Nothing Special   »   [go: up one dir, main page]

JP2002286847A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JP2002286847A
JP2002286847A JP2001082530A JP2001082530A JP2002286847A JP 2002286847 A JP2002286847 A JP 2002286847A JP 2001082530 A JP2001082530 A JP 2001082530A JP 2001082530 A JP2001082530 A JP 2001082530A JP 2002286847 A JP2002286847 A JP 2002286847A
Authority
JP
Japan
Prior art keywords
semiconductor
photodiode
light receiving
receiving element
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001082530A
Other languages
Japanese (ja)
Inventor
Tadayoshi Shoji
忠良 庄司
Keitaro Hitomi
啓太朗 人見
Hideaki Onabe
秀明 尾鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REITEKKU KK
Raytech Corp
Original Assignee
REITEKKU KK
Raytech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REITEKKU KK, Raytech Corp filed Critical REITEKKU KK
Priority to JP2001082530A priority Critical patent/JP2002286847A/en
Publication of JP2002286847A publication Critical patent/JP2002286847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector having a small size and high energy resolution. SOLUTION: The peak sensitivity wavelength of this radiation detector can be adjusted to <=500 nm which is close to the light emitting peak wavelength of an oxide scintillator by not using a silicon photodiode as a photodiode, but a semiconductor light receiving element having light receiving peak sensitivity of <=500 nm which is close to the light emitting peak wavelength of the oxide scintillator as the photodiode. To be concrete, this detector uses a semiconductor light receiving element formed by using a compound semiconductor having a forbidden band width of >=2.5 eV as a base material as the photodiode. To be more concrete, this detector uses a semiconductor light receiving element composed of a thallium bromide(TlBr) as the photodiode. Consequently, the sensitivity of this semiconductor radiation detector can be increased and the size of this detector can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガンマカメラ、X
線断層撮影装置(X線CT),陽電子放出核種断層撮影
装置(PET)、γ線非破壊検査装置等に用いるのに適
した半導体放射線検出装置に関し、特に放射線を受けて
発光するシンチレータと、受光素子とを有する放射線検
出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gamma camera, X
Semiconductor radiation detector suitable for use in X-ray CT (X-ray CT), positron emission nuclide tomography (PET), γ-ray nondestructive inspection equipment, etc. The present invention relates to a radiation detecting device having an element.

【0002】[0002]

【従来の技術】従来から、放射線検出装置として、シン
チレータからの発光を主に光電子増倍管やシリコンフォ
トダイオードなどの光検出器で検出するシンチレーショ
ンカウンタが、医学、工学、物理学などの分野で利用さ
れている。
2. Description of the Related Art Conventionally, as a radiation detecting device, a scintillation counter for detecting light emission from a scintillator mainly by a photodetector such as a photomultiplier tube or a silicon photodiode has been used in fields such as medicine, engineering, and physics. It's being used.

【0003】シンチレータとしては、例えばPETに用
いるべくGSO、LSO、LuAP、YAPなどの酸化
物シンチレータが、その高い蛍光出力及び短い蛍光減衰
時間のために注目されている。
As scintillators, for example, oxide scintillators such as GSO, LSO, LuAP, and YAP for use in PET have attracted attention because of their high fluorescence output and short fluorescence decay time.

