、
硬度、熱伝導率等の機械的、熱的な材料特性が上がる
為、より緻密な炭化珪素焼結体を製造する方法が研究、
考案されてきた。本発明者も炭化珪素焼結体を緻密化さ
せることにより、熱伝導率で190W/mK以上の炭化
珪素焼結体を得るに至っている。
[0003] Generally, as the densification progresses, the strength,
Since the mechanical and thermal material properties such as hardness and thermal conductivity are increased, a method for manufacturing a denser silicon carbide sintered body has been studied.
It has been devised. The present inventor has also obtained a silicon carbide sintered body having a thermal conductivity of 190 W / mK or more by densifying the silicon carbide sintered body.

【0004】同様に、易焼結性、及び焼結体の破壊靭性
を向上させる目的で焼結助剤として酸化アルミニウム等
の焼結過程に於いて結晶粒界周囲に液層成分を生じる物
質を添加する炭化珪素も考案されてきた。
Similarly, for the purpose of improving the sinterability and the fracture toughness of the sintered body, a sintering aid such as aluminum oxide or the like which generates a liquid layer component around the crystal grain boundaries in the sintering process is used. Silicon carbide to be added has also been devised.

【0005】また一方、炭化珪素焼結体を摺動部材とし
て用いる際に、摺動特性を向上させるため、気孔率の高
い多孔質炭化珪素も研究されてきた。
On the other hand, porous silicon carbide having a high porosity has been studied in order to improve the sliding characteristics when a silicon carbide sintered body is used as a sliding member.

【0006】また、しばしば、これらセラミック製構造
材料にCVD、PVD等の生成膜をコーティングするこ
とがある。また別に有機・無機等の各種接着剤等を使用
して他の物体を該セラミック製構造部材に接着すること
がある。
[0006] Often, these ceramic structural materials are coated with a film formed by CVD, PVD or the like. In addition, other objects may be bonded to the ceramic structural member using various kinds of adhesives such as organic and inorganic materials.

【0007】ここで問題となってくるのが、セラミック
焼結体と生成膜・各種接着剤との濡れ性であるが、これ
を向上させるために、結晶粒界をガラス質のマトリック
スとして覆う形で存在するセラミック焼結体表面では化
学的な薬品処理等でエッチングして、表面に微細な凹凸
を生じさせ、濡れ性を向上させる手法がよく用いられる
(鈴木宏茂著 高温セラミック材料 日刊工業新聞社刊
参照)。
The problem here is the wettability between the ceramic sintered body and the resulting film and various adhesives. To improve this, the crystal grain boundary is covered as a vitreous matrix. The surface of the ceramic sintered body existing in the above is etched by a chemical treatment or the like to form fine irregularities on the surface, and a method of improving wettability is often used (Hiroshi Suzuki High Temperature Ceramic Material Nikkan Kogyo Shimbun) Company
reference).

【0008】たとえばアルミナ焼結体や焼結助剤として
酸化アルミニウムを添加する炭化珪素焼結体は、結晶粒
界をガラス質のマトリックスとして覆う形で存在するた
め、化学的なエッチングを行うと、その結晶粒界のガラ
ス質のマトリックスが選択的にエッチングされるため、
結果的に焼結体表面に結晶粒径前後の微細な凹凸を生じ
やすく、生成膜や各種接着剤等が、その凹凸に入り込む
ことにより、入り込んだ生成膜や各種接着剤等がくさび
となり生成膜や各種接着剤等と焼結体との密着性が向上
するという、すなわちアンカー効果が生じる。
For example, an alumina sintered body and a silicon carbide sintered body to which aluminum oxide is added as a sintering aid are present in a form in which crystal grain boundaries are covered as a vitreous matrix. Because the vitreous matrix at the grain boundaries is selectively etched,
As a result, fine irregularities around the crystal grain size are likely to occur on the surface of the sintered body, and the generated film and various adhesives enter the irregularities, so that the formed product film and various adhesives become wedges and become wedges. Adhesion between the sintered body and various kinds of adhesives and the like, that is, an anchor effect is generated.

【0009】そのアンカー効果により、生成膜や各種接
着剤の濡れ性が向上するというメカニズムによるもので
ある。
The anchor effect is based on the mechanism that the wettability of the formed film and various adhesives is improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、焼結助
剤としてホウ素や炭素を添加する炭化珪素焼結体は、他
の焼結体と比べて生成膜や各種接着剤の濡れ性が悪いと
いう問題がある。
However, a silicon carbide sintered body to which boron or carbon is added as a sintering aid has a problem that the formed film and various adhesives have poor wettability as compared with other sintered bodies. There is.

【0011】つまり、図1に示すように焼結助剤にホウ
素や炭素を添加する炭化珪素焼結体は、その焼結過程で
液層成分を生じない固層焼結であり、焼結体の結晶粒界
周囲にガラス質のマトリックスを持たないため、化学的
エッチングを行っても、その効果が薄く、微細な凹凸を
あまり生じず、アンカー効果が十分ではなく、濡れ性の
向上があまり得られないのである。
That is, as shown in FIG. 1, a silicon carbide sintered body in which boron or carbon is added to a sintering aid is a solid layer sintering that does not generate a liquid layer component in the sintering process. Since there is no vitreous matrix around the crystal grain boundaries, even if chemical etching is performed, the effect is thin, there is not much fine unevenness, the anchor effect is not enough, and the wettability is not much improved. It cannot be done.

