Nothing Special   »   [go: up one dir, main page]

JP2002285801A - Combination member and part for gas turbine - Google Patents

Combination member and part for gas turbine

Info

Publication number
JP2002285801A
JP2002285801A JP2001090031A JP2001090031A JP2002285801A JP 2002285801 A JP2002285801 A JP 2002285801A JP 2001090031 A JP2001090031 A JP 2001090031A JP 2001090031 A JP2001090031 A JP 2001090031A JP 2002285801 A JP2002285801 A JP 2002285801A
Authority
JP
Japan
Prior art keywords
rotating member
ceramic
hardness
less
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001090031A
Other languages
Japanese (ja)
Other versions
JP4712997B2 (en
Inventor
Masahiro Sato
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001090031A priority Critical patent/JP4712997B2/en
Publication of JP2002285801A publication Critical patent/JP2002285801A/en
Application granted granted Critical
Publication of JP4712997B2 publication Critical patent/JP4712997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas turbine rotor comprising: a combination member excellent in mechanical reliability and heat resistance; a turbine that prevents mating members to be damaged with each other even if the members contact- slide by narrowing a gap between the members in order to improve thermal efficiency; and a turbine shroud. SOLUTION: In the combination member composed of a rotating member 1 formed of ceramic and a ceramic member 2 situated in the vicinity of the rotating member 1, the hardness of the rotating member 1 is 13-16 GPa, the hardness of the ceramic member 2 is 5-10 GPa, the porosity of the rotating member 1 and the ceramic member 2 is 5% or less, and a minimum gap 3 between the rotating member 1 and the ceramic member 2 is 1 mm or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、組合せ部材に関
し、また、軽量、耐酸化性の特性を有しつつ、被研削性
能を向上し、ガスタービン、ジェットエンジンなどにお
ける回転部材であるタービンとそのタービン翼先端に対
向するタービンシュラウド等の静止部材に使用され、経
済性に優れ、高効率なガスタービン用部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination member, and more particularly, to a turbine which is a rotating member in a gas turbine, a jet engine, etc., and has improved lightening and oxidation resistance and improved grinding performance. The present invention relates to a gas turbine component which is used for a stationary member such as a turbine shroud facing a tip of a turbine blade, is excellent in economy, and has high efficiency.

【0002】[0002]

【従来技術】最近のガスタービンは高効率化に伴い、高
温燃焼化が進んでいる。そのため燃焼室周りの高温化が
進み、その耐熱性が重要になってきている。特にその中
心部材で回転部品であるタービンロータと、そのケーシ
ングである静止部品のシュラウドとが、組み合せて用い
られ、高い強度や耐熱性とともに、作動ガスの漏れを防
ぐための高いシール性が要求されている。
2. Description of the Related Art Recently, high-temperature combustion of gas turbines has been progressing with high efficiency. For this reason, the temperature around the combustion chamber is increasing, and its heat resistance is becoming important. In particular, a turbine rotor, which is a rotating component as its central member, and a shroud, which is a stationary component as its casing, are used in combination, and are required to have high strength and heat resistance, as well as high sealing properties to prevent leakage of working gas. ing.

【0003】そのため、従来より、窒化珪素、チタン酸
アルミニウム、コージェライト等のセラミックスがエン
ジン部品に用いられてきた。しかし、チタン酸アルミニ
ウム、コージェライト等の酸化物は、緻密体を得るのが
難しく、室温強度が40MPa程度と低く、高温ではさ
らに強度が低下するため、構造部材特に高温用構造部材
として使用することが難しいという問題があった。
For this reason, ceramics such as silicon nitride, aluminum titanate, cordierite and the like have been conventionally used for engine parts. However, oxides such as aluminum titanate and cordierite are difficult to obtain a dense body, and have low room temperature strength of about 40 MPa, and further lower strength at high temperatures. There was a problem that was difficult.

【0004】また、窒化珪素質焼結体は、高強度且つ高
靱性と機械的特性に優れるため、タービンロータとして
は好ましいものの、静止部材、具体的にはタービンシュ
ラウドに使用すると、タービンロータの回転中に、ロー
タ先端とシュラウドが接触摺動し、その際にタービンロ
ータやシュラウドが欠損するという問題があった。逆
に、接触をさけるために隙間を広く設けると作動ガスが
漏れ、熱効率が低下してしまうという問題があった。
Further, a silicon nitride sintered body is preferable as a turbine rotor because of its high strength, high toughness and excellent mechanical properties. However, when used for a stationary member, specifically, a turbine shroud, the rotation of the turbine rotor can be reduced. During this, there is a problem that the rotor tip and the shroud come into contact and slide, and at that time, the turbine rotor and the shroud are broken. Conversely, if a gap is provided widely to avoid contact, there is a problem that the working gas leaks and the thermal efficiency decreases.

【0005】そこで、シュラウドに気孔率が高く、硬度
が低いセラミック部品を用いることにより、タービンの
先端がシュラウドに接触しながら摩滅することにより隙
間を小さくし、シール性を向上させることが特開平11
−310465号公報で提案されている。
Therefore, it is disclosed in Japanese Patent Application Laid-Open No. H11-110702 that a ceramic part having a high porosity and a low hardness is used for the shroud so that the tip of the turbine is worn out while being in contact with the shroud, thereby reducing the gap and improving the sealing performance.
It has been proposed in JP-A-310465.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
11−310465号公報に記載の方法では、硬度を低
くするために気孔率を10%以上と大きくしているため
強度が低く、接触時に破損しやすいという問題があっ
た。
However, in the method described in Japanese Patent Application Laid-Open No. H11-310465, the porosity is increased to 10% or more in order to reduce the hardness, so that the strength is low, and the porosity is damaged at the time of contact. There was a problem that it was easy.

【0007】また、気孔率が大きいため、酸素ガスとの
反応表面積が大きくなるため、酸化反応が進みやすく、
窒化珪素部材の酸化増量が大きく、耐酸化性に劣るとい
う問題があった。
Further, since the porosity is large, the reaction surface area with oxygen gas becomes large, so that the oxidation reaction easily proceeds.
There has been a problem that the silicon nitride member has a large increase in oxidation and is inferior in oxidation resistance.

【0008】従って、本発明は、機械的信頼性及び耐熱
性に優れた組合せ部材及び熱効率を高めるために部材間
の隙間を狭くし、接触摺動しても互いに相手材を破損さ
せることのない組合せ部材とその製造方法並びにタービ
ン及びタービンシュラウドとを具備するガスタービン用
部品を提供することを目的とする。
Accordingly, the present invention provides a combined member having excellent mechanical reliability and heat resistance, and a narrow gap between the members in order to enhance thermal efficiency. It is an object of the present invention to provide a gas turbine component including a combination member, a method for manufacturing the same, and a turbine and a turbine shroud.

