Nothing Special   »   [go: up one dir, main page]

JP2002295470A - Gas bearing spindle - Google Patents

Gas bearing spindle

Info

Publication number
JP2002295470A
JP2002295470A JP2001096120A JP2001096120A JP2002295470A JP 2002295470 A JP2002295470 A JP 2002295470A JP 2001096120 A JP2001096120 A JP 2001096120A JP 2001096120 A JP2001096120 A JP 2001096120A JP 2002295470 A JP2002295470 A JP 2002295470A
Authority
JP
Japan
Prior art keywords
bearing
cylinder member
graphite
gas bearing
bearing sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001096120A
Other languages
Japanese (ja)
Inventor
Shoji Fujii
章二 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001096120A priority Critical patent/JP2002295470A/en
Publication of JP2002295470A publication Critical patent/JP2002295470A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • F16C27/063Sliding contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/22Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with arrangements compensating for thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/16Sliding surface consisting mainly of graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas bearing spindle using graphite for a bearing sleeve capable of easily securing a bearing clearance even in the case when a rotation axis rotates at high speed, carrying out high precision work of graphite and with less possibility of damaging it. SOLUTION: The bearing sleeve 3 is constituted of a graphite made inside cylinder member 33 and a metallic outside cylinder member 34 externally fitted on the inside cylinder member 33 with a specified interference and a liner expansion coefficient of which is larger than graphite on the gas bearing spindle supporting the bearing sleeve 3 fitted in an outer diametrical surface of the rotation axis 1 with a clearance 11 for a gas bearing in between on a housing 2 through an elastic member (0 ring 41-44).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密加工機,穴加
工機,静電塗装機などに使用される気体軸受スピンドル
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas bearing spindle used for a precision machine, a hole machine, an electrostatic coating machine and the like.

【0002】[0002]

【従来の技術】従来の気体軸受スピンドル(静圧空気軸
受スピンドル)のジャーナル軸受部分を図2に示す。こ
の気体軸受スピンドルは、同図に示す如く、回転軸1の
外径面に気体軸受のための軸受隙間11を隔てて軸受ス
リーブ3を嵌合し、軸受スリーブ3の両端部を4本のO
リング41〜44を介してハウジング2に支持したもの
である。Oリング41,42は、ハウジング2と軸受ス
リーブ3との間の周状空間22を気密にシールすると共
に、その弾性により回転軸1の振れ回り振動を減衰させ
る。回転軸1は軸受隙間11に供給される高圧気体によ
り回転自在に非接触支持され、かつ、図示はしないが軸
方向にも高圧気体により非接触支持されるようになって
いる。
2. Description of the Related Art FIG. 2 shows a journal bearing portion of a conventional gas bearing spindle (hydrostatic air bearing spindle). In this gas bearing spindle, as shown in the figure, a bearing sleeve 3 is fitted to an outer diameter surface of a rotating shaft 1 with a bearing gap 11 for a gas bearing therebetween, and both ends of the bearing sleeve 3 are connected to four Os.
It is supported on the housing 2 via rings 41-44. The O-rings 41 and 42 hermetically seal the circumferential space 22 between the housing 2 and the bearing sleeve 3 and attenuate whirling vibration of the rotating shaft 1 by its elasticity. The rotating shaft 1 is rotatably and non-contactly supported by a high-pressure gas supplied to the bearing gap 11, and is also non-contactly supported by the high-pressure gas in the axial direction (not shown).

【0003】気体軸受用の高圧気体は、ハウジング2に
形成された給気通路21を通して、ハウジング2の内径
と軸受スリーブ3の外径との間の周状空間22に供給さ
れ、軸受スリーブ3の両端部付近に周状複数形成された
軸受ノズル31,32から回転軸1外周の軸受隙間11
に噴出されるようになっている。なお、図2で回転軸1
の右端には工具等が取付け可能とされ、回転軸1が図示
しない駆動手段で駆動されるようになっている。
The high-pressure gas for the gas bearing is supplied to a circumferential space 22 between the inner diameter of the housing 2 and the outer diameter of the bearing sleeve 3 through an air supply passage 21 formed in the housing 2. A plurality of bearing nozzles 31 and 32 formed in the vicinity of both ends provide a bearing gap 11 on the outer periphery of the rotating shaft 1.
It is to be spouted. It should be noted that in FIG.
A tool or the like can be attached to the right end of the drive shaft, and the rotating shaft 1 is driven by a drive unit (not shown).