【0012】また別の手法としては、相対密度で90%
未満の多孔質炭化珪素を使用する方法があるが、この焼
結体は表面に多くの気孔を有するため生成膜や接着剤の
濡れ性は良いが、緻密体で無いため、機械的特性や熱的
特性が、緻密体と比較して大きく劣るものであった。
Another method is to use a relative density of 90%.
Although there is a method using less than porous silicon carbide, this sintered body has many pores on its surface, so that the resulting film and the adhesive have good wettability. The mechanical properties were significantly inferior to the dense body.

【0013】例えば半導体製造装置の研磨加工用の治具
であるラッププレートは、被研磨材であるシリコンウエ
ーハをワックスにて固定する。また付加的な性能を与え
るため、CVD、PVD等の方法により、表面に成膜を
行う場合がある。
For example, a lap plate, which is a polishing jig of a semiconductor manufacturing apparatus, fixes a silicon wafer, which is a material to be polished, with wax. In order to provide additional performance, a film may be formed on the surface by a method such as CVD or PVD.

【0014】この炭化珪素製ラッププレートでは、熱伝
導率、耐摩耗性等の観点から、焼結助剤としてホウ素、
炭素を添加する炭化珪素焼結体の利用が期待されている
が、上述した理由により、生成膜の密着強度が低くなる
ため、表面をコーティングする生成膜や、シリコンウエ
ーハを接着する為に用いるワックスが剥離し易いという
問題があった。
In this silicon carbide wrap plate, from the viewpoints of thermal conductivity, wear resistance, etc., boron,
The use of a silicon carbide sintered body to which carbon is added is expected, but the adhesion strength of the generated film is low for the above-described reasons. Therefore, a generated film for coating the surface or a wax used for bonding a silicon wafer. However, there is a problem that the flakes are easily peeled.

【0015】[0015]

【課題を解決するための手段】本発明者は、このような
従来技術の問題点を鑑み、焼結助剤にホウ素や炭素を添
加する炭化珪素焼結体に於いて、比較的緻密度を高くし
て、エッチング等の化学的手段により、表面に微細な凹
凸を形成し、そのアンカー効果により接着剤や生成膜の
密着性が高い、炭化珪素質焼結体の製造方法を考案し
た。
SUMMARY OF THE INVENTION In view of such problems of the prior art, the present inventor has set a comparatively high density in a silicon carbide sintered body in which boron or carbon is added to a sintering aid. The present invention has devised a method of manufacturing a silicon carbide sintered body in which fine irregularities are formed on the surface by chemical means such as etching and the adhesion of an adhesive or a formed film is high due to the anchor effect.

【0016】即ち、本発明は焼結体に平均直径5〜40
μmの気孔を有し、平均結晶粒子径が5〜40μm、相
対密度が90〜99.5%であり、表面部に結晶粒界層
を除去した微細な凹凸を形成したことを特徴とする。ま
た、上記表面部の結晶粒界層は化学的手段で除去したこ
とを特徴とする。
That is, according to the present invention, the sintered body has an average diameter of 5 to 40.
It has pores of μm, an average crystal particle diameter of 5 to 40 μm, a relative density of 90 to 99.5%, and has fine irregularities formed by removing a crystal grain boundary layer on the surface. Further, the crystal grain boundary layer on the surface portion is removed by a chemical means.

【0017】更にその製造方法として炭化珪素を主成分
とし、2.0重量%以下の炭素源、及び0.2〜0.4
重量%以下のホウ素源を含有する出発原料を所定形状に
成形し、室温から1500〜1950℃迄の昇温速度勾
配を1時間当たり20〜200℃、最高焼成温度を20
00〜2200℃として焼成した後、化学的な方法、例
えば硝酸カリウム及び水酸化ナトリウムの混合溶融塩を
用いて焼結体表面部の結晶粒界層を除去した。
Further, as a method for producing the same, a carbon source containing silicon carbide as a main component, not more than 2.0% by weight,
A starting material containing a boron source of not more than 5% by weight is formed into a predetermined shape, a temperature rising rate gradient from room temperature to 1500 to 1950 ° C. is 20 to 200 ° C. per hour, and the maximum firing temperature is 20.
After firing at 00 to 2200 ° C., the grain boundary layer on the surface of the sintered body was removed by a chemical method, for example, using a mixed molten salt of potassium nitrate and sodium hydroxide.

【0018】この様にして得られた焼結体は、比較的緻
密化しつつも、大きく成長した結晶粒の周囲に空隙を有
する為、エッチング処理を行なった後には、適度に分散
された微細な凹凸を有する焼結体母材表面を得ることが
出来る。
Since the sintered body obtained in this manner has voids around the crystal grains which have grown relatively large while being relatively dense, after the etching treatment is performed, finely divided particles which are appropriately dispersed are obtained. A sintered body base material surface having irregularities can be obtained.

【0019】その結果、濡れ性が非常に良好でアンカー
効果が高いため、生成膜や接着剤に対し非常に高い密着
性が得られる。
As a result, since the wettability is very good and the anchor effect is high, very high adhesion to the resulting film and the adhesive can be obtained.