【0009】[0009]

【課題を解決するための手段】本発明は、緻密で硬度の
異なるセラミックスからなる部材を組合せ、回転部材の
回転により低硬度のセラミックスの一部を摩耗により除
去することによって、1mm以下の最小隙間を有する組
合せ部材が実現できるという知見に基づくもので、その
結果、組合せ部材の破損を防止して信頼性を高めるとと
もに、部材間の隙間が小さいためシール性を高めること
ができた。特に、緻密な窒化珪素質焼結体とコージェラ
イト質焼結体との組合せが好適で、ガスタービン用部品
として最適に用いることができることも見出した。
SUMMARY OF THE INVENTION According to the present invention, a minimum gap of 1 mm or less is obtained by combining a member made of ceramics having different hardnesses and removing a part of the ceramic having a low hardness by rotating the rotating member. Based on the finding that a combination member having the following characteristics can be realized, as a result, the reliability of the combination member can be prevented by improving the reliability thereof, and the sealing property can be improved because the gap between the members is small. In particular, it has been found that a combination of a dense silicon nitride-based sintered body and a cordierite-based sintered body is preferable, and can be optimally used as a gas turbine component.

【0010】即ち、本発明の組合せ部材は、セラミック
スからなる回転部材と、該回転部材に近接して設けられ
たセラミック部材とからなる組合せ部材において、前記
回転部材の硬度が13〜16GPa、前記セラミック部
材の硬度が5〜10GPa、前記回転部材及び前記セラ
ミック部材の気孔率が5%以下、且つ前記回転部材とセ
ラミック部材との最小隙間が1mm以下であることを特
徴とするものである。
That is, a combined member according to the present invention is a combined member comprising a rotating member made of ceramics and a ceramic member provided close to the rotating member, wherein the hardness of the rotating member is 13 to 16 GPa, The hardness of the member is 5 to 10 GPa, the porosity of the rotating member and the ceramic member is 5% or less, and the minimum gap between the rotating member and the ceramic member is 1 mm or less.

【0011】緻密な回転部材及びセラミック部材の硬度
を上記の値にそれぞれ設定することにより、硬度の低い
セラミック部材が摩耗するものの、組合せ部材の破損を
防止することができ、機械的信頼性を高めることができ
る。また、回転部材とセラミック部材間の最小隙間が1
mm以下と小さいためシール性を高めることができる。
By setting the hardness of the dense rotating member and the hardness of the ceramic member to the above values, although the ceramic member having a low hardness is worn, the damage of the combination member can be prevented, and the mechanical reliability is improved. be able to. Also, the minimum gap between the rotating member and the ceramic member is 1
mm or less, the sealing performance can be improved.

【0012】また、前記回転部材の熱膨張係数が、前記
セラミック部材の熱膨張係数より大きいことが好まし
く、これにより、隙間をより狭くでき、熱効率を向上で
きる。
Preferably, the thermal expansion coefficient of the rotating member is larger than the thermal expansion coefficient of the ceramic member, whereby the gap can be narrowed and the thermal efficiency can be improved.

【0013】また、前記回転部材及び前記セラミック部
材の硬度差が4〜10GPaであることが好ましい。こ
れにより、さらに機械的信頼性を向上でき、シール性を
高めることが可能となる。
Further, it is preferable that the hardness difference between the rotating member and the ceramic member is 4 to 10 GPa. Thereby, the mechanical reliability can be further improved, and the sealing performance can be improved.

【0014】さらに、前記回転部材が窒化珪素質焼結体
からなり、前記セラミック部材がコージェライト質焼結
体からなることが好ましい。これにより、回転体として
高い強度を要求される回転体の信頼性を向上でき、セラ
ミック部材の熱膨張率が低いため、隙間が小さくできる
とともに、硬度が低いため、回転体と接触しても破損す
ることが無い。
Further, it is preferable that the rotating member is made of a silicon nitride sintered body and the ceramic member is made of a cordierite sintered body. As a result, the reliability of the rotating body that requires high strength as the rotating body can be improved, the gap can be reduced because the coefficient of thermal expansion of the ceramic member is low, and the hardness is low. Nothing to do.

【0015】さらにまた、前記コージェライト質焼結体
が、希土類酸化物を0.5〜20重量%の割合で含むこ
とが好ましい。これにより、緻密質が得られにくいコー
ジェライトを緻密化でき、耐熱性、耐酸化性、耐食性を
向上できる。
Further, it is preferable that the cordierite-based sintered body contains a rare earth oxide in a ratio of 0.5 to 20% by weight. This makes it possible to densify cordierite, for which it is difficult to obtain dense properties, and to improve heat resistance, oxidation resistance, and corrosion resistance.

【0016】また、前記コージェライト質焼結体の10
00℃における強度が80MPa以上であることが好ま
しい。これにより、ガスタービン用部品としての信頼性
を向上できる。
Further, the cordierite-based sintered body of
The strength at 00 ° C. is preferably 80 MPa or more. Thereby, the reliability as a gas turbine component can be improved.

【0017】さらに、前記コージェライト質焼結体が窒
化珪素、炭化珪素及び酸窒化珪素のうち少なくとも1種
を40重量%以下の割合で含むことが好ましい。これに
より、強度を向上でき、信頼性を向上できる。
Further, the cordierite-based sintered body preferably contains at least one of silicon nitride, silicon carbide and silicon oxynitride in a proportion of 40% by weight or less. Thereby, strength can be improved and reliability can be improved.

【0018】また、本発明の組合せ部材の製造方法は、
気孔率5%以下、硬度5〜10GPaのセラミック部材
の少なくとも一部を、気孔率5%以下、硬度13〜16
GPaのセラミックスからなる回転部材にするように配
置するとともに、該回転部材を回転させて前記セラミッ
ク部材の少なくとも一部を接触摩耗により除去し、前記
セラミック部材と前記回転部材との最小隙間を1mm以
下にすることを特徴とするもので、これにより、耐酸化
性とシール性を高めた本発明の組合せ部材を実現するこ
とができる。
Further, the method for manufacturing a combination member according to the present invention comprises:
At least a part of the ceramic member having a porosity of 5% or less and a hardness of 5 to 10 GPa is provided with a porosity of 5% or less and a hardness of 13 to 16
A rotating member made of GPa ceramics is arranged, and the rotating member is rotated to remove at least a part of the ceramic member by contact abrasion, and a minimum gap between the ceramic member and the rotating member is 1 mm or less. Accordingly, the combined member of the present invention with improved oxidation resistance and sealing properties can be realized.

【0019】特に、800〜1500℃に加熱をしなが
ら、前記セラミック部材と前記回転部材とを接触摩耗さ
せることが好ましい。これにより、さらに高温での信頼
性とシール性を向上できる。
In particular, it is preferable that the ceramic member and the rotating member are brought into contact and abrasion while being heated to 800 to 1500 ° C. As a result, the reliability and sealability at high temperatures can be further improved.