【0004】[0004]

【発明が解決しようとする課題】近年、気体軸受スピン
ドルの耐焼き付き性を向上させるため、軸受スリーブ3
を潤滑性に優れた黒鉛で形成すると共に、回転軸1を表
面硬化処理を施した鉄鋼系金属で形成する傾向がある
が、このような気体軸受スピンドルでは次のような問題
が生じる可能性がある。すなわち、 (1)回転軸1が高速回転すると軸受隙間11での気体
摩擦により熱が発生するが、軸受スリーブ3は通常Oリ
ング41〜44によって弾性支持されていてハウジング
2に対する伝熱性がよくないから、回転軸1と軸受スリ
ーブ3との間に熱が溜まりやすい。
In recent years, in order to improve the seizure resistance of a gas bearing spindle, a bearing sleeve 3 has been developed.
Is formed of graphite having excellent lubricity, and the rotating shaft 1 is formed of a steel-based metal subjected to a surface hardening treatment. However, such a gas bearing spindle may cause the following problems. is there. (1) When the rotating shaft 1 rotates at high speed, heat is generated due to gas friction in the bearing gap 11, but the bearing sleeve 3 is generally elastically supported by the O-rings 41 to 44 and has poor heat transfer to the housing 2. Therefore, heat easily accumulates between the rotating shaft 1 and the bearing sleeve 3.

【0005】このように熱が溜まると回転軸1及び軸受
スリーブ3の温度が上昇するが、軸受スリーブ3の材料
である黒鉛の線膨張係数は、回転軸1の材料である鉄鋼
系材料よりも小さいから、径方向の寸法増加は軸受スリ
ーブ3よりも回転軸1のほうが大きくなる。このため回
転軸1が高速回転すると軸受隙間11が次第に狭くな
り、場合によっては隙間がゼロになって回転軸1と軸受
スリーブ3が接触する可能性がある。この問題は、高速
回転の用途ほど深刻である。
When the heat accumulates, the temperatures of the rotating shaft 1 and the bearing sleeve 3 rise. However, the linear expansion coefficient of graphite, which is the material of the bearing sleeve 3, is higher than that of the steel-based material, which is the material of the rotating shaft 1. Since it is small, the increase in the radial dimension is larger in the rotating shaft 1 than in the bearing sleeve 3. For this reason, when the rotating shaft 1 rotates at high speed, the bearing gap 11 gradually narrows, and in some cases, the gap becomes zero and the rotating shaft 1 and the bearing sleeve 3 may come into contact. This problem is more serious in high-speed rotation applications.

【0006】例えば、軸受スリーブ3を線膨張係数α1
=4×10-6/℃の黒鉛、回転軸1を線膨張係数α2=1
7×10-6/℃のステンレス鋼で形成し、軸受スリーブ
3の内半径(ジャーナル軸受半径)r1=20mm、軸
受半径隙間Cr=0.005mmとした場合、各部材の
温度上昇を均一と仮定すると、約19℃の温度上昇(=
ΔT)でCr=0となる。なお、このことは以下の数式
から計算できる。
For example, when the bearing sleeve 3 is made to have a linear expansion coefficient α 1
= 4 × 10 -6 / ° C graphite, rotating shaft 1 is linear expansion coefficient α 2 = 1
When made of stainless steel of 7 × 10 −6 / ° C., the inner radius of the bearing sleeve 3 (journal bearing radius) r 1 = 20 mm, and the bearing radius gap C r = 0.005 mm, the temperature rise of each member is uniform. Assuming that, a temperature rise of about 19 ° C. (=
At ΔT), C r = 0. This can be calculated from the following equation.