【0020】[0020]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0021】本発明の炭化珪素焼結体においては、平均
直径5〜40μmの気孔を有し、平均結晶粒子径が5〜
40μm、相対密度が90〜99.5%であり、表面の
粒界層を除去して凹凸を形成したものである。これによ
り、気孔の無い部分と気孔部の凹凸差によるくさび効果
が高まり、該焼結体表面に対する化学的若しくは物理的
方法によりコーティング膜を生成させる場合や、有機、
無機等の接着剤等を塗布する場合の濡れ性が高くなる。
The silicon carbide sintered body of the present invention has pores having an average diameter of 5 to 40 μm and an average crystal particle diameter of 5 to 40 μm.
40 μm, relative density is 90 to 99.5%, and irregularities are formed by removing the grain boundary layer on the surface. Thereby, the wedge effect due to the unevenness difference between the pore-free portion and the pore portion is enhanced, and a case where a coating film is generated on the surface of the sintered body by a chemical or physical method,
The wettability when applying an inorganic adhesive or the like increases.

【0022】ここで平均結晶粒径及び平均気孔径が5μ
m未満のときはくさび効果が低く、膜の密着性が低くな
る。また、逆に平均結晶粒径及び平均気孔径が40μm
を越えるときは相対密度90%未満の多孔質体となるた
め、緻密化が充分では無く、機械的特性、熱的特性が劣
る。また、相対密度が99.5%を越えるときはくさび
効果が低く、膜の密着性が低い。
Here, the average grain size and the average pore size are 5 μm.
When it is less than m, the wedge effect is low and the adhesion of the film is low. Conversely, the average crystal grain size and the average pore size are 40 μm
When it exceeds, the resulting porous body has a relative density of less than 90%, so that the densification is not sufficient and the mechanical properties and thermal properties are poor. When the relative density exceeds 99.5%, the wedge effect is low and the adhesion of the film is low.

【0023】この様に本発明の炭化珪素焼結体は、相対
密度90〜99.5%と比較的緻密な焼結体であり、か
つ表面の粒界層を化学的方法により除去して平均直径5
〜40μmと大きな気孔を存在させるようにしたもので
ある。
As described above, the silicon carbide sintered body of the present invention is a relatively dense sintered body having a relative density of 90 to 99.5%, and the average grain boundary layer is removed by a chemical method. Diameter 5
In this case, pores as large as 4040 μm are made to exist.

【0024】結晶粒径及び気孔径の測定についてはSE
M(走査型電子顕微鏡)による表面写真の観察、若しく
はそのSEM写真を元にルーゼックスなどの画像解析に
より行う。
For the measurement of the crystal grain size and the pore size, see SE
Observation of a surface photograph by M (scanning electron microscope) or image analysis such as Luzex based on the SEM photograph.

【0025】ここで、結晶粒径及び気孔の平均直径と
は、SEMによる表面写真の観察、若しくはそのSEM
写真の画像解析により、球で有るという仮定での換算値
を指す。
Here, the crystal grain size and the average diameter of the pores are defined as the observation of a surface photograph by SEM or the SEM
It indicates the converted value on the assumption that it is a sphere by image analysis of a photograph.

【0026】一方、相対密度の測定には焼結体の密度を
アルキメデス法により測定し、理論密度3.21g/c
3で除することにより算出する。
On the other hand, to measure the relative density, the density of the sintered body was measured by the Archimedes method, and the theoretical density was 3.21 g / c.
calculated by dividing by m 3.

【0027】又、上記表面部の結晶粒界層の除去は、エ
ッチングなどの化学的手段を行うことが好ましい。
The removal of the crystal grain boundary layer on the surface is preferably performed by chemical means such as etching.

【0028】その具体的な方法一例として、粒界層の除
去に、硝酸カリウム及び水酸化ナトリウムの混合溶融塩
を用いる。
As a specific example of the method, a mixed molten salt of potassium nitrate and sodium hydroxide is used for removing the grain boundary layer.

【0029】図2に上述した炭化珪素質焼結体の、焼結
後の研削加工表面の写真を示し、エッチングにより焼結
後の表面の粒界層を除去した後の表面の写真を図3に示
す。これらの図において、黒い部分が凹み、即ち気孔を
示している。
FIG. 2 shows a photograph of the ground surface of the sintered silicon carbide body after sintering, and FIG. 3 shows a photograph of the surface after removing the grain boundary layer of the sintered surface by etching. Shown in In these figures, the black portions indicate depressions, that is, pores.

【0030】即ち、硝酸カリウム及び水酸化ナトリウム
の混合溶融塩等を用いたなエッチングにより、焼結体表
面部の結晶粒界に存在する粒界層を除去し、図3に示す
とおり、該表面部において直径5〜40μm程度の気孔
をより多く生成できる。例えば、直径5〜40μmの気
孔の数が、従来例である図1では5個程度、本発明によ
り得られた焼結体のエッチングなどの化学的手段を用い
ない場合の焼結後の研削加工表面を示す図2では3個程
度であるのに対し、本発明実施例である図3では40個
以上確認できる。
That is, the grain boundary layer present at the crystal grain boundaries on the surface of the sintered body is removed by etching using a mixed molten salt of potassium nitrate and sodium hydroxide, as shown in FIG. In this case, more pores having a diameter of about 5 to 40 μm can be generated. For example, the number of pores having a diameter of 5 to 40 μm is about 5 in FIG. 1 which is a conventional example. Grinding after sintering when chemical means such as etching of the sintered body obtained by the present invention is not used. In FIG. 2 showing the front surface, the number is about three, whereas in FIG. 3, which is the embodiment of the present invention, 40 or more can be confirmed.

