Nothing Special   »   [go: up one dir, main page]

JP2002266006A - Method for controlling structure of rare-earth- containing alloy, and powder of the alloy and magnet using the same - Google Patents

Method for controlling structure of rare-earth- containing alloy, and powder of the alloy and magnet using the same

Info

Publication number
JP2002266006A
JP2002266006A JP2001068258A JP2001068258A JP2002266006A JP 2002266006 A JP2002266006 A JP 2002266006A JP 2001068258 A JP2001068258 A JP 2001068258A JP 2001068258 A JP2001068258 A JP 2001068258A JP 2002266006 A JP2002266006 A JP 2002266006A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
earth element
cooling
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001068258A
Other languages
Japanese (ja)
Other versions
JP3561692B2 (en
Inventor
Tadanao Ito
忠直 伊藤
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001068258A priority Critical patent/JP3561692B2/en
Priority to TW91103559A priority patent/TW567104B/en
Priority to PCT/JP2002/002244 priority patent/WO2002072900A2/en
Priority to CNB028005856A priority patent/CN100345987C/en
Publication of JP2002266006A publication Critical patent/JP2002266006A/en
Application granted granted Critical
Publication of JP3561692B2 publication Critical patent/JP3561692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the internal structure of a rare-earth-containing alloy obtained by a rotating roll method, particularly the state of distribution of R-enriched phases. SOLUTION: Melt of the molten rare-earth-containing alloy is allowed to flow onto a rotating roll to undergo solidification into a ribbon. The ribbon is ground into flakes, and the resultant alloy flakes are subjected to the control of cooling rate by a cooling medium in a storage vessel in a chamber identical with the chamber for the rotating roll. The alloy after the control of its structure is pulverized, and the resultant alloy powder is compacted and sintered into a magnet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は希土類元素含有合
金、特に磁石用希土類元素含有合金の内部組織を制御す
る方法、その方法によって得られた該合金粉末及びその
合金粉末を用いた磁石に関する。
The present invention relates to a method for controlling the internal structure of a rare earth element-containing alloy, particularly a rare earth element-containing alloy for a magnet, the alloy powder obtained by the method, and a magnet using the alloy powder.

【0002】[0002]

【従来の技術】近年、磁石用合金としてNd−Fe−B
系合金がその高特性から急激に生産量を伸ばしており、
HD(ハードディスク)用、MRI(磁気共鳴映像法)
用あるいは、各種モーター用等に使用されている。通常
は、Ndの一部をPr、Dy等他の希土類元素で置換し
たもの(Rと表記する。)、またFeの一部をCo、N
i等他の遷移元素で置換したもの(Tと表記する。)が
一般的であり、Nd−Fe−B系合金を含め、R−T−
B系合金と総称されている。
2. Description of the Related Art Recently, Nd-Fe-B has been used as an alloy for magnets.
-Based alloys are rapidly increasing production from their high properties,
For HD (hard disk), MRI (Magnetic Resonance Imaging)
Or for various motors. Usually, a part of Nd is replaced by another rare earth element such as Pr or Dy (denoted as R), and a part of Fe is Co, N
Those which are substituted with another transition element such as i (denoted by T) are generally used, and include R-T- including Nd-Fe-B-based alloys.
It is generically called a B-based alloy.

【0003】R−T−B系合金は、磁化作用に寄与する
強磁性相R214Bの結晶を主相とし、非磁性で希土類
元素の濃縮した低融点のRリッチ相を結晶粒界に持つ合
金で、活性な金属であることから一般に真空又は不活性
ガス中にて溶解され、金型に鋳造されてきた。この合金
鋳塊は、粉砕され3μm(FSSS:フィッシャーサブ
シーブサイザーでの測定)程度の粉末とした後、磁場中
でプレス成形され、焼結炉で約1000〜1100℃の
高温にて焼結され、その後必要に応じ熱処理、機械加工
され、耐食のためのメッキをされ磁石化されるのが普通
である。
The RTB-based alloy has a ferromagnetic phase R 2 T 14 B crystal contributing to the magnetizing action as a main phase, and a nonmagnetic, low-melting R-rich phase enriched with a rare earth element at a crystal grain boundary. Since it is an active metal, it is generally melted in a vacuum or inert gas and cast into a mold. This alloy ingot is pulverized to a powder of about 3 μm (FSSS: measured with a Fischer sub-sieve sizer), pressed in a magnetic field, and sintered at a high temperature of about 1000 to 1100 ° C. in a sintering furnace. After that, it is usually heat treated, machined, and plated for corrosion resistance and magnetized as necessary.

【0004】合金中のRリッチ相は、以下の点で重要な
役割を担っている。 1)融点が低く、焼結時に液相となり、磁石の高密度
化、従って磁化の向上に寄与する。 2)粒界の凹凸を無くし、逆磁区のニュークリエーショ
ンサイトを減少させ保磁力を高める。 3)主相を磁気的に絶縁することから保磁力を高める。 従ってRリッチ相の分散状態が悪いと磁石としての特性
及び耐食性に影響するため、均一であることが重要とな
る。最終的な磁石としてのRリッチ相の分布は、原料用
合金塊の組織に大きく影響される。すなわち、金型にて
鋳造された場合、冷却速度が遅いため往々にして結晶粒
が大きくなる。この結果、粉砕したときの粒が結晶粒径
よりはるかに細かくなる。Rリッチ相は厚さの大きいラ
メラ状になっており、このため分散性が悪い。したがっ
て粉砕したときの粒が結晶粒径より細かいとRリッチ相
を含まない主相のみの粒とRリッチ相のみの粒とが別々
に存在し均一な混合がしにくくなる。
[0004] The R-rich phase in the alloy plays an important role in the following points. 1) It has a low melting point and becomes a liquid phase at the time of sintering, which contributes to increasing the density of the magnet and thus improving the magnetization. 2) Eliminate irregularities in grain boundaries, reduce nucleation sites in reverse magnetic domains, and increase coercive force. 3) Increasing the coercive force by magnetically insulating the main phase. Therefore, if the dispersion state of the R-rich phase is poor, the properties and corrosion resistance of the magnet are affected, so that it is important to be uniform. The distribution of the R-rich phase as the final magnet is greatly influenced by the structure of the raw material alloy ingot. That is, when cast in a mold, the cooling rate is slow, and the crystal grains often become large. As a result, the grains when pulverized are much smaller than the crystal grain size. The R-rich phase has a lamellar shape with a large thickness, and therefore has poor dispersibility. Therefore, if the grains when pulverized are smaller than the crystal grain size, grains having only the main phase containing no R-rich phase and grains having only the R-rich phase are separately present, and uniform mixing is difficult.

【0005】金型鋳造でのもう一つの問題は、冷却速度
が遅いため初晶としてγ―Feが生成しやすくなること
である。γ―Feは約910℃以下では、α―Feに変
態する。この変態したα―Feは、磁石製造時の粉砕効
率の悪化をもたらし、焼結後も残存すれば磁気特性の低
下をもたらす。そこで金型にて鋳造したインゴットの場
合は、高温で長時間にわたる均質化処理によるα―Fe
の消去が必要となってくる。
Another problem in mold casting is that γ-Fe is easily formed as a primary crystal due to a low cooling rate. γ-Fe transforms to α-Fe below about 910 ° C. The transformed α-Fe causes deterioration of the pulverization efficiency at the time of magnet production, and if remaining after sintering, lowers the magnetic properties. Therefore, in the case of an ingot cast in a mold, α-Fe
Must be erased.

【0006】これらを解決するため、金型鋳造方法より
速い冷却速度で鋳造する方法として、ストリップキャス
ティング法(SC法)が紹介され実際の工程にて使用さ
れている。これは内部が水冷された銅ロール上に溶湯を
流し、小数点以下数mmの薄帯に鋳造することにより、
急冷凝固させるものであり、結晶組織を微細化させ、R
リッチ相が微細に分散した組織を有する合金を生成させ
るものである。合金内のRリッチ相が微細に分散してい
るため、粉砕、焼結後のRリッチ相の分散性も良好とな
り、磁気特性向上に成功している(特開平5−2224
88号公報、特開平5−295490号公報)。また、
α―Feも発生しにくくなっている。
In order to solve these problems, a strip casting method (SC method) has been introduced as a method of casting at a higher cooling rate than a die casting method, and is used in actual processes. This is done by pouring the molten metal on a copper roll whose inside is water-cooled, and casting it into a thin strip several mm below the decimal point.
Rapid solidification, refines the crystal structure,
This is to produce an alloy having a structure in which the rich phase is finely dispersed. Since the R-rich phase in the alloy is finely dispersed, the dispersibility of the R-rich phase after pulverization and sintering is improved, and the magnetic properties have been successfully improved (Japanese Patent Laid-Open No. 5-2224).
88, JP-A-5-295490). Also,
α-Fe is hardly generated.

【0007】更に、このようなSC法を用いた合金で
は、解砕方法として、水素解砕を行うことが普通であ
る。この方法は、特にRリッチ相が水素を吸蔵し、それ
に伴う体積膨張によってRリッチ相から割れ崩壊する性
質を利用したもので、微粉砕の前の解砕に利用されてお
り、従ってRリッチ相の間隔をいかに制御するかが粉砕
粒度を決めるうえで重要なポイントとなる。
[0007] Further, in the alloy using the SC method, hydrogen is usually crushed as a crushing method. This method particularly utilizes the property that the R-rich phase absorbs hydrogen and breaks down from the R-rich phase due to the accompanying volume expansion, and is used for pulverization before pulverization. The important point in controlling the particle size is how to control the interval between the particles.

【0008】このように、磁石特性に重要な影響を与え
るRリッチ相の分布(間隔)を制御するためには、鋳造
時の冷却速度が重要であり、特にRリッチ相の凝固付近
での温度制御が重要である。特開平8−176755号
公報では、結晶粒界のみでなく、主相(R214B相)
内にもRリッチ相(公報中では共晶領域と呼んでい
る。)が存在し、この間隔の制御が磁石特性上重要で、
これを達成するために最後まで液相として存在するRリ
ッチの部分が凝固するまでの温度域(800〜600
℃)を5℃/秒以上の冷却速度で冷却することが好まし
いと記載されている。特開平10−36949号公報で
は、800〜600℃間の平均冷却速度を1.0℃/秒
以下にしRリッチ相の間隔を広げ、3〜15μmにする
ことが開示されている。
As described above, in order to control the distribution (interval) of the R-rich phase which has an important effect on the magnet characteristics, the cooling rate during casting is important, and particularly, the temperature near the solidification of the R-rich phase. Control is important. In JP-A-8-176755, not only the crystal grain boundaries but also the main phase (R 2 T 14 B phase) is disclosed.
There is also an R-rich phase (referred to as a eutectic region in the gazette), and control of this interval is important for magnet characteristics.
To achieve this, the temperature range (800-600) until the R-rich portion existing as a liquid phase to the end solidifies.
C.) at a cooling rate of 5 ° C./sec or more. Japanese Patent Application Laid-Open No. Hei 10-36949 discloses that the average cooling rate between 800 and 600 ° C. is 1.0 ° C./sec or less to widen the interval between R-rich phases to 3 to 15 μm.