【0020】さらに、本発明のガスタービン用部品は、
タービンロータ及びタービンシュラウドを具備するガス
タービン用部品において、上記の組合せ部材を、前記タ
ービンロータ及びタービンシュラウドとして用いること
を特徴とするもので、これにより、高温燃焼が可能で、
作動ガスの漏れが少なくなり、機械的信頼性が高く、熱
効率の高いガスタービンシステムが可能となる。
Further, the gas turbine component according to the present invention includes:
In a component for a gas turbine including a turbine rotor and a turbine shroud, the combination member is used as the turbine rotor and the turbine shroud, whereby high-temperature combustion is possible,
A working gas leak is reduced, a mechanical reliability is high, and a gas turbine system with high thermal efficiency can be realized.

【0021】[0021]

【発明の実施の形態】本発明の組合せ部材は、例えば図
1に示すように、セラミックスからなる回転部材1と、
該回転部材1に近接して設けられたセラミック部材2と
から構成され、回転部材1とセラミック部材2との間に
隙間3が設けられている。なお、セラミック部材2は、
静止していても、また、回転していてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A combination member according to the present invention comprises, as shown in FIG.
A ceramic member 2 is provided near the rotating member 1, and a gap 3 is provided between the rotating member 1 and the ceramic member 2. In addition, the ceramic member 2
It may be stationary or rotating.

【0022】本発明によれば、回転部材1は、硬度13
〜16GPaのセラミックスからなることが重要であ
る。硬度が13GPa未満では、セラミック部材2の一
部を摩耗により効率的に除去しにくく、また回転中の接
触により破損しやすくなる。16GPaより大きいとセ
ラミック部材2を傷つけやすくなり、製造コストも高く
なるためである。
According to the present invention, the rotating member 1 has a hardness of 13
It is important to be made of ceramics of up to 16 GPa. If the hardness is less than 13 GPa, it is difficult to efficiently remove a part of the ceramic member 2 due to abrasion, and the ceramic member 2 is likely to be damaged due to contact during rotation. If it is larger than 16 GPa, the ceramic member 2 is likely to be damaged, and the manufacturing cost is increased.

【0023】また、セラミック部材2の硬度が5〜10
GPaであることも重要である。5GPa未満では、気
流中に混入した微小物質による摩耗が顕著となり、また
10GPaより大きいと摩耗による除去がしにくくな
り、また回転部材1との接触によりいずれかが破損する
ためである。
The hardness of the ceramic member 2 is 5-10.
It is also important to be GPa. If it is less than 5 GPa, wear due to minute substances mixed into the airflow becomes remarkable, and if it is more than 10 GPa, it is difficult to remove by abrasion, and one of them is broken by contact with the rotating member 1.

【0024】そして、回転部材1とセラミック部材2と
が上記の硬度の組合せであれば、回転時の接触によりセ
ラミック部材2の一部が摩耗によって除去され、破損を
防ぐことができる。この作用をより効果的にするため、
またより小さな部材隙間間隔を実現するため、回転部材
1の硬度は特に14〜15GPaが、セラミック部材2
の硬度は特に7〜9GPaが好ましい。
If the rotating member 1 and the ceramic member 2 have the above-mentioned combination of hardness, a part of the ceramic member 2 is removed by abrasion due to the contact at the time of rotation, and damage can be prevented. To make this effect more effective,
In order to realize a smaller member gap, the hardness of the rotating member 1 is preferably 14 to 15 GPa.
Is preferably 7 to 9 GPa.

【0025】特に、回転部材1の硬度が13〜16GP
a、セラミック部材2の硬度が5〜10GPaであるこ
とに加えて、回転部材1とセラミック部材2の硬度差が
4〜10GPa、特に5〜8GPaであることが好まし
い。この硬度差により、回転部材1がセラミック部材2
を摩耗によって効率よく除去でき、破壊防止による信頼
性もさらに高めることができる。
In particular, the hardness of the rotating member 1 is 13 to 16 GP
a, In addition to the hardness of the ceramic member 2 being 5 to 10 GPa, the hardness difference between the rotating member 1 and the ceramic member 2 is preferably 4 to 10 GPa, particularly preferably 5 to 8 GPa. Due to this hardness difference, the rotating member 1
Can be efficiently removed by abrasion, and the reliability by destruction prevention can be further enhanced.

【0026】また、回転部材1及びセラミック部材2の
気孔率をいずれも5%以下にすることが重要である。こ
れにより、酸化性ガス又は空気中の酸素との反応表面積
を小さくすることができ、回転部材1及びセラミック部
材2の酸化増量を小さくすることができるため、耐酸化
性を向上し、長期信頼性を高めることができる。特に、
回転部材1及びセラミック部材2の気孔率は、特に3%
以下、さらには1%以下が機械的信頼性と耐酸化性をさ
らに高めるために好ましい。
It is important that the porosity of both the rotating member 1 and the ceramic member 2 be 5% or less. Thereby, the reaction surface area with the oxidizing gas or the oxygen in the air can be reduced, and the oxidation increase of the rotating member 1 and the ceramic member 2 can be reduced. Can be increased. In particular,
The porosity of the rotating member 1 and the ceramic member 2 is particularly 3%.
Below, 1% or less is preferable in order to further improve mechanical reliability and oxidation resistance.

【0027】回転部材1は、使用される環境にもよる
が、例えば、ガスタービン用部品として用いられら場
合、靭性が高く、軽量で、室温及び高温での強度が高
く、耐酸化性にすぐれた窒化珪素、酸窒化珪素、炭化珪
素、ムライト、ジルコニア等のセラミックス、及びこれ
らの群から選ばれるセラミックスを含む複合材料からな
ることが好ましい。
Depending on the environment in which the rotating member 1 is used, for example, when used as a gas turbine component, the rotating member 1 has high toughness, light weight, high strength at room temperature and high temperature, and excellent oxidation resistance. It is preferable to be made of ceramics such as silicon nitride, silicon oxynitride, silicon carbide, mullite, zirconia, etc., and a composite material containing ceramics selected from these groups.

【0028】さらに、本発明によれば、回転部材1とセ
ラミック部材2との隙間3のうち、最小隙間3が1mm
以下であることが重要である。この最小隙間3を小さく
することによりシール性を高めることができる。例え
ば、ガスタービンにおいては、タービンロータとタービ
ンシュラウドの隙間を狭くすることにより効率を向上で
きる。
Further, according to the present invention, the minimum gap 3 among the gaps 3 between the rotating member 1 and the ceramic member 2 is 1 mm.
It is important that: By reducing the minimum gap 3, the sealing performance can be improved. For example, in a gas turbine, the efficiency can be improved by reducing the gap between the turbine rotor and the turbine shroud.

【0029】本発明では、回転部材1の硬度が13〜1
6GPa、セラミック部材2の硬度が5〜10GPaで
あり、予め摩耗によって隙間3が設けられているため、
1mm以下の小さな隙間3を保つことができる。たと
え、これらの部材が接触しても摩耗によってセラミック
部材2が除去されるため、回転部材1やセラミック部材
2が欠損することを防止できる。
In the present invention, the hardness of the rotating member 1 is 13 to 1
6 GPa, the hardness of the ceramic member 2 is 5 to 10 GPa, and the gap 3 is provided in advance by abrasion.
A small gap 3 of 1 mm or less can be maintained. For example, even if these members come into contact with each other, the ceramic member 2 is removed by abrasion, so that the rotation member 1 and the ceramic member 2 can be prevented from being damaged.