【0031】そのため図3に示す本発明の炭化珪素焼結
体は、図2にあるような焼結体と比較して、該焼結体表
面に対する化学的若しくは物理的方法によりコーティン
グ膜を生成させる場合や、有機、無機等の接着剤等を塗
布する場合の濡れ性を高くすることができる。
Therefore, the silicon carbide sintered body of the present invention shown in FIG. 3 forms a coating film on the surface of the sintered body by a chemical or physical method, as compared with the sintered body shown in FIG. The wettability in the case or when applying an organic or inorganic adhesive or the like can be increased.

【0032】次に本発明の炭化珪素質焼結体の製造方法
を説明する。
Next, a method for producing the silicon carbide sintered body of the present invention will be described.

【0033】本発明では第一に、焼結助剤として添加す
るホウ素や炭素の量を制御することで、その焼結過程に
於いて、結晶粒の成長は促進させるが、緻密化を若干抑
えるような配合とした。
In the present invention, first, by controlling the amount of boron or carbon added as a sintering aid, the growth of crystal grains is promoted in the sintering process, but the densification is slightly suppressed. The composition was as follows.

【0034】炭化珪素の焼結メカニズムにおいて、ホウ
素と炭素の役割はきわめて重要であるが、その添加量に
対してこれまで多くの研究が成されてきた。
Although the role of boron and carbon is extremely important in the sintering mechanism of silicon carbide, many studies have been made on the amount of boron and carbon.

【0035】殊に、従来は炭化珪素の緻密化に対しての
研究が殆どであり、緻密化に最適なホウ素、炭素の添加
量は、かなり研究されて分かってきている。
In particular, most studies have been made on the densification of silicon carbide, and the optimum amounts of boron and carbon for the densification have been considerably studied and found.

【0036】すなわち、ホウ素と炭素の添加量を適正に
持ってくれば、結晶粒の成長を抑えながら緻密化を促進
させることができる。本研究者も、ホウ素、炭素の添加
量を任意に変更してもっとも緻密化する配合量を実験に
て検証した。
That is, by appropriately adding the amounts of boron and carbon, densification can be promoted while suppressing the growth of crystal grains. The present investigator also verified experimentally the compounding amount that makes the most compact by arbitrarily changing the added amount of boron and carbon.

【0037】しかしながら、本発明は、完全に緻密化さ
せる前の段階で、結晶粒をある程度成長させておき、緻
密化の段階で、成長した結晶粒がそれ以上の緻密化を阻
害するため、ある程度の緻密化はするものの、焼結後も
大きく成長した結晶粒の周囲に気孔が存在するようにし
た。
However, according to the present invention, the crystal grains are grown to some extent before the densification is completed, and the grown crystal grains hinder further densification at the densification stage. Although pores were densified, pores were present around crystal grains that grew greatly after sintering.

【0038】特に、ホウ素は最適な添加量である0.2
〜0.4重量%とし、炭素の添加を最適量である2.0
重量%程度の炭素の添加量より減らすことで上述した作
用を成すことを見出した。炭素の添加を最適量である
2.0重量%程度よりも増やした場合は緩やかに緻密化
が抑制するのに対し、2.0重量%程度より減らした場
合は急激な減少となるのである。
In particular, boron is an optimum addition amount of 0.2.
0.40.4% by weight, and the addition of carbon is an optimum amount of 2.0
It has been found that the above-mentioned effect is achieved by reducing the amount of carbon added to less than about% by weight. When the addition of carbon is more than the optimum amount of about 2.0% by weight, the densification is gently suppressed, whereas when the addition is less than about 2.0% by weight, the density is sharply reduced.

【0039】具体的には炭化珪素を主成分として、0.
5〜2.0重量%以下の炭素源、及び0.2〜0.4重
量%以下のホウ素源を有する出発原料として焼結体を焼
結させることにより、機械的、熱的特性は十分保ちつ
つ、過度の緻密化を抑え、粒成長は促進し、上述した本
発明の炭化珪素焼結体を製造することができる。
Specifically, silicon carbide is used as a main component and 0.1.
By sintering the sintered body as a starting material having a carbon source of 5 to 2.0% by weight or less and a boron source of 0.2 to 0.4% by weight or less, mechanical and thermal properties are sufficiently maintained. In addition, excessive densification is suppressed and grain growth is promoted, and the above-described silicon carbide sintered body of the present invention can be manufactured.

【0040】ここで、炭素源が2.0重量%を、ホウ素
源が0.4重量%を越えるときは緻密化が抑えられる
が、炭化珪素粒子の表面拡散が抑制されすぎ、粒成長を
阻害する。そこで、炭素添加量として好ましくは0.5
〜2.0重量%以下、ホウ素添加量として好ましくは
0.2〜0.4重量%である。
Here, when the carbon source exceeds 2.0% by weight and the boron source exceeds 0.4% by weight, the densification is suppressed, but the surface diffusion of the silicon carbide particles is suppressed too much and the grain growth is inhibited. I do. Therefore, the amount of carbon added is preferably 0.5
To 2.0% by weight or less, and the boron addition amount is preferably 0.2 to 0.4% by weight.