【0007】ΔCr1=r1(α2−α1)ΔT ただし、ΔCr1:軸受半径隙間変化量ΔCr 1 = r 12 −α 1 ) ΔT where ΔCr 1 is the amount of change in the bearing radial gap.

【0008】前記軸受半径隙間ゼロの現象を防ぐ方法と
して、まず軸受隙間11を大きく設定することが考えら
れるが、軸受隙間11を大きくすると軸受剛性が小さく
なるため、高剛性を必要とする場合には適用できない。
また、軸受隙間11を大きくすることは振れ回りを抑制
する上でも好ましくない。一方、黒鉛と同程度に線膨張
係数の小さい金属材料で回転軸1を形成する方法も考え
られるが、このような材料は一般に高価であり、現実的
な解決方法とはいえない。 (2)黒鉛製軸受スリーブ3を弾性支持する場合、軸受
スリーブ3単体での高精度加工が必要となるが、黒鉛は
縦弾性係数が小さく、かつ、軸受スリーブ3自体薄肉で
あるから高精度加工が難しい。 (3)黒鉛は脆いため、ハウジング2に対して黒鉛製軸
受スリーブ3を抜き差しする際に軸受スリーブ3が損傷
する可能性が高い。黒鉛製軸受スリーブには以上のよう
に種々の問題がある。
As a method of preventing the phenomenon of the bearing radial gap being zero, it is conceivable to first set the bearing gap 11 large. However, if the bearing gap 11 is increased, the bearing rigidity is reduced. Is not applicable.
In addition, it is not preferable to increase the bearing gap 11 in suppressing whirling. On the other hand, a method of forming the rotating shaft 1 with a metal material having a small linear expansion coefficient as much as graphite is also conceivable, but such a material is generally expensive and is not a practical solution. (2) When the graphite bearing sleeve 3 is elastically supported, high-precision machining is required for the bearing sleeve 3 alone. However, graphite has a small longitudinal elasticity coefficient and the bearing sleeve 3 itself is thin, so high-precision machining is required. Is difficult. (3) Since graphite is brittle, there is a high possibility that the bearing sleeve 3 will be damaged when the graphite bearing sleeve 3 is inserted into or removed from the housing 2. Graphite bearing sleeves have various problems as described above.

【0009】本発明の目的は、軸受スリーブに黒鉛を使
用した気体軸受スピンドルであって、回転軸が高速回転
をした場合でも軸受隙間を容易に確保することができ、
かつ、黒鉛の高精度加工が可能で損傷可能性も少ない気
体軸受スピンドルを提供することにある。
An object of the present invention is to provide a gas bearing spindle using graphite for a bearing sleeve, which can easily secure a bearing gap even when the rotating shaft rotates at a high speed.
It is another object of the present invention to provide a gas bearing spindle that can process graphite with high precision and has a low possibility of damage.

【0010】[0010]

【課題を解決するための手段】本発明の気体軸受スピン
ドルは、回転軸の外径面に気体軸受のための隙間を隔て
て嵌合した軸受スリーブを弾性部材を介してハウジング
で支持した気体軸受スピンドルにおいて、前記軸受スリ
ーブを、黒鉛製内筒部材と、前記内筒部材に所定締め代
で外嵌し線膨張係数が黒鉛よりも大の金属製外筒部材と
で構成したことを特徴とする。
A gas bearing spindle according to the present invention has a bearing sleeve supported by a housing via an elastic member and fitted on an outer diameter surface of a rotating shaft with a gap for the gas bearing interposed therebetween. In the spindle, the bearing sleeve is constituted by a graphite inner cylinder member, and a metal outer cylinder member that is externally fitted to the inner cylinder member with a predetermined interference and has a linear expansion coefficient larger than that of graphite. .