【0009】[0009]

【発明が解決しようとする課題】上記のように、合金塊
のRリッチ相の分布を制御することが磁石特性上重要で
あり、このためにRリッチ相の液相から凝固までの温度
領域の冷却速度を制御することが必要である。しかるに
先に述べたSC法においては、該温度領域はロールから
離れ落ちる付近で始まり、ロールから落ちた後まだ完全
な凝固が完了していないが、その温度制御方法について
は、明確なる方法が開示されていないのが現状である。
ロール上での冷却速度を制御するには、ロールの周速度
を変えるか、流すメタル量を調整して厚さを変える程度
しか調整のしようがなかったが、これには種々の難しい
問題がある。即ち、主相が凝固した後は、ロールとの接
触が面接触から点接触に変わり、冷却速度は急速に遅く
なる。αFeのない良好な組織の合金塊を安定して得る
場合、溶湯および主相が凝固した合金塊がロール上に乗
っている時間は精々数秒であり、ロール上でRリッチ相
が凝固するまでの温度領域を制御することはできない。
ロール周速度を遅くして合金塊がロール上に乗っている
時間を長くすると、合金塊の厚さが厚くなりαFeが生
成してしまう。また坩堝傾動速度を遅くしてロールに供
給する溶湯量を少なくすると、ロールに到達する前に溶
湯の温度が下がり初晶のγFeが生成しやすくなる。さ
らに溶湯の供給を絞ると、ロール上に到達する前に凝固
してしまう。このようにSC法においてロール上でのR
リッチ相の凝固温度付近の冷却速度制御は、その鋳造組
織を変化させるほど有効な手段が無かった。また、鋳造
された合金がロールから落ちた後についても、合金組織
を制御するための具体的手段については従来殆ど開示さ
れていない。本発明は、主として従来からの回転ロール
法においてロールから離れ落下した以降での合金片の冷
却速度を制御することにより、合金の内部組織、特にR
リッチ相の分布状態を制御することを目的とする。
As described above, it is important to control the distribution of the R-rich phase in the alloy ingot from the viewpoint of the magnet properties. For this reason, controlling the temperature range from the liquid phase of the R-rich phase to the solidification. It is necessary to control the cooling rate. However, in the above-described SC method, the temperature range starts near the point where the temperature falls off the roll, and complete solidification has not yet been completed after falling off the roll. However, a clear method is disclosed for the temperature control method. It has not been done yet.
The only way to control the cooling speed on the roll was to change the peripheral speed of the roll or to adjust the amount of flowing metal to change the thickness, but this has various difficult problems. . That is, after the main phase has solidified, the contact with the roll changes from surface contact to point contact, and the cooling rate rapidly decreases. In order to stably obtain an alloy ingot having a good structure without αFe, the time during which the melt and the alloy in which the main phase has solidified is on the roll is at most a few seconds, and the time required for the R-rich phase to solidify on the roll. The temperature range cannot be controlled.
If the roll peripheral speed is reduced and the time during which the alloy lump is on the roll is increased, the thickness of the alloy lump increases and αFe is generated. Also, if the amount of molten metal supplied to the roll is reduced by lowering the crucible tilting speed, the temperature of the molten metal is reduced before reaching the roll, so that primary crystal γFe is easily generated. If the supply of the molten metal is further reduced, the molten metal is solidified before reaching the roll. Thus, in the SC method, R
There was no effective means for controlling the cooling rate near the solidification temperature of the rich phase so as to change the casting structure. Also, almost no concrete means for controlling the alloy structure even after the cast alloy has fallen off the roll has been disclosed. The present invention mainly controls the internal structure of an alloy, particularly R, by controlling the cooling rate of an alloy piece after falling off the roll and dropping in a conventional rotating roll method.
The purpose is to control the distribution state of the rich phase.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するためになされたもので、以下の構成からなる。 (1)希土類元素含有合金を真空又は不活性ガス中にて
溶解し、溶解された溶湯を真空又は不活性ガス雰囲気中
の室内にて、冷却された回転ロール上に流し、冷却して
薄帯状に凝固させた直後、該凝固薄帯を片状に破砕し、
該破砕合金片を前記室内に置かれた収納容器内に収め、
冷却媒体により前記破砕合金片の冷却速度を制御するこ
とを特徴とする希土類元素含有合金の組織制御方法。 (2)収納容器が、内部に冷却用仕切り板を設け、その
中に冷却媒体として気体又は液体を流通させて破砕合金
片の冷却速度を制御できるものである(1)に記載の希
土類元素含有合金の組織制御方法。 (3)収納容器が、内部に冷却媒体として不活性ガスを
流通させて破砕合金片の冷却速度を制御できるものであ
る(1)に記載の希土類元素含有合金の組織制御方法。 (4)不活性ガスを収納容器内に設けた通気口を有する
冷却用仕切り板から流出させる(3)に記載の希土類元
素含有合金の組織制御方法。 (5)収納容器が、内部に区画仕切り板を設け、破砕合
金片の冷却速度を制御できるものである(1)〜(4)
のいずれかに記載の希土類元素含有合金の組織制御方
法。 (6)破砕合金片の冷却速度を制御した後、さらに破砕
合金片を室内より別室に移し、冷却する工程を有する請
求項(1)〜(5)のいずれかに記載の希土類元素含有
合金の組織制御方法。 (7)希土類元素含有合金溶湯を回転ロール上に流し、
冷却して薄帯状に凝固させる方法がストリップキャステ
ィング法である(1)〜(6)のいずれかに記載の希土
類元素含有合金の組織制御方法。 (8)破砕合金片の冷却速度を制御して希土類元素含有
合金のRリッチ相の平均間隔を3〜15μmとする
(1)〜(7)のいずれかに記載の希土類元素含有合金
の組織制御方法。 (9)破砕合金片の800〜600℃間の平均冷却速度
が10〜300℃/分である(1)〜(8)のいずれか
に記載の希土類元素含有合金の組織制御方法。 (10)希土類元素含有合金が、R−T−B系合金(式
中、RはYを含む希土類元素(Y、La、Ce、Pr、
Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu)のうちの少なくとも1種、TはFeを
主成分とし一部をCo、Ni等で置換してもよい)であ
る(1)〜(9)のいずれかに記載の希土類元素含有合
金の組織制御方法。 (11)上記(1)〜(10)のいずれかに記載の方法
により得られた厚さが0.1〜0.6mmで、Rリッチ
相の平均間隔が3〜15μmである破砕合金片を粉砕し
た希土類元素含有合金粉末。 (12)上記(11)の合金粉末を成形、焼結した磁
石。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and has the following arrangement. (1) A rare earth element-containing alloy is melted in a vacuum or an inert gas, and the molten metal is flown on a cooled rotating roll in a room in a vacuum or an inert gas atmosphere, and cooled to form a ribbon. Immediately after being coagulated, the coagulated ribbon is crushed into flakes,
Storing the crushed alloy pieces in a storage container placed in the room,
A microstructure control method for a rare earth element-containing alloy, wherein a cooling rate of a crushed alloy piece is controlled by a cooling medium. (2) The storage container is provided with a partition plate for cooling therein, in which a gas or a liquid is circulated as a cooling medium to control the cooling rate of the crushed alloy pieces, and the storage container contains the rare earth element according to (1). A method for controlling the structure of an alloy. (3) The method for controlling the structure of a rare earth element-containing alloy according to (1), wherein the storage container is capable of controlling the cooling rate of the crushed alloy pieces by flowing an inert gas as a cooling medium therein. (4) The method of controlling a structure of a rare earth element-containing alloy according to (3), wherein the inert gas is caused to flow out from a cooling partition plate having a vent provided in the storage container. (5) The storage container is provided with a partition plate therein so that the cooling rate of the crushed alloy piece can be controlled (1) to (4).
The method for controlling the structure of a rare earth element-containing alloy according to any one of the above. (6) The method of any one of (1) to (5), further comprising a step of, after controlling a cooling rate of the crushed alloy piece, moving the crushed alloy piece from a room to another room and cooling it. Organization control method. (7) flowing the rare earth element-containing alloy melt on a rotating roll,
The method for controlling the structure of a rare earth element-containing alloy according to any one of (1) to (6), wherein the method of cooling and solidifying into a ribbon shape is a strip casting method. (8) The microstructure control of the rare earth element-containing alloy according to any one of (1) to (7), wherein the cooling rate of the crushed alloy piece is controlled so that the average interval of the R-rich phase of the rare earth element-containing alloy is 3 to 15 μm. Method. (9) The method for controlling the structure of a rare earth element-containing alloy according to any one of (1) to (8), wherein the average cooling rate of the crushed alloy pieces at 800 to 600 ° C is 10 to 300 ° C / min. (10) A rare earth element-containing alloy is an RTB-based alloy (where R is a rare earth element containing Y (Y, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu), and T is Fe as a main component and a part thereof may be substituted with Co, Ni or the like.) The rare earth element according to any one of (1) to (9), A method for controlling the structure of an element-containing alloy. (11) A crushed alloy piece having a thickness of 0.1 to 0.6 mm and an average interval of R-rich phases of 3 to 15 μm obtained by the method according to any one of the above (1) to (10). Pulverized rare earth element-containing alloy powder. (12) A magnet obtained by molding and sintering the alloy powder of (11).

【0011】[0011]

【発明の実施の形態】希土類元素含有合金は、その活性
な性質から大気を遮断した溶解室中にて溶解され鋳造さ
れるのが一般である。溶解室内は真空又はアルゴン、ヘ
リウム等の不活性ガス雰囲気である。図1は、本発明に
適用されるSC法での鋳造方法を示す概略図である。溶
解室1内に置かれた坩堝2内にて、誘導電流加熱により
原料金属等は溶解され合金となって保持される。次に、
その溶湯は坩堝2の傾動により隣接した真空の鋳造室1
0内に設置され、内部を水冷された回転ロール3上に樋
4、タンディッシュ5を介して流され、ロール3上で冷
却凝固を開始する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Rare earth element-containing alloys are generally melted and cast in a melting chamber shielded from the atmosphere because of their active properties. The melting chamber is in a vacuum or an inert gas atmosphere such as argon or helium. FIG. 1 is a schematic view showing a casting method by the SC method applied to the present invention. In the crucible 2 placed in the melting chamber 1, the raw material metal and the like are melted by induction current heating and held as an alloy. next,
The molten metal is moved by the tilting of the crucible 2 to the adjacent vacuum casting chamber 1.
The roll 3 is set on the rotating roll 3, the inside of which is cooled by water, and is flowed through the gutter 4 and the tundish 5 on the rotating roll 3.

【0012】凝固合金は、回転ロール途中にてロール3
から離れる。凝固合金がロール3に巻きつかないうち
に、適当なガイドを用いて落下させる。ロールから出た
状態では、合金は高温で脆いため、簡単なガイドロール
6等の破砕手段を用いることにより、あるいは簡易的に
は邪魔板等に当てることで脆く崩れ、片状に破砕されて
落下する。また収納容器8内に落下したときの衝撃で破
砕させてもよい。
The solidified alloy is rolled in the middle of a rotating roll.
Move away from Before the solidified alloy is wound around the roll 3, the solidified alloy is dropped using an appropriate guide. When the alloy is released from the roll, the alloy is brittle at a high temperature. Therefore, the alloy breaks into a brittle shape by using a simple crushing means such as a guide roll 6 or simply hitting a baffle plate or the like, and is crushed into flakes and dropped. I do. Further, it may be crushed by an impact when dropped into the storage container 8.

【0013】溶湯がロールに接触してからロールを離れ
て破砕されるまでは、せいぜい数秒であり、先に述べた
ように、この段階で凝固合金は、まだ赤熱状態にあり最
も低凝固点であるRリッチ相は、完全には凝固を完了し
ていない。通常は、この破砕した合金片7は、ロールに
隣接して置かれた箱型の収納容器8内に落下させ貯めら
れる。合金は、高温では酸化が進むため、通常この収納
容器は鋳造装置と同じ鋳造室10内におかれ、放置して
合金が酸化しない温度まで冷却していた。また特開平9
−155507号公報では破片合金片を入れた収納容器
を隣接する別室に移し、そこで不活性ガス等を用いて冷
却していた。しかしこの冷却は合金の組織の制御を目的
としたものではない。
[0013] It takes at most a few seconds for the molten metal to contact the roll and break off the roll, and as mentioned earlier, at this stage the solidified alloy is still red hot and has the lowest solidification point. The R-rich phase has not completely solidified. Usually, the crushed alloy pieces 7 are dropped and stored in a box-shaped storage container 8 placed adjacent to the roll. Since the alloy is oxidized at a high temperature, this storage container is usually placed in the same casting chamber 10 as the casting apparatus and left to cool to a temperature at which the alloy is not oxidized. Japanese Patent Application Laid-Open No. Hei 9
In JP-A-155507, a storage container containing shard alloy pieces was moved to an adjacent separate room, where it was cooled using an inert gas or the like. However, this cooling is not intended to control the structure of the alloy.

【0014】本発明では、第一に凝固点の組織、特に低
融点のRリッチ相を制御するために鋳造後の破砕合金片
(以下合金片という)の収納容器を鋳造室内に置き、そ
こで冷却媒体により合金片の冷却温度を制御する方法で
ある。この方法では合金片を収納容器に落下させながら
同時に冷却することができるので、前記特許公報に記載
のように鋳造終了後に収納容器を別室に移して冷却する
方法に比べ、冷却が均一になり、また冷却速度の制御開
始までの温度低下がないので制御温度範囲を広くするこ
とができる。この方法により特に合金組織に影響する8
00〜600℃間の冷却速度の制御が容易となる。第二
にRリッチ相が完全に凝固し内部組織が固まった以降の
冷却速度は、内部組織に影響しないとともに、合金片を
なるべく早く取り出すことが工程上要求されるため、酸
化の進まない100〜200℃程度の大気に取り出せる
温度まで、不活性雰囲気等でなるべく急速な冷却が好ま
しい。
In the present invention, first, in order to control the structure at the freezing point, in particular, the R-rich phase having a low melting point, a storage container of a crushed alloy piece (hereinafter, referred to as an alloy piece) after casting is placed in a casting chamber, where a cooling medium is placed. This is a method of controlling the cooling temperature of the alloy piece by using In this method, since the alloy pieces can be simultaneously cooled while being dropped into the storage container, the cooling becomes uniform as compared with the method in which the storage container is moved to a separate chamber and cooled after the completion of casting as described in the patent publication. Further, since there is no temperature decrease until the start of the control of the cooling rate, the control temperature range can be widened. This method particularly affects the alloy structure.
It becomes easy to control the cooling rate between 00 and 600 ° C. Secondly, the cooling rate after the R-rich phase is completely solidified and the internal structure is hardened does not affect the internal structure, and since it is required in the process to take out the alloy shards as quickly as possible, the oxidation rate does not progress. It is preferable to cool as quickly as possible in an inert atmosphere or the like until the temperature can be taken out to the atmosphere of about 200 ° C.

【0015】上記2点を達成するため、例えば図2に示
すように収納容器下部にステンレス製網233を設け、
そこからヘリウム等の不活性の冷却ガス23を流せるよ
うな容器とし、合金片の落下収納直後から、ガスを流入
し、そのガス量を変えることにより合金片の冷却速度を
変えることができる。先に述べた800〜600℃間の
Rリッチ相凝固温度を超えたら、次の大気に取り出せる
温度までは、最大のガス流量で冷却することができる。
To achieve the above two points, for example, a stainless steel net 233 is provided at the lower part of the container as shown in FIG.
From there, a container through which an inert cooling gas 23 such as helium can flow is provided. Immediately after the alloy pieces are dropped and stored, the gas is introduced, and the cooling rate of the alloy pieces can be changed by changing the gas amount. When the temperature exceeds the R-rich phase solidification temperature between 800 to 600 ° C. described above, it can be cooled at the maximum gas flow rate until it can be taken out to the next atmosphere.

【0016】上記例では、合金片が大きく堆積し、その
堆積物の間に流すガスの気相接触による冷却であるので
容器が大きい場合、堆積物が重なって冷却速度に限界が
あることもある。あるいは、容器内での冷却のばらつき
がでやすくなる。このような場合、図3に示すように収
納容器内を中空仕切り板211にて区切り、仕切り板内
部に冷却媒体22を流し仕切り板と合金片との接触冷却
をさせることにより合金片の冷却速度を速めることがで
きる。この方法は冷却媒体と合金片は接触しないので、
冷却媒体としては不活性ガスの外、空気等のガス、ある
いは水等の液体も用いることができる。さらに冷却方法
としては図4のようにして行うこともできる。図4は冷
却用の仕切り板212の下部の通気口212Aから冷却
用の不活性ガス23を一部容器内に流し合金片を冷却す
る方法である。合金の内部組織が固まった後の冷却は出
来るだけ急速に冷却する方が効率的であり、特に続けて
鋳造を行う場合はそうすることが好ましい。それには前
記したように鋳造室内で急速冷却をしてもよいが、また
収納容器を別室に移してそこで急速冷却することもでき
る。
In the above example, the alloy flakes are largely deposited, and cooling is performed by gas phase contact of the gas flowing between the deposits. Therefore, when the container is large, the deposits overlap and the cooling rate may be limited. . Alternatively, cooling in the container tends to vary. In such a case, as shown in FIG. 3, the inside of the storage container is divided by a hollow partition plate 211, and a cooling medium 22 is allowed to flow through the partition plate to cause contact cooling between the partition plate and the alloy plate to cool the alloy plate. Can be accelerated. In this method, the cooling medium does not come into contact with the alloy pieces,
In addition to the inert gas, a gas such as air or a liquid such as water can be used as the cooling medium. Further, the cooling can be performed as shown in FIG. FIG. 4 shows a method in which a cooling inert gas 23 is partially flown into a container through a vent 212A below a cooling partition plate 212 to cool the alloy pieces. It is more efficient to cool as soon as possible after the internal structure of the alloy has solidified, especially when performing continuous casting. As described above, rapid cooling may be performed in the casting chamber, or the storage container may be moved to another chamber and rapidly cooled there.

【0017】収納容器を別室に移す場合は、容器上部に
蓋をし、鋳造室から出し、別室の不活性ガス室へ送り再
度冷却を行うことができる。このときの容器は、完全密
閉容器でなくてもよく、移送時のみ不活性ガスが容器か
らオーバーフローする程度に流し続けていられればよ
い。あるいは移送時間が短ければ、ガスが充満した後、
容器の上部に蓋をした状態でガス供給は止めてもよい。
この場合にはガス供給用のホース等を容器から切り離
し、その接続部に栓をすれば容器と蓋とは完全に密閉し
なくてもアルゴン等の不活性ガスは大気より重いため容
器から漏れ出ることがない。その他不活性ガスを流出さ
せる方法としては図5に示すような中空の仕切り板21
3の側面に通気口213Aを設け、そこからガスを流出
させることもできる。
When the storage container is transferred to another room, the container can be covered with a lid, taken out of the casting room, sent to another inert gas room, and cooled again. The container at this time may not be a completely closed container, and it is sufficient that the inert gas is kept flowing only to the extent that it overflows from the container only during transfer. Or if the transfer time is short, after the gas is full,
The gas supply may be stopped with the lid on the top of the container.
In this case, disconnect the gas supply hose, etc. from the container and plug the connection, and if the container and lid are not completely sealed, the inert gas such as argon leaks from the container because it is heavier than the atmosphere. Nothing. Other methods for letting out the inert gas include a hollow partition plate 21 as shown in FIG.
It is also possible to provide a vent 213A on the side surface of 3 and allow the gas to flow out therefrom.

【0018】図5、図6は、容器の中間に収納容器内を
区画するための仕切り板24を入れたもので、合金片が
小分けされるため冷却が進み易い。この区画仕切り板が
ないと合金片が容器内で偏在したりして塊状になり、冷
却が阻害されることがある。冷却は冷却用仕切り板21
3の通気口213Aあるいは容器底のステンレス製網2
33から不活性ガスを容器内に流出させて行う。冷却方
法としては図3、図4に示すような方法でもよい。冷却
終了後の収納容器の取り出しは例えば鋳造室の側面に開
閉可能な扉を設けて行うことができる。
FIG. 5 and FIG. 6 show a case where a partition plate 24 for partitioning the inside of the container is inserted in the middle of the container. Without this partitioning plate, the alloy pieces may be unevenly distributed in the container and may be in a lump, which may hinder cooling. Cooling is performed by the cooling partition plate 21
213A or stainless steel net 2 at the bottom of the container
This is performed by flowing an inert gas from 33 into the container. As a cooling method, a method as shown in FIGS. 3 and 4 may be used. Removal of the storage container after the cooling is completed can be performed by, for example, providing an openable and closable door on a side surface of the casting chamber.

【0019】上記のような2段階の冷却速度を容器内に
て制御する方法により、特に第一の高温域での温度制御
によりRリッチ相の分布を制御できる。また、第一の温
度域での冷却速度にかかわらず、内部組織に影響のない
第二の温度域を急速に冷却できるので工程がスムースに
進められる。
By the method of controlling the two-stage cooling rate in the vessel as described above, the distribution of the R-rich phase can be controlled by controlling the temperature in the first high-temperature region. Further, regardless of the cooling rate in the first temperature range, the second temperature range which does not affect the internal structure can be rapidly cooled, so that the process can be smoothly performed.

【0020】この方法により、SC法にてほぼ0.1〜
0.6mm厚さの合金片を鋳造するとロールから離れ収
納容器内に落ちたときの合金片の温度が800℃近傍に
なる。そこから前述の容器内での冷却方法を各種選んで
第一の温度域での冷却速度を遅くすることでRリッチ相
の間隔が広くなり、冷却速度を上げることにことにより
Rリッチ相の間隔を狭めることができる。本発明におけ
る鋳造法としては図1に示すようなSC法に限らず、双
ロールを用い、回転するロール間に溶湯を流すなどの方
法を用いることができる。本発明の方法によりR−T−
B系合金等(式中、RはYを含む希土類元素(Y、L
a、Ce、Pr、Nd、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、Lu)のうちの少なくと
も1種、TはFeを主成分とし1部をCo、Ni等で置
換してもよい)希土類元素含有合金のRリッチ相の間隔
を3〜15μm程度に制御することが出来る。Rリッチ
相の間隔をこの範囲にするには800〜600℃間の平
均冷却速度は10〜300℃/分が適し、好ましくは1
0〜200℃/分、さらに好ましくは10〜50℃/分
である。
According to this method, almost 0.1 to
When an alloy piece having a thickness of 0.6 mm is cast, the temperature of the alloy piece when it separates from the roll and falls into the container becomes close to 800 ° C. From there, various cooling methods in the above-described container are selected, and the cooling rate in the first temperature range is reduced to increase the interval of the R-rich phase, and by increasing the cooling rate, the interval of the R-rich phase is increased. Can be narrowed. The casting method in the present invention is not limited to the SC method as shown in FIG. 1, but may be a method using twin rolls and flowing molten metal between rotating rolls. According to the method of the present invention, RT-
B-based alloys or the like (where R is a rare earth element containing Y (Y, L
a, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu), and T is Fe as a main component, and one part thereof may be replaced with Co, Ni or the like.) Interval of R-rich phase of rare earth element-containing alloy Can be controlled to about 3 to 15 μm. In order to set the interval of the R-rich phase in this range, the average cooling rate between 800 and 600 ° C. is suitably 10 to 300 ° C./min, preferably 1 to 300 ° C./min.
The temperature is 0 to 200 ° C / min, more preferably 10 to 50 ° C / min.

【0021】ここでRリッチ相の間隔は、合金片の厚さ
方向の断面をエメリー紙で研磨した後、アルミナ、ダイ
ヤモンド等を使用してバフ研磨した面を走査型電子顕微
鏡(SEM)の反射電子像による観察で求められる。R
リッチ相は主相となるR2Fe14B相よりも平均原子番
号が大きいため、反射電子像では主相よりも明るく観察
される。そしてRリッチ相の間隔は、厚さ方向の断面観
察で次のようにして行う。厚さ面の中央でロール面に平
行(ロールの軸に平行な方向)に線分を引き、その線分
が横切ったRリッチ相の数で線分の長さを割る。これを
5視野繰り返したときの平均値をもってRリッチ相の間
隔とする。
Here, the interval between the R-rich phases is determined by measuring the cross section of the alloy piece in the thickness direction with emery paper, and then buffing the surface using alumina, diamond, or the like with a reflection of a scanning electron microscope (SEM). Determined by observation with an electronic image. R
Since the rich phase has a higher average atomic number than the R 2 Fe 14 B phase as the main phase, it is observed brighter than the main phase in the backscattered electron image. The interval between the R-rich phases is determined as follows by observing the cross section in the thickness direction. At the center of the thickness plane, a line segment is drawn parallel to the roll surface (the direction parallel to the roll axis), and the length of the line segment is divided by the number of R-rich phases traversed by the line segment. The average value when this is repeated for five visual fields is defined as the R-rich phase interval.

【0022】Rリッチ相の間隔は、本発明の方法により
3〜15μm、好ましくは3〜12μm、さらに好まし
くは4〜10μmとすることができる。Rリッチ相の間
隔が15μmを越えると、Rリッチ相の分散状態が悪く
なり、磁場成形用に粉末粒径3〜5μmに微粉砕したと
きRリッチ相が存在する粉末粒子の割合が減少する。従
って磁場成形後のRリッチ相の分散状態も悪化して、焼
結性の低下を招き、磁石化後の磁化、保磁力の低下をも
たらす。また、Rリッチ相の偏在は部分的な保持力の低
下をもたらし、磁石化後の角型性の低下をもたらす。一
方、3μm未満であると結晶粒の微細化しすぎによる磁
気特性が悪くなる弊害が出てくる。
The interval between the R-rich phases can be set to 3 to 15 μm, preferably 3 to 12 μm, more preferably 4 to 10 μm by the method of the present invention. When the interval between the R-rich phases exceeds 15 μm, the dispersion state of the R-rich phase becomes worse, and the ratio of powder particles in which the R-rich phase is present decreases when the powder is finely pulverized to 3 to 5 μm for magnetic field molding. Therefore, the dispersion state of the R-rich phase after the magnetic field molding is also deteriorated, causing a decrease in sinterability, and a decrease in magnetization and coercive force after magnetization. In addition, the uneven distribution of the R-rich phase causes a partial decrease in coercive force and a decrease in squareness after magnetization. On the other hand, if it is less than 3 μm, there is a problem that magnetic properties are deteriorated due to excessively fine crystal grains.

【0023】次に上記の合金片を粉砕、成形、焼結する
ことにより、高特性の異方性磁石を製造することができ
る。
Next, a high-performance anisotropic magnet can be manufactured by pulverizing, shaping, and sintering the above alloy piece.

【0024】粉砕は、通常、水素解砕、中粉砕、微粉砕
の順で行なわれ、一般的には3〜5μm(FSSS)程
度の粉末にされる。
The pulverization is usually performed in the order of hydrogen pulverization, medium pulverization and fine pulverization, and is generally made into a powder of about 3 to 5 μm (FSSS).

【0025】ここで、水素解砕は、前工程の水素吸蔵工
程と後工程の脱水素工程に分けられる。水素吸蔵工程で
は、2.7×104Pa〜4.9×106Paの圧力の水
素ガス雰囲気で、主に合金片のRリッチ相に水素を吸蔵
させ、この時に生成されるR−水素化物によりRリッチ
相が体積膨張することを利用して、合金片自体を微細に
割ることまたは無数の微細な割れ目を生じさせる。本発
明の合金片の場合、ほとんどのRリッチ相に沿って割れ
目を生じさせることができる。特に、主相結晶粒界には
Rリッチ相が存在しており、水素を吸蔵させることによ
りほとんどの結晶粒界に割れ目を生じさせることができ
る。したがって、中粉砕、微粉砕を経て製造された粉末
のほとんどが単結晶となり、磁気特性を向上させること
ができる。この水素吸蔵は常温〜600℃程度の範囲で
実施されるが、Rリッチ相の体積膨張を大きくして効率
良く割るためには、常温〜100℃程度の範囲で実施す
ることが好ましい。好ましい処理時間は1時間以上であ
る。この水素吸蔵工程により生成したR−水素化物は大
気中では不安定であり酸化され易いため、200〜60
0℃程度で130Pa以下の真空中に保持する脱水素処
理を行なうことが好ましい。この処理により、大気中で
安定なR-水素化物に変化させることができる。好まし
い処理時間は30分以上である。水素吸蔵後から焼結ま
での各工程で酸化防止のための雰囲気管理がなされてい
る場合は、脱水素処理を省くこともできる。なお、この
水素解砕をせずに中粉砕、微粉砕することもできる。
Here, the hydrogen disintegration is divided into a pre-process hydrogen storage process and a post-process dehydrogenation process. In the hydrogen occlusion step, hydrogen is occluded mainly in the R-rich phase of the alloy piece in a hydrogen gas atmosphere at a pressure of 2.7 × 10 4 Pa to 4.9 × 10 6 Pa, and R-hydrogen generated at this time is absorbed. Utilizing the fact that the R-rich phase expands in volume due to the oxide, the alloy pieces themselves are finely divided or countless fine cracks are generated. In the case of the alloy pieces of the present invention, cracks can be generated along most of the R-rich phase. In particular, an R-rich phase exists at the main phase grain boundaries, and most of the crystal grain boundaries can be cracked by absorbing hydrogen. Therefore, most of the powder produced through the medium pulverization and the fine pulverization becomes a single crystal, and the magnetic properties can be improved. This hydrogen storage is carried out in the range of room temperature to about 600 ° C., but is preferably carried out in the range of room temperature to about 100 ° C. in order to increase the volume expansion of the R-rich phase and to split it efficiently. The preferred treatment time is one hour or more. The R-hydride produced in this hydrogen storage step is unstable in the air and easily oxidized,
It is preferable to perform a dehydrogenation treatment at about 0 ° C. in a vacuum of 130 Pa or less. By this treatment, R-hydride can be converted to be stable in the atmosphere. The preferred processing time is 30 minutes or more. When atmosphere control for preventing oxidation is performed in each step from hydrogen absorption to sintering, the dehydrogenation treatment can be omitted. It should be noted that medium pulverization and fine pulverization can also be performed without performing the hydrogen pulverization.

【0026】中粉砕とは、合金片をアルゴンガスや窒素
ガスなどの不活性ガス雰囲気中で、例えば500μm以
下まで粉砕することである。このための粉砕機には、例
えばブラウンミル粉砕機がある。本発明の水素解砕した
合金片の場合、既に微細に割れている、または内部に無
数の微細な割れ目が生じているため、この中粉砕を省略
することもできる。
The term “medium pulverization” refers to pulverization of an alloy piece in an inert gas atmosphere such as argon gas or nitrogen gas to, for example, 500 μm or less. A pulverizer for this purpose is, for example, a brown mill pulverizer. In the case of the hydrogen-crushed alloy piece of the present invention, since it is already finely cracked or has an infinite number of fine cracks inside, the pulverization can be omitted.

【0027】微粉砕とは、3〜5μm(FSSS)程度
に粉砕することである。このための粉砕機には、例えば
ジェットミル装置がある。この場合、粉砕時の雰囲気は
アルゴンガスや窒素ガスなどの不活性ガス雰囲気とす
る。これらの不活性ガス中に2質量%以下、好ましくは
1質量%以下の酸素を混入させてもよい。このことによ
り粉砕効率が向上するとともに、粉砕後の粉末の酸素濃
度が1000〜10000ppmとなり耐酸化性が向上
する。また、焼結時の異常粒成長を抑制することもでき
る。
Fine grinding refers to grinding to about 3 to 5 μm (FSSS). A crusher for this purpose is, for example, a jet mill device. In this case, the atmosphere during the pulverization is an inert gas atmosphere such as an argon gas or a nitrogen gas. 2% by mass or less, preferably 1% by mass or less of oxygen may be mixed into these inert gases. As a result, the pulverization efficiency is improved, and the oxygen concentration of the pulverized powder is 1000 to 10000 ppm, and the oxidation resistance is improved. Also, abnormal grain growth during sintering can be suppressed.

【0028】成形は磁場中で行われるが、磁場成形時に
粉末と金型内壁との摩擦を低減し、また粉末どおしの摩
擦も低減させて配向性を向上させるため、粉末にはステ
アリン酸亜鉛等の潤滑剤を添加することが好ましい。好
ましい添加量は0.01〜1質量%である。添加は微粉
砕前でも後でもよいが、磁場中成形前に、アルゴンガス
や窒素ガスなどの不活性ガス雰囲気中でV型ブレンダー
等を用いて十分に混合することが好ましい。
Molding is carried out in a magnetic field. In order to reduce the friction between the powder and the inner wall of the mold during the magnetic field molding and to reduce the friction between the powders to improve the orientation, stearic acid is added to the powder. It is preferable to add a lubricant such as zinc. A preferable addition amount is 0.01 to 1% by mass. The addition may be performed before or after the pulverization, but it is preferable that the addition is sufficiently performed by using a V-type blender or the like in an inert gas atmosphere such as an argon gas or a nitrogen gas before molding in a magnetic field.

【0029】微粉砕された粉末は、磁場中成形機でプレ
ス成形される。金型は、キャビティ内の磁界方向を考慮
して、磁性材と非磁性材を組み合わせて作製される。成
形圧力は0.5〜2t/cm2が好ましい。成形時のキ
ャビティ内の磁界は5〜20kOeが好ましい。また、
成形時の雰囲気はアルゴンガスや窒素ガスなどの不活性
ガス雰囲気が好ましいが、上述の耐酸化処理した粉末の
場合、大気中でも可能である。
The finely pulverized powder is pressed by a molding machine in a magnetic field. The mold is manufactured by combining a magnetic material and a non-magnetic material in consideration of the direction of the magnetic field in the cavity. The molding pressure is preferably 0.5 to 2 t / cm 2 . The magnetic field in the cavity during molding is preferably 5 to 20 kOe. Also,
The atmosphere at the time of molding is preferably an inert gas atmosphere such as an argon gas or a nitrogen gas. However, in the case of the above-mentioned oxidation-resistant powder, it can be performed in the air.

【0030】焼結は、1000〜1100℃で行なわれ
る。焼結する前に成形体から潤滑剤と水素は完全に除去
しておく必要がある。潤滑剤の好ましい除去条件は、成
形体を1.3Pa以下の真空中またはアルゴン減圧フロ
ー雰囲気中、300〜500℃で30分以上保持するこ
とである。また、水素の好ましい除去条件は、1.3P
a以下の真空中、700〜900℃で30分以上保持す
ることである。焼結時の雰囲気はアルゴンガス雰囲気ま
たは1.3Pa以下の真空雰囲気が好ましい。保持時間
は1時間以上が好ましい。
The sintering is performed at 1000 to 1100 ° C. Before sintering, it is necessary to completely remove the lubricant and hydrogen from the compact. A preferable condition for removing the lubricant is to keep the molded body at 300 to 500 ° C. for 30 minutes or more in a vacuum of 1.3 Pa or less or in a reduced pressure argon atmosphere. The preferable conditions for removing hydrogen are 1.3 P
a to be maintained at 700 to 900 ° C. for 30 minutes or more in a vacuum of a or less. The atmosphere during sintering is preferably an argon gas atmosphere or a vacuum atmosphere of 1.3 Pa or less. The holding time is preferably one hour or more.

【0031】焼結後、保磁力向上のため、必要に応じて
500〜650℃で熱処理することができる。好ましい
雰囲気はアルゴンガス雰囲気または真空雰囲気である。
好ましい保持時間は30分以上である。
After sintering, heat treatment can be performed at 500 to 650 ° C. as needed to improve coercive force. A preferred atmosphere is an argon gas atmosphere or a vacuum atmosphere.
The preferred holding time is 30 minutes or more.

【0032】[0032]

【実施例】以下、実施例を説明しながら組織(Rリッチ
相)の制御結果を示す。 (実施例1)合金組成が、Nd:30.0質量%、B:
1.00質量%、Co:2.0質量%、Al:0.30
質量%、Cu:0.10質量%、残部鉄になるように、
金属ネオジウム、フェロボロン、コバルト、アルミニウ
ム、銅、鉄を配合し、アルミナ坩堝を使用して、アルゴ
ンガス1気圧雰囲気中で、高周波溶解炉(坩堝)で溶解
し、溶湯を周速度0.97m/秒で回転している直径4
0cmの銅ロール上にタンディッシュを介して流した。
溶湯の全質量は15kgであり、鋳造開始時の溶湯温度
は1450℃とした。また、鋳造している間、銅ロール
の内部を水冷した。
The results of controlling the structure (R-rich phase) will be described below with reference to examples. (Example 1) Alloy composition: Nd: 30.0% by mass, B:
1.00% by mass, Co: 2.0% by mass, Al: 0.30
% By mass, Cu: 0.10% by mass, with the balance being iron,
Mixing metal neodymium, ferroboron, cobalt, aluminum, copper, and iron, using an alumina crucible, and melting in a high-frequency melting furnace (crucible) in an atmosphere of 1 atmosphere of argon gas, the molten metal has a peripheral speed of 0.97 m / sec. Diameter 4 rotating at
Flowed through a tundish on a 0 cm copper roll.
The total weight of the molten metal was 15 kg, and the temperature of the molten metal at the start of casting was 1450 ° C. During the casting, the inside of the copper roll was water-cooled.

【0033】銅ロール上で凝固した合金は、銅ロールか
ら離脱、落下する位置に設置したガイドロールで破砕
し、その下に設置した箱型の収納容器に貯めた。収納容
器は、外寸で縦31cm、横21cm、高さ40cmで
あり、肉厚5mmの鉄板で作製した。さらに図2の如
く、収納容器の底には底板から1cmの高さの位置に目
幅5mmのステンレス製の網を置き、破砕した合金片を
この網の上に貯めた。なお、鋳造開始直前から鋳造終了
10分後までこのステンレス製網の下から上部に向かっ
てアルゴンガスを流量30リットル/分で流し続けた。
The alloy solidified on the copper roll was crushed by a guide roll provided at a position where the alloy was separated and dropped from the copper roll, and stored in a box-shaped storage container provided thereunder. The storage container was 31 cm in length, 21 cm in width, and 40 cm in height in outer dimensions, and was made of a 5 mm-thick iron plate. Further, as shown in FIG. 2, a stainless steel net having a mesh width of 5 mm was placed at a height of 1 cm from the bottom plate at the bottom of the storage container, and the crushed alloy pieces were stored on the net. The argon gas was continuously flowed from the bottom to the top of the stainless steel net at a flow rate of 30 liter / min from immediately before the start of casting to 10 minutes after the end of casting.

【0034】合金の落下時の温度は、収納容器内に貯め
た合金片の温度とほぼ同じである考え、収納容器の側面
に小さな穴を開け、この穴から収納容器内部に突き出す
ように設置した熱電対で測定することで求めた。この方
法で求めた合金片の落下時の温度は780℃であった。
合金片はその後ゆっくり冷却していき、600℃まで冷
却するのにかかった時間は5分であった。鋳造終了10
分後、ステンレス製網の下から上部に向かって流すアル
ゴンガスの流量を100リットル/分まで増やし合金片
を冷却した。2時間後の合金片の温度は98℃であっ
た。その後、合金片を大気中に取り出し、マイクロメー
ターによる平均厚さの測定と、SEMの反射電子像によ
る断面写真を用いたRリッチ相の間隔の測定を行った。
測定結果は表1に記す。
Considering that the temperature at the time of dropping the alloy is almost the same as the temperature of the alloy pieces stored in the storage container, a small hole was made in the side surface of the storage container, and the alloy was set so as to protrude from the hole into the storage container. It was determined by measuring with a thermocouple. The temperature at the time of dropping of the alloy piece determined by this method was 780 ° C.
The alloy pieces were then cooled slowly, taking 5 minutes to cool to 600 ° C. End of casting 10
After one minute, the flow rate of the argon gas flowing from the bottom to the top of the stainless steel net was increased to 100 liter / minute to cool the alloy pieces. After 2 hours, the temperature of the alloy piece was 98 ° C. Thereafter, the alloy piece was taken out into the atmosphere, and the average thickness was measured by a micrometer, and the interval of the R-rich phase was measured by using a cross-sectional photograph by a backscattered electron image of a SEM.
Table 1 shows the measurement results.

【0035】(実施例2)実施例1と同様の組成になる
ように原料金属等を配合し、実施例1の装置を用いて、
合金片を作製した。収納容器は図2に示すものを使用し
た。但し、鋳造開始直前から、ヘリウムガスを収納容器
底部から流量100リットル/分で流し続けた。合金片
の落下時の温度は750℃であり、600℃まで冷却す
るのにかかった時間は40秒であった。鋳造終了後も、
ヘリウムガスをそのまま流し続けて合金片を冷却したと
ころ、鋳造終了から30分後には合金片の温度は96℃
まで下がった。その後、合金片を大気中に取り出し、マ
イクロメーターによる平均厚さの測定と、SEMの反射
電子像による断面写真を用いたRリッチ相の間隔の測定
を行った。測定結果は表1に記す。
(Example 2) A raw material metal and the like were blended so as to have the same composition as in Example 1, and using the apparatus of Example 1,
An alloy piece was prepared. The container shown in FIG. 2 was used. However, immediately before the start of casting, helium gas was continuously flowed from the bottom of the container at a flow rate of 100 liter / min. The temperature at the time of dropping of the alloy piece was 750 ° C., and the time required for cooling to 600 ° C. was 40 seconds. After casting is finished,
When the helium gas was kept flowing as it was to cool the alloy pieces, the temperature of the alloy pieces was 96 ° C. 30 minutes after the end of casting.
Went down. Thereafter, the alloy piece was taken out into the atmosphere, and the average thickness was measured by a micrometer, and the interval of the R-rich phase was measured by using a cross-sectional photograph by a backscattered electron image of a SEM. Table 1 shows the measurement results.

【0036】(実施例3)実施例1と同様の組成になる
ように原料金属等を配合し、実施例1と同様の条件で溶
解し、溶湯を実施例1と同様の銅製ロール上に鋳造し
た。銅ロール上で凝固した合金は、実施例1と同様のガ
イドロールで破砕し、その下に設置した箱型の収納容器
に貯めた。収納容器は、外寸で縦31cm、横21c
m、高さ40cmであり、肉厚5mmの鉄板で作製し
た。さらに図3の如く、収納容器内部に厚さ7cmの鉄
製仕切り板211を、銅ロールの回転軸に垂直方向に沿
って等間隔で2枚設置した。なお、それぞれの仕切り板
内部に流したガスは収納容器内に漏れ出ない構造とし
た。それぞれの仕切り板内部には、鋳造直前からアルゴ
ンガスを流量100リットル/分で流し続けた。
(Example 3) Raw materials and the like were blended so as to have the same composition as in Example 1, melted under the same conditions as in Example 1, and the molten metal was cast on a copper roll similar to that in Example 1. did. The alloy solidified on the copper roll was crushed by the same guide roll as in Example 1, and stored in a box-shaped storage container installed thereunder. The storage container is 31cm in length and 21c in width.
m, a height of 40 cm, and a 5 mm-thick iron plate. Further, as shown in FIG. 3, two iron partition plates 211 having a thickness of 7 cm were installed at equal intervals along the direction perpendicular to the rotation axis of the copper roll inside the storage container. The structure was such that the gas flowing into each partition plate did not leak into the storage container. Argon gas was continuously flowed into each partition plate at a flow rate of 100 liter / min immediately before casting.

【0037】実施例1と同様の方法で求めた合金の落下
時の温度は790℃であった。合金片はその後ゆっくり
冷却していき、600℃まで冷却するのにかかった時間
は7分であった。鋳造終了後も、アルゴンガスをそのま
ま流し続けて合金片を冷却したところ、鋳造終了から2
時間後の合金片の温度は106℃まで下がった。その
後、合金片を大気中に取り出し、マイクロメーターによ
る平均厚さの測定と、SEMの反射電子像による断面写
真を用いたRリッチ相の間隔の測定を行った。測定結果
は表1に記す。
The temperature at the time of dropping of the alloy obtained in the same manner as in Example 1 was 790 ° C. The alloy pieces were then cooled slowly, taking 7 minutes to cool to 600 ° C. After the casting was completed, the alloy piece was cooled by continuing the flow of argon gas as it was.
After a time, the temperature of the alloy slab dropped to 106 ° C. Thereafter, the alloy piece was taken out into the atmosphere, and the average thickness was measured by a micrometer, and the interval of the R-rich phase was measured by using a cross-sectional photograph by a backscattered electron image of a SEM. The measurement results are shown in Table 1.

【0038】(実施例4)実施例1と同様の組成になる
ように原料金属等を配合し、実施例3の装置を用いて、
合金片を作製した。収納容器は図3に示すもので、但
し、それぞれの仕切り板内部には、鋳造直前から水を流
量30リットル/分で流し続けた。実施例1と同様の方
法で求めた合金の落下時の温度は790℃であった。合
金片はその後ゆっくり冷却していき、600℃まで冷却
するのにかかった時間は6分であった。鋳造終了後も、
水をそのまま流し続けて合金片を冷却したところ、鋳造
終了から2時間後の合金片の温度は98℃まで下がっ
た。その後、合金片を大気中に取り出し、マイクロメー
ターによる平均厚さの測定と、SEMの反射電子像によ
る断面写真を用いたRリッチ相の間隔の測定を行った。
測定結果は表1に記す。
(Example 4) A raw material metal and the like were blended so as to have the same composition as in Example 1, and using the apparatus of Example 3,
An alloy piece was prepared. The storage container is as shown in FIG. 3 except that water was continuously flowed into each partition plate at a flow rate of 30 liter / min immediately before casting. The temperature at the time of falling of the alloy obtained in the same manner as in Example 1 was 790 ° C. The alloy pieces were then cooled slowly, taking 6 minutes to cool to 600 ° C. After casting is finished,
When the alloy pieces were cooled by continuously flowing water, the temperature of the alloy pieces dropped to 98 ° C. two hours after the end of casting. Thereafter, the alloy piece was taken out into the atmosphere, and the average thickness was measured by a micrometer, and the interval of the R-rich phase was measured by using a cross-sectional photograph by a backscattered electron image of a SEM.
Table 1 shows the measurement results.

【0039】(実施例5)実施例1と同様の組成になる
ように原料金属等を配合し、実施例1と同様の条件で溶
解し、溶湯を実施例1の銅製ロール上に鋳造した。銅ロ
ール上で凝固した合金は、実施例1のガイドロールで破
砕し、その下に設置した箱型の収納容器に貯めた。収納
容器は、外寸で縦31cm、横21cm、高さ40cm
であり、肉厚5mmの鉄板で作製した。さらに図4の如
く、収納容器内部に厚さ7cmで下部から容器内部に向
かってガスが流れ出る構造の鉄製仕切り板212を、銅
ロールの回転軸に垂直方向に沿って等間隔で2枚設置し
た。それぞれの仕切り板内部には、鋳造直前からアルゴ
ンガスを通気口212Aから流量30リットル/分で流
し続けた。
Example 5 Raw materials and the like were blended so as to have the same composition as in Example 1, melted under the same conditions as in Example 1, and the molten metal was cast on the copper roll of Example 1. The alloy solidified on the copper roll was crushed by the guide roll of Example 1 and stored in a box-shaped storage container installed thereunder. The storage container is 31cm long, 21cm wide and 40cm high in external dimensions.
And was made of a 5 mm-thick iron plate. Further, as shown in FIG. 4, two iron partition plates 212 each having a thickness of 7 cm and having a structure in which gas flows out from the lower portion toward the inside of the container are installed at equal intervals along the direction perpendicular to the rotation axis of the copper roll. . Immediately before casting, an argon gas was continuously flown through each vent plate 212A at a flow rate of 30 liter / min.

【0040】実施例1と同様の方法で求めた合金の落下
時の温度は780℃であった。合金片はその後ゆっくり
冷却していき、600℃まで冷却するのにかかった時間
は5分であった。鋳造終了10分後、それぞれの仕切り
板に流すアルゴンガスの流量を100リットル/分まで
増やし、収納容器上部に蓋をした後、真空装置から大気
中に取り出し、直ちにアルゴンガス置換されている別室
に移した。この操作に伴って増加した室内の酸素濃度を
下げることと合金片を冷却することの両方を兼ねて、収
納容器を別室に移動した後も、それぞれの仕切り板には
流量100リットル/分のアルゴンガスを流し続けた。
鋳造終了から2時間後の合金片の温度は94℃であっ
た。その後、合金片を大気中に取り出し、マイクロメー
ターによる平均厚さの測定と、SEMの反射電子像によ
る断面写真を用いたRリッチ相の間隔の測定を行った。
測定結果は表1に記す。なお、この合金片の酸素濃度を
測定したところ140ppmであり、実施例1の場合の合金片
の酸素濃度130ppmと同等であった。このことから、収納
容器を移動させたことによる合金片の酸化は認められな
かった。
The temperature at the time of dropping of the alloy obtained in the same manner as in Example 1 was 780 ° C. The alloy pieces were then cooled slowly, taking 5 minutes to cool to 600 ° C. Ten minutes after the completion of casting, the flow rate of argon gas flowing through each partition plate was increased to 100 liters / minute, and a lid was placed on the upper part of the storage container. Moved. Even after the storage container was moved to another room for both reducing the oxygen concentration in the room and cooling the alloy pieces that were increased with this operation, each partition plate still contained argon at a flow rate of 100 liter / min. The gas continued to flow.
Two hours after the end of casting, the temperature of the alloy piece was 94 ° C. Thereafter, the alloy piece was taken out into the atmosphere, and the average thickness was measured by a micrometer, and the interval of the R-rich phase was measured by using a cross-sectional photograph by a backscattered electron image of a SEM.
Table 1 shows the measurement results. When the oxygen concentration of this alloy piece was measured, it was 140 ppm, which was equivalent to the oxygen concentration of the alloy piece of Example 1 of 130 ppm. From this, no oxidation of the alloy pieces due to the movement of the storage container was observed.

【0041】(実施例6)合金組成が、Nd:29.0
質量%、Dy:3.5質量%、B:1.05質量%、C
o:1.0質量%、Al:0.30質量%、Cu:0.
10質量%、残部鉄になるように、金属ネオジウム、金
属ディスプロシム、フェロボロン、コバルト、アルミニ
ウム、銅、鉄を配合し、アルミナ坩堝を使用して、アル
ゴンガス1気圧雰囲気中で、高周波溶解炉で溶解した。
この溶湯は、実施例1と同様のタンディッシュを介し
て、実施例1の銅ロール上に流した。溶湯の全質量は1
5kgであり、鋳造開始時の溶湯温度は1450℃とし
た。ロール周速度は0.97m/秒とした。
Example 6 The alloy composition was Nd: 29.0.
% By mass, Dy: 3.5% by mass, B: 1.05% by mass, C
o: 1.0% by mass, Al: 0.30% by mass, Cu: 0.
10% by mass, metal neodymium, metal dysprosium, ferroboron, cobalt, aluminum, copper and iron are blended so that the balance is iron, and melted in a high-frequency melting furnace in an atmosphere of 1 atm of argon gas using an alumina crucible. did.
This molten metal was flowed on the copper roll of Example 1 through the same tundish as in Example 1. The total weight of the melt is 1
The molten metal temperature at the start of casting was 1450 ° C. The roll peripheral speed was 0.97 m / sec.

【0042】銅ロール上で凝固した合金は、実施例1の
ガイドロールで破砕し、その下に設置した箱型の収納容
器に貯めた。収納容器は、外寸で縦31cm、横21c
m、高さ40cmであり、肉厚5mmの鉄板で作製し
た。さらに図5の如く、収納容器内部に厚さ2cmの区
画仕切り板24を、銅ロールの回転軸に垂直方向に沿っ
て、収納容器内に等間隔で2枚設置した。この仕切り板
は、アルミナを主成分とする耐火物であり、1000℃
での熱伝導率は0.2kcal/(mh℃)(0.23
W/m・℃)である。また、これらの仕切り板の中間
に、厚さ3cmの鉄製の冷却用仕切り板213を設置し
た。この仕切り板は内部が空洞になっており、両側面に
は直径1mmの穴213Aを多数開け、これらの穴から
収納容器内部に不活性ガスを流し込んで、合金片を冷却
できる構造になっている。なお、鋳造開始直前から鋳造
終了10分後までアルゴンガスを流量10リットル/分
で仕切り板に流し、仕切り板側面の穴から流出するアル
ゴンガスで合金片を冷却した。
The alloy solidified on the copper roll was crushed by the guide roll of Example 1 and stored in a box-shaped storage container installed thereunder. The storage container is 31cm in length and 21c in width.
m, a height of 40 cm, and a 5 mm-thick iron plate. Further, as shown in FIG. 5, two partitioning plates 24 each having a thickness of 2 cm were placed inside the container at regular intervals along the direction perpendicular to the rotation axis of the copper roll. This partition plate is a refractory mainly composed of alumina,
Is 0.2 kcal / (mh ° C.) (0.23
W / m · ° C.). In addition, an iron cooling partition plate 213 having a thickness of 3 cm was provided between the partition plates. This partition plate has a hollow inside, and many holes 213A having a diameter of 1 mm are formed on both side surfaces, and an inert gas is poured into the storage container through these holes to cool the alloy pieces. . The argon gas was flowed through the partition plate at a flow rate of 10 liters / minute from just before the start of the casting to 10 minutes after the end of the casting, and the alloy pieces were cooled with the argon gas flowing out of the holes on the side surfaces of the partition plate.

【0043】実施例1と同様の方法で求めた合金の落下
時の温度は690℃であった。合金片はその後ゆっくり
冷却していき、600℃まで冷却するのにかかった時間
は6分であった。鋳造終了10分後から、それぞれの仕
切り板に流すアルゴンガスの流量を50リットル/分に
増やし、仕切り板側面の穴から吹き出すアルゴンガスで
合金片を冷却した。2時間後の合金片の温度は101℃
であった。その後、合金を大気中に取り出し、マイクロ
メーターによる平均厚さの測定と、SEMの反射電子像
による断面写真を用いたRリッチ相の間隔の測定を行っ
た。測定結果は表1に記す。
The temperature at the time of dropping of the alloy obtained in the same manner as in Example 1 was 690 ° C. The alloy pieces were then cooled slowly, taking 6 minutes to cool to 600 ° C. Ten minutes after the end of casting, the flow rate of argon gas flowing through each partition plate was increased to 50 liter / min, and the alloy pieces were cooled with argon gas blown out from holes in the side surfaces of the partition plates. The temperature of the alloy piece after 2 hours is 101 ° C
Met. Thereafter, the alloy was taken out into the atmosphere, and the average thickness was measured using a micrometer, and the distance between R-rich phases was measured using a cross-sectional photograph based on a backscattered electron image of a SEM. Table 1 shows the measurement results.

【0044】(実施例7)実施例6と同様の組成になる
ように原料金属等を配合し、実施例1と同様の条件で溶
解し、溶湯を実施例1の銅製ロール上に鋳造した。銅ロ
ール上で凝固した合金は、実施例1のガイドロールで破
砕し、その下に設置した箱型の収納容器に貯めた。収納
容器は、実施例1の容器内に、厚さ2cmの区画仕切り
板を、銅ロールの回転軸に垂直方向に沿って、収納容器
内に等間隔で3枚設置し、図6のような構造にした。こ
の仕切り板の材質は実施例6の場合と同じである。鋳造
開始直前から鋳造終了10分後まで収納容器底部のステ
ンレス製網の下から上に向かってアルゴンガスを流量1
0リットル/分で流した。
(Example 7) Raw materials and the like were blended so as to have the same composition as in Example 6, melted under the same conditions as in Example 1, and the molten metal was cast on the copper roll of Example 1. The alloy solidified on the copper roll was crushed by the guide roll of Example 1 and stored in a box-shaped storage container installed thereunder. As for the storage container, three partition plates having a thickness of 2 cm are installed at regular intervals in the storage container along the direction perpendicular to the rotation axis of the copper roll in the container of Example 1, as shown in FIG. Structured. The material of the partition plate is the same as that of the sixth embodiment. From just before the start of casting to 10 minutes after the end of casting, argon gas was supplied at a flow rate of 1 from the bottom to the top of the stainless steel mesh at the bottom of the container.
Flowed at 0 liter / min.

【0045】実施例1と同様の方法で求めた合金の落下
時の温度は690℃であった。合金片はその後ゆっくり
冷却していき、600℃まで冷却するのにかかった時間
は6分であった。鋳造終了10分後から、収納容器下部
のステンレス製網の下から上部に向かって流すガスをヘ
リウムガスにして流量100リットル/分で流し合金を
冷却した。30分後の合金片の温度は103℃であっ
た。その後、合金を大気中に取り出し、マイクロメータ
ーによる平均厚さの測定と、SEMの反射電子像による
断面写真を用いたRリッチ相の間隔の測定を行った。測
定結果は表1に記す。
The temperature at the time of dropping of the alloy obtained in the same manner as in Example 1 was 690 ° C. The alloy pieces were then cooled slowly, taking 6 minutes to cool to 600 ° C. Ten minutes after the completion of casting, the gas flowing from the bottom to the top of the stainless steel mesh at the bottom of the storage container was changed to helium gas, and the gas was flowed at a flow rate of 100 liter / minute to cool the alloy. After 30 minutes, the temperature of the alloy piece was 103 ° C. Thereafter, the alloy was taken out into the atmosphere, and the average thickness was measured using a micrometer, and the distance between R-rich phases was measured using a cross-sectional photograph based on a backscattered electron image of a SEM. Table 1 shows the measurement results.

【0046】(比較例1)実施例1と同様の組成になる
ように原料金属等を配合し、実施例1と同様の条件で溶
解し、溶湯を実施例1の銅製ロール上に鋳造した。銅ロ
ール上で凝固した合金は、実施例1のガイドロールで破
砕し、その下に設置した箱型の収納容器に貯めた。収納
容器は、外寸で縦31cm、横21cm、高さ40cm
であり、肉厚5mmの鉄板で作製した。但し、収納容器
内には実施例1〜7のような網や冷却用仕切り板、区画
仕切り板を設けず、不活性ガス等による冷却を行わず、
収納容器内の合金片の冷却速度は制御しなかった。
(Comparative Example 1) Raw materials and the like were blended so as to have the same composition as in Example 1, melted under the same conditions as in Example 1, and the molten metal was cast on the copper roll of Example 1. The alloy solidified on the copper roll was crushed by the guide roll of Example 1 and stored in a box-shaped storage container installed thereunder. The storage container is 31cm long, 21cm wide and 40cm high in external dimensions.
And was made of a 5 mm-thick iron plate. However, without providing a net, a cooling partition plate, a partition partition plate as in Examples 1 to 7 in the storage container, without cooling with an inert gas or the like,
The cooling rate of the alloy pieces in the container was not controlled.

【0047】実施例1と同様の方法で求めた合金の落下
時の温度は790℃であった。合金片はその後の冷却速
度は極めて遅く、ゆっくり冷却していき、600℃まで
冷却するのにかかった時間は1時間であった。さらに、
合金片の温度が低くなるほど、冷却速度がおそくなり、
合金片の温度が大気中で酸化の進まない200℃になっ
たのは、鋳造終了8時間後であり、非常に長時間かかっ
た。その後、合金を大気中に取り出したところ、合金片
同士が強固に融着しており、マイクロメーターによる平
均厚さの測定は不可能であった。SEMの反射電子像に
よる断面写真を用いたRリッチ相の間隔の測定について
は可能であり、測定結果を表1に記す。
The temperature at the time of dropping of the alloy obtained in the same manner as in Example 1 was 790 ° C. The subsequent cooling rate of the alloy piece was extremely low, and the alloy piece was cooled slowly, and the time required for cooling to 600 ° C. was 1 hour. further,
The lower the temperature of the alloy slab, the slower the cooling rate,
The temperature of the alloy slab reached 200 ° C. in the atmosphere where oxidation did not proceed, 8 hours after the end of casting, and it took a very long time. Thereafter, when the alloy was taken out into the atmosphere, the alloy pieces were firmly fused together, and it was not possible to measure the average thickness with a micrometer. It is possible to measure the interval of the R-rich phase using a cross-sectional photograph based on the backscattered electron image of the SEM, and the measurement results are shown in Table 1.

【0048】[0048]

【表1】 [Table 1]

【0049】磁石の製造 (実施例8)実施例1で得られた合金片を水素解砕、中
粉砕、微粉砕の順に粉砕した。水素解砕工程の前工程で
ある水素吸蔵工程の条件は、100%水素雰囲気、1気
圧で1時間保持とした。水素吸蔵反応開始時の合金片の
温度は25℃であった。また後工程である脱水素工程の
条件は、13Pa真空中、500℃で1時間保持した。
中粉砕にはブラウンミル装置を用い、水素解砕した粉末
を100%窒素雰囲気中で425μm以下まで粉砕し
た。この粉末に、ステアリン酸亜鉛粉末を0.07質量
%添加し、100%窒素雰囲気中でV型ブレンダーで十
分混合した後、ジェットミル装置で3.2μm(FSS
S)まで微粉砕した。粉砕時の雰囲気は、4000pp
mの酸素を混合した窒素雰囲気中とした。その後、再
度、100%窒素雰囲気中でV型ブレンダーで十分混合
した。得られた粉末の酸素濃度は2500ppmであっ
た。またこの粉末の炭素濃度の分析から、粉末に混合さ
れているステアリン酸亜鉛粉末は0.05質量%である
と計算された。
Production of Magnet (Example 8) The alloy pieces obtained in Example 1 were pulverized in the order of hydrogen pulverization, medium pulverization and fine pulverization. The condition of the hydrogen storage step, which is a step before the hydrogen disintegration step, was kept at 100% hydrogen atmosphere and 1 atm for 1 hour. The temperature of the alloy piece at the start of the hydrogen storage reaction was 25 ° C. The condition of the dehydrogenation step, which is a subsequent step, was maintained at 500 ° C. for 1 hour in a vacuum of 13 Pa.
Using a brown mill apparatus for the medium pulverization, the powder pulverized with hydrogen was pulverized to 425 μm or less in a 100% nitrogen atmosphere. 0.07% by mass of zinc stearate powder was added to this powder, and the mixture was sufficiently mixed with a V-type blender in a 100% nitrogen atmosphere, and then 3.2 μm (FSS) with a jet mill device.
Finely pulverized to S). Atmosphere during grinding is 4000pp
m in a nitrogen atmosphere mixed with oxygen. Thereafter, the mixture was again sufficiently mixed in a V-type blender in a 100% nitrogen atmosphere. The oxygen concentration of the obtained powder was 2500 ppm. From the analysis of the carbon concentration of this powder, it was calculated that the zinc stearate powder mixed with the powder was 0.05% by mass.

【0050】次に、得られた粉末を100%窒素雰囲気
中で横磁場中成形機でプレス成形した。成形圧は1.2
t/cm2であり、金型のキャビティ内の磁界は15kO
eとした。得られた成形体を、1.3×10-3Pa真空
中、500℃で1時間保持し、次いで1.3×10-3
a真空中、800℃で2時間保持し、ステアリン酸亜鉛
及び水素を除去した後、1.3×10-3Pa真空中、1
060℃で2時間保持して焼結させた。焼結密度は7.
52g/cm3であり十分な大きさの密度となった。さ
らに、この焼結体をアルゴン雰囲気中、540℃で1時
間熱処理した。
Next, the obtained powder was press-molded in a horizontal magnetic field in a 100% nitrogen atmosphere using a molding machine. Molding pressure is 1.2
t / cm 2 and the magnetic field in the mold cavity is 15 kO
e. The obtained molded body is kept at 500 ° C. for 1 hour in a vacuum of 1.3 × 10 −3 Pa, and then 1.3 × 10 −3 P
a. The solution was kept at 800 ° C. for 2 hours in a vacuum to remove zinc stearate and hydrogen, and then kept in a vacuum of 1.3 × 10 −3 Pa for 1 hour.
It was kept at 060 ° C. for 2 hours for sintering. The sintered density is 7.
The density was 52 g / cm 3 , which was a sufficiently large density. Further, this sintered body was heat-treated at 540 ° C. for 1 hour in an argon atmosphere.

【0051】直流BHカーブトレーサーでこの焼結体の
磁気特性を測定したところ、Br=13.9kG、iH
c=10.6kOe、(BH)max=45.4MGO
eであった。この焼結体の酸素濃度は3100ppmで
あった。また、この焼結体の断面を鏡面研磨し、この面
を偏光顕微鏡で観察したところ、結晶粒の大きさは平均
で15〜20μmであり、ほぼ均一の大きさであった。
When the magnetic properties of this sintered body were measured using a DC BH curve tracer, Br = 13.9 kG, iH
c = 10.6 kOe, (BH) max = 45.4MGO
e. The oxygen concentration of this sintered body was 3100 ppm. The cross section of the sintered body was mirror-polished, and the surface was observed with a polarizing microscope. The average size of the crystal grains was 15 to 20 μm, which was almost uniform.

【0052】(比較例2)比較例1で得られた合金片
を、実施例8と同様の方法で粉砕して、3.3μm(F
SSS)の大きさの粉末を得た。粉末の酸素濃度は26
00ppmであった。この粉末を使って、実施例8と同
様の方法で磁場中成形、焼結し、異方性磁石を作製し
た。但し、焼結温度1060℃の場合、焼結密度は7.
38g/cm3であり、焼結不十分であった。このた
め、焼結温度を1090℃まで上げた。
(Comparative Example 2) The alloy piece obtained in Comparative Example 1 was pulverized in the same manner as in Example 8 and crushed to 3.3 μm (F
SSS) size powder was obtained. The oxygen concentration of the powder is 26
It was 00 ppm. This powder was molded in a magnetic field and sintered in the same manner as in Example 8 to produce an anisotropic magnet. However, when the sintering temperature is 1060 ° C., the sintering density is 7.
38 g / cm 3 , and sintering was insufficient. For this reason, the sintering temperature was increased to 1090 ° C.

【0053】得られた焼結体の磁気特性を実施例8と同
じ直流BHカーブトレーサーで測定したところ、焼結温
度1060℃の場合は、Br=13.5kG、iHc=
9.8kOe、(BH)max=42.8MGOeであ
った。また、焼結温度1090℃の場合は、13.8k
G、iHc=7.4kOe、(BH)max=35.2
MGOeであった。なお、磁石の酸素濃度は、それぞれ
3100ppm、3200ppmであった。また、これ
らの焼結体の断面を鏡面研磨し、この面を偏光顕微鏡で
観察したところ、焼結温度1060℃の焼結体の結晶粒
の大きさは平均で15〜20μmであり、ほぼ均一の大
きさであった。ところが、焼結温度1090℃の焼結体
の場合、大部分の結晶粒についてはほぼ均一であり平均
で20〜25μmの大きさであったが、所々に数十〜数
百μmの大きさまで成長した結晶粒が認められた。焼結
温度1060℃で十分な大きさの密度にならなかった原
因を調べるため、微粉砕後の粒子の断面を、走査型電子
顕微鏡の反射電子像で観察した。その結果、実施例8の
場合、端にRリッチ相が付いている粒子が多数認められ
たのに対し、比較例2の場合、このような粒子はかなり
少なく、Rリッチ相だけの粒子が目立った。このことか
ら、比較例2の粉末ではRリッチ相の分散性が悪く、こ
のため、実施例8と同じ焼結温度では十分な密度の焼結
体にならなかったことが分かった。
When the magnetic properties of the obtained sintered body were measured by the same direct current BH curve tracer as in Example 8, when the sintering temperature was 1060 ° C., Br = 13.5 kG and iHc =
9.8 kOe, (BH) max = 42.8 MGOe. When the sintering temperature is 1090 ° C., 13.8 k
G, iHc = 7.4 kOe, (BH) max = 35.2
MGOe. The oxygen concentration of the magnet was 3100 ppm and 3200 ppm, respectively. The cross section of these sintered bodies was mirror-polished, and the surfaces were observed with a polarizing microscope. The size of the crystal grains of the sintered body at a sintering temperature of 1060 ° C. was 15 to 20 μm on average, and was almost uniform. It was the size of. However, in the case of a sintered body at a sintering temperature of 1090 ° C., most of the crystal grains were almost uniform and had a size of 20 to 25 μm on average, but grew to several tens to several hundreds of μm in some places. Crystal grains were observed. In order to investigate the reason why the density did not become sufficiently large at the sintering temperature of 1060 ° C., the cross section of the finely pulverized particles was observed with a reflection electron image of a scanning electron microscope. As a result, in Example 8, a large number of particles having an R-rich phase were found at the end, whereas in Comparative Example 2, such particles were considerably small, and particles having only the R-rich phase were conspicuous. Was. From this, it was found that in the powder of Comparative Example 2, the dispersibility of the R-rich phase was poor, so that a sintered body having a sufficient density was not obtained at the same sintering temperature as in Example 8.

【0054】[0054]

【発明の効果】本発明の方法によれば、合金片を収納容
器内で冷却速度、特に800〜600℃間の冷却速度を
制御することにより、合金のRリッチ相の分布を容易に
制御でき、またそれ以下の温度領域での冷却を急速に行
えるため、鋳造後の合金片の冷却時間を短縮でき操業上
非常に有効である。また、本発明の方法により製造した
合金片の微粉末を焼結した磁石はRリッチ相の分散がよ
く磁石特性も良好である。
According to the method of the present invention, the distribution of the R-rich phase of the alloy can be easily controlled by controlling the cooling rate of the alloy pieces in the container, especially the cooling rate between 800 and 600 ° C. Further, since the cooling can be rapidly performed in a temperature range lower than that, the cooling time of the alloy slab after casting can be shortened, which is very effective in operation. Further, the magnet obtained by sintering the alloy powder produced by the method of the present invention has a good R-rich phase dispersion and good magnet properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】希土類元素含有合金の溶解、鋳造方法を示す概
略図である。
FIG. 1 is a schematic view showing a method for melting and casting a rare earth element-containing alloy.

【図2】鋳造、破砕した合金片を収納容器中で冷却する
一つの方法を示す図である。
FIG. 2 is a view showing one method of cooling a cast and crushed alloy piece in a storage container.

【図3】同上の冷却方法の他の例を示す図である。FIG. 3 is a diagram showing another example of the cooling method according to the first embodiment.

【図4】同上の冷却方法のさらに他の例を示す図であ
る。
FIG. 4 is a view showing still another example of the cooling method according to the first embodiment.

【図5】同上の冷却方法のさらに他の例を示す図であ
る。
FIG. 5 is a view showing still another example of the cooling method of the above.

【図6】同上の冷却方法のさらに他の例を示す図であ
る。
FIG. 6 is a view showing still another example of the cooling method of the above.

【符号の説明】[Explanation of symbols]

1 溶解室 2 坩堝 3 ロール 4 樋 5 タンディシュ 6 ガイドロール 7 合金片 8 収納容器 10 鋳造室 211,212 冷却用仕切り板 212A 通気口 213 冷却用仕切り板 213A 通気口 22 不活性ガス又は冷却液体 23 不活性ガス 233 ステンレス製網 24 区画仕切り板 REFERENCE SIGNS LIST 1 melting chamber 2 crucible 3 roll 4 gutter 5 tundish 6 guide roll 7 alloy piece 8 storage container 10 casting chamber 211, 212 cooling partition plate 212A ventilation port 213 cooling partition plate 213A ventilation port 22 inert gas or cooling liquid 23 non Activated gas 233 Stainless steel net 24 Partition board

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/053 H01F 41/02 G 1/06 1/04 H 41/02 1/06 A Fターム(参考) 4K017 AA04 BA06 BB12 BB18 CA03 DA04 EA03 ED01 5E040 AA04 BD01 CA01 HB19 NN06 NN18 5E062 CD04 CE04 CG03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/053 H01F 41/02 G 1/06 1/04 H 41/02 1/06 A F term (reference 4K017 AA04 BA06 BB12 BB18 CA03 DA04 EA03 ED01 5E040 AA04 BD01 CA01 HB19 NN06 NN18 5E062 CD04 CE04 CG03

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素含有合金を真空又は不活性ガ
ス中にて溶解し、溶解された溶湯を真空又は不活性ガス
雰囲気中の室内にて、冷却された回転ロール上に流し、
冷却して薄帯状に凝固させた直後、該凝固薄帯を片状に
破砕し、該破砕合金片を前記室内に置かれた収納容器内
に収め、冷却媒体により前記破砕合金片の冷却速度を制
御することを特徴とする希土類元素含有合金の組織制御
方法。
1. A rare earth element-containing alloy is melted in a vacuum or an inert gas, and the melt is flown over a cooled rotating roll in a room in a vacuum or an inert gas atmosphere.
Immediately after being cooled and solidified into a thin strip, the solidified thin strip is crushed into pieces, the crushed alloy pieces are placed in a storage container placed in the room, and the cooling rate of the crushed alloy pieces is reduced by a cooling medium. A method for controlling the structure of a rare earth element-containing alloy, comprising controlling the structure.
【請求項2】 収納容器が、内部に冷却用仕切り板を設
け、その中に冷却媒体として気体又は液体を流通させて
破砕合金片の冷却速度を制御できるものである請求項1
に記載の希土類元素含有合金の組織制御方法。
2. A storage container, wherein a cooling partition plate is provided inside, and a gas or a liquid as a cooling medium is circulated in the partition plate to control a cooling rate of the crushed alloy pieces.
2. The method for controlling the structure of a rare earth element-containing alloy according to item 1.
【請求項3】 収納容器が、内部に冷却媒体として不活
性ガスを流通させて破砕合金片の冷却速度を制御できる
ものである請求項1に記載の希土類元素含有合金の組織
制御方法。
3. The structure control method for a rare earth element-containing alloy according to claim 1, wherein the storage container is capable of controlling the cooling rate of the crushed alloy pieces by flowing an inert gas as a cooling medium therein.
【請求項4】 不活性ガスを収納容器内に設けた通気口
を有する冷却用仕切り板から流出させる請求項3に記載
の希土類元素含有合金の組織制御方法。
4. The structure control method for a rare earth element-containing alloy according to claim 3, wherein the inert gas is caused to flow out from a cooling partition plate having a vent provided in the storage container.
【請求項5】 収納容器が、内部に区画仕切り板を設
け、破砕合金片の冷却速度を制御できるものである請求
項1〜4のいずれか1項に記載の希土類元素含有合金の
組織制御方法。
5. The method for controlling the microstructure of a rare earth element-containing alloy according to claim 1, wherein the storage container has a partitioning plate provided therein so as to control a cooling rate of the crushed alloy pieces. .
【請求項6】 破砕合金片の冷却速度を制御した後、さ
らに破砕合金片を室内より別室に移し、冷却する工程を
有する請求項1〜5のいずれか1項に記載の希土類元素
含有合金の組織制御方法。
6. The rare earth element-containing alloy according to claim 1, further comprising, after controlling the cooling rate of the crushed alloy piece, moving the crushed alloy piece from a room to another room and cooling it. Organization control method.
【請求項7】 希土類元素含有合金溶湯を回転ロール上
に流し、冷却して薄帯状に凝固させる方法がストリップ
キャスティング法である請求項1〜6のいずれか1項に
記載の希土類元素含有合金の組織制御方法。
7. The method of flowing a rare earth element-containing alloy according to any one of claims 1 to 6, wherein the method of flowing the rare earth element-containing alloy melt on a rotating roll, cooling and solidifying the molten metal into a thin strip shape is a strip casting method. Organization control method.
【請求項8】 破砕合金片の冷却速度を制御して希土類
元素含有合金のRリッチ相の平均間隔を3〜15μmと
する請求項1〜7のいずれか1項に記載の希土類元素含
有合金の組織制御方法。
8. The rare earth element-containing alloy according to any one of claims 1 to 7, wherein a cooling rate of the crushed alloy pieces is controlled so that an average interval between R-rich phases of the rare earth element-containing alloy is 3 to 15 μm. Organization control method.
【請求項9】 破砕合金片の800〜600℃間の平均
冷却速度が10〜300℃/分である請求項1〜8のい
ずれか1項に記載の希土類元素含有合金の組織制御方
法。
9. The method for controlling the structure of a rare earth element-containing alloy according to claim 1, wherein an average cooling rate of the crushed alloy pieces between 800 and 600 ° C. is 10 to 300 ° C./min.
【請求項10】 希土類元素含有合金が、R−T−B系
合金(式中、RはYを含む希土類元素(Y、La、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、Yb、Lu)のうちの少なくとも1
種、TはFeを主成分とし一部をCo、Ni等で置換し
てもよい)である請求項1〜9のいずれか1項に記載の
希土類元素含有合金の組織制御方法。
10. A rare earth element-containing alloy is an RTB-based alloy (where R is a rare earth element containing Y (Y, La, C
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
o, Er, Tm, Yb, Lu)
The method for controlling the structure of a rare earth element-containing alloy according to any one of claims 1 to 9, wherein the seed and T are Fe as a main component and a part thereof may be substituted with Co, Ni, or the like.
【請求項11】 請求項1〜10のいずれか1項に記載
の方法により得られた厚さが0.1〜0.6mmで、R
リッチ相の平均間隔が3〜15μmである破砕合金片を
粉砕した希土類元素含有合金粉末。
11. The method according to claim 1, wherein the thickness obtained by the method according to claim 1 is 0.1 to 0.6 mm,
A rare earth element-containing alloy powder obtained by crushing a crushed alloy piece having an average rich phase interval of 3 to 15 μm.
【請求項12】 請求項11の合金粉末を成形、焼結し
た磁石。
12. A magnet obtained by molding and sintering the alloy powder of claim 11.
JP2001068258A 2001-03-12 2001-03-12 Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same Expired - Lifetime JP3561692B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001068258A JP3561692B2 (en) 2001-03-12 2001-03-12 Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
TW91103559A TW567104B (en) 2001-03-12 2002-02-27 The method for controlling inside texture of alloy containing rare earth elements, the powder of aforementioned alloy and the magnetic stone made by it
PCT/JP2002/002244 WO2002072900A2 (en) 2001-03-12 2002-03-11 Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same
CNB028005856A CN100345987C (en) 2001-03-12 2002-03-11 Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001068258A JP3561692B2 (en) 2001-03-12 2001-03-12 Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same

Publications (2)

Publication Number Publication Date
JP2002266006A true JP2002266006A (en) 2002-09-18
JP3561692B2 JP3561692B2 (en) 2004-09-02

Family

ID=18926476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001068258A Expired - Lifetime JP3561692B2 (en) 2001-03-12 2001-03-12 Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same

Country Status (2)

Country Link
JP (1) JP3561692B2 (en)
TW (1) TW567104B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187777A (en) * 2004-12-29 2006-07-20 Yoichi Hirose Cooling apparatus, strip casting apparatus, and cooling method for cast sheet of alloy for neodymium sintered magnet
WO2007117037A1 (en) * 2006-04-07 2007-10-18 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
JPWO2005105343A1 (en) * 2004-04-30 2008-03-13 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
WO2009041338A1 (en) * 2007-09-25 2009-04-02 Showa Denko K.K. Production system of alloy
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus
CN104416162A (en) * 2013-09-03 2015-03-18 中国科学院宁波材料技术与工程研究所 Rapid alloy solidification equipment and automatic control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101637823B (en) * 2008-07-28 2013-01-02 宝山钢铁股份有限公司 Method and device for preparing metal powder

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058323A (en) * 2002-11-22 2008-03-13 Showa Denko Kk Method of evaluating metal structure of r-t-b magnet alloy
JP4689652B2 (en) * 2002-11-22 2011-05-25 昭和電工株式会社 Method for evaluating metal structure of RTB-based magnet alloy
JP4692485B2 (en) * 2004-04-30 2011-06-01 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
JPWO2005105343A1 (en) * 2004-04-30 2008-03-13 日立金属株式会社 Raw material alloy and powder for rare earth magnet and method for producing sintered magnet
US7585378B2 (en) 2004-04-30 2009-09-08 Hitachi Metals, Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
JP2006187777A (en) * 2004-12-29 2006-07-20 Yoichi Hirose Cooling apparatus, strip casting apparatus, and cooling method for cast sheet of alloy for neodymium sintered magnet
JP4600041B2 (en) * 2004-12-29 2010-12-15 洋一 広瀬 Cooling device, strip casting device, and cooling method of alloy cast flake for neodymium sintered magnet
WO2007117037A1 (en) * 2006-04-07 2007-10-18 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
US7958929B2 (en) 2006-04-07 2011-06-14 Showa Denko K.K. Apparatus for producing alloy and rare earth element alloy
KR101004166B1 (en) 2006-04-07 2010-12-24 쇼와 덴코 가부시키가이샤 Apparatus for producing alloy and rare earth element alloy
WO2009041338A1 (en) * 2007-09-25 2009-04-02 Showa Denko K.K. Production system of alloy
JP2009079241A (en) * 2007-09-25 2009-04-16 Showa Denko Kk Alloy production device
US8042600B2 (en) 2007-09-25 2011-10-25 Showa Denko K.K. Apparatus for producing alloy
US8056610B2 (en) 2007-09-25 2011-11-15 Ulvac, Inc. Secondary cooling apparatus and casting apparatus
KR101138596B1 (en) 2007-09-25 2012-05-10 가부시키가이샤 알박 Secondary cooling apparatus and casting apparatus
CN104416162A (en) * 2013-09-03 2015-03-18 中国科学院宁波材料技术与工程研究所 Rapid alloy solidification equipment and automatic control method thereof
CN104416162B (en) * 2013-09-03 2016-08-17 中国科学院宁波材料技术与工程研究所 A kind of alloy rapid solidification equipment and autocontrol method thereof

Also Published As

Publication number Publication date
TW567104B (en) 2003-12-21
JP3561692B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US20090000701A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-tb type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JPWO2013054854A1 (en) R-T-B type alloy flake, R-T-B type sintered magnet and method for producing the same
JP3267133B2 (en) Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet
US7264683B2 (en) Centrifugal casting method, centrifugal casting apparatus, and cast alloy produced by same
JP4832856B2 (en) Method for producing RTB-based alloy and RTB-based alloy flakes, fine powder for RTB-based rare earth permanent magnet, RTB-based rare earth permanent magnet
JP3845461B2 (en) Method and apparatus for producing permanent magnet alloy powder for bonded magnet
JPH1036949A (en) Alloy for rare earth magnet and its production
JP4479944B2 (en) Alloy flake for rare earth magnet and method for producing the same
JP2004111481A (en) Rare earth sintered magnet and its manufacturing method
JPH0931609A (en) Rare earth magnet alloy and its production
JP3561692B2 (en) Structure control method for rare earth element-containing alloy, alloy powder and magnet using the same
JP4689652B2 (en) Method for evaluating metal structure of RTB-based magnet alloy
WO2002072900A2 (en) Method for controlling structure of rare earth element-containing alloy, powder material of the alloy and magnet using the same
WO2003020993A1 (en) Rare earth magnet alloy ingot, manufacturing method for the same, r-t-b type magnet alloy ingot, r-t-b type magnet, r-t-b type bonded magnet, r-t-b type exchange spring magnet alloy ingot, r-t-b type exchange spring magnet, and r-t-b type exchange spring bonded magnet
JP4879503B2 (en) Alloy block for RTB-based sintered magnet, manufacturing method thereof and magnet
JP2003183787A (en) Principal phase-based alloy for rare earth magnet, manufacturing method therefor, mixed powder for sintered rare earth magnet, and rare earth magnet
JP4318204B2 (en) Rare earth-containing alloy flake manufacturing method, rare earth magnet alloy flake, rare earth sintered magnet alloy powder, rare earth sintered magnet, bonded magnet alloy powder, and bonded magnet
JP3452561B2 (en) Rare earth magnet and manufacturing method thereof
JP2002301554A (en) Centrifugal casting method, centrifugal casting apparatus and alloy produced with this apparatus
JP4853629B2 (en) Manufacturing method of rare earth sintered magnet
JP4040571B2 (en) Method for producing rare earth-containing alloy flakes
JP7167484B2 (en) Cast alloy flakes for RTB rare earth sintered magnets
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JP4754739B2 (en) Alloy ingot for rare earth magnet, method for producing the same, and sintered magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3561692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term