【0041】尚、出発原料における炭素源、ホウ素源の
含有%は、添加量の重量測定、及び原料粉末のX線回折
より求めた、炭素又はホウ素単体での換算量である。
The content percentages of the carbon source and the boron source in the starting materials are the conversion amounts of carbon or boron alone, as determined by weight measurement of the added amounts and X-ray diffraction of the raw material powder.

【0042】第二に、本発明の製造方法では、焼成プロ
セス中で焼結体が収縮挙動を示す前に、焼結体結晶の粒
成長を促進させておくことで、収縮挙動が始まった後に
も大きく成長した結晶に阻まれる形で緻密化を抑えるよ
うにした。
Secondly, in the production method of the present invention, by promoting the grain growth of the sintered body crystal before the sintered body shows the shrinkage behavior in the firing process, the sintered body is made to have a shrinkage behavior after the shrinkage behavior starts. Also suppresses densification in a form that is hindered by large grown crystals.

【0043】そのためには、緻密化が行われる温度域に
おける昇温時の温度勾配を、非常に緩やかに、好ましく
は階段状に途中で保温時間を設けながら焼成を行えば良
く、具体的には、焼結させる際には、室温から1500
〜1950℃迄の昇温速度勾配を1時間当たり20〜2
00℃、最高焼成温度を2000〜2200℃とする。
For this purpose, firing may be carried out with a very gentle temperature gradient in the temperature range in which densification is performed, and preferably with a step-shaped interval of a heat-retention time. When sintering, from room temperature to 1500
Ramp rate up to 1950 ° C.
00 ° C and the maximum firing temperature is 2000 to 2200 ° C.

【0044】従来は、炭化珪素焼結体を焼結させる際
に、結晶の過度の成長を抑制しより緻密な焼結体を得る
為に、300から1500〜1800乃至1950℃迄
の昇温速度勾配を1時間当たり200℃以上とすること
で、粒成長を防止し、成長した結晶粒に阻まれることな
く緻密化させる方法が行われてきた。
Conventionally, when sintering a silicon carbide sintered body, a rate of temperature increase from 300 to 1500 to 1800 to 1950 ° C. is used in order to suppress excessive growth of crystals and obtain a denser sintered body. By making the gradient 200 ° C. or more per hour, a method of preventing grain growth and densifying without being hindered by grown crystal grains has been used.

【0045】しかし、本発明においては焼結させる際
に、室温から1500〜1950℃迄の昇温速度勾配を
1時間当たり20〜200℃と緩やかにする事で、体積
拡散による緻密化が急速に起こる前の温度域において充
分な焼結エネルギーを与えて粒成長を促進させ、成長し
た結晶粒に阻まれることで緻密化を有る程度抑えるよう
にした。
However, in the present invention, when sintering, by making the temperature rising rate gradient from room temperature to 1500 to 1950 ° C. gentle at 20 to 200 ° C. per hour, the densification by volume diffusion is rapidly performed. Sufficient sintering energy was given in the temperature range before the occurrence to promote grain growth, and densification was suppressed to some extent by being hindered by the grown crystal grains.

【0046】また、最高焼成温度が2000℃未満のと
きは機械的、熱的特性が下がり、最高焼成温度が220
0℃を越えるときは、2次再結晶により、結晶粒子が成
長しすぎ、非常に大きな板状晶を生じ、その結晶の脱粒
により、焼結体表面の研削加工面が粗すぎるため、最高
焼成温度を2000〜2200℃とした。これによっ
て、機械的特性、熱的特性を大幅に損なうことなく、過
度の緻密化を抑え、粒成長は促進し、図3にあるよう
な、生成膜、接着剤等の濡れ性の良い炭化珪素焼結体を
製造することができる。
When the maximum firing temperature is lower than 2000 ° C., the mechanical and thermal properties are reduced, and the maximum firing temperature is lower than 220 ° C.
When the temperature exceeds 0 ° C., the crystal grains grow too much due to the secondary recrystallization, and very large plate-like crystals are generated. The temperature was 2000-2200 ° C. This suppresses excessive densification without significantly impairing the mechanical and thermal properties, promotes grain growth, and has good wettability of the resulting film, adhesive, etc., as shown in FIG. A sintered body can be manufactured.

【0047】尚、炉内温度の測定は、熱電対若しくは光
高温計を用いて行う。
The temperature in the furnace is measured using a thermocouple or an optical pyrometer.

【0048】この様にして得られた、生成膜・接着剤等
の濡れ性の良い、本発明の炭化珪素焼結体は、半導体S
iウエハを製造する際に使用するラッププレートに用い
ることが出来る。このラッププレートに樹脂膜、PV
D、CVDによる金属・セラミック生成膜を成膜する場
合や、同じくラッププレートにSiウエハをワックスに
より固定する場合等に濡れ性を良好に出来る。あるい
は、半導体製造装置のエッチング工程で用いられるチャ
ンバー部材に本発明の炭化珪素焼結体を用いれば、内面
に付着する反応生成物の落下防止や、耐食性を高める目
的でチャンバー部材の内面に、PVD、CVDによるセ
ラミック生成膜を成膜する場合等にも効果を発揮する。
その他、金属とセラミックの接着による固定、セラミッ
クへの各種メタライズを施すような用途にも効果を発揮
することが期待される。
The silicon carbide sintered body of the present invention obtained in this manner and having good wettability such as a formed film and an adhesive is a semiconductor S
It can be used for a wrap plate used when manufacturing an i-wafer. Resin film, PV
D, The wettability can be improved when a metal / ceramic generation film is formed by CVD, or when a Si wafer is similarly fixed to a lap plate with wax. Alternatively, if the silicon carbide sintered body of the present invention is used for a chamber member used in an etching step of a semiconductor manufacturing apparatus, PVD is applied to the inner surface of the chamber member for the purpose of preventing the reaction products attached to the inner surface from dropping and improving corrosion resistance. Also, the present invention is effective when a ceramic forming film is formed by CVD.
In addition, it is expected to be effective in applications such as fixing by bonding metal and ceramic, and various metallizations to ceramic.

