Nothing Special   »   [go: up one dir, main page]

JP2002265658A - Highly permeable microporous film - Google Patents

Highly permeable microporous film

Info

Publication number
JP2002265658A
JP2002265658A JP2001067244A JP2001067244A JP2002265658A JP 2002265658 A JP2002265658 A JP 2002265658A JP 2001067244 A JP2001067244 A JP 2001067244A JP 2001067244 A JP2001067244 A JP 2001067244A JP 2002265658 A JP2002265658 A JP 2002265658A
Authority
JP
Japan
Prior art keywords
microporous membrane
polyethylene
sec
equation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001067244A
Other languages
Japanese (ja)
Other versions
JP5079188B2 (en
Inventor
Hitoshi Shimada
仁 島田
Izumi Hojuyama
和泉 宝珠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001067244A priority Critical patent/JP5079188B2/en
Publication of JP2002265658A publication Critical patent/JP2002265658A/en
Application granted granted Critical
Publication of JP5079188B2 publication Critical patent/JP5079188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)
  • Materials For Medical Uses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a microporous film comprising a polyethylene with a raised liquid or gas permeability to the utmost while maintaining film thickness. SOLUTION: This microporous film has an excellent strength and fine particle preventing performances, good handleability and a remarkably improved liquid or gas permeability while maintaining a high porosity by regulating the structural factor to >=1.5×10<7> sec<-2> .m<-1> .Pa<-2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透過性に優れた微
多孔膜に関する、特に、血漿製剤やバイオ医薬品等から
ウィルスや細菌等の病原体を除去する医用分離膜、半導
体製品を製造するのに使用されるフォトレジスト等の薬
液から微小欠陥を引き起こす原因となる微粒子を除去す
る半導体薬液用ろ過フィルター、LSIや液晶製造時の
ウェットステーションでの循環ろ過フィルター、油水分
離フィルター、液ガス分離フィルター等の産業プロセス
フィルター、上下水の浄化を目的とする水処理用分離
膜、空気等のガスの浄化を目的とするガス清浄用膜、リ
チウムイオン電池等の非水電解液系電池用セパレータ
ー、ニッケル水素電池等のアルカリ電解液系電池用セパ
レーターの前駆体、及びポリマー電池用の固体電解質支
持体、燃料電池基材膜等の広範囲な用途に利用できるポ
リエチレン微多孔膜に関する。
[0001] The present invention relates to a microporous membrane having excellent permeability, and more particularly to the production of medical separation membranes and semiconductor products for removing pathogens such as viruses and bacteria from plasma preparations and biopharmaceuticals. Filtration filters for semiconductor chemicals that remove microparticles that cause micro defects from used chemicals such as photoresists, circulating filtration filters for wet stations during LSI and liquid crystal manufacturing, oil-water separation filters, liquid gas separation filters, etc. Industrial process filters, separation membranes for water treatment for purifying water and sewage, gas purification membranes for purifying gases such as air, separators for non-aqueous electrolyte batteries such as lithium ion batteries, nickel-metal hydride batteries Precursor for alkaline electrolyte battery separators, etc., solid electrolyte support for polymer batteries, fuel cell substrate membrane It relates a microporous polyethylene film available for a wide range of applications.

【0002】[0002]