【0030】回転部材1とセラミック部材2との隙間3
は、シール性向上のため、特に0.8mm以下、さらに
は0.5mm以下まで狭くすることができ、熱効率をさ
らに向上できる。
The gap 3 between the rotating member 1 and the ceramic member 2
Can be reduced to 0.8 mm or less, especially 0.5 mm or less, in order to improve the sealing property, and the thermal efficiency can be further improved.

【0031】また、回転部材1の熱膨張係数が、セラミ
ック部材2の熱膨張係数より大きいことが好ましい。こ
れにより、例えばガスタービンの運転時に、温度上昇に
より隙間3をさらに小さくすることが可能となり、さら
にシール性を改善できる。
It is preferable that the thermal expansion coefficient of the rotating member 1 is larger than that of the ceramic member 2. Thus, for example, during operation of the gas turbine, the gap 3 can be further reduced due to a rise in temperature, and the sealing performance can be further improved.

【0032】上記のような硬度と気孔率を有する組合せ
部材として、回転部材1には窒化珪素質焼結体、セラミ
ック部材2にはコージェライト質焼結体を用いること
が、特にガスタービンのような高温で使用される部材と
して好ましい。
As a combination member having the above hardness and porosity, a silicon nitride sintered body is used for the rotating member 1 and a cordierite sintered body is used for the ceramic member 2, particularly as in a gas turbine. It is preferable as a member used at an extremely high temperature.

【0033】窒化珪素質焼結体は高強度、高靭性で回転
による破壊に対して機械的信頼性が高いためである。こ
の窒化珪素質焼結体の室温強度は800MPa以上、1
000℃での高温強度は500MPa以上であることが
好ましい。なお、窒化珪素質焼結体は、硬度を高めるた
め、炭化珪素や炭化硼素等の硬質物質を30重量%以
下、特に10〜20重量%含有してもよい。
This is because the silicon nitride sintered body has high strength and high toughness and high mechanical reliability against breakage due to rotation. The room temperature strength of this silicon nitride sintered body is 800 MPa or more,
The high-temperature strength at 000 ° C. is preferably 500 MPa or more. The silicon nitride sintered body may contain a hard substance such as silicon carbide or boron carbide in an amount of 30% by weight or less, particularly 10 to 20% by weight, in order to increase the hardness.

【0034】また、コージェライト質焼結体を、ガスタ
ービンのように高温で使用される部品として使用する場
合、1000℃の高温強度が80MPa以上、特に10
0MPa以上さらには150MPa以上が、機械的信頼
性を高める上で好ましい。
When the cordierite-based sintered body is used as a component used at a high temperature such as a gas turbine, the high-temperature strength at 1000 ° C. is 80 MPa or more, particularly 10 MPa.
0 MPa or more, and more preferably 150 MPa or more is preferable from the viewpoint of enhancing mechanical reliability.

【0035】このような緻密で高温強度の高いコージェ
ライト質焼結体を得るには焼結助剤が不可欠となる。例
えば、希土類酸化物を0.5〜20重量%、特に2〜1
5重量%、さらには5〜10重量%含有させることがで
きる。0.5重量%以下では緻密化が容易ではなく、2
0重量%以上では高温特性が劣化する傾向がある。
A sintering aid is indispensable to obtain such a dense and high-temperature cordierite sintered body. For example, 0.5 to 20% by weight of rare earth oxide, especially 2 to 1%
It can be contained in an amount of 5% by weight, further 5 to 10% by weight. If it is less than 0.5% by weight, it is not easy to densify,
If it is 0% by weight or more, the high temperature characteristics tend to deteriorate.

【0036】さらに、また、コージェライト質焼結体
は、窒化珪素、炭化珪素、酸窒化珪素のうち少なくとも
1種を40重量%以下、特に5〜30重量%、さらには
10〜20重量%含有することにより、さらに強度を高
めることができ、セラミック部材2として特にガスター
ビン用部品に好適に用いることができる。なお、コージ
ェライト質焼結体の耐食性を向上するため、気孔率を5
%以下、特に3%以下、さらには1%以下とすることは
言うまでもない。
Furthermore, the cordierite-based sintered body contains at least one of silicon nitride, silicon carbide and silicon oxynitride in an amount of 40% by weight or less, particularly 5 to 30% by weight, and more preferably 10 to 20% by weight. By doing so, the strength can be further increased, and the ceramic member 2 can be suitably used particularly for a gas turbine component. In order to improve the corrosion resistance of the cordierite-based sintered body, the porosity is set to 5
%, Particularly 3% or less, or even 1% or less.

【0037】次に、本発明の組合せ部材の製造方法につ
いて、回転部材1に窒化珪素質焼結体、セラミック部材
2にコージェライト質焼結体を用いる場合を例として説
明する。
Next, the method of manufacturing a combination member according to the present invention will be described by taking as an example a case where a silicon nitride sintered body is used for the rotating member 1 and a cordierite sintered body is used for the ceramic member 2.

【0038】まず、セラミック部材2に用いるコージェ
ライト質焼結体を作製する。出発原料として、平均粒子
径5μm以下、特に3μm以下のコージェライト粉末、
平均粒径2μm以下の希土類酸化物粉末、及び所望によ
り窒化珪素粉末、炭化珪素粉末、酸窒化珪素粉末等の粉
末を準備する。
First, a cordierite-based sintered body used for the ceramic member 2 is manufactured. As a starting material, cordierite powder having an average particle size of 5 μm or less, particularly 3 μm or less,
A rare earth oxide powder having an average particle size of 2 μm or less, and powders such as a silicon nitride powder, a silicon carbide powder, and a silicon oxynitride powder, if desired, are prepared.

【0039】上記の粉末を、コージェライト粉末が80
〜99.5重量%、特に85〜98重量%、更には88
〜95重量%、希土類酸化物粉末が0.5〜20重量
%、特に2〜15重量%、更には5〜10重量%となる
ように混合する。なお、所望により、窒化珪素粉末、炭
化珪素粉末及び酸窒化珪素粉末のうち少なくとも1種
で、上記コージェライト粉末の最大40重量%まで、特
に5〜30重量%、更には10〜20重量%を置換し
て、混合することができる。
The above powder was prepared by adding cordierite powder to 80
-99.5% by weight, especially 85-98% by weight, even 88
To 95% by weight, and the rare earth oxide powder is mixed in an amount of 0.5 to 20% by weight, particularly 2 to 15% by weight, and more preferably 5 to 10% by weight. If desired, at least one of silicon nitride powder, silicon carbide powder, and silicon oxynitride powder may contain up to 40% by weight of the cordierite powder, particularly 5 to 30% by weight, and more preferably 10 to 20% by weight. Substitute and mix.

【0040】上記組成を満足するように配合された混合
粉末をボールミルなどにより十分混合及び/又は粉砕し
た後、所望の成形手段、例えば、金型プレス、鋳込成
形、冷間静水圧成形、押出し成形等の手法により、所望
の形状に成形することができる。
After the mixed powder blended so as to satisfy the above composition is sufficiently mixed and / or pulverized by a ball mill or the like, desired molding means, for example, die press, cast molding, cold isostatic pressing, extrusion It can be formed into a desired shape by a method such as molding.

【0041】これらの成形体を、大気中、真空、又はA
r、N2等の不活性ガス雰囲気中で1200〜1500
℃、好ましくは1250〜1400℃の温度範囲で1〜
10時間程度焼結することにより、気孔率5%以下の焼
結体が得られる。焼成温度が1200℃より低いと十分
に窒化・緻密化せず、1500℃より高いと成形体が溶
融してしまう。
These compacts are placed in air, vacuum, or
r, in an inert gas atmosphere such as N 2 1200 to 1500
° C, preferably 1 to 1 in a temperature range of 1250 to 1400 ° C.
By sintering for about 10 hours, a sintered body having a porosity of 5% or less can be obtained. If the sintering temperature is lower than 1200 ° C., nitriding and densification are not sufficiently performed, and if the firing temperature is higher than 1500 ° C., the molded body is melted.

【0042】焼成方法としては、例えば、ホットプレス
方法、常圧焼成、窒素ガス圧焼成、さらには、これらの
焼成後に1000気圧以上の高圧下で熱間静水圧焼成す
ることもできる。
As the firing method, for example, a hot pressing method, a normal pressure firing, a nitrogen gas pressure firing, or a hot isostatic firing under a high pressure of 1000 atm or more after these firings can be used.

【0043】このように作製したコージェライト質焼結
体は、気孔率5%以下、硬度5〜10GPaのセラミッ
ク部材であることが重要である。
It is important that the cordierite-based sintered body thus produced is a ceramic member having a porosity of 5% or less and a hardness of 5 to 10 GPa.

【0044】次に、回転部材に用いる窒化珪素質焼結体
を作製する。出発原料として、珪素以外の金属元素不純
物の総量が1重量%以下、好ましくは0.5重量%以下
であり、平均粒径が0.3〜1μm好ましくは0.5〜
0.8μmの窒化珪素粉末を準備する。この原料粉末
は、不純物酸素量0.5〜2.0重量%のα型、β型の
いずれでも使用できるまた、焼結助剤として、平均粒径
2μm以下の希土類酸化物粉末、平均粒径0.8μmの
アルミナ及び二酸化珪素等を準備する。助剤の総量は高
温特性を高めるために、5〜15重量%が好ましい。ま
た、所望により、平均粒径1μm以下の炭化珪素又は平
均粒径2μm以下の炭化硼素等の硬質セラミック粉末を
添加してもよい。上記混合粉末をボールミルなどにより
十分混合及び/又は粉砕した後、所望の成形手段、例え
ば、金型プレス、鋳込成形、冷間静水圧成形、押出し成
形等の手法により、所望の形状に成形することができ
る。
Next, a silicon nitride sintered body used for the rotating member is manufactured. As a starting material, the total amount of metal element impurities other than silicon is 1% by weight or less, preferably 0.5% by weight or less, and the average particle size is 0.3 to 1 μm, preferably 0.5 to 1%.
A 0.8 μm silicon nitride powder is prepared. This raw material powder can be used in either α-type or β-type with an impurity oxygen content of 0.5 to 2.0% by weight. As a sintering aid, rare earth oxide powder having an average particle size of 2 μm or less A 0.8 μm alumina, silicon dioxide or the like is prepared. The total amount of the auxiliaries is preferably from 5 to 15% by weight in order to enhance high-temperature characteristics. If desired, a hard ceramic powder such as silicon carbide having an average particle diameter of 1 μm or less or boron carbide having an average particle diameter of 2 μm or less may be added. After sufficiently mixing and / or pulverizing the mixed powder with a ball mill or the like, the mixture is molded into a desired shape by a desired molding means, for example, a method such as a die press, a casting, a cold isostatic pressing, or an extrusion molding. be able to.

【0045】これらの成形体を脱脂後、N2等の不活性
ガス雰囲気中で1600〜1900℃、好ましくは17
50〜1850℃の温度範囲で1〜10時間程度焼結す
ることにより、気孔率5%以下の焼結体が得られる。焼
成温度が1600℃より低いと十分に窒化・緻密化せ
ず、1900℃より高いと助剤成分が揮発し、表面荒れ
を生じる。
After degreasing these compacts, they are heated at 1600 to 1900 ° C., preferably 17 ° C. in an inert gas atmosphere such as N 2.
By sintering in a temperature range of 50 to 1850 ° C. for about 1 to 10 hours, a sintered body having a porosity of 5% or less can be obtained. If the firing temperature is lower than 1600 ° C., the nitriding and densification will not be sufficiently performed.

【0046】焼成方法としては、例えば、ホットプレス
方法、常圧焼成、窒素ガス圧焼成、さらには、これらの
焼成後に1000気圧以上の高圧下で熱間静水圧焼成す
ることもできる。タービンロータなどの複雑な回転体を
焼成するには常圧焼成、窒素ガス圧力焼成が好ましい。
As the firing method, for example, a hot press method, a normal pressure firing, a nitrogen gas pressure firing, and a hot isostatic firing under a high pressure of 1000 atm or more after these firings can be used. For firing a complicated rotating body such as a turbine rotor, normal pressure firing and nitrogen gas pressure firing are preferable.

【0047】このように作製した回転部材に用いる窒化
珪素質焼結体は、気孔率5%以下、硬度13〜16GP
aのセラミック部材であることが重要である。
The silicon nitride sintered body used for the rotating member thus manufactured has a porosity of 5% or less and a hardness of 13 to 16 GP.
It is important that the ceramic member is a.

【0048】上記の回転部材及びセラミック部材を、そ
れぞれ図1の形状に加工し、セラミック部材の少なくと
も一部を、回転部材に接触させるように組み合わせる。
即ち、気孔率5%以下、硬度5〜10GPaのセラミッ
ク部材の少なくとも一部を、気孔率5%以下、硬度13
〜16GPaのセラミックスからなる回転部材に接触す
るように配置する。このとき、回転部材の回転軸とセラ
ミック部材の中心軸を合わせることが好ましいが、接触
させるために1mm以内の誤差でずれてもかまわない。
The above-mentioned rotating member and ceramic member are each processed into the shape shown in FIG. 1, and at least a part of the ceramic member is combined so as to be in contact with the rotating member.
That is, at least a part of the ceramic member having a porosity of 5% or less and a hardness of 5 to 10 GPa is converted to a porosity of 5% or less and a hardness of 13
It is arranged so as to be in contact with a rotating member made of ceramics of up to 16 GPa. At this time, it is preferable that the rotation axis of the rotating member and the center axis of the ceramic member are aligned, but the contact may be performed with an error of 1 mm or less for contact.

【0049】そして、回転部材を回転させてセラミック
部材の少なくとも一部を接触摩耗により除去することが
重要である。回転速度は、摩耗が終了するまで例えば1
0000rpm以下、特に5000rpm以下、更には
3000rpm以下の低速であることが好ましい。そし
て、前記セラミック部材と前記回転部材との最小隙間を
1mm以下にすることも重要である。
It is important to rotate the rotating member to remove at least a part of the ceramic member by contact abrasion. The rotation speed is, for example, 1 until the wear is completed.
It is preferable that the speed is as low as 0000 rpm or less, particularly 5000 rpm or less, and more preferably 3000 rpm or less. It is also important that the minimum gap between the ceramic member and the rotating member be 1 mm or less.

【0050】この処理により、セラミック部材と回転部
材との最小隙間を1mm以下にすることが重要である。
これにより、シール性を高めることができる。
It is important that the minimum gap between the ceramic member and the rotating member is reduced to 1 mm or less by this process.
Thereby, the sealing performance can be improved.

【0051】なお、本発明において用いた硬度とは、ビ
ッカース硬度(Hv)を意味するものであり、焼結体の
vは、20kgの荷重を印加して測定できる。
[0051] Note that the hardness used in the present invention means a Vickers hardness (H v), H v of the sintered body can be measured by applying a load of 20 kg.

【0052】さらに、本発明のガスタービン用部品は、
タービンロータ及びタービンシュラウドを具備するガス
タービン用部品において、本発明の組合せ部材を、前記
タービンロータ及びタービンシュラウドとしてたもので
ある。その一例を、図2に示した。
Further, the gas turbine component of the present invention
In a gas turbine component including a turbine rotor and a turbine shroud, the combination member of the present invention is the turbine rotor and the turbine shroud. An example is shown in FIG.

【0053】このガスタービンにおいては、セラミック
回転部材に相当するタービンロータ11と、セラミック
部材に相当し、静止部品であるタービンシュラウド12
からなるが近接して配設されている。タービンロータ1
1は、軸部11aと翼部11bとから構成されており、
翼部11bは、タービンシュラウド12と隙間13だけ
離れて矢印の方向に回転し、隙間13からガスもれが生
じる。
In this gas turbine, a turbine rotor 11 corresponding to a ceramic rotating member, and a turbine shroud 12 corresponding to a ceramic member and being a stationary component.
, But are arranged in close proximity. Turbine rotor 1
1 comprises a shaft portion 11a and a wing portion 11b,
The blade 11 b rotates in the direction of the arrow away from the turbine shroud 12 by the gap 13, and gas leaks from the gap 13.

【0054】本発明の組合せ部材を用いたガスタービン
は、高温燃焼が可能で、作動ガスの漏れが少なくなり、
機械的信頼性が高く、熱効率の高いガスタービンシステ
ムが可能となる。
The gas turbine using the combination member of the present invention can perform high-temperature combustion, reduce leakage of working gas,
A gas turbine system with high mechanical reliability and high thermal efficiency can be realized.

【0055】[0055]

【実施例】平均粒径 2μmのコージェライト粉末と、
平均粒径1μmの希土類元素酸化物粉末、平均粒径0.
5μmの窒化珪素粉末、平均粒径0.5μmの炭化珪素
粉末、平均粒径0.5μmの酸窒化珪素粉末を用いて、
表1に示す組成になるように調合後、ボールミルで24
時間混合した後、100MPaの圧力でCIP成形し
た。そして、その成形体をアルミナの匣鉢に入れて表1
の条件で焼成し、コージェライト質焼結体を作製した。
EXAMPLE Cordierite powder having an average particle size of 2 μm;
Rare earth element oxide powder having an average particle size of 1 μm, average particle size of 0.
Using 5 μm silicon nitride powder, silicon carbide powder having an average particle size of 0.5 μm, and silicon oxynitride powder having an average particle size of 0.5 μm,
After mixing to obtain the composition shown in Table 1, the mixture was mixed with a ball mill to obtain 24
After mixing for an hour, CIP molding was performed at a pressure of 100 MPa. Then, the compact was placed in an alumina sagger, and Table 1
And a cordierite-based sintered body was produced.

【0056】また、平均粒径0.5μmの95%α窒化
珪素粉末と、平均粒径1μmのイットリア粉末、平均粒
径0.8μmのアルミナ粉末を用いて、調合後ボールミ
ルで24時間混合した後、100MPaの圧力でCIP
成形した。そして、その成形体を炭化珪素の匣鉢に入れ
て焼成し、表1に示す硬度を有する窒化珪素質焼結体を
作製した。
Using a 95% α-silicon nitride powder having an average particle size of 0.5 μm, a yttria powder having an average particle size of 1 μm, and an alumina powder having an average particle size of 0.8 μm, the mixture was mixed in a ball mill for 24 hours. CIP at a pressure of 100 MPa
Molded. Then, the formed body was placed in a silicon carbide sagger and fired to produce a silicon nitride sintered body having the hardness shown in Table 1.

【0057】得られた焼結体を研磨し、3×4×15m
mの大きさに研削加工し、この試料の室温、1000℃
のJISR1601に基づく4点曲げ強度を測定した。
また得られた焼結体についてアルキメデス法により気孔
率、ビッカーズ硬度計を用いて20kg荷重による室温
での硬度測定をした。
The obtained sintered body was polished and 3 × 4 × 15 m
Grinding to the size of m, room temperature of this sample, 1000 ℃
The four-point bending strength based on JISR1601 was measured.
The porosity of the obtained sintered body was measured by Archimedes' method, and the hardness was measured at room temperature under a load of 20 kg using a Vickers hardness tester.

【0058】また上記サンプルから測定試料を切り出
し、JISR1618に基く熱膨張率を測定した。
Further, a measurement sample was cut out from the above sample, and the coefficient of thermal expansion based on JISR1618 was measured.

【0059】次に、上記焼結体をもって、図2に示すよ
うなタービンロータに対向するタービンシュラウドを各
種のセラミック焼結体にて作製した。そして、タービン
ロータを4万rpmで回転させることにより、タービン
翼が破損しないかどうかをスピンテストにより試験し
た。結果を表1、表2に示した。
Next, a turbine shroud facing the turbine rotor as shown in FIG. 2 was made of various ceramic sintered bodies using the above sintered bodies. Then, by rotating the turbine rotor at 40,000 rpm, it was tested by a spin test whether or not the turbine blade was damaged. The results are shown in Tables 1 and 2.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】本発明の試料No.2〜4、7〜10、1
2〜13、16、17、19〜22、24〜32、34
〜40は、スピンテストの結果が良好であった。タービ
ンと接触しても破損しなかった。
Sample No. of the present invention 2-4, 7-10, 1
2-13, 16, 17, 19-22, 24-32, 34
As for No.-40, the result of the spin test was good. It did not break when it came into contact with the turbine.

【0063】これに対して、気孔率が高く、且つ回転部
材の硬度が低い本発明の範囲外のNo.1及び6は、ス
ピンテストにおいてタービンロータが破損した。
On the other hand, No. 1 having a high porosity and a low hardness of the rotating member is out of the range of the present invention. In Nos. 1 and 6, the turbine rotor was damaged in the spin test.

【0064】また、回転体の硬度が高く本発明の範囲外
のNo.5は、スピンテストにおいてタービンシュラウ
ドが破損した。
In addition, the hardness of the rotating body is high and the hardness of No. In No. 5, the turbine shroud was damaged in the spin test.

【0065】さらに、隙間が2mmと大きく、本発明の
範囲外の試料No.11は漏れが大きく、エンジンの効
率が低下した。
Further, since the gap was as large as 2 mm, the sample No. was out of the range of the present invention. In No. 11, the leakage was large, and the efficiency of the engine was reduced.

【0066】さらにまた、気孔率が7%以上と大きく、
且つ硬度が4GPaと低い本発明の範囲外の試料No.
14、15及び18は、室温強度が70MPa以下と低
く、スピンテストにおいてタービンシュラウドが破損し
た。
Further, the porosity is as large as 7% or more,
In addition, the sample No. having a hardness as low as 4 GPa and outside the range of the present invention.
In Nos. 14, 15, and 18, the room temperature strength was as low as 70 MPa or less, and the turbine shroud was broken in the spin test.

【0067】また、セラミック部材の硬度が4GPaと
小さい本発明の範囲外の試料No.23は、スピンテス
トにおいてタービンシュラウドが破損した。
The sample No. having a hardness of 4 GPa, which is out of the range of the present invention, was used. In No. 23, the turbine shroud was damaged in the spin test.

【0068】さらに、セラミック部材の硬度が11GP
aと大さい本発明の範囲外の試料No.33は、スピン
テストにおいて、タービンシュラウドが破損した。
Further, the hardness of the ceramic member is 11 GP.
a and sample Nos. In No. 33, the turbine shroud was damaged in the spin test.

【0069】[0069]

【発明の効果】本発明の組合せ部材は、回転部材及びセ
ラミック部材の硬度を制御しているため、接触によって
もセラミック部材が摩耗によって除去され、小さな隙間
が形成されるため、接触によって部品を破損させること
がない。特に、タービン、ガスタービン用静止部品とし
て最適に用いることができる。
According to the combined member of the present invention, the hardness of the rotating member and the ceramic member is controlled, so that the ceramic member is removed by abrasion even by contact, and a small gap is formed, so that the component is damaged by the contact. I will not let you. In particular, it can be optimally used as a stationary component for turbines and gas turbines.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組合せ部材の構造を示す概略断面図で
ある。
FIG. 1 is a schematic sectional view showing the structure of a combination member of the present invention.

【図2】本発明のガスタービン用部品の構造を示す断面
図である。
FIG. 2 is a sectional view showing the structure of the gas turbine component of the present invention.

【符号の説明】[Explanation of symbols]

1・・・回転部材 2・・・セラミック部材 3、13・・・隙間 11・・・タービンロータ 11a・・・軸部 11b・・・翼部 12・・・タービンシュラウド DESCRIPTION OF SYMBOLS 1 ... Rotating member 2 ... Ceramic member 3, 13 ... Gap 11 ... Turbine rotor 11a ... Shaft part 11b ... Blade part 12 ... Turbine shroud

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 7/28 C04B 35/58 102D Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02C 7/28 C04B 35/58 102D

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】セラミックスからなる回転部材と、該回転
部材に近接して設けられたセラミック部材とからなる組
合せ部材において、前記回転部材の硬度が13〜16G
Pa、前記セラミック部材の硬度が5〜10GPa、前
記回転部材及び前記セラミック部材の気孔率が5%以
下、且つ前記回転部材とセラミック部材との最小隙間が
1mm以下であることを特徴とする組合せ部材。
1. A combined member comprising a rotating member made of ceramics and a ceramic member provided adjacent to the rotating member, wherein the hardness of the rotating member is 13 to 16G.
Pa, the hardness of the ceramic member is 5 to 10 GPa, the porosity of the rotating member and the ceramic member is 5% or less, and the minimum gap between the rotating member and the ceramic member is 1 mm or less. .
【請求項2】前記回転部材の熱膨張係数が、前記セラミ
ック部材の熱膨張係数より大きいことを特徴とする請求
項1記載の組合せ部材。
2. The combination member according to claim 1, wherein a thermal expansion coefficient of said rotating member is larger than a thermal expansion coefficient of said ceramic member.
【請求項3】前記回転部材及び前記セラミック部材の硬
度差が4〜10GPaであることを特徴とする請求項1
又は2記載の組合せ部材。
3. The rotating member and the ceramic member have a hardness difference of 4 to 10 GPa.
Or the combination member according to 2.
【請求項4】前記回転部材が窒化珪素質焼結体からな
り、前記セラミック部材がコージェライト質焼結体から
なることを特徴とする請求項1乃至3のうちいずれかに
記載の組合せ部材。
4. The combination member according to claim 1, wherein said rotating member is made of a silicon nitride-based sintered body, and said ceramic member is made of a cordierite-based sintered body.
【請求項5】前記コージェライト質焼結体が、希土類酸
化物を0.5〜20重量%の割合で含むことを特徴とす
る請求項4記載の組合せ部材。
5. The combination member according to claim 4, wherein said cordierite-based sintered body contains a rare earth oxide in a ratio of 0.5 to 20% by weight.
【請求項6】前記コージェライト質焼結体の1000℃
における強度が80MPa以上であることを特徴とする
請求項4又は5のうちいずれかに記載の組合せ部材。
6. The temperature of the cordierite-based sintered body is 1000 ° C.
The combined member according to claim 4, wherein the strength is 80 MPa or more.
【請求項7】前記コージェライト質焼結体が窒化珪素、
炭化珪素及び酸窒化珪素のうち少なくとも1種を40重
量%以下の割合で含むことを特徴とする請求項4乃至6
のうちいずれかに記載の組合せ部材。
7. The cordierite-based sintered body is silicon nitride,
7. The composition according to claim 4, wherein at least one of silicon carbide and silicon oxynitride is contained in a proportion of 40% by weight or less.
The combination member according to any one of the above.
【請求項8】気孔率5%以下、硬度5〜10GPaのセ
ラミック部材の少なくとも一部を、気孔率5%以下、硬
度13〜16GPaのセラミックスからなる回転部材に
接触するように配置するとともに、該回転部材を回転さ
せて前記セラミック部材の少なくとも一部を接触摩耗に
より除去し、前記セラミック部材と前記回転部材との最
小隙間を1mm以下にすることを特徴とする組合せ部材
の製造方法。
8. At least a part of a ceramic member having a porosity of 5% or less and a hardness of 5 to 10 GPa is arranged so as to be in contact with a rotating member made of a ceramic having a porosity of 5% or less and a hardness of 13 to 16 GPa. A method for manufacturing a combination member, comprising: rotating a rotating member to remove at least a part of the ceramic member by contact abrasion, and reducing a minimum gap between the ceramic member and the rotating member to 1 mm or less.
【請求項9】800〜1500℃に加熱をしながら、前
記セラミック部材と前記回転部材とを接触摩耗させるこ
とを特徴とする請求項8記載の組合せ部材の製造方法。
9. The method according to claim 8, wherein the ceramic member and the rotating member are contact-weared while being heated to 800 to 1500 ° C.
【請求項10】タービンロータ及びタービンシュラウド
を具備するガスタービン用部品において、前記タービン
ロータ及びタービンシュラウドが請求項1乃至7のうち
いずれかに記載の組合せ部材を用いてなることを特徴と
するガスタービン用部品。
10. A gas turbine component comprising a turbine rotor and a turbine shroud, wherein the turbine rotor and the turbine shroud are formed by using the combination member according to any one of claims 1 to 7. Turbine parts.
JP2001090031A 2001-03-27 2001-03-27 Combined member, manufacturing method thereof, and gas turbine component Expired - Fee Related JP4712997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090031A JP4712997B2 (en) 2001-03-27 2001-03-27 Combined member, manufacturing method thereof, and gas turbine component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090031A JP4712997B2 (en) 2001-03-27 2001-03-27 Combined member, manufacturing method thereof, and gas turbine component