【0049】[0049]

【実施例】以下、本発明の実施例について詳細に説明す
る。なお、本実施例は、一例であり、本発明はこれに限
定されるものではない。 (実験例1)ホウ素源として炭化ホウ素をホウ素単体の
換算での添加量が0.33重量%となるように添加し、
炭化ホウ素に含まれる炭素の量も含めて炭素の添加量を
0.5、1.0、2.0、4.0重量%までの範囲で変
えて、それぞれの添加量において、φ60×5tの成形
体を作成し、焼成最高温度を、それぞれ2000、20
25、2050、2100、2200℃と変化させて焼
成した。なお、焼成は炭化珪素の分解を防ぐため、Ar
雰囲気中で焼成し、炉内圧力は大気圧よりも若干正圧、
即ち0.5kgf/cm2とした。また、焼成の温度プ
ロファイルとしては、1500〜1950℃の昇温時の
温度勾配を時間当たり50°とし、50°毎に1時間の
保温時間を設けた。得られた焼結体の密度を測定した結
果、表1及び図4に示す通り、焼成最高温度の高低にか
かわらずどの最高焼成温度においても、炭素添加量2.
0重量%がもっとも緻密化した。
Embodiments of the present invention will be described below in detail. Note that the present embodiment is an example, and the present invention is not limited to this. (Experimental example 1) Boron carbide was added as a boron source so that the added amount in terms of boron alone was 0.33% by weight.
The addition amount of carbon, including the amount of carbon contained in boron carbide, was changed in the range of 0.5, 1.0, 2.0, and 4.0% by weight. A molded body was prepared, and the maximum firing temperature was set to 2000, 20 respectively.
The temperature was changed to 25, 2050, 2100, and 2200 ° C. to be fired. It should be noted that calcination is performed by preventing Ar
Firing in an atmosphere, the furnace pressure is slightly more positive than atmospheric pressure,
That is, it was set to 0.5 kgf / cm 2 . Further, as a firing temperature profile, a temperature gradient at a temperature rise of 1500 to 1950 ° C. was set to 50 ° per hour, and one hour of heat retention time was provided for each 50 °. As a result of measuring the density of the obtained sintered body, as shown in Table 1 and FIG. 4, the amount of added carbon was 2. at any maximum firing temperature regardless of the maximum firing temperature.
0% by weight was the most compact.

【0050】この状態は図1に示すような、気孔の小さ
な焼結体であるため、アンカー効果が低く、該焼結体表
面に対する化学的若しくは物理的方法によるコーティン
グ膜や、有機、無機等の接着剤等の濡れ性が低い。
In this state, since the sintered body has small pores as shown in FIG. 1, the anchor effect is low, and a coating film on the surface of the sintered body by a chemical or physical method, or an organic or inorganic material is used. Low wettability of adhesive etc.

【0051】これに対し、炭素添加量を2.0重量%よ
り減らすことによって急激に緻密化が抑制され、気孔の
大きな焼結体を得ることが出来る。
On the other hand, by reducing the amount of carbon added to less than 2.0% by weight, the densification is rapidly suppressed, and a sintered body having large pores can be obtained.

【0052】具体的には、緻密度合いとの兼ね合いか
ら、炭素添加量は、0.5〜2.0重量%、好ましくは
1.0〜2.0重量%が望ましい。これは、表1及び図
4から分かる通り、炭素添加量が1.0〜2.0重量%
では、焼結体の密度が2.732g/cm3から3.1
85g/cm3であり、理論密度の85%から99%ま
でであり、炭化珪素緻密体として機械的、熱的特性を満
足するという理由からである。
More specifically, the amount of carbon added is desirably 0.5 to 2.0% by weight, preferably 1.0 to 2.0% by weight in view of the density. This is because, as can be seen from Table 1 and FIG.
In the above, the density of the sintered body is from 2.732 g / cm 3 to 3.1.
It is 85 g / cm 3, which is from 85% to 99% of the theoretical density, because it satisfies mechanical and thermal properties as a dense silicon carbide body.

【0053】また、ホウ素、炭素添加量と、焼成の温度
プロファイルの効果、またエッチングでの結晶粒界層の
除去の有無による焼結体表面の気孔径の変化、及びアン
カー効果の変化を比較検証した。比較例として、図1に
示す従来製法による焼結体と、図2に示す、炭素添加量
が1.0%で最高焼成温度が2000℃×1時間の焼結
体でエッチングを行わないものとを用意し、本発明実施
例として、図3に示すように、エッチングを行ったもの
を用意した。これら3種類により、φ60×5tの成形
体の焼結体において、実際にCVDによりコーティング
膜を成膜して、その密着性を検証した。
Further, the effects of the amounts of boron and carbon added and the temperature profile of firing, the change of the pore diameter on the surface of the sintered body depending on whether or not the grain boundary layer was removed by etching, and the change of the anchor effect were compared and verified. did. As a comparative example, a sintered body obtained by the conventional manufacturing method shown in FIG. 1 and a sintered body shown in FIG. 2 in which the amount of carbon added was 1.0% and the maximum firing temperature was 2000 ° C. × 1 hour and etching was not performed. Was prepared as an example of the present invention, as shown in FIG. With these three types, a coating film was actually formed by CVD on a sintered body of φ60 × 5t molded body, and the adhesion was verified.