【0011】これにより、高速回転時に軸受スリーブの
温度が上昇したときでも、外筒部材の径方向の熱膨張に
追従する形で圧縮状態の内筒部材が径方向に膨張するか
ら、回転軸と内筒部材との間の軸受隙間を容易に確保す
ることができる。また、外筒部材が黒鉛製内筒部材の保
護筒として機能するから、特に軸受スリーブをハウジン
グに対して抜き差しする際の内筒の損傷を防止でき、黒
鉛使用の軸受スリーブの取扱いが容易になる。
Thus, even when the temperature of the bearing sleeve rises during high-speed rotation, the compressed inner cylinder member expands in the radial direction so as to follow the radial thermal expansion of the outer cylinder member. A bearing gap with the inner cylinder member can be easily secured. Further, since the outer cylinder member functions as a protection cylinder for the graphite inner cylinder member, damage to the inner cylinder particularly when the bearing sleeve is inserted into and removed from the housing can be prevented, and handling of the bearing sleeve using graphite becomes easy. .

【0012】前記内筒部材と外筒部材の締め代は、具体
的には、常用回転域で両者間に常に締め代が存在するよ
うな嵌め合い基準とすればよく、これにより高速回転時
においても安定して軸受隙間を確保できる。
More specifically, the interference between the inner cylinder member and the outer cylinder member may be based on a fitting standard such that an interference always exists between them in the normal rotation range. The bearing clearance can be secured stably.

【0013】外筒部材の金属は、望ましくはステンレス
など、その縦弾性係数が黒鉛よりも大のものを使用す
る。これにより軸受スリーブの内筒部材軸受面(内径
面)を仕上加工する際に、縦弾性係数の大きい金属で出
来た外筒部材をチャックして加工することができ、チャ
ックによる内筒部材の変形を抑えられ、高精度の軸受面
加工を施すことができる。
As the metal of the outer cylinder member, desirably, a material such as stainless steel whose longitudinal elastic modulus is larger than that of graphite is used. Thus, when finishing the inner cylinder member bearing surface (inner diameter surface) of the bearing sleeve, the outer cylinder member made of a metal having a large longitudinal elastic modulus can be chucked and machined, and the inner cylinder member is deformed by the chuck. , And high-precision bearing surface processing can be performed.

【0014】[0014]

【発明の実施の形態】以下に本発明を静圧空気軸受スピ
ンドルに適用した一実施形態を図1に基づき説明する。
図1は静圧空気軸受スピンドルのジャーナル軸受部分を
示したもので、軸受スリーブ3以外の構成は図1と同様
である。本発明の静圧空気軸受スピンドルでは、軸受ス
リーブ3が黒鉛製の内筒部材33と、金属製の外筒部材
34とで構成されている。外筒部材34は内筒部材33
の外径面に焼き嵌めによる所定の締め代で嵌合されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a hydrostatic air bearing spindle will be described below with reference to FIG.
FIG. 1 shows a journal bearing portion of a hydrostatic air bearing spindle. The configuration other than the bearing sleeve 3 is the same as that of FIG. In the hydrostatic air bearing spindle of the present invention, the bearing sleeve 3 is constituted by an inner cylindrical member 33 made of graphite and an outer cylindrical member 34 made of metal. The outer cylinder member 34 is the inner cylinder member 33
Is fitted with a predetermined interference by shrink fitting.

【0015】軸受スリーブ3の内径すなわち内筒部材3
3の内径に、軸受隙間11を隔てて回転軸1が挿入され
ている。そして、回転軸1は軸受隙間11に供給される
高圧空気により回転自在に非接触支持され、かつ、図示
はしないが軸方向にも高圧空気により非接触支持される
ようになっている。
The inner diameter of the bearing sleeve 3, that is, the inner cylindrical member 3
The rotating shaft 1 is inserted into the inside diameter of the bearing 3 with a bearing gap 11 therebetween. The rotating shaft 1 is rotatably and non-contactly supported by high-pressure air supplied to the bearing gap 11, and is also non-contactly supported by high-pressure air in the axial direction (not shown).