【従来の技術】半導体製品を製造するのに使用される薬
液や処理水等から、微粒子や固形不純物を除去する電子
産業プロセスフィルターに用いられる微多孔膜が、近
年、種々の高分子材料を用いて開発されている。これら
に使用される高分子材料としては、ポリアミド、ポリエ
チレン、ポリプロピレン、セルロースアセテート、ポリ
フッ化ビニリデン、及びポリテトラフルオロエチレンが
一般的である。このような高分子材料の中で、産業プロ
セスフィルターとしての使用に耐えうる耐薬品性に富む
材料は、ポリエチレンとポリテトラフルオロエチレンの
みである。ポリテトラフルオロエチレンは含フッ素化合
物であり、最近は廃棄物処理等の問題を抱え、将来の見
通しがあまり明るくないのに対し、ポリエチレンは、前
記廃棄物に対する問題が少なく、しかも安価であり、成
形加工性に富むため、有用な材料といえる。
2. Description of the Related Art In recent years, a microporous membrane used for an electronic industrial process filter for removing fine particles and solid impurities from a chemical solution or treated water used for manufacturing semiconductor products has been made of various polymer materials. Has been developed. As the polymer material used for these, polyamide, polyethylene, polypropylene, cellulose acetate, polyvinylidene fluoride, and polytetrafluoroethylene are generally used. Among such polymer materials, only polyethylene and polytetrafluoroethylene are materials having high chemical resistance that can be used as an industrial process filter. Polytetrafluoroethylene is a fluorine-containing compound, and recently has problems such as waste disposal, and the prospects for the future are not very bright, whereas polyethylene has few problems with the waste, and is inexpensive. It is a useful material because of its excellent workability.

【0003】上記の半導体製品は年々微細パターン化す
る傾向にあり、現在ではサブミクロンのサイズで終始し
ている。これに対し、半導体製品に使用される薬液や処
理水中に含まれる微粒子の管理サイズは、上記パターン
サイズの1/2以下を要求される。したがって、ろ過対
象の微粒子サイズに応じて、微多孔膜に要求される平均
孔径は0.05〜0.5μmであり、プレフィルターま
で含めると1.0μm以上までもの広範囲に及ぶ。
[0003] The above-mentioned semiconductor products tend to be finely patterned year by year, and are currently all over the submicron size. On the other hand, the control size of the fine particles contained in the chemical solution or the processing water used for the semiconductor product is required to be 1 / or less of the pattern size. Therefore, the average pore size required for the microporous membrane is 0.05 to 0.5 μm depending on the size of the fine particles to be filtered, and extends to 1.0 μm or more when including the prefilter.

【0004】血漿製剤やバイオ医薬品等の製剤を人体に
投与する際に、製剤中に含まれるかもしれない細菌、ウ
ィルス、及び病原性蛋白等の病原体に対する危機感がク
ローズアップされている。このような病原体を物理的に
除去する技術として、分離膜による膜ろ過法が有用な手
段として脚光を浴びつつある。このような用途に使用さ
れる微多孔膜は、一般に、医用分離膜と呼ばれる。
[0004] When administering a preparation such as a plasma preparation or a biopharmaceutical to the human body, a sense of danger to pathogens such as bacteria, viruses, and pathogenic proteins that may be contained in the preparation has been highlighted. As a technique for physically removing such pathogens, a membrane filtration method using a separation membrane is being spotlighted as a useful means. The microporous membrane used for such an application is generally called a medical separation membrane.

【0005】ウィルスの種類としては、直径0.02〜
0.03μmのパルボウィルス、ポリオウィルス、EM
Cウィルス、A型肝炎ウィルス等のように極めて小さな
サイズのものから、直径0.04〜0.07μmのB型
肝炎ウィルス、SV40ウィルス、BVDウィルス、シ
ンドビスウィルス等のように中程度のサイズのもの、直
径0.08〜0.10μmのHIVウィルス等のように
大きなサイズのものがある。このようなウィルス群を、
そのサイズにあわせて膜ろ過法によって物理的に除去す
るためには、平均孔径0.01〜0.1μmの範囲で各
々優れた透過性と優れた微粒子阻止性能が必要となる。
[0005] The type of virus is 0.02
0.03 μm parvovirus, poliovirus, EM
From very small size such as C virus and hepatitis A virus to medium size such as hepatitis B virus, SV40 virus, BVD virus, Sindbis virus and the like having a diameter of 0.04-0.07 μm. And large size such as HIV virus having a diameter of 0.08 to 0.10 μm. Such virus group,
In order to physically remove by a membrane filtration method according to the size, excellent permeability and excellent particulate blocking performance are required in the range of 0.01 to 0.1 μm in average pore size.