【0054】ここで本発明実施例において、エッチング
に硝酸カリウム及び水酸化ナトリウムの混合溶融塩を用
いた。
In the embodiment of the present invention, a mixed molten salt of potassium nitrate and sodium hydroxide was used for etching.

【0055】その結果、表2に示すとおり、直径5〜4
0μmの気孔の数が、比較例である図1では5個程度、
エッチングを行わない図2では3個程度であるのに対
し、本発明実施例である図3では40個以上確認でき
る。
As a result, as shown in Table 2, the diameter was 5 to 4 mm.
The number of pores of 0 μm is about 5 in FIG.
In FIG. 2 where etching is not performed, the number is about three, whereas in FIG. 3 which is the embodiment of the present invention, 40 or more can be confirmed.

【0056】更に表2に示すとおり、図1に示す比較例
の焼結体では、焼結体表面の全面積において殆ど密着せ
ずに剥離し、図2に示すものでは、数カ所で剥離が見ら
れた。これに対し、図3に示す炭化珪素焼結体にエッチ
ングを施した本発明実施例ではコーティング膜が焼結体
表面の全面積において完全に密着していた。
Further, as shown in Table 2, the sintered body of the comparative example shown in FIG. 1 peeled off almost completely without adhering over the entire area of the surface of the sintered body, and peeling was observed at several places in FIG. Was done. On the other hand, in the example of the present invention in which the silicon carbide sintered body was etched as shown in FIG. 3, the coating film was completely adhered over the entire area of the sintered body surface.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【発明の効果】本発明によれば平均直径5〜40μmの
気孔を有し、平均結晶粒子径が5〜40μm、相対密度
が90〜99.5%であり、表面部の結晶粒界層が除去
されて微細な凹凸を有する炭化珪素焼結体とし、エッチ
ングを施したことによって、気孔の無い部分と気孔部の
凹凸差によるアンカー効果が高まり、該焼結体表面に対
する化学的若しくは物理的方法によるコーティング膜
や、有機、無機等の接着剤等の濡れ性を高くすることが
できる。
According to the present invention, pores having an average diameter of 5 to 40 .mu.m, an average crystal particle diameter of 5 to 40 .mu.m, a relative density of 90 to 99.5%, and a crystal grain boundary layer on the surface are formed. By removing the silicon carbide sintered body having fine irregularities and performing etching, an anchor effect due to a difference in irregularity between a portion having no pores and a pore portion is enhanced, and a chemical or physical method for the surface of the sintered body is performed. , And the wettability of an organic or inorganic adhesive or the like can be increased.

【0060】又、本発明によれば、炭化珪素を主成分と
して、2.0重量%以下の炭素源、及び0.4重量%以
下のホウ素源を有する出発原料とし、焼結させる際に、
室温から1500〜1950℃迄の昇温速度勾配を1時
間当たり20〜200℃、最高焼成温度を2000〜2
200℃とした後、硝酸カリウム及び水酸化ナトリウム
の混合溶融塩等による化学的なエッチングにより、焼結
体表面部の結晶粒界に存在する粒界層がを除去すること
により、機械的、熱的特性は十分保ちつつ、過度の緻密
化を抑え、粒成長は促進し、生成膜、接着剤等の濡れ性
の良い炭化珪素焼結体を製造することができる。
Further, according to the present invention, when a starting material having silicon carbide as a main component and having a carbon source of 2.0% by weight or less and a boron source of 0.4% by weight or less is used,
The heating rate gradient from room temperature to 1500 to 1950 ° C is 20 to 200 ° C per hour, and the maximum firing temperature is 2000 to 2
After the temperature is set to 200 ° C., the grain boundary layer existing on the crystal grain boundaries on the surface of the sintered body is removed by chemical etching using a mixed molten salt of potassium nitrate and sodium hydroxide, thereby providing mechanical and thermal While maintaining sufficient properties, excessive densification is suppressed, grain growth is promoted, and a silicon carbide sintered body having good wettability such as a formed film and an adhesive can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の炭化珪素焼結体の表面のSEM写真であ
る。
FIG. 1 is an SEM photograph of the surface of a conventional silicon carbide sintered body.

【図2】本発明の炭化珪素焼結体の研削加工面でのSE
M写真である。
FIG. 2 shows SE on a ground surface of a silicon carbide sintered body of the present invention.
It is an M photograph.

【図3】図2の焼結体の研削加工面にエッチングを施し
たもののSEM写真である。
FIG. 3 is an SEM photograph of the sintered body of FIG. 2 obtained by etching a ground surface of the sintered body.