【0016】高圧空気は、ハウジング2に形成された給
気通路21から周状空間22に供給され、外筒部材34
に周状複数形成された空気導入孔35、36を経由し、
空気導入孔35,36と周状同位相に形成された内筒部
材33の軸受ノズル31,32から軸受隙間11に噴出
されるようになっている。なお、図1で回転軸1の右端
には工具等が取付け可能とされ、回転軸1が図示しない
駆動手段で駆動されるようになっている。
High-pressure air is supplied to the peripheral space 22 from an air supply passage 21 formed in the housing 2, and is supplied to the outer cylindrical member 34.
Via the air introduction holes 35 and 36 formed in a plurality of
The air is introduced into the bearing gap 11 from the bearing nozzles 31 and 32 of the inner cylindrical member 33 formed in the same circumferential phase as the air introduction holes 35 and 36. In FIG. 1, a tool or the like can be attached to the right end of the rotating shaft 1 so that the rotating shaft 1 is driven by driving means (not shown).

【0017】本発明の静圧空気軸受スピンドルは前述の
如く構成され、回転軸1の高速回転により軸受隙間11
で熱が発生すると、この熱により軸受スリーブ3全体の
温度が上昇する。しかし、内筒部材33は締り嵌めで嵌
合されているから、外筒部材34が熱膨張することで内
筒部材33の締りが緩み、内筒部材33の内径は熱膨張
以上に拡大する。従って、回転軸1の外径膨張による軸
受隙間11の消滅に対するマージンを、黒鉛だけで軸受
スリーブ3を構成した従来構造よりも大きくすることが
できる。
The hydrostatic air bearing spindle according to the present invention is constructed as described above, and the bearing clearance 11
When the heat is generated in this case, the temperature of the entire bearing sleeve 3 increases due to the heat. However, since the inner cylinder member 33 is fitted with a tight fit, the outer cylinder member 34 is thermally expanded, thereby loosening the tightness of the inner cylinder member 33, and the inner diameter of the inner cylinder member 33 is expanded beyond the thermal expansion. Accordingly, the margin for the disappearance of the bearing gap 11 due to the outer diameter expansion of the rotating shaft 1 can be made larger than that of the conventional structure in which the bearing sleeve 3 is constituted only by graphite.

【0018】例えば、内筒部材33に黒鉛、回転軸1及び
外筒部材34にステンレス鋼を用い、それぞれの物性及
び各寸法を表1の値とした場合、部材の温度上昇が均一
と仮定すると、軸受隙間11の減少量は、以下の数式1
を使用して、温度上昇19℃で約0.35μm、55℃
で約1.0μmと計算される。
For example, if graphite is used for the inner cylinder member 33 and stainless steel is used for the rotary shaft 1 and the outer cylinder member 34 and the physical properties and dimensions are as shown in Table 1, it is assumed that the temperature rise of the members is uniform. The amount of decrease in the bearing gap 11 is given by the following equation 1.
Approximately 0.35 μm at a temperature rise of 19 ° C. and 55 ° C.
Is calculated to be about 1.0 μm.

【表1】 [Table 1]

【数式1】 [Formula 1]

【0019】計算上、軸受半径隙間Cr=0となるのは
約270℃であるが、100℃で内筒部材33と外筒部
材34の焼き嵌め代q=0になる。したがって、温度上
昇の許容限界値は100℃である。
From the calculation, the bearing radial gap C r = 0 is about 270 ° C., but at 100 ° C., the shrinkage allowance q = 0 of the inner cylinder member 33 and the outer cylinder member 34 becomes zero. Therefore, the allowable limit value of the temperature rise is 100 ° C.

【0020】このことから、図2の従来型気体軸受スピ
ンドルで軸受スリーブ3を黒鉛製とし、かつ、各部寸法
を全く同一にしたものと比べて、温度上昇に対するマー
ジンは約5倍になる。(実際には安全率を考慮する必要
があるが、本計算では考慮していない。)
As a result, the margin for temperature rise is about five times that of the conventional gas bearing spindle shown in FIG. 2 in which the bearing sleeve 3 is made of graphite and the dimensions of each part are completely the same. (Actually, it is necessary to consider the safety factor, but it is not considered in this calculation.)