Publications (2)

Publication Number Publication Date
JP2002285801A true JP2002285801A (en) 2002-10-03
JP4712997B2 JP4712997B2 (en) 2011-06-29

Family

ID=18944871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090031A Expired - Fee Related JP4712997B2 (en) 2001-03-27 2001-03-27 Combined member, manufacturing method thereof, and gas turbine component

Country Status (1)

Country Link
JP (1) JP4712997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348942A (en) * 2005-06-16 2006-12-28 Sulzer Metco (Us) Inc Ceramic abradable material containing alumina dopant
JP2015019565A (en) * 2013-06-13 2015-01-29 株式会社エコ・アール Power storage device and electric power system using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148004A (en) * 1991-11-27 1993-06-15 Nissan Motor Co Ltd Ceramic material for turbine
JPH07324602A (en) * 1994-05-30 1995-12-12 Ishikawajima Harima Heavy Ind Co Ltd Turbine casing structure
JPH0828204A (en) * 1994-07-21 1996-01-30 Nissan Motor Co Ltd Ceramic turbine blade and manufacture thereof
JPH0913904A (en) * 1995-06-27 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Ceramic turbine moving blade
JPH09228804A (en) * 1996-02-26 1997-09-02 Kawasaki Heavy Ind Ltd Turbine equipped with shroud made of ceramic
JPH09264104A (en) * 1996-03-27 1997-10-07 Ishikawajima Harima Heavy Ind Co Ltd Ceramic shroud ring
JPH11229810A (en) * 1997-11-26 1999-08-24 United Technol Corp <Utc> Seal mechanism of gas turbine engine
JPH11278921A (en) * 1998-03-30 1999-10-12 Kyocera Corp Engine part and its production
JPH11292617A (en) * 1998-04-16 1999-10-26 Taiheiyo Cement Corp Amorphous ceramic and its production
JPH11310465A (en) * 1998-02-27 1999-11-09 Kyocera Corp Ceramic sintered body and sealing material using the same
JP2000159570A (en) * 1998-11-19 2000-06-13 Kagawa Prefecture Production of compact cordierite sintered product

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148004A (en) * 1991-11-27 1993-06-15 Nissan Motor Co Ltd Ceramic material for turbine
JPH07324602A (en) * 1994-05-30 1995-12-12 Ishikawajima Harima Heavy Ind Co Ltd Turbine casing structure
JPH0828204A (en) * 1994-07-21 1996-01-30 Nissan Motor Co Ltd Ceramic turbine blade and manufacture thereof
JPH0913904A (en) * 1995-06-27 1997-01-14 Ishikawajima Harima Heavy Ind Co Ltd Ceramic turbine moving blade
JPH09228804A (en) * 1996-02-26 1997-09-02 Kawasaki Heavy Ind Ltd Turbine equipped with shroud made of ceramic
JPH09264104A (en) * 1996-03-27 1997-10-07 Ishikawajima Harima Heavy Ind Co Ltd Ceramic shroud ring
JPH11229810A (en) * 1997-11-26 1999-08-24 United Technol Corp <Utc> Seal mechanism of gas turbine engine
JPH11310465A (en) * 1998-02-27 1999-11-09 Kyocera Corp Ceramic sintered body and sealing material using the same
JPH11278921A (en) * 1998-03-30 1999-10-12 Kyocera Corp Engine part and its production
JPH11292617A (en) * 1998-04-16 1999-10-26 Taiheiyo Cement Corp Amorphous ceramic and its production
JP2000159570A (en) * 1998-11-19 2000-06-13 Kagawa Prefecture Production of compact cordierite sintered product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348942A (en) * 2005-06-16 2006-12-28 Sulzer Metco (Us) Inc Ceramic abradable material containing alumina dopant
JP2015019565A (en) * 2013-06-13 2015-01-29 株式会社エコ・アール Power storage device and electric power system using the same
JP2018139485A (en) * 2013-06-13 2018-09-06 株式会社エコ・アール Power storage device and power system using the same

Also Published As

Publication number Publication date
JP4712997B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
CN100473627C (en) Wear-resistance silicon nitride member and method for manufacturing thereof
JP2001328869A (en) Abrasion-resistant member and method for producing the same
JP4712997B2 (en) Combined member, manufacturing method thereof, and gas turbine component
Richerson Historical review of addressing the challenges of use of ceramic components in gas turbine engines
JPS60186468A (en) Ceramic structural material and manufacture
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP2004002067A (en) Wear-resistant member and its production process
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
JPH08295569A (en) Silicon nitride-based sintered compact and its production
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3360417B2 (en) Turbine casing structure
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
JP3176190B2 (en) Ceramic turbine rotor
JP3810806B2 (en) Sintered silicon nitride ceramics
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
Srinivasan et al. Non-oxide materials: applications and engineering
JP4968988B2 (en) Static member for heat engine and method for manufacturing the same
JPH0624726A (en) Zirconia/molybdenum disilicide composition and its production
JPH11310465A (en) Ceramic sintered body and sealing material using the same
JP4681851B2 (en) Ceramic parts for corrosion resistant gas turbines
JP2001130966A (en) Silicon nitride-based sintered body, method for producing the same, and silicon nitride-based abrasion resistant member by using the same
JP2001130983A (en) Silicon nitride sintered compact
JPS60255672A (en) Manufacture of silicon carbide sintered body
Hamano et al. Reliability evaluation of ceramic rotor for passenger-car turbochargers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110324

LAPS Cancellation because of no payment of annual fees