【図4】本発明の炭化珪素焼結体における炭素添加量と
密度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of carbon added and the density in the silicon carbide sintered body of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均直径5〜40μmの気孔を有し、平均
結晶粒子径が5〜40μm、相対密度が90〜99.5
%であり、表面部に結晶粒界層が除去された微細な凹凸
を有することを特徴とする炭化珪素質焼結体。
The present invention has pores having an average diameter of 5 to 40 μm, an average crystal particle diameter of 5 to 40 μm, and a relative density of 90 to 99.5.
%, And having fine irregularities with the crystal grain boundary layer removed on the surface.
【請求項2】上記表面部の結晶粒界層が化学的手段で除
去されたことを特徴とする請求項1に記載の炭化珪素質
焼結体。
2. The silicon carbide-based sintered body according to claim 1, wherein the crystal grain boundary layer on the surface is removed by a chemical means.
【請求項3】炭化珪素を主成分とし、2.0重量%以下
の炭素源、及び0.2乃至0.4重量%のホウ素源を含
有する出発原料を所定形状に成形し、室温から1500
〜1950℃迄の昇温速度勾配を1時間当たり20〜2
00℃、最高焼成温度を2000〜2200℃として焼
成した後、化学的な方法を用いて焼結体表面部の結晶粒
界層を除去することを特徴とする炭化珪素質焼結体の製
造方法。
3. A starting material containing silicon carbide as a main component and containing not more than 2.0% by weight of a carbon source and from 0.2 to 0.4% by weight of a boron source is formed into a predetermined shape, and is heated from room temperature to 1500.
Ramp rate up to 1950 ° C.
A method for producing a silicon carbide-based sintered body, characterized in that after firing at 00 ° C. and a maximum firing temperature of 2000 to 2200 ° C., a grain boundary layer on the surface of the sintered body is removed using a chemical method. .
JP2000397429A 2000-12-27 2000-12-27 Silicon carbide sintered body and method for producing the same Expired - Fee Related JP4803877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397429A JP4803877B2 (en) 2000-12-27 2000-12-27 Silicon carbide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397429A JP4803877B2 (en) 2000-12-27 2000-12-27 Silicon carbide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002201070A true JP2002201070A (en) 2002-07-16
JP4803877B2 JP4803877B2 (en) 2011-10-26

Family

ID=18862551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397429A Expired - Fee Related JP4803877B2 (en) 2000-12-27 2000-12-27 Silicon carbide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4803877B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053903A1 (en) * 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
WO2009016861A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Protective member and protective body using the same
WO2015026169A1 (en) * 2013-08-21 2015-02-26 영남대학교 산학협력단 Method for preparing high hardness material having logo, text, or pattern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251589A (en) * 1985-04-30 1986-11-08 三菱重工業株式会社 Coating method on ceramic substrate surface
JPS6360158A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS63182257A (en) * 1987-01-20 1988-07-27 三井東圧化学株式会社 Novel manufacture of silicon carbide sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251589A (en) * 1985-04-30 1986-11-08 三菱重工業株式会社 Coating method on ceramic substrate surface
JPS6360158A (en) * 1986-09-01 1988-03-16 イビデン株式会社 Manufacture of silicon carbide sintered body
JPS63182257A (en) * 1987-01-20 1988-07-27 三井東圧化学株式会社 Novel manufacture of silicon carbide sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053903A1 (en) * 2006-10-30 2008-05-08 Kyocera Corporation Slide member, process for producing the same, and mechanical seal and mechanical seal ring utilizing the member
US8916488B2 (en) 2006-10-30 2014-12-23 Kyocera Corporation Sliding member, manufacturing method thereof, mechanical seal ring using sliding member and mechanical seal using mechanical seal ring
WO2009016861A1 (en) * 2007-07-30 2009-02-05 Kyocera Corporation Protective member and protective body using the same
JPWO2009016861A1 (en) * 2007-07-30 2010-10-14 京セラ株式会社 Protective member and protective body using the same
WO2015026169A1 (en) * 2013-08-21 2015-02-26 영남대학교 산학협력단 Method for preparing high hardness material having logo, text, or pattern

Also Published As

Publication number Publication date
JP4803877B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP2014208567A (en) Dense composite material, production method therefor, joined body, and member for semiconductor-manufacturing equipment
JP2009263187A (en) Yttria sintered compact and member for plasma processing device
JP2008156160A (en) Corrosion resistant member and its production method
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
WO2012092369A2 (en) Crucible body and method of forming same
JP3237760B2 (en) Method for producing crack-free silicon carbide diffusion component
JP2010208871A (en) Aluminum oxide sintered compact, method for producing the same and member for semiconductor producing apparatus
JP2000513689A (en) New silicon carbide dummy wafer
JP2009179507A (en) Silicon carbide/boron nitride composite material sintered compact, method for producing the same, and member using the sintered compact
JP2004231493A (en) Porous silicon carbide sintered compact and its manufacturing method
JP7272370B2 (en) Silicon nitride substrate manufacturing method and silicon nitride substrate
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
TW200902474A (en) Ceramic member and corrosion-resistant member
JP4758617B2 (en) High-density silicon carbide ceramics and method for producing the same
JP2004026513A (en) Aluminum oxide wear resistant member and its production process
JP4068825B2 (en) Method for producing sintered silicon carbide
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
KR102234171B1 (en) Manufacturing method of low-resistance silicon carbide composite
JP2753334B2 (en) Method for forming coating on ceramic substrate
JP4376479B2 (en) Method for producing Si-SiC composite material
JP2002283244A (en) Finishing grinding wheel and method of manufacture
JP2001278685A (en) Silicon carbide material and its manufacturing method
JPH05178657A (en) Alumina group composite sintered body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees