JP2002279981A - Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery - Google Patents
Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary batteryInfo
- Publication number
- JP2002279981A JP2002279981A JP2001075480A JP2001075480A JP2002279981A JP 2002279981 A JP2002279981 A JP 2002279981A JP 2001075480 A JP2001075480 A JP 2001075480A JP 2001075480 A JP2001075480 A JP 2001075480A JP 2002279981 A JP2002279981 A JP 2002279981A
- Authority
- JP
- Japan
- Prior art keywords
- nickel
- cobalt
- electrode
- sintered
- hydroxide particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリ二次電池
に用いる非焼結型ニッケル電極、非焼結型ニッケル電極
用活物質粒子の製造方法、およびアルカリ二次電池に関
する。The present invention relates to a non-sintered nickel electrode used for an alkaline secondary battery, a method for producing active material particles for a non-sintered nickel electrode, and an alkaline secondary battery.
【0002】たとえばニッケル水素二次電池、ニッケル
カドミウム二次電池などのアルカリ二次電池は、携帯型
電子機器類の電源に用いられており、これら携帯型電子
機器類の高容量化ないし高機能化などに伴って、電源電
池の高容量化や長寿命化に対する要望が高まっている。
そして、電池の高容量化に当たって、正極構成について
みると、たとえば発泡ニッケルやパンチングメタルなど
の導電性の非焼結型基体(非焼結式基体)に、要すれ
ば、電極活物質をペースト状にして、より大きい充填密
度で充填坦持させるニッケル電極の構成が知られてい
る。[0002] For example, alkaline secondary batteries such as nickel hydrogen secondary batteries and nickel cadmium secondary batteries are used as power supplies for portable electronic devices, and these portable electronic devices have higher capacity or higher functionality. Accordingly, there is an increasing demand for higher capacity and longer life of power supply batteries.
When the capacity of the battery is increased, regarding the positive electrode configuration, for example, a conductive non-sintered substrate (non-sintered substrate) such as foamed nickel or punched metal, and if necessary, an electrode active material is formed into a paste Thus, a configuration of a nickel electrode that is filled and supported at a higher packing density is known.
【0003】また、上記非焼結型ニッケル電極の高容量
化を図るため、電極活物質の利用率を向上させる手段も
検討されている。すなわち、水酸化ニッケルを主成分と
する粒子に、コバルトやコバルト化合物を添加したり、
前記粒子表面にコバルト化合物を析出させて被覆した
り、あるいは粒子表面にコバルト化合物を析出・被覆さ
せた後、さらに、過酸化水素水で酸化処理を施すなどの
手段が開発されている。In order to increase the capacity of the non-sintered nickel electrode, means for improving the utilization rate of the electrode active material have been studied. That is, cobalt or a cobalt compound is added to particles mainly composed of nickel hydroxide,
Means have been developed in which a cobalt compound is deposited and coated on the surface of the particle, or a cobalt compound is deposited and coated on the surface of the particle and then subjected to an oxidizing treatment with a hydrogen peroxide solution.
【0004】上記ニッケル正極の構成、換言すると、充
填坦持される電極活物質がコバルトやコバルト化合物を
含む構成とした場合、電極活物質の利用率が向上するの
は、次のような理由によると説明されている。すなわ
ち、上記構成のニッケル正極は、アルカリ二次電池に組
み込まれると、コバルト種が一旦アルカリ電解液中に溶
解し、水酸化ニッケル粒子の表面に分散して、その後の
初回充電によって、電極活物質−電極活物質間、および
電極活物質−集電体間を連結した形で、水酸化ニッケル
粒子の表面に水酸化コバルトが析出する。そして、析出
した水酸化コバルトは、オキシ水酸化コバルトになり、
このオキシ水酸化コバルトの導電性ネットワークによっ
て、電極活物質−電極活物質間、および電極活物質−集
電体間の導電性が向上し、電極活物質の利用効率が向上
すると考えられている。When the structure of the nickel positive electrode, in other words, when the electrode active material to be filled and supported contains cobalt or a cobalt compound, the utilization factor of the electrode active material is improved for the following reasons. It is explained. That is, when the nickel positive electrode having the above configuration is incorporated in an alkaline secondary battery, the cobalt species is once dissolved in the alkaline electrolyte and dispersed on the surface of the nickel hydroxide particles. -Cobalt hydroxide precipitates on the surface of the nickel hydroxide particles in a form in which the electrode active material and the electrode active material-the current collector are connected. And the precipitated cobalt hydroxide becomes cobalt oxyhydroxide,
It is considered that the conductive network of the cobalt oxyhydroxide improves the conductivity between the electrode active material and the electrode active material and between the electrode active material and the current collector, and improves the use efficiency of the electrode active material.
【0005】しかし、コバルトやコバルト化合物を含む
電極活物質を充填坦持させたニッケル正極は、過放電に
より利用率の向上が持続しないという問題がある。この
過放電特性上の問題に対し、アルカリが共存する酸素雰
囲気下で、表面がコバルト化合物で被覆された水酸化ニ
ッケル粒子に熱処理を施すことが提案されている。この
アルカリ熱処理手段により、水酸化ニッケル粒子表面に
2価を超える高次のコバルト酸化物を形成し、オキシ水
酸化コバルトとの併存で、導電性向上の効果を助長する
とともに、過放電特性の改善を図っている。[0005] However, the nickel positive electrode filled and supported with an electrode active material containing cobalt or a cobalt compound has a problem that the improvement in the utilization rate is not sustained due to overdischarge. In order to solve the problem of overdischarge characteristics, it has been proposed to perform heat treatment on nickel hydroxide particles whose surface is coated with a cobalt compound in an oxygen atmosphere in which an alkali coexists. By this alkali heat treatment means, a higher-order cobalt oxide having a valence of more than 2 is formed on the surface of the nickel hydroxide particles, and together with cobalt oxyhydroxide, promotes the effect of improving conductivity and improving the overdischarge characteristics. Is being planned.