【0006】製剤の成分である蛋白質は疎水性吸着を生
じ、分離膜の微孔に目詰まりして処理量が低下したり、
製剤の成分が変質するトラブルが起きる。したがって、
このような蛋白質吸着を防ぐために、医用分離膜には親
水性材料等の蛋白質非吸着性物質が被覆されている必要
がある。このような要求から、医用分離膜の素材として
は、多くの場合、親水性を付与しうる素材であることが
好ましい。
[0006] The protein, which is a component of the preparation, causes hydrophobic adsorption and clogs the pores of the separation membrane to reduce the throughput,
A trouble occurs in which the components of the preparation deteriorate. Therefore,
In order to prevent such protein adsorption, the medical separation membrane needs to be coated with a protein non-adsorbing substance such as a hydrophilic material. From such a demand, in many cases, it is preferable that the material of the medical separation membrane is a material that can impart hydrophilicity.

【0007】血漿製剤、バイオ医薬品、及び半導体薬液
は一般に高粘度な液体であるため、ろ過処理速度が遅
く、生産性に問題を抱えている。このような問題を解決
するために、極めて高い透過速度を有する微多孔膜が有
用となる。また、高粘度な液体を取り扱うと、ろ過圧力
が高くなる傾向にあり、破断、破裂、損傷、寸法変形な
どが起こらない高強度を有する微多孔膜が必要となる。
特に、微小孔径となる程、微多孔膜にかかるろ過圧力は
高くなり、このような高いろ過圧力に耐えるためには、
極めて高い強度、かつ、経時的なろ過処理能力低下の少
ないものが求められている。
[0007] Since plasma preparations, biopharmaceuticals, and semiconductor chemicals are generally high-viscosity liquids, the filtration speed is low, and there is a problem in productivity. In order to solve such a problem, a microporous membrane having an extremely high permeation rate is useful. Further, when a liquid having a high viscosity is handled, the filtration pressure tends to increase, and a microporous membrane having high strength that does not cause breakage, rupture, damage, dimensional deformation, and the like is required.
In particular, as the pore size becomes smaller, the filtration pressure applied to the microporous membrane increases, and in order to withstand such a high filtration pressure,
There is a demand for a material having extremely high strength and having a small decrease in filtration capacity over time.

【0008】産業上のろ過プロセスでは、薬液や処理
水、製剤、医薬品等から微粒子、固形不純物、ウィルス
等を除去するには、一回のろ過で完全にろ過するのでは
なく、プレろ過をすることが望ましい。プレろ過を実施
することにより、最終ろ過フィルターにかける負担を低
減させることができる。このようにプレフィルターとし
て用いる場合、透過性を極限まで高める必要があるが、
単に、透過性があるだけではプレフィルターとしての役
割を果たさない。目的に合った孔径のものを使用して、
微粒子、固形不純物等をある程度まで取り除く必要があ
る。
[0008] In the industrial filtration process, in order to remove fine particles, solid impurities, viruses, and the like from a chemical solution, treated water, preparations, pharmaceuticals, and the like, pre-filtration is performed instead of complete filtration in a single filtration. It is desirable. By performing the pre-filtration, the burden on the final filtration filter can be reduced. When used as a pre-filter in this way, it is necessary to increase the permeability to the limit,
Simply having permeability does not serve as a pre-filter. Use the one with the hole diameter suitable for the purpose,
It is necessary to remove fine particles, solid impurities and the like to some extent.

【0009】さらに、高透過性膜は、上下水の浄化を目
的とする水処理用のフィルター、空気等のガスの浄化を
目的とするガス清浄用フィルター、リチウムイオン電池
等の非水電解液系電池用セパレーター、ニッケル水素電
池等のアルカリ電解液系電池用セパレーターの前駆体、
及びポリマー電池用の固体電解質支持体、燃料電池基材
膜等の広範囲な用途に利用できる。微多孔膜の液体又は
気体の透過性を改善する方法としては、膜厚を薄くする
方法が一般的である。特開平3−80923号公報に
は、膜厚を薄くすることによって膜の透過性を向上させ
る技術が開示され、膜厚を厚くすると高い透過性が得ら
れなくなることが記載されている。膜厚が薄くなれば透
過性は改善されるが、ろ過層が薄いため耐圧性等の機械
的強度が損なわれる。さらに、膜厚が薄いので加工時に
皺が入りやすく、ハンドリング性が損なわれる。
Further, the highly permeable membrane includes a water treatment filter for purifying water and sewage, a gas purification filter for purifying gas such as air, and a non-aqueous electrolyte system such as a lithium ion battery. Battery separators, precursors for alkaline electrolyte battery separators such as nickel-metal hydride batteries,
It can be used for a wide range of applications such as a solid electrolyte support for a polymer battery and a fuel cell substrate membrane. As a method of improving the liquid or gas permeability of the microporous membrane, a method of reducing the film thickness is generally used. Japanese Patent Application Laid-Open No. 3-80923 discloses a technique for improving the permeability of a film by reducing the film thickness, and describes that when the film thickness is increased, high permeability cannot be obtained. When the film thickness is reduced, the permeability is improved, but the mechanical strength such as pressure resistance is impaired because the filtration layer is thin. Furthermore, since the film thickness is thin, wrinkles are easily formed during processing, and handling properties are impaired.

【0010】特開平4−261441号公報には、気泡
を膜中に持たせることにより実質的な膜厚を薄くするこ
とができ、それによって膜の透過性を高める技術が開示
されている。気泡が存在すると透過性が向上するが、微
粒子阻止性能は十分なものではない。また、この方法で
は、ろ過層が薄いために耐圧性が劣り、表面ろ過である
ため目詰まりが起こりやすい。そのために、経時的ろ過
処理能力の低下が起こり、ろ過ライフが短くなる。した
がって、これらの方法は、実用的には自ずと限界があっ
た。
[0010] Japanese Patent Application Laid-Open No. 4-261441 discloses a technique in which a substantial film thickness can be reduced by providing bubbles in the film, thereby increasing the permeability of the film. The presence of air bubbles improves the permeability, but does not provide sufficient particle blocking performance. Further, in this method, the pressure resistance is inferior because the filtration layer is thin, and clogging is likely to occur because of surface filtration. As a result, the filtration processing capacity decreases over time, and the filtration life is shortened. Therefore, these methods have practical limitations.

【0011】そこで、ハンドリング性が良好で、強度発
現、微粒子の阻止に必要な膜厚を維持しつつ、かつ、従
来膜よりも液体あるいは気体に関して優れた透過性を示
し得るような微多孔膜が求められていた。
Therefore, a microporous membrane which has good handling properties, maintains the film thickness necessary for developing strength and preventing fine particles, and can exhibit more excellent permeability with respect to liquids or gases than conventional membranes has been developed. Was sought.

【0012】[0012]

【発明が解決しようとする課題】本発明の課題は、ハン
ドリング性が良好で、強度発現、微粒子の阻止に必要な
膜厚を維持しつつ、液体あるいは気体透過性を極限まで
高めたポリエチレンからなる微多孔膜を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a polyethylene made of polyethylene, which has good handling properties, and has a liquid or gas permeability as high as possible while maintaining the film thickness necessary for developing strength and preventing fine particles. It is to provide a microporous membrane.

【0013】[0013]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究を重ねた結果、特定の孔構造
を持つポリエチレン微多孔膜は高気孔率を維持しつつも
優れた強度、微粒子阻止性能、良好なハンドリング性を
有し、かつ、優れた液体あるいは気体透過性を有するこ
とを見出し、本発明をなすに至った。すなわち、本発明
の第一は、ポリエチレン樹脂からなり、膜厚が25μm
を越え1mm以下、平均孔径が0.01〜10μm、数
式(1)で示される構造ファクターFが1.5×107
-2・m-1・Pa-2以上であることを特徴とする高透過
性微多孔膜である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a polyethylene microporous membrane having a specific pore structure was excellent while maintaining a high porosity. The inventors have found that they have strength, fine particle blocking performance, good handling properties, and excellent liquid or gas permeability, and have accomplished the present invention. That is, the first of the present invention is made of polyethylene resin and has a thickness of 25 μm
And 1 mm or less, the average pore diameter is 0.01 to 10 μm, and the structural factor F represented by the formula (1) is 1.5 × 10 7.
A highly permeable microporous membrane, wherein the second is -2 · m -1 · Pa -2 or more.

【0014】[0014]

【数4】 (Equation 4)

【0015】[式中、Fは構造ファクター( 秒-2・m
-1・Pa-2)、 QH2Oは数式(2)に示す透水量(m3
/(秒・m2・Pa))、 Qairは数式(3)に示す空
気透過量(m3/(秒・m2・Pa)]
[Where, F is a structural factor (sec− 2 · m)
-1 · Pa -2 ), Q H2O is the amount of water permeation (m 3
/ (Sec · m 2 · Pa)), Q air is the air permeation amount (m 3 / (sec · m 2 · Pa)] shown in equation (3)

【0016】[0016]

【数5】 (Equation 5)

【0017】[0017]

【数6】 (Equation 6)

【0018】(式中、rは平均孔径(μm)、εは気孔
率(%)、ηは水の粘度(Pa・秒)、τは屈曲率、d
は膜厚(μm)、νは気体の分子速度(m/秒)、Ps
は標準圧力(101325Pa)) 好ましくは、微多孔膜のマトリクス突刺し強度が9.5
×10-2N以上であり、より好ましくは、微多孔膜の気
孔率が80%より大きく95%以下である。本発明の第
二は、前記微多孔膜を含む電子産業用フィルター及び前
記微多孔膜を含む医用分離フィルターである。
(Where r is the average pore diameter (μm), ε is the porosity (%), η is the viscosity of water (Pa · sec), τ is the flexural modulus, d
Is the film thickness (μm), ν is the molecular velocity of the gas (m / sec), Ps
Is a standard pressure (101325 Pa). Preferably, the matrix piercing strength of the microporous membrane is 9.5.
× 10 -2 N or more, and more preferably, the porosity of the microporous membrane is more than 80% and 95% or less. A second aspect of the present invention is a filter for the electronic industry including the microporous membrane and a medical separation filter including the microporous membrane.

【0019】本発明の微多孔膜の膜厚は、25μmを越
え1mm以下であることが必須であり、好ましくは30
〜500μm、より好ましくは30〜300μmであ
る。膜厚が25μm以下であると、微多孔膜の耐圧性等
の機械的強度や微粒子阻止性能が不十分であり、加工時
に皺が入りやすくなり、ハンドリング性に欠ける。一
方、1mmを越えると微多孔膜の連続孔の割合が減少す
る傾向にあり、透過性能に不利益を被るので好ましくな
い。
The thickness of the microporous membrane of the present invention is essential to be more than 25 μm and 1 mm or less, and preferably 30 μm or less.
500500 μm, more preferably 30-300 μm. When the film thickness is 25 μm or less, the mechanical strength such as the pressure resistance of the microporous film and the ability to prevent fine particles are insufficient, wrinkles are easily formed during processing, and the handling property is lacking. On the other hand, if it exceeds 1 mm, the ratio of the continuous pores in the microporous membrane tends to decrease, which is disadvantageous in terms of permeation performance.

【0020】本発明の微多孔膜の平均孔径は、0.01
〜10μmであることが必須であり、好ましくは0.0
15〜5μm、より好ましくは、0.020〜1μmで
ある。平均孔径が0.01μm未満である場合でも重大
な不具合は無いが、孔径が小さくなり過ぎると透過性能
を低下させることになる。一方、平均孔径が10μmを
越えると膜強度が損なわれる。ここで、平均孔径とは、
ハーフドライ法に準拠して得られる孔径をいう。
The average pore size of the microporous membrane of the present invention is 0.01
To 10 μm is essential, preferably 0.0 to 10 μm.
It is 15 to 5 μm, more preferably 0.020 to 1 μm. Even if the average pore size is less than 0.01 μm, there is no serious problem, but if the pore size is too small, the permeability will be reduced. On the other hand, if the average pore size exceeds 10 μm, the film strength will be impaired. Here, the average pore size is
It refers to the pore size obtained according to the half-dry method.

【0021】本発明の微多孔膜の構造ファクターは、
1.5×107-2・m-1・Pa-2以上があることが必
須であり、好ましくは2.5×107-2・m-1・Pa
-2以上、より好ましくは3.0×107-2・m-1・P
-2以上である。微多孔膜キャピラリー内部の流体は、
流体の平均自由工程がキャピラリーの孔径より小さいと
きはポアズイユの流れ、大きいときはクヌーセンの流れ
にしたがうことが知られている。ここで、JISP−8
117準拠の透気度測定における空気の流れをクヌーセ
ンの流れ、常温での透水量測定における水の流れがポア
ズイユの流れにしたがうものと仮定すると、孔径r(μ
m)、屈曲率τ、水の粘度η(Pa・秒)、標準圧力Ps
(101325Pa)、気孔率ε(%)、膜厚d(μm)、気
体の分子速度ν(m/秒)から、透水量QH2O(m3/(秒
・m2・Pa))は数式(2)で表される。
The structure factor of the microporous membrane of the present invention is as follows:
It is essential that there be 1.5 × 10 7 seconds− 2 · m −1 · Pa −2 or more, and preferably 2.5 × 10 7 seconds− 2 · m −1 · Pa
-2 or more, more preferably 3.0 × 10 7 seconds -2 · m -1 · P
a -2 or more. The fluid inside the microporous membrane capillary is
It is known that when the mean free path of a fluid is smaller than the pore diameter of the capillary, it follows the flow of Poiseuille, and when it is larger, it follows the flow of Knudsen. Here, JISP-8
Assuming that the flow of air in the air permeability measurement according to H.117 follows the flow of Knudsen and the flow of water in the measurement of water permeability at room temperature follows the flow of Poiseuille, the pore diameter r (μ
m), flexural modulus τ, water viscosity η (Pa · sec), standard pressure Ps
(101325 Pa), the porosity ε (%), the film thickness d (μm), and the molecular velocity ν (m / sec) of the gas, the water permeation amount Q H2O (m 3 / (sec · m 2 · Pa)) can be expressed by the following equation: It is represented by 2).

【0022】[0022]

【数7】 (Equation 7)

【0023】一方、空気透過速度Qair(m3/(秒・m2
・Pa))は数式(3)で表される。
On the other hand, the air permeation speed Q air (m 3 / (sec · m 2
Pa)) is represented by equation (3).

【0024】[0024]

【数8】 (Equation 8)

【0025】よって、空気透過量Qairと透水量QH2O
積は数式(4)で表される。
Therefore, the product of the air permeation amount Q air and the water permeation amount Q H2O is represented by the following equation (4).

【0026】[0026]

【数9】 (Equation 9)

【0027】ここで、Fを数式(5)で示すと、Fは数
式(1)で表される。
Here, when F is expressed by Expression (5), F is expressed by Expression (1).

【0028】[0028]

【数10】 (Equation 10)

【0029】[0029]

【数11】 [Equation 11]

【0030】即ち、Fは気孔率ε、屈曲率τ、膜厚dで
決まるファクターであり、膜固有の構造ファクターであ
る。従来のポリエチレン微多孔膜においては、優れた透
過性能を得るために、膜厚を薄くすることが必須であっ
た。これに対し、本発明では、構造ファクターFを適切
なものとし、液体あるいは気体の透過性を改善するもの
である。そのためには、気孔率、屈曲率、膜厚から定義
される構造ファクターFを1.5×107-2・m-1
・Pa-2以上にすることが必須である。
That is, F is a factor determined by the porosity ε, the bending rate τ, and the film thickness d, and is a structural factor unique to the film. In conventional polyethylene microporous membranes, it was essential to reduce the film thickness in order to obtain excellent permeation performance. On the other hand, in the present invention, the structure factor F is made appropriate and the permeability of liquid or gas is improved. For this purpose, the structural factor F defined from the porosity, the bending rate, and the film thickness is set to 1.5 × 10 7 seconds− 2 · m −1
-It is essential to make it Pa- 2 or more.