【0021】以上、本発明の一実施形態につき説明した
が、本発明は前記実施形態に限定されることなく種々の
変形が可能であり、例えば前記実施形態では軸受形式を
多数給気孔型静圧軸受としたが、多孔質静圧軸受等他の
軸受形式にも本発明を適用可能であるし、動圧軸受にも
適用可能である。
The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and various modifications can be made. Although the bearing is used, the present invention can be applied to other bearing types such as a porous hydrostatic bearing, and can also be applied to a dynamic pressure bearing.

【0022】[0022]

【発明の効果】本発明は前述の如く、軸受スリーブを黒
鉛製内筒部材と金属製外筒部材で構成し、外筒部材を内
筒部材に所定締め代で嵌合したから、回転軸の高速回転
による軸受隙間での発熱により軸受スリーブが温度上昇
しても、外筒部材の径方向熱膨張に追従する形で黒鉛製
内筒部材も熱膨張し、回転軸の径方向熱膨張に伴う軸受
隙間の減少を抑制できる。また、黒鉛製内筒部材が金属
製外筒部材によって保護されるから、軸受スリーブをハ
ウジングに抜き差しする際の内筒部材の損傷を防止する
ことができる。また、外筒部材に使用する金属の縦弾性
係数を黒鉛の縦弾性係数よりも大きくすることにより、
軸受スリーブの内筒部材軸受面を仕上加工する際に、縦
弾性係数の大きい金属で出来た外筒部材をチャックして
加工することでチャックによる内筒部材の変形を抑えら
れ、高精度の軸受面加工を施すことができる。
As described above, according to the present invention, the bearing sleeve is composed of the graphite inner cylinder member and the metal outer cylinder member, and the outer cylinder member is fitted to the inner cylinder member with a predetermined interference. Even if the temperature of the bearing sleeve rises due to heat generated in the bearing gap due to high-speed rotation, the graphite inner cylinder member also thermally expands following the radial thermal expansion of the outer cylinder member, accompanying the radial thermal expansion of the rotating shaft. A decrease in bearing clearance can be suppressed. Further, since the graphite inner cylinder member is protected by the metal outer cylinder member, it is possible to prevent the inner cylinder member from being damaged when the bearing sleeve is inserted and removed from the housing. Also, by making the longitudinal modulus of elasticity of the metal used for the outer cylinder member larger than that of graphite,
When finishing the inner cylinder member bearing surface of the bearing sleeve, the outer cylinder member made of metal with a large longitudinal elastic modulus is chucked and machined to suppress deformation of the inner cylinder member by the chuck, resulting in a high-precision bearing. Surface processing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る気体軸受スピンドルのジャーナル
軸受部分の断面図。
FIG. 1 is a sectional view of a journal bearing portion of a gas bearing spindle according to the present invention.

【図2】従来の気体軸受スピンドルのジャーナル軸受部
分の断面図。
FIG. 2 is a sectional view of a journal bearing portion of a conventional gas bearing spindle.

【符号の説明】[Explanation of symbols]

1 回転軸 2 ハウジング 3 軸受スリーブ 11 軸受隙間 21 給気通路 22 周状空間 31,32 軸受ノズル 33 黒鉛製内筒部材 34 金属製外筒部材 35,36 空気導入孔 41〜44 Oリング Cr 軸受半径隙間1 rotating shaft 2 housing 3 bearing sleeve 11 bearing gap 21 supply passage 22 laps like space 31, 32 bearing nozzles 33 graphite in tubular member 34 metallic outer sleeve members 35 and 36 air inlet holes 41 to 44 O-ring C r bearings Radial gap