【0006】[0006]
【発明が解決しようとする課題】ところで、ニッケル水
素二次電池やニッケルカドミウム二次電池は、通常、負
極容量を正極容量に較べて大きくし、正極が満充電され
ても、負極には、未充電部分(充電リザーブ)が存在す
るように設計されている。つまり、充電末期ないし過充
電時に、正極から発生する酸素ガスを負極で吸収するこ
とにより、密閉型二次電池の内圧上昇を抑制するため、
充電リザーブが設けられている。なお、この充電リザー
ブは、高率放電時における負極の活物質利用率低下に起
因する放電容量の低下を抑制する機能も有する。Incidentally, in nickel-metal hydride secondary batteries and nickel-cadmium secondary batteries, the capacity of the negative electrode is usually larger than the capacity of the positive electrode. It is designed so that there is a charging part (charging reserve). In other words, at the end of charging or at the time of overcharging, oxygen gas generated from the positive electrode is absorbed by the negative electrode, thereby suppressing an increase in the internal pressure of the sealed secondary battery.
A charging reserve is provided. The charge reserve also has a function of suppressing a decrease in discharge capacity due to a decrease in the active material utilization of the negative electrode during high-rate discharge.
【0007】また、上記ニッケル正極においては、充電
時に、水酸化ニッケル粒子表面で水酸化コバルトから生
成したオキシ水酸化コバルトが、放電時に還元されない
で、オキシ水酸化コバルトのままである。したがって、
水酸化コバルトからオキシ水酸化コバルトへの酸化に要
した電気量は、潜在的な放電電気量(放電リザーブ)と
して負極に蓄えられることになる。一方、初回の充電に
おいて、正極活物質の酸化(オキシ水酸化ニッケル化)
に要した充電電気量と、還元に要した電気量との差に等
しい電気量が放電リザーブとして、同じく負極に蓄えら
れる。In the above nickel positive electrode, during charging, the cobalt oxyhydroxide generated from cobalt hydroxide on the surface of the nickel hydroxide particles is not reduced during discharging but remains as cobalt oxyhydroxide. Therefore,
The amount of electricity required for the oxidation of cobalt hydroxide to cobalt oxyhydroxide is stored in the negative electrode as a potential discharge amount (discharge reserve). On the other hand, during the first charge, oxidation of the positive electrode active material (nickel oxyhydroxide)
And the amount of electricity equal to the difference between the amount of electricity required for reduction and the amount of electricity required for reduction is stored in the negative electrode as a discharge reserve.
【0008】上記負極の放電リザーブは、高率放電時の
放電末期に負極電位の上昇による電池電圧低下を抑制す
る作用を呈する反面、充填した電極活物質に占める放電
リザーブの割合が大きいと、実際に利用できる電極活物
質の割合が低下するという問題がある。つまり、電池の
高容量化という点では、放電リザーブを削減することが
有効であるが、負極電位の上昇による電池電圧低下の抑
制という面からは、放電リザーブを要するという相反す
る問題が提起される。そして、この対策として、特公平
8−24041号公報、特公昭60−254564号公
報、特開平11−219701号公報などで、いろいろ
の手段が提案されている。[0008] The discharge reserve of the negative electrode has the effect of suppressing a decrease in battery voltage due to an increase in the negative electrode potential at the end of discharge at the time of high-rate discharge. However, there is a problem that the ratio of the electrode active material that can be used is reduced. In other words, in terms of increasing the capacity of the battery, it is effective to reduce the discharge reserve, but from the viewpoint of suppressing the battery voltage drop due to the increase in the negative electrode potential, there is a conflicting problem that a discharge reserve is required. . As measures against this, various means have been proposed in Japanese Patent Publication No. 8-24041, Japanese Patent Publication No. 60-254564, and Japanese Patent Application Laid-Open No. H11-219701.
【0009】たとえば、負極の放電リザーブは、正極導
電剤に起因する放電リザーブと、正極活物質に起因して
生成する放電リザーブ量の和であることに着目し、正極
活物質に起因して生成する放電リザーブを減少させるこ
とが試みられている。すなわち、水酸化ニッケル粒子を
オキシ水酸化コバルトで被覆した第1の活物質60〜9
0重量%と、オキシ水酸化ニッケル粒子をオキシ水酸化
コバルトで被覆した第2の活物質40〜10重量%との
混合物を正極活物質として使用することが提案されてい
る。For example, focusing on the fact that the negative electrode discharge reserve is the sum of the discharge reserve generated by the positive electrode conductive agent and the discharge reserve generated by the positive electrode active material, the negative electrode discharge reserve is generated by the positive electrode active material. Attempts have been made to reduce the available discharge reserve. That is, the first active materials 60 to 9 in which nickel hydroxide particles are coated with cobalt oxyhydroxide
It has been proposed to use a mixture of 0% by weight and 40 to 10% by weight of a second active material in which nickel oxyhydroxide particles are coated with cobalt oxyhydroxide as a positive electrode active material.
【0010】しかしながら、上記構成のニッケル極の場
合、品質、性能にバラツキが生じたりして、安定性ない
し信頼性が懸念される。すなわち、導電性の非焼結型基
体に、上記水酸化ニッケル粒子をオキシ水酸化コバルト
で被覆した第1の活物質と、オキシ水酸化ニッケル粒子
をオキシ水酸化コバルトで被覆した第2の活物質とを、
ほぼ均一な混合・分散系として充填坦持させることは、
製造操作の煩雑化などを招来する。そして、この製造操
作の煩雑化などは、歩留まり、量産性、低コスト化など
を招来するので、均一な混合・分散系の形成にも一定の
限界があり、安定した品質の確保という点で懸念され
る。[0010] However, in the case of the nickel electrode having the above-described structure, the quality and the performance vary, and there is a concern about stability or reliability. That is, a first active material in which the above-mentioned nickel hydroxide particles are coated with cobalt oxyhydroxide on a conductive non-sintered type substrate, and a second active material in which nickel oxyhydroxide particles are coated with cobalt oxyhydroxide. And
Filling and supporting as a substantially uniform mixture / dispersion system
This leads to complicated manufacturing operations. This complicated manufacturing operation leads to yield, mass productivity, low cost, etc., and there is a certain limit to the formation of a uniform mixing / dispersion system. Is done.
【0011】本発明は、上記事情に対処してなされたも
ので、安定的に適正な放電リザーブを確保しながら、高
容量化に適する性能を備えたアルカリ二次電池用の非焼
結型ニッケル電極、前記非焼結型ニッケル電極の製造方
法、前記非焼結型ニッケル電極を使用したアルカリ二次
電池の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a non-sintered nickel for an alkaline secondary battery having a performance suitable for high capacity while ensuring a proper discharge reserve stably. An object of the present invention is to provide an electrode, a method for producing the non-sintered nickel electrode, and an alkaline secondary battery using the non-sintered nickel electrode.