【0004】また、シリコンフォトダイオードは、光電
子増信管に比べ量子効率が高く、小型で機械的衝撃に強
いなどの利点を有しているため、上記酸化物シンチレー
タと組み合わすことができれば、小型で高エネルギー分
解能を持つシンチレーションカウンタを構成することが
できる。
[0004] Silicon photodiodes have advantages such as higher quantum efficiency, smaller size and greater resistance to mechanical shock than photomultiplier tubes. Therefore, if they can be combined with the above-mentioned oxide scintillator, they will be smaller. A scintillation counter with high energy resolution can be configured.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、シリコ
ンを素材とするフォトダイオードは、その物性(禁止帯
幅約1.1eV)から、高量子効率波長は、500nm
〜1000nmの長波長領域に存在する。従って、シリ
コンフォトダイオードは、短波長領域(500nm未
満)で量子効率が低下するという欠点を有しており、約
350nm〜450nmと短波長領域にピーク波長を持
つ上記各酸化物シンチレータとの組み合わせには適さな
い。
However, a photodiode made of silicon has a high quantum efficiency wavelength of 500 nm due to its physical properties (bandwidth of about 1.1 eV).
It exists in a long wavelength region of 10001000 nm. Therefore, the silicon photodiode has a drawback that the quantum efficiency is reduced in a short wavelength region (less than 500 nm), and the silicon photodiode has a drawback of about 350 nm to 450 nm in combination with each of the oxide scintillators having a peak wavelength in the short wavelength region. Is not suitable.

【0006】そこで、シンチレータの発光波長が、シリ
コンフォトダイオードの高量子効率波長域(約500n
m以上)になるようシンチレータに添加物を加える等の
工夫がなされているが、実用域には達していない。
Therefore, the emission wavelength of the scintillator is set to the high quantum efficiency wavelength range (about 500 n) of the silicon photodiode.
m or more), the addition of additives to the scintillator has been devised, but it has not reached the practical range.

【0007】本発明は、上記したような従来技術の問題
点を解決するべく案出されたものであり、小型で高エネ
ルギー分解能を持つ放射線検出装置を提供することを目
的とする。
[0007] The present invention has been devised to solve the above-mentioned problems of the prior art, and has as its object to provide a radiation detection apparatus which is small and has high energy resolution.

【0008】本発明者は、シリコンフォトダイオードの
光電子増信管に比べ量子効率が高く、小型で機械的衝撃
に強いなどの利点は他の半導体受光素子でも同様である
点に着目した。
The present inventor has noticed that other semiconductor light-receiving elements have the same advantages that the quantum efficiency is higher than that of a silicon photodiode photomultiplier tube, that they are small, and that they are resistant to mechanical shock.

【0009】[0009]

【課題を解決するための手段】上記した目的を達成する
べく、本発明では、光検出器としてシリコンフォトダイ
オードではなく、酸化物シンチレータの発光ピーク波長
に近い500nm以下に受光ピーク感度を有する半導体
受光素子を用いた。これは具体的には禁止帯幅2.5e
V以上の化合物半導体を素材とする半導体受光素子、更
に具体的には受光ピーク感度が430nmで、500n
m以下の光を効率良く検出可能な臭化タリウム(TlB
r)からなるフォトダイオードが挙げられる。
In order to achieve the above object, according to the present invention, there is provided a semiconductor light receiving device having a light receiving peak sensitivity of 500 nm or less which is close to the light emitting peak wavelength of an oxide scintillator, instead of a silicon photodiode as a light detector. An element was used. This is specifically the band gap 2.5e
Semiconductor light-receiving element using a compound semiconductor of V or higher, more specifically, a light-receiving peak sensitivity of 430 nm and 500 n
thallium bromide (TIB
r).

【0010】図3に示すように、シリコンフォトダイオ
ードでは900nm〜1000nmの間に受光ピーク感
度を有するのに対して臭化タリウム(TlBr)からな
るフォトダイオードでは430nm付近となり、500
nm以下の光を効率良く検出可能であることがわかる。
As shown in FIG. 3, a silicon photodiode has a light-receiving peak sensitivity between 900 nm and 1000 nm, whereas a photodiode made of thallium bromide (TlBr) has a sensitivity near 430 nm,
It can be seen that light of nm or less can be detected efficiently.

【0011】[0011]

【発明の実施の形態】以下に、本発明の好適な実施形態
について添付の図面を参照して詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1は、本発明が適用された半導体放射線
検出装置の構造を示す断面図である。基板1上には電極
2を介して臭化タリウム(TlBr)からなるフォトダ
イオード3が設けられている。その厚みは450μm程
度である。また、フォトダイオード3の上面には透明電
極4を介して例えばLSOからなるシンチレータ結晶5
が積層されている。その厚みは4mm程度である。この
シンチレータ結晶5の図に於ける上端面で放射線を受け
ることとなる。尚、これらフォトダイオード3、透明電
極4及びシンチレータ結晶5は遮光材6によって覆われ
ている。符号7、8は信号取り出し線である。
FIG. 1 is a sectional view showing a structure of a semiconductor radiation detecting apparatus to which the present invention is applied. A photodiode 3 made of thallium bromide (TlBr) is provided on a substrate 1 via an electrode 2. Its thickness is about 450 μm. A scintillator crystal 5 made of, for example, LSO is provided on the upper surface of the photodiode 3 via a transparent electrode 4.
Are laminated. Its thickness is about 4 mm. The upper end face of the scintillator crystal 5 in the figure receives radiation. The photodiode 3, the transparent electrode 4, and the scintillator crystal 5 are covered with a light shielding material 6. Reference numerals 7 and 8 are signal extraction lines.

【0013】図2は、上記半導体放射線検出装置(シン
チレーションカウンタ)を用い、セシウム137(
137Cs)を照射したときのスペクトル分析結果を示
すグラフである。高いエネルギー分解能で検出されてい
ることがわかる。
FIG. 2 shows a cesium 137 (scintillation counter) using the above-mentioned semiconductor radiation detecting device (scintillation counter).
137 Cs) is a graph showing the spectral analysis result at the time of irradiation with the. It can be seen that it is detected with high energy resolution.

【0014】[0014]

【発明の効果】上記した説明により明らかなように、本
発明による半導体放射線検出装置によれば、光検出器と
してシリコンフォトダイオードではなく、酸化物シンチ
レータの発光ピーク波長に近い500nm以下に受光ピ
ーク感度を有する半導体受光素子、具体的には禁止帯幅
2.5eV以上の化合物半導体を素材とする半導体受光
素子、更に具体的には臭化タリウム(TlBr)からな
る半導体受光素子を用いることで、その検出器のピーク
感度波長を、酸化物シンチレータの発光ピーク波長に近
い500nm以下にすることが可能となり、高感度で小
型の半導体放射線検出装置を実現できる。
As is apparent from the above description, according to the semiconductor radiation detecting apparatus according to the present invention, the photodetector has a light receiving peak sensitivity of 500 nm or less, which is close to the light emitting peak wavelength of the oxide scintillator, instead of a silicon photodiode as a photodetector. By using a semiconductor light-receiving element having the following, specifically, a semiconductor light-receiving element made of a compound semiconductor having a band gap of 2.5 eV or more, more specifically, a semiconductor light-receiving element made of thallium bromide (TlBr) is used. The peak sensitivity wavelength of the detector can be reduced to 500 nm or less, which is close to the emission peak wavelength of the oxide scintillator, and a highly sensitive and small semiconductor radiation detector can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用された半導体放射線検出装置の構
造を示す断面図。
FIG. 1 is a cross-sectional view showing a structure of a semiconductor radiation detecting apparatus to which the present invention is applied.

【図2】図1の半導体放射線検出装置によるセシウム1
37(137Cs)を照射したときのスペクトル分析結
果を示すグラフ。
FIG. 2 shows cesium 1 detected by the semiconductor radiation detector of FIG.
Graph showing the spectral analysis results when irradiated with 37 (137 Cs).

【図3】シリコンフォトダイオードと臭化タリウム(T
lBr)からなるフォトダイオードとの分光感度特性を
比較するグラフ。
FIG. 3 shows a silicon photodiode and thallium bromide (T
1B is a graph comparing spectral sensitivity characteristics with a photodiode composed of 1Br).

【符号の説明】[Explanation of symbols]

1 基板 2 電極 3 臭化タリウム(TlBr)からなるフォトダイオー
ド 4 透明電極 5 シンチレータ結晶 6 遮光材 7、8 信号取り出し線
Reference Signs List 1 substrate 2 electrode 3 photodiode made of thallium bromide (TlBr) 4 transparent electrode 5 scintillator crystal 6 light shielding material 7, 8 signal extraction line

【手続補正書】[Procedure amendment]

【提出日】平成13年5月24日(2001.5.2
4)
[Submission date] May 24, 2001 (2001.5.2)
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】また、シリコンフォトダイオードは、光電
子増管に比べ量子効率が高く、小型で機械的衝撃に強
いなどの利点を有しているため、上記酸化物シンチレー
タと組み合わすことができれば、小型で高エネルギー分
解能を持つシンチレーションカウンタを構成することが
できる。
Further, a silicon photodiode has high quantum efficiency compared with the photomultiplier tube, because it has advantages such as strong mechanical impact small, if be combined with the oxide scintillator, small Thus, a scintillation counter having high energy resolution can be configured.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】本発明者は、シリコンフォトダイオードの
光電子増管に比べ量子効率が高く、小型で機械的衝撃
に強いなどの利点は他の半導体受光素子でも同様である
点に着目した。
[0008] The present inventor has high quantum efficiency compared with the photomultiplier tube of silicon photodiodes, advantages such as strong mechanical shock compact was focused on the point also applies to other semiconductor photodetector.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾鍋 秀明 栃木県宇都宮市陽東5丁目6番27号 株式 会社レイテック内 Fターム(参考) 2G088 EE01 EE02 FF02 FF04 FF07 GG19 GG20 JJ04 JJ05 4M118 AA01 AA10 AB10 BA01 CA02 CA19 CB01 CB11 5F088 AA01 AB07 BA01 BB07 HA10 HA15 LA03 LA07 LA08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hideaki Onabe 5-6-27 Yoto, Utsunomiya, Tochigi Pref. CA19 CB01 CB11 5F088 AA01 AB07 BA01 BB07 HA10 HA15 LA03 LA07 LA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 放射線を受けて発光するシンチレータ
と、半導体受光素子とを有する放射線検出装置であっ
て、 前記シンチレータの発光のピーク波長及び前記半導体受
光素子の受光ピーク感度が共に500nm以下となって
いることを特徴とする半導体放射線検出装置。
1. A radiation detecting apparatus comprising: a scintillator that receives radiation and emits light; and a semiconductor light receiving element, wherein a peak wavelength of light emitted from the scintillator and a light receiving peak sensitivity of the semiconductor light receiving element are both 500 nm or less. A semiconductor radiation detection device.
【請求項2】 前記半導体受光素子が、禁止帯幅2.
5eV以上の化合物半導体からなることを特徴とする請
求項1に記載の半導体放射線検出装置。
2. The method according to claim 1, wherein the semiconductor light receiving element has a band gap of 2.
The semiconductor radiation detecting device according to claim 1, wherein the semiconductor radiation detecting device is made of a compound semiconductor of 5 eV or more.
【請求項3】 前記化合物半導体が、臭化タリウム
(TlBr)であることを特徴とする請求項2に記載の
半導体検出器。
3. The semiconductor detector according to claim 2, wherein said compound semiconductor is thallium bromide (TlBr).
JP2001082530A 2001-03-22 2001-03-22 Semiconductor radiation detector Pending JP2002286847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001082530A JP2002286847A (en) 2001-03-22 2001-03-22 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001082530A JP2002286847A (en) 2001-03-22 2001-03-22 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JP2002286847A true JP2002286847A (en) 2002-10-03

Family

ID=18938466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001082530A Pending JP2002286847A (en) 2001-03-22 2001-03-22 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JP2002286847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173826A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Optical sensor, card type information recording medium, and information processing system using the same
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device
WO2015129091A1 (en) * 2014-02-27 2015-09-03 日立アロカメディカル株式会社 Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273677A (en) * 1985-09-27 1987-04-04 Akira Sakata Semiconductor photodetector
JPH07296749A (en) * 1994-04-25 1995-11-10 Shimadzu Corp Radiation two-dimensional detector
JP2000035480A (en) * 1998-06-26 2000-02-02 Ftni Inc Indirect radiogram detector for radiology
JP2000346951A (en) * 1999-03-30 2000-12-15 Fuji Photo Film Co Ltd Radiation solid detector, radiation image-recording/ reading method and device using the same
JP2002511944A (en) * 1997-07-15 2002-04-16 ディレクト レディオグラフィ コーポレーション Manufacturing method of digital radiographic panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273677A (en) * 1985-09-27 1987-04-04 Akira Sakata Semiconductor photodetector
JPH07296749A (en) * 1994-04-25 1995-11-10 Shimadzu Corp Radiation two-dimensional detector
JP2002511944A (en) * 1997-07-15 2002-04-16 ディレクト レディオグラフィ コーポレーション Manufacturing method of digital radiographic panel
JP2000035480A (en) * 1998-06-26 2000-02-02 Ftni Inc Indirect radiogram detector for radiology
JP2000346951A (en) * 1999-03-30 2000-12-15 Fuji Photo Film Co Ltd Radiation solid detector, radiation image-recording/ reading method and device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173826A (en) * 2002-11-26 2004-06-24 Seiko Epson Corp Optical sensor, card type information recording medium, and information processing system using the same
JP2007155360A (en) * 2005-11-30 2007-06-21 Hitachi Ltd Nuclear medical diagnosis device, and radiation detection method in nuclear medical diagnosis device
JP4594855B2 (en) * 2005-11-30 2010-12-08 株式会社日立製作所 Nuclear medicine diagnostic apparatus, radiation camera, and radiation detection method in nuclear medicine diagnostic apparatus
WO2015129091A1 (en) * 2014-02-27 2015-09-03 日立アロカメディカル株式会社 Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals
JP2015160771A (en) * 2014-02-27 2015-09-07 日立アロカメディカル株式会社 Crystal growth crucible, crystal growth apparatus including the same and crystal growth method

Similar Documents

Publication Publication Date Title
US7129494B2 (en) Very fast doped LaBr3 scintillators and time-of-flight PET
CN108139491B (en) Radiation detector for combined detection of low-energy and high-energy radiation quanta
JP3332200B2 (en) Radiation detector for X-ray CT
US8212220B2 (en) Dual radiation detector
RU2437118C2 (en) Apparatus and method for spectral computer tomography
JP2005533245A (en) Gamma-ray detectors for positron emission tomography (PET) and single photon emission computed tomography (SPECT)
WO2012093526A1 (en) Radiation detector
US20050127300A1 (en) Portable Radiation detector and method of detecting radiation
EP1550885B1 (en) Phosphor sheet for radiation detector, radiation detector employing it and equipment for detecting radiation
US10670739B2 (en) Gamma radiation and neutron radiation detector
US20140339409A1 (en) Scintillation Detector Package Having Radioactive Reflective Material Therein
US20140339408A1 (en) Scintillation Detector Package Having Radioactive Support Apparatus
JPWO2007113898A1 (en) Radiation detector
JP2010096648A (en) Radiation-into-light transducing element, and radiation detector
JP4061367B2 (en) ZnS (Ag) scintillation detector
US9958556B1 (en) Direct conversion radiation detector
JP2002286847A (en) Semiconductor radiation detector
Kapusta et al. Comparison of YAP and BGO for high-resolution PET detectors
JPH10160852A (en) Radiation detector
JP2004226256A (en) Radiation position detector operable in strong magnetic field
Koroleva et al. New scintillation materials and scintiblocs for neutron and γ-rays registration
JPS58137781A (en) Thin film type solid-state x-ray sensor
KR20150046624A (en) X-ray detector
US11466204B2 (en) Lutetium oxide-based scintillator materials including related systems and methods
JPH07128759A (en) Reading method of radiograph and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012