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA04 AA08 BA02 DA01 QA04 SE02 3J012 AB11 BB01 CB10 FB20 HB02 3J102 AA02 CA31 EA02 EA13 FA01 FA30 GA07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 AA04 AA08 BA02 DA01 QA04 SE02 3J012 AB11 BB01 CB10 FB20 HB02 3J102 AA02 CA31 EA02 EA13 FA01 FA30 GA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転軸の外径面に気体軸受のための隙
間を隔てて嵌合した軸受スリーブを弾性部材を介してハ
ウジングで支持した気体軸受スピンドルにおいて、前記
軸受スリーブを、黒鉛製内筒部材と、前記内筒部材に所
定締め代で外嵌し線膨張係数が黒鉛よりも大の金属製外
筒部材とで構成したことを特徴とする気体軸受スピンド
ル。
1. A gas bearing spindle in which a bearing sleeve fitted on an outer diameter surface of a rotary shaft with a gap for a gas bearing is supported by a housing via an elastic member, wherein the bearing sleeve is made of a graphite inner cylinder. A gas bearing spindle comprising: a member; and a metal outer cylinder member having a linear expansion coefficient larger than graphite, which is externally fitted to the inner cylinder member with a predetermined interference.
【請求項2】 軸受スリーブの内筒部材と外筒部材が常
用回転域で締め代を保持することを特徴とする請求項1
に記載の気体軸受スピンドル。
2. An inner cylinder member and an outer cylinder member of a bearing sleeve maintain an interference in a normal rotation range.
2. A gas bearing spindle according to claim 1.
【請求項3】 縦弾性係数が黒鉛よりも大の金属で外筒
部材を形成したことを特徴とする請求項1又は2に記載
の気体軸受スピンドル。
3. The gas bearing spindle according to claim 1, wherein the outer cylinder member is formed of a metal having a modulus of longitudinal elasticity larger than that of graphite.
【請求項4】 ステンレスで外筒部材を形成したことを
特徴とする請求項3記載の気体軸受スピンドル。
4. The gas bearing spindle according to claim 3, wherein the outer cylindrical member is formed of stainless steel.
JP2001096120A 2001-03-29 2001-03-29 Gas bearing spindle Withdrawn JP2002295470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001096120A JP2002295470A (en) 2001-03-29 2001-03-29 Gas bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001096120A JP2002295470A (en) 2001-03-29 2001-03-29 Gas bearing spindle

Publications (1)

Publication Number Publication Date
JP2002295470A true JP2002295470A (en) 2002-10-09

Family

ID=18950073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001096120A Withdrawn JP2002295470A (en) 2001-03-29 2001-03-29 Gas bearing spindle

Country Status (1)

Country Link
JP (1) JP2002295470A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170534A (en) * 2005-12-21 2007-07-05 Ntn Corp Gas bearing spindle
JP2008138850A (en) * 2006-12-05 2008-06-19 Ntn Corp Static pressure gas bearing spindle
JP2008138783A (en) * 2006-12-01 2008-06-19 Ntn Corp Static pressure gas bearing spindle
GB2466998A (en) * 2009-01-19 2010-07-21 Gsi Group Ltd A gas bearing spindle and a gas bearing assembly for a gas bearing spindle
EP2249051A1 (en) 2009-05-07 2010-11-10 NTN Corporation Gas bearing spindle
CN103244559A (en) * 2012-02-03 2013-08-14 达航工业股份有限公司 Bushing type air bearing and main shaft device
TWI421417B (en) * 2011-11-29 2014-01-01 Gsi Group Ltd Gas bearing spindles and gas bearing assemblies for gas bearing spindles
CN104707874A (en) * 2015-03-23 2015-06-17 山东钢铁股份有限公司 Self-lubricating carrier roller
JP2018021625A (en) * 2016-08-04 2018-02-08 Ntn株式会社 Air turbine driving spindle
CN108895086A (en) * 2018-09-20 2018-11-27 燕山大学 A kind of aerostatic bearing with metal-rubber ring
WO2019013368A1 (en) * 2017-07-12 2019-01-17 주식회사 알피에스 Stiffness control apparatus of air bearing
CN111600418A (en) * 2020-05-19 2020-08-28 杨帅军 Series excited motor
CN112283245A (en) * 2020-11-26 2021-01-29 溧阳福思宝高速机械有限公司 Radial air bearing elastic support structure