【0012】[0012]
【課題を解決するための手段】請求項1の発明は、導電
性の非焼結型基体と、この非焼結型基体に充填担持され
た電極活物質粒子とから成り、前記電極活物質粒子がオ
キシ水酸化ニッケルを含む粒子の外周面がオキシ水酸化
コバルトおよび2価を超えるコバルト酸化物の混合系で
被覆されていることを特徴とする非焼結型ニッケル電極
である。According to a first aspect of the present invention, there is provided an electroconductive non-sintered substrate, and the electrode active material particles filled and supported on the non-sintered substrate. Is a non-sintered nickel electrode characterized in that the outer peripheral surface of particles containing nickel oxyhydroxide is coated with a mixed system of cobalt oxyhydroxide and a cobalt oxide having more than two valences.
【0013】請求項2の発明は、請求項1記載の非焼結
型ニッケル電極において、電極活物質粒子は水酸化コバ
ルト粒子および水酸化ニッケル粒子をアルカリ水溶液中
に共存させて輻射熱による加熱処理で作られたものであ
ることを特徴とする。According to a second aspect of the present invention, in the non-sintered nickel electrode according to the first aspect, the electrode active material particles are subjected to heat treatment by radiant heat by allowing cobalt hydroxide particles and nickel hydroxide particles to coexist in an alkaline aqueous solution. It is characterized by being made.
【0014】請求項3の発明は、請求項1もしくは請求
項2記載の非焼結型ニッケル電極において、電極活物質
粒子は平均粒径が7〜18μm、BET法による比表面
積が5〜20m2/g、もしくはX線回折法において
(101)面における半値幅が0.85〜1.00°の
水酸化コバルト粒子および水酸化ニッケル粒子を素材と
して作られていることを特徴とする。According to a third aspect of the present invention, in the non-sintered nickel electrode according to the first or second aspect, the average particle diameter of the electrode active material particles is 7 to 18 μm, and the specific surface area by the BET method is 5 to 20 m 2. / G, or a cobalt hydroxide particle and a nickel hydroxide particle having a half width at 0.85 to 1.00 ° in the (101) plane in the X-ray diffraction method.
【0015】請求項4の発明は、水酸化コバルト粒子お
よび水酸化ニッケル粒子をアルカリ水溶液中に共存さ
せ、輻射熱による加熱処理を施す工程と、前記工程で生
成したオキシ水酸化コバルトおよび2価を超えるコバル
ト酸化物の混合系層が外周面に設けられた水酸化ニッケ
ル粒子を化学的に酸化処理し、核を成す水酸化ニッケル
の少なくとも一部をオキシ水酸化ニッケル化する工程
と、前記オキシ水酸化ニッケル系が核を成す電極活物質
粒子を導電性の非焼結型基体に充填担持させる工程と、
を有することを特徴とする非焼結型ニッケル電極の製造
方法である。According to a fourth aspect of the present invention, there is provided a process in which cobalt hydroxide particles and nickel hydroxide particles coexist in an aqueous alkaline solution and a heat treatment by radiant heat is performed. A step of chemically oxidizing nickel hydroxide particles provided on the outer peripheral surface with a mixed layer of cobalt oxide to convert at least a part of nickel hydroxide forming a nucleus to nickel oxyhydroxide; A step of filling and supporting an electrode active material particle having a nickel-based core on a conductive non-sintered substrate,
A method for producing a non-sintered nickel electrode, comprising:
【0016】請求項5の発明は、請求項4記載の非焼結
型ニッケル電極の製造方法において、水酸化コバルト粒
子および水酸化ニッケル粒子の平均粒径は7〜18μm
であることを特徴とする。According to a fifth aspect of the present invention, in the method for producing a non-sintered nickel electrode according to the fourth aspect, the average particle diameter of the cobalt hydroxide particles and the nickel hydroxide particles is 7 to 18 μm.
It is characterized by being.
【0017】請求項6の発明は、請求項4記載の非焼結
型ニッケル電極の製造方法において、水酸化コバルト粒
子および水酸化ニッケル粒子はBET法による比表面積
は5〜20m2/gであることを特徴とする。According to a sixth aspect of the present invention, in the method for manufacturing a non-sintered nickel electrode according to the fourth aspect, the specific surface area of the cobalt hydroxide particles and the nickel hydroxide particles is 5 to 20 m 2 / g by a BET method. It is characterized by the following.
【0018】請求項7の発明は、請求項4記載の非焼結
型ニッケル電極の製造方法において、水酸化コバルト粒
子および水酸化ニッケル粒子は、X線回折法において
(101)面における半値幅が0.85〜1.00°で
あることを特徴とする。According to a seventh aspect of the present invention, in the method for manufacturing a non-sintered nickel electrode according to the fourth aspect, the cobalt hydroxide particles and the nickel hydroxide particles have a half width at a (101) plane in an X-ray diffraction method. 0.85 to 1.00 °.
【0019】請求項8の発明は、オキシ水酸化ニッケル
を含む粒子外周面がオキシ水酸化コバルトおよび2価を
超えるコバルト酸化物の混合系で被覆されている電極活
物質粒子を充填担持する非焼結型正極と、前記非焼結型
正極に対応して配置された負極と、前記非焼結型正極お
よび負極間に介挿配置されたセパレーターと、アルカリ
電解液と、を具備して成ることを特徴とするアルカリ二
次電池である。The invention according to claim 8 is a non-sintering method in which the particles containing nickel oxyhydroxide are loaded and supported with electrode active material particles whose outer peripheral surface is coated with a mixed system of cobalt oxyhydroxide and cobalt oxide having more than two valences. A positive electrode, a negative electrode disposed corresponding to the non-sintered positive electrode, a separator interposed between the non-sintered positive electrode and the negative electrode, and an alkaline electrolyte. An alkaline secondary battery characterized by the following.
【0020】請求項1ないし7の発明において、芯体を
成す導電性の非焼結型基体は、たとえば発泡ニッケル、
フェルト状金属繊維系多孔体、パンチングメタルなどで
ある。また、この導電性の非焼結型基体に充填担持され
た電極活物質粒子は、オキシ水酸化ニッケル(NiOO
H)を含む粒子の外周面(表面)が、オキシ水酸化コバ
ルト(CoOOH)および2価を超えるコバルト酸化物
(たとえばCo3O4)の混合系で被覆された構成を採
っている。In the first to seventh aspects of the present invention, the conductive non-sintered substrate forming the core is made of, for example, nickel foam,
Felt-like metal fiber-based porous material, punched metal, and the like. The electrode active material particles filled and supported on the conductive non-sintered substrate are made of nickel oxyhydroxide (NiOO).
The outer peripheral surface (surface) of the particles containing H) is coated with a mixed system of cobalt oxyhydroxide (CoOOH) and a cobalt oxide having more than two valences (for example, Co 3 O 4 ).
【0021】ここで、核を成すオキシ水酸化ニッケルを
含む粒子は、全体がオキシ水酸化ニッケルで形成されて
いてもよいが、水酸化ニッケル−オキシ水酸化ニッケル
混合系ないし混成系で形成されていてもよい。なお、水
酸化ニッケル−オキシ水酸化ニッケル混成系粒子は、平
均粒径7〜18μm程度、外周面を被覆するオキシ水酸
化コバルト−2価を超えるコバルト酸化物混合系の膜厚
は0.1〜0.5μm程度である。Here, the nucleus-containing particles containing nickel oxyhydroxide may be entirely formed of nickel oxyhydroxide, but may be formed of a nickel hydroxide-nickel oxyhydroxide mixed system or a hybrid system. You may. The nickel hydroxide-nickel oxyhydroxide hybrid-based particles have an average particle size of about 7 to 18 μm, and the thickness of the cobalt oxyhydroxide-containing cobalt oxide mixed system having a valence of more than 0.1 which covers the outer peripheral surface is 0.1 to 0.1 μm. It is about 0.5 μm.
【0022】請求項1ないし7の発明において、水酸化
コバルト(Co(OH)2)粒子は、平均粒径0.5〜
2μm程度、より好ましくは平均粒径0.8〜1.2μ
m程度である。また、水酸化ニッケル粒子(Ni(O
H)2)は、平均粒径7〜18μm程度、より好ましく
は平均粒径10〜15μm程度である。そして、水酸化
コバルト粒子および水酸化ニッケル粒子の混合比は、重
量比で3:100〜10:100程度、より好ましくは
5:100〜9:100程度である。In the invention of claims 1 to 7, the cobalt hydroxide (Co (OH) 2 ) particles have an average particle size of 0.5 to 0.5.
About 2 μm, more preferably an average particle size of 0.8 to 1.2 μm
m. In addition, nickel hydroxide particles (Ni (O
H) 2 ) has an average particle diameter of about 7 to 18 μm, more preferably about 10 to 15 μm. The mixing ratio of the cobalt hydroxide particles and the nickel hydroxide particles is about 3: 100 to 10: 100 by weight, more preferably about 5: 100 to 9: 100.
【0023】なお、上記素材として使用する水酸化コバ
ルト粒子および水酸化ニッケル粒子は、BET法による
比表面積が5〜20m2/g程度の微粒子であってもよ
いし、あるいはX線回折法において(101)における
半値幅が、0.85°〜1.00°程度のものでもよ
い。つまり、水酸化コバルト粒子および水酸化ニッケル
粒子を平均粒径、比表面積、もしくは半値幅などで把握
した場合、上記の程度範囲に選択すると、高容量化、長
寿命化などが容易に図られる。The cobalt hydroxide particles and nickel hydroxide particles used as the above-mentioned materials may be fine particles having a specific surface area of about 5 to 20 m 2 / g according to the BET method, or ( The half width at 101) may be about 0.85 ° to 1.00 °. That is, when the cobalt hydroxide particles and the nickel hydroxide particles are grasped by the average particle diameter, the specific surface area, the half width, or the like, if the above range is selected, the capacity and the service life can be easily increased.
【0024】請求項4ないし7の発明において、水酸化
ニッケル粒子表面に、オキシ水酸化コバルト−2価を超
えるコバルト酸化物の混合系を析出させる際、共存させ
るアルカリ水溶液は、水酸化ナトリウム水溶液、水酸化
カリウム水溶液であり、一般的に、濃度1〜14モル/
l程度である。また、水酸化コバルト粒子および水酸化
ニッケル粒子をアルカリ水溶液中で加熱する輻射熱は、
高周波ないし電磁波の照射による加熱である。ここで、
加熱源に輻射熱を利用することにより、上記オキシ水酸
化コバルト−2価を超えるコバルト酸化物の混合系の析
出がスムースに行われ、また、後述する酸化剤による水
酸化ニッケルの酸化が行われ易い傾向を呈する。In the invention according to claims 4 to 7, when depositing a mixed system of cobalt oxide having a valence of cobalt oxyhydroxide of 2 or more on the surface of the nickel hydroxide particles, the alkaline aqueous solution to be coexisted is an aqueous sodium hydroxide solution, An aqueous solution of potassium hydroxide, generally having a concentration of 1 to 14 mol /
It is about l. The radiant heat of heating the cobalt hydroxide particles and the nickel hydroxide particles in the alkaline aqueous solution is as follows:
Heating by irradiation of high frequency or electromagnetic waves. here,
By using radiant heat as the heating source, the precipitation of the mixed system of cobalt oxide having a valence of cobalt oxyhydroxide-2 above is smoothly performed, and the oxidation of nickel hydroxide by an oxidizing agent described later is easily performed. Show a tendency.
【0025】請求項4ないし7の発明において、オキシ
水酸化コバルト−2価を超えるコバルト酸化物の混合系
層が、外周面に設けられた水酸化ニッケル粒子を化学的
に酸化処理するため使用する酸化剤は、たとえば過酸化
水素、次亜塩素酸塩などである。ここでの酸化処理は、
核を成している水酸化ニッケル粒子の少なくとも一部を
オキシ水酸化ニッケル化するもので、酸化剤水溶液中で
撹拌しながら、化学的酸化を進めることにより達成でき
る。In the invention of claims 4 to 7, the mixed system layer of cobalt oxyhydroxide having a valence of more than 2 is used for chemically oxidizing nickel hydroxide particles provided on the outer peripheral surface. The oxidizing agent is, for example, hydrogen peroxide, hypochlorite, or the like. The oxidation treatment here is
Nickel oxyhydroxide is used to convert at least a portion of the nickel hydroxide particles forming the nucleus. This can be achieved by advancing chemical oxidation while stirring in an oxidizing agent aqueous solution.
【0026】請求項4ないし7の発明において、オキシ
水酸化ニッケル系粒子を核とする電極活物質粒子を導電
性の非焼結型基体に充填担持させる手段は、たとえば発
泡ニッケルなどの導電性芯体に、前記電極活物質を含有
するペーストを塗布・乾燥することによって達成でき
る。つまり、導電性の非焼結型多孔質基体に、電極活物
質を充填担持させる一般的な手段が適用される。In the invention according to claims 4 to 7, the means for filling and supporting the electrode active material particles having nickel oxyhydroxide-based particles as nuclei on a conductive non-sintered substrate is, for example, a conductive core such as foamed nickel. This can be achieved by applying and drying a paste containing the electrode active material on the body. That is, a general means for filling and supporting the electrode active material on the conductive non-sintered porous substrate is applied.
【0027】請求項8の発明において、アルカリ二次電
池の構成は、たとえばニッケル水素二次電池、ニッケル
カドミウム二次電池の一般的な構成を前提とし、上記請
求項1ないし7の発明に係るニッケル正極を使用するも
のである。つまり、負極の構成、セパレータ、電解液、
密封型の構成ないし電池の形状などは、一般的なもので
ある。In the eighth aspect of the present invention, the configuration of the alkaline secondary battery is based on the general configuration of, for example, a nickel hydride secondary battery or a nickel cadmium secondary battery. A positive electrode is used. In other words, the configuration of the negative electrode, the separator, the electrolyte,
The configuration of the sealed type, the shape of the battery, and the like are general.
【0028】請求項1ないし3の発明では、ニッケル正
極が充填坦持する電極活物質は、少なくとも一部がオキ
シ水酸化ニッケルである粒子を核とし、その表面をオキ
シ水酸化コバルトおよび2価を超えるコバルト酸化物の
混合系で被覆した構成となっている。つまり、電極活物
質の核を成す水酸化ニッケルの少なくとも一部が、予め
オキシ水酸化ニッケル化されていることに伴って、負極
側の放電リザーブを低減でき、かつその分を充電リザー
ブとして利用できるので、負極へのダメージも減り、二
次電池の長寿命化や高容量化が図られる。According to the first to third aspects of the present invention, the electrode active material filled and supported by the nickel positive electrode has at least a part of particles of nickel oxyhydroxide as a nucleus, and its surface is coated with cobalt oxyhydroxide and divalent. It is configured to be coated with a mixed system of cobalt oxides. That is, at least a portion of the nickel hydroxide constituting the nucleus of the electrode active material is previously converted to nickel oxyhydroxide, so that the discharge reserve on the negative electrode side can be reduced, and the portion can be used as a charge reserve. Therefore, damage to the negative electrode is reduced, and the life of the secondary battery and the increase in capacity are achieved.
【0029】請求項4ないし7の発明では、負極側の放
電リザーブを低減させ、負極へのダメージも減らし、二
次電池の長寿命化や高容量化を図れるアルカリ二次電池
用のニッケル正極を容易に、かつ歩留まりよく提供でき
る。特に、請求項3ないし5の発明では、オキシ水酸化
ニッケル化の反応、オキシ水酸化コバルト化などの反応
がよりスムースに進行するので、生産性や品質の向上が
図られる。According to the invention of claims 4 to 7, a nickel positive electrode for an alkaline secondary battery capable of reducing the discharge reserve on the negative electrode side, reducing the damage to the negative electrode, and extending the life and capacity of the secondary battery is provided. It can be provided easily and with good yield. In particular, in the inventions of claims 3 to 5, reactions such as nickel oxyhydroxide conversion and cobalt oxyhydroxide conversion proceed more smoothly, thereby improving productivity and quality.
【0030】請求項8の発明では、上記ニッケル正極の
具備により、長寿命化、高容量化されたアルカリ二次電
池の提供が可能となる。According to the eighth aspect of the present invention, the provision of the nickel positive electrode makes it possible to provide an alkaline secondary battery having a long life and a high capacity.
【0031】[0031]
【発明の実施態様】以下、実施例を説明する。Embodiments of the present invention will be described below.
【0032】非焼結型ニッケル正極は、たとえばニッケ
ル繊維を素材として成る三次元多孔性の金属基板、この
金属基板の空隙部に充填坦持された平均粒径10μm程
度の正極活物質粒子、およびポリテトラフロロエチレン
などのバインダー樹脂で構成されている。ここで、正極
活物質粒子は、オキシ水酸化ニッケル粒子を核ないし芯
とし、その外周面をオキシ水酸化コバルトおよび2価を
超えるコバルト酸化物の混合系で被覆した構成となって
いる。The non-sintered nickel positive electrode is, for example, a three-dimensionally porous metal substrate made of nickel fiber, positive electrode active material particles having an average particle size of about 10 μm filled and supported in the voids of the metal substrate, and It is composed of a binder resin such as polytetrafluoroethylene. Here, the positive electrode active material particles have a configuration in which nickel oxyhydroxide particles are used as a nucleus or core, and the outer peripheral surface thereof is coated with a mixed system of cobalt oxyhydroxide and a cobalt oxide having more than two valencies.
【0033】上記正極活物質粒子、すなわちオキシ水酸
化ニッケル粒子を核ないし芯とし、その外周面をオキシ
水酸化コバルトおよび2価を超えるコバルト酸化物の混
合系で被覆した構成の電極活物質粒子は、次のような手
段で得られる。たとえば平均粒径10μm程度の水酸化
ニッケル粒子100重量部に対し、平均1μm程度の水
酸化コバルト5重量部を添加・混合し、その混合物を流
動造粒装置に投入する一方、その混合物を浸潤するに充
分な8N/lの水酸化ナトリウム水溶液を添加して、大
気中で撹拌・混合する。The above-mentioned positive electrode active material particles, that is, electrode active material particles having a structure in which nickel oxyhydroxide particles are used as a nucleus or core and the outer peripheral surface thereof is coated with a mixed system of cobalt oxyhydroxide and cobalt oxide having more than two valences, Can be obtained by the following means. For example, with respect to 100 parts by weight of nickel hydroxide particles having an average particle size of about 10 μm, 5 parts by weight of cobalt hydroxide having an average of about 1 μm is added and mixed, and the mixture is charged into a fluidized-bed granulator, while the mixture is infiltrated. 8N / l aqueous sodium hydroxide solution is added, and the mixture is stirred and mixed in the atmosphere.
【0034】この撹拌・混合の過程では、流動造粒装置
に付設されているマグネトロンを動作させ、マイクロウ
エーブを照射し、温度100℃で20分間加熱を行う。
上記処理によって、表面がオキシ水酸化コバルト−2価
を超えるコバルト酸化物の混合系で被覆された水酸化ニ
ッケル粒子を作製する。In the process of stirring and mixing, a magnetron attached to the fluidized-bed granulator is operated to irradiate microwaves and heat at a temperature of 100 ° C. for 20 minutes.
By the above treatment, nickel hydroxide particles whose surface is coated with a mixed system of cobalt oxide having a valency of more than cobalt oxyhydroxide-2 are produced.
【0035】次いで、上記表面がオキシ水酸化コバルト
−2価を超えるコバルト酸化物の混合系で被覆された水
酸化ニッケル粒子を、次亜塩素酸ナトリウム水溶液の濃
度及び撹拌時間をコントロールしながら撹拌する。その
後、濾別、水洗、乾燥を施して、表面がオキシ水酸化コ
バルト−2価を超えるコバルト酸化物の混合系で被覆さ
れ、かつ核をなす水酸化ニッケルの少なくとも一部がオ
キシ水酸化ニッケル化した電極活物質粒子を作製する。
なお、作製した電極活物質粒子について、SEMおよび
EDX観察によって、その構造ないし性状を評価したと
ころ、核をなす粒子はオキシ水酸化ニッケルで、その表
面にオキシ水酸化コバルト−2価を超えるコバルト酸化
物の混合系が均一に形成されていた。Next, the nickel hydroxide particles, the surface of which is coated with a mixed system of cobalt oxide having a valence of cobalt oxyhydroxide-2, are stirred while controlling the concentration of the aqueous sodium hypochlorite solution and the stirring time. . Thereafter, the mixture is filtered, washed with water, and dried, and the surface is coated with a mixed system of cobalt oxide having a valence of cobalt oxyhydroxide of at least two valences, and at least a part of nickel hydroxide constituting a core is converted to nickel oxyhydroxide. The prepared electrode active material particles are produced.
The structure and properties of the produced electrode active material particles were evaluated by SEM and EDX observation. The core particles were nickel oxyhydroxide, and the surface of the particles was cobalt oxide having a valence of more than cobalt oxyhydroxide-2. A mixed system of the products was formed uniformly.
【0036】ここで、素材である水酸化ニッケル粒子、
および水酸化コバルト粒子について、平均粒子径を7〜
18μm程度、より好ましくは平均粒径10〜15μm
程度、BET法による比表面積が5〜20m2/g程度
の粒子、あるいはX線回折法において(101)におけ
る半値幅が0.85°〜1.00°程度のものを選択し
た場合は、高容量化、長寿命化などが助長される。Here, nickel hydroxide particles as a material,
And cobalt hydroxide particles, the average particle size is 7 to
About 18 μm, more preferably an average particle diameter of 10 to 15 μm
When particles having a specific surface area of about 5 to 20 m 2 / g by the BET method or those having a half-value width of about 0.85 ° to 1.00 ° in (101) in X-ray diffraction method are selected, Capacity and long life are promoted.
【0037】次に、実施例に係る非焼結型ニッケル正極
(電極)の製造例を説明する。先ず、上記表面がオキシ
水酸化コバルト−2価を超えるコバルト酸化物の混合系
3で被覆されたオキシ水酸化ニッケル粒子、ポリテトラ
フロロエチレン、カルボキシメチルセルローズ、ポリア
クリル酸ナトリウムおよび水を組成分としたペースト状
の電極活物質を調製する。次いで、予め用意しておいた
テープ状のニッケル繊維系基板に、前記ペースト状の電
極活物質を塗布・充填してから乾燥処理、もしくはプレ
ス加工を施して、ニッケル水素二次電池用の非焼結型ニ
ッケル正極を作製する。Next, an example of manufacturing a non-sintered nickel positive electrode (electrode) according to the embodiment will be described. First, nickel oxyhydroxide particles, the surface of which was coated with a mixed system 3 of cobalt oxide having a valence of cobalt oxyhydroxide-2 or more, polytetrafluoroethylene, carboxymethyl cellulose, sodium polyacrylate, and water as components. The prepared paste-like electrode active material is prepared. Next, the paste-like electrode active material is applied and filled onto a tape-like nickel fiber-based substrate prepared in advance, and then subjected to a drying treatment or a press working to obtain a non-fired nickel-metal hydride secondary battery. A molded nickel positive electrode is manufactured.
【0038】上記非焼結型ニッケル正極は、予め、電極
活物質粒子の核が一部オキシ水酸化ニッケル化している
ため、初回の充電において正極活物質の酸化(オキシ水
酸化ニッケル化)に要する充電電気量が不要となり、結
果的に、負極に蓄えられる放電リザーブが省略される。
そして、この省略される放電リザーブ分は、充電末期な
いし過充電時に、正極から発生する酸素ガスを負極で吸
収する充電リザーブとして利用されることになり、密閉
型二次電池の内圧上昇の抑制に寄与する。また、この充
電リザーブが、高率放電時における負極の活物質利用率
低下(負極のダメージ)に起因する放電容量の低下抑制
に機能する。In the above-mentioned non-sintered nickel positive electrode, since the core of the electrode active material particles is partially converted to nickel oxyhydroxide in advance, it is necessary for oxidation of the positive electrode active material (nickel oxyhydroxide) in the first charge. The amount of charged electricity is not required, and as a result, the discharge reserve stored in the negative electrode is omitted.
Then, the omitted discharge reserve is used as a charge reserve for absorbing oxygen gas generated from the positive electrode at the negative electrode at the end of charging or at the time of overcharging, thereby suppressing an increase in the internal pressure of the sealed secondary battery. Contribute. Further, this charge reserve functions to suppress a decrease in discharge capacity due to a decrease in the active material utilization rate of the negative electrode during high-rate discharge (damage to the negative electrode).
【0039】次に、上記非焼結型ニッケル正極、水素吸
蔵合金粉末を活物質として充填坦持した非焼結型水素電
極(負極)、ポリオレフィン繊維製不織布から成るセパ
レータを使用し、捲回型の起電部要素を作製する。その
後、この起電部要素を負極端子を兼ねる電池外装缶内に
装着し、常套の手段に従って、起電部要素に含浸させる
形でアルカリ電解液を注入し、ニッケル水素二次電池を
組み立てる。Next, a non-sintered nickel positive electrode, a non-sintered hydrogen electrode (negative electrode) filled with and supporting a hydrogen storage alloy powder as an active material, and a separator made of a nonwoven fabric made of polyolefin fiber were used. The electromotive section element is manufactured. Thereafter, the electromotive section element is mounted in a battery outer can also serving as a negative electrode terminal, and an alkaline electrolyte is injected in such a manner as to impregnate the electromotive section element according to a conventional means, thereby assembling a nickel hydrogen secondary battery.
【0040】上記ニッケル水素二次電池について、0.
1Cの定電流で15時間充電し、1.0Cの定電流で電
池電圧1Vまで放電する充放電サイクルにおいて、両電
極は、高い電極活物質の利用効率を呈するだけでなく、
水素電極のダメージによる容量低下も抑制され、高性能
化していることが確認された。なお、こうした結果ない
し傾向は、手電極活物質の素材として、平均粒子径を7
〜18μm程度、より好ましくは平均粒径10〜15μ
m程度、BET法による比表面積が5〜20m 2/g程
度、あるいはX線回折法において(101)における半
値幅が0.85°〜1.00°程度の水酸化ニッケル粒
子、および水酸化コバルト粒子を選択した場合も同様で
あった。With respect to the nickel-metal hydride secondary battery, the following is used.
Charge at a constant current of 1C for 15 hours, and charge at a constant current of 1.0C.
In a charge / discharge cycle that discharges to a battery voltage of 1 V,
The pole not only exhibits high utilization efficiency of the electrode active material,
Capacitance reduction due to hydrogen electrode damage is suppressed and high performance
Has been confirmed. No such result
The tendency is that the average particle size is 7
About 18 μm, more preferably an average particle diameter of 10 to 15 μm
m, specific surface area by BET method is 5-20m 2/ G
Or half of (101) in X-ray diffraction
Nickel hydroxide particles with a value range of about 0.85 ° to 1.00 °
The same applies to the case where particles and cobalt hydroxide particles are selected.
there were.
【0041】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲で、いろいろの変形
を採ることができる。たとえばコバルト種および水酸化
ニッケルをアルカリ水溶液中で熱処理する際の輻射熱源
となる高周波、導電性の非焼結型基体の材質、あるいは
化学的な酸化剤などは、対応する他の手段で置き換える
ことができる。The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the high-frequency, conductive non-sintered substrate material, or chemical oxidizing agent that becomes a radiant heat source when heat-treating cobalt species and nickel hydroxide in an alkaline aqueous solution should be replaced with other appropriate means. Can be.
【0042】[0042]
【発明の効果】請求項1ないし3の発明によれば、電極
活物質の核を成す水酸化ニッケルの少なくとも一部が、
予めオキシ水酸化ニッケル化されていることに伴って、
負極側の放電リザーブが低減される。そして、その分を
充電リザーブとして利用できるので、負極へのダメージ
も減り、二次電池の長寿命化や高容量化を図れる非焼結
型ニッケル電極が提供される。According to the first to third aspects of the present invention, at least a part of the nickel hydroxide constituting the nucleus of the electrode active material is:
With the nickel oxyhydroxide beforehand,
The discharge reserve on the negative electrode side is reduced. Further, since that amount can be used as a charge reserve, damage to the negative electrode is reduced, and a non-sintered nickel electrode capable of extending the life and increasing the capacity of the secondary battery is provided.
【0043】請求項4ないし7の発明によれば、二次電
池の長寿命化や高容量化を図れるアルカリ二次電池用の
ニッケル電極を容易に、かつ歩留まりよく提供できる。
特に、請求項3ないし5の発明によれば、オキシ水酸化
ニッケル化の反応、オキシ水酸化コバルト化などの反応
が、よりスムースに進行するので、生産性および品質の
向上を図れる。According to the fourth to seventh aspects of the present invention, it is possible to easily provide a nickel electrode for an alkaline secondary battery capable of achieving a longer life and a higher capacity of the secondary battery with a high yield.
In particular, according to the third to fifth aspects of the present invention, reactions such as nickel oxyhydroxide conversion and cobalt oxyhydroxide conversion proceed more smoothly, so that productivity and quality can be improved.
【0044】請求項6の発明によれば、長寿命化、高容
量化されたアルカリ二次電池が提供される。According to the sixth aspect of the present invention, there is provided an alkaline secondary battery having a long life and a high capacity.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA03 AB02 AB04 AB05 AC06 AD03 AE05 5H028 AA01 BB03 BB05 BB06 BB10 BB15 EE05 EE08 EE10 5H050 AA08 BA11 CA03 DA04 DA10 EA12 FA17 FA18 GA02 GA10 GA15 GA22 GA27 HA05 HA07 HA13 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G048 AA03 AB02 AB04 AB05 AC06 AD03 AE05 5H028 AA01 BB03 BB05 BB06 BB10 BB15 EE05 EE08 EE10 5H050 AA08 BA11 CA03 DA04 DA10 EA12 FA17 FA18 GA02 GA10 GA15 GA22 GA27 HA05 HA07
Claims (8)
基体に充填担持された電極活物質粒子とから成り、前記
電極活物質粒子はオキシ水酸化ニッケルを含む粒子の外
周面がオキシ水酸化コバルトおよび2価を超えるコバル
ト酸化物の混合系で被覆されていることを特徴とする非
焼結型ニッケル電極。1. An electroconductive non-sintered substrate, and electrode active material particles filled and supported on the non-sintered substrate, wherein the electrode active material particles have an outer peripheral surface of particles containing nickel oxyhydroxide. Is coated with a mixed system of cobalt oxyhydroxide and a cobalt oxide having more than two valences.
および水酸化ニッケル粒子をアルカリ水溶液中に共存さ
せて輻射熱による加熱処理で作られたものであることを
特徴とする請求項1記載の非焼結型ニッケル電極。2. The non-electrode material according to claim 1, wherein the electrode active material particles are made by heat treatment with radiant heat in which cobalt hydroxide particles and nickel hydroxide particles coexist in an alkaline aqueous solution. Sintered nickel electrode.
μm、BET法による比表面積が5〜20m2/g、も
しくはX線回折法において(101)面における半値幅
が0.85〜1.00°の水酸化コバルト粒子および水
酸化ニッケル粒子を素材として作られていることを特徴
とする請求項1もしくは請求項2記載の非焼結型ニッケ
ル電極。3. The electrode active material particles have an average particle size of 7 to 18.
Cobalt hydroxide particles and nickel hydroxide particles having a specific surface area of 5 to 20 m 2 / g by the BET method or a half-width of 0.85 to 1.00 ° on the (101) plane in the X-ray diffraction method. The non-sintered nickel electrode according to claim 1, wherein the non-sintered nickel electrode is formed.
ル粒子をアルカリ水溶液中に共存させて輻射熱による加
熱処理を施す工程と、前記加熱処理工程で生成したオキ
シ水酸化コバルトおよび2価を超えるコバルト酸化物の
混合系層が外周面に設けられた水酸化ニッケル粒子を化
学的に酸化処理し、核を成す水酸化ニッケル粒子の少な
くとも一部をオキシ水酸化ニッケル化する工程と、 前記オキシ水酸化ニッケル系が核を成す電極活物質粒子
を導電性の非焼結型基体に充填担持させる工程と、を有
することを特徴とする非焼結型ニッケル電極の製造方
法。4. A step of subjecting cobalt hydroxide particles and nickel hydroxide particles to coexistence in an aqueous alkali solution and performing a heat treatment by radiant heat; and a step of producing the cobalt oxyhydroxide and the cobalt oxide having a valence of more than 2 produced by the heat treatment step. A step of chemically oxidizing the nickel hydroxide particles provided on the outer peripheral surface of the mixed system layer to form at least a part of the nickel hydroxide particles forming the nucleus into nickel oxyhydroxide; And filling and supporting the electrode active material particles forming a nucleus on a conductive non-sintered type substrate.
ル粒子は、平均粒径が7〜18μmであることを特徴と
する請求項4記載の非焼結型ニッケル電極の製造方法。5. The method according to claim 4, wherein the cobalt hydroxide particles and the nickel hydroxide particles have an average particle diameter of 7 to 18 μm.
ル粒子は、BET法による比表面積が5〜20m2/g
であることを特徴とする請求項4記載の非焼結型ニッケ
ル電極の製造方法。6. The cobalt hydroxide particles and the nickel hydroxide particles have a specific surface area of 5 to 20 m 2 / g by a BET method.
The method for producing a non-sintered nickel electrode according to claim 4, wherein
ル粒子は、X線回折法において(101)面における半
値幅が0.85〜1.00°であることを特徴とする請
求項4記載の非焼結型ニッケル電極の製造方法。7. The non-coating material according to claim 4, wherein the cobalt hydroxide particles and the nickel hydroxide particles have a half value width of 0.85 to 1.00 ° in the (101) plane in the X-ray diffraction method. A method for producing a sintered nickel electrode.
がオキシ水酸化コバルトおよび2価を超えるコバルト酸
化物の混合系で被覆されている電極活物質粒を充填担持
する非焼結型正極と、前記非焼結型正極に対応して配置
された負極と、前記非焼結型正極および負極間に介挿配
置されたセパレータと、アルカリ電解液と、を具備して
成ることを特徴とするアルカリ二次電池。8. A non-sintered positive electrode which is filled with and carries electrode active material particles whose outer peripheral surface containing nickel oxyhydroxide is coated with a mixed system of cobalt oxyhydroxide and a cobalt oxide having more than two valences; An alkali, comprising: a negative electrode arranged corresponding to the non-sintered positive electrode; a separator interposed between the non-sintered positive electrode and the negative electrode; and an alkaline electrolyte. Rechargeable battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001075480A JP2002279981A (en) | 2001-03-16 | 2001-03-16 | Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001075480A JP2002279981A (en) | 2001-03-16 | 2001-03-16 | Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002279981A true JP2002279981A (en) | 2002-09-27 |
Family
ID=18932552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001075480A Pending JP2002279981A (en) | 2001-03-16 | 2001-03-16 | Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002279981A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006515457A (en) * | 2002-12-12 | 2006-05-25 | ユニヴァーシティ・オブ・サウザンプトン | Electrochemical cell suitable for use in electronic devices |
JP2013018705A (en) * | 2006-03-31 | 2013-01-31 | Cs Energy Materials Ltd | POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF |
-
2001
- 2001-03-16 JP JP2001075480A patent/JP2002279981A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006515457A (en) * | 2002-12-12 | 2006-05-25 | ユニヴァーシティ・オブ・サウザンプトン | Electrochemical cell suitable for use in electronic devices |
JP2013018705A (en) * | 2006-03-31 | 2013-01-31 | Cs Energy Materials Ltd | POWDERED Ni AND Co-MIXED HYDROXIDE, AND USE THEREOF |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2208270C2 (en) | Positive-plate composite material and its manufacturing process | |
JP6132279B2 (en) | Nickel metal hydride secondary battery | |
JP5119577B2 (en) | Nickel metal hydride battery | |
JP3448510B2 (en) | Nickel hydroxide powder for alkaline batteries and nickel hydroxide electrode using the same | |
JPH11149921A (en) | Alkali storage battery and surface treatment method of its positive electrode substance | |
EP2634844A1 (en) | Positive electrode for alkaline storage battery, production method for same, and alkaline storage battery | |
JP2002117842A (en) | Positive electrode active material for alkaline storage battery and its manufacturing method, positive electrode for alkaline storage battery and alkaline storage battery | |
JP4458725B2 (en) | Alkaline storage battery | |
JP3114402B2 (en) | Manufacturing method of alkaline storage battery | |
JP2002279981A (en) | Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery | |
JP3400927B2 (en) | Method for producing positive electrode for alkaline secondary battery | |
JP3543601B2 (en) | Alkaline storage battery | |
JP3895985B2 (en) | Nickel / hydrogen storage battery | |
JP3543607B2 (en) | Alkaline storage battery | |
JP3744642B2 (en) | Nickel-metal hydride storage battery and method for manufacturing the same | |
JP2002279978A (en) | Non-sintered nickel electrode, method of manufacturing the non-sintered nickel electrode, and sealed alkaline secondary battery | |
JP3229800B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP2007258074A (en) | Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it | |
JP2003077469A (en) | Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery | |
JP3113534B2 (en) | Non-sintered nickel electrode and method for producing the same | |
JP3573885B2 (en) | Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP2002260720A (en) | Nickel hydrogen secondary battery | |
JP4458749B2 (en) | Alkaline storage battery | |
JP4162341B2 (en) | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD15 | Notification of revocation of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7435 Effective date: 20040702 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080218 |