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170534A (en) * 2005-12-21 2007-07-05 Ntn Corp Gas bearing spindle
JP2008138783A (en) * 2006-12-01 2008-06-19 Ntn Corp Static pressure gas bearing spindle
JP2008138850A (en) * 2006-12-05 2008-06-19 Ntn Corp Static pressure gas bearing spindle
GB2466998A (en) * 2009-01-19 2010-07-21 Gsi Group Ltd A gas bearing spindle and a gas bearing assembly for a gas bearing spindle
GB2466998B (en) * 2009-01-19 2011-05-18 Gsi Group Ltd Gas bearing spindles and gas bearing assemblies for gas bearing spindles
TWI413736B (en) * 2009-01-19 2013-11-01 Gsi Group Ltd Gas bearing spindles and gas bearing assemblies for gas bearing spindles
EP2249051A1 (en) 2009-05-07 2010-11-10 NTN Corporation Gas bearing spindle
US8162544B2 (en) 2009-05-07 2012-04-24 Ntn Corporation Gas bearing spindle
TWI421417B (en) * 2011-11-29 2014-01-01 Gsi Group Ltd Gas bearing spindles and gas bearing assemblies for gas bearing spindles
CN103244559A (en) * 2012-02-03 2013-08-14 达航工业股份有限公司 Bushing type air bearing and main shaft device
CN104707874A (en) * 2015-03-23 2015-06-17 山东钢铁股份有限公司 Self-lubricating carrier roller
JP2018021625A (en) * 2016-08-04 2018-02-08 Ntn株式会社 Air turbine driving spindle
WO2018025579A1 (en) * 2016-08-04 2018-02-08 Ntn株式会社 Air turbine driving spindle
CN109563875A (en) * 2016-08-04 2019-04-02 Ntn株式会社 Air turbine driving spindle
US11033915B2 (en) 2016-08-04 2021-06-15 Ntn Corporation Air turbine drive spindle
WO2019013368A1 (en) * 2017-07-12 2019-01-17 주식회사 알피에스 Stiffness control apparatus of air bearing
CN108895086A (en) * 2018-09-20 2018-11-27 燕山大学 A kind of aerostatic bearing with metal-rubber ring
CN111600418A (en) * 2020-05-19 2020-08-28 杨帅军 Series excited motor
CN111600418B (en) * 2020-05-19 2022-09-09 珠海天骋科技有限公司 Series excited motor
CN112283245A (en) * 2020-11-26 2021-01-29 溧阳福思宝高速机械有限公司 Radial air bearing elastic support structure

Similar Documents

Publication Publication Date Title
JP2002295470A (en) Gas bearing spindle
US20190170187A1 (en) Ball bearing, spindle device, and machine tool
GB1558941A (en) Air bearing for turbo machines
WO2009104542A1 (en) Gas bearing spindle
JP2001107964A (en) Fluid bearing
JP2000237902A (en) Main shaft device
US20080211334A1 (en) Spindle motor
KR101885478B1 (en) Sleeve of machine tool spindle without shirink-fitting and machine tool having the sleeve
JP3039738B2 (en) Hydrostatic bearing
JP3623606B2 (en) High-speed rolling bearing
KR100414907B1 (en) High Speed Spindle System Used Hybrid Air Bearing
JP7067637B2 (en) Motor built-in spindle device
JPH0751903A (en) Main spindle device of machine tool
WO2020090276A1 (en) Spindle device having built-in motor
JPH0289807A (en) Non-round bearing
EP3473875B1 (en) Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
JP2002039182A (en) Noncontact bearing spindle device
JP2000009143A (en) Fluid bearing device
JP2002339970A (en) Magnetic bearing device, and turbo-molecular pump
JPH06241222A (en) Spindle
JP2007024258A (en) Lubricating device of rolling bearing
JP5030616B2 (en) Roller surface polishing method
JP3285269B2 (en) High-speed rotating body
JP4182169B2 (en) Method of attaching spindle body to rotor and processing device
JP2008202682A (en) Rolling bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603