【0031】膜厚を25μmを越え1mm以下、好まし
くは30〜500μm、より好ましくは30〜300μ
mにした上で、構造ファクターFを1.5×107-2
・m -1・Pa-2以上にすることにより、微多孔膜は、高
気孔率を維持しつつも優れた強度、微粒子阻止性能、良
好なハンドリング性を有し、かつ、著しく優れた液体も
しくは気体透過性を有する。構造ファクターFが1.5
×107-2・m-1・Pa-2未満であると、液体ある
いは気体透過性の低下がみられ、ろ過処理量を満足しな
い。
The film thickness is preferably more than 25 μm and 1 mm or less.
30 to 500 μm, more preferably 30 to 300 μm
m, and the structure factor F is set to 1.5 × 107 Second-2
・ M -1・ Pa-2With the above, the microporous membrane has a high
Excellent strength, fine particle rejection, and good porosity
It has good handling properties and also has extremely excellent liquid
Or it has gas permeability. Structure factor F is 1.5
× 107 Second-2・ M-1・ Pa-2Less than, liquid
Or the gas permeability decreases, and the filtration throughput is not satisfied.
No.

【0032】本発明の微多孔膜のマトリクス突き刺し強
度は、好ましくは9.5×10-2N以上である。より好
ましくは、1.0×10-1N以上、最も好ましくは1.
1×10-1N以上である。突き刺し試験における最大荷
重として求められる突き刺し強度は、本質的に、微多孔
膜の膜厚と気孔率に左右される値であり、本発明のよう
な極めて高い気孔率を有する微多孔膜の強度の指標とし
ては不適切である。
The matrix piercing strength of the microporous membrane of the present invention is preferably at least 9.5 × 10 -2 N. More preferably, it is 1.0 × 10 −1 N or more, most preferably 1.
1 × 10 −1 N or more. The piercing strength determined as the maximum load in the piercing test is essentially a value that depends on the thickness and porosity of the microporous membrane, and the strength of the microporous membrane having an extremely high porosity as in the present invention. Not suitable as an indicator.

【0033】したがって、本発明における微多孔膜の真
の強度を評価する指標としてのマトリクス突き刺し強度
とは、突き刺し試験における最大荷重を前記膜厚及び気
孔率によってポリマーマトリクスの厚み1μmあたりの
強度として規格化したものである。マトリクス突き刺し
強度が9.5×10-2N 未満の場合、微多孔膜の力学
的耐久性が不足するため、例えば、微多孔膜を半導体薬
液用フィルターとしての用途に使用する場合、ろ過圧力
に耐えられず膜が破断してしまうため好ましくない。
Therefore, the matrix piercing strength as an index for evaluating the true strength of the microporous membrane in the present invention is defined as the maximum load in the piercing test as the strength per 1 μm thickness of the polymer matrix based on the film thickness and porosity. It is a thing. When the matrix piercing strength is less than 9.5 × 10 -2 N, the mechanical durability of the microporous membrane is insufficient. For example, when the microporous membrane is used for a filter for a semiconductor chemical solution, the filtration pressure is reduced. It is not preferable because it cannot withstand and the film breaks.

【0034】本発明の微多孔膜の気孔率は、好ましくは
80%より大きく95%以下である。より好ましくは8
1〜94%、最も好ましくは82〜93%である。気孔
率が80%以下であると、構造ファクター値が適切なも
のにはならず、十分な透過性が発現できない傾向にあ
り、一方、95%を越えると、微多孔膜の強度や微粒子
阻止性能が不十分となる傾向がある。
The porosity of the microporous membrane of the present invention is preferably more than 80% and 95% or less. More preferably 8
It is 1-94%, most preferably 82-93%. If the porosity is less than 80%, the structural factor value will not be appropriate, and sufficient permeability tends not to be exhibited. On the other hand, if it exceeds 95%, the strength of the microporous membrane and the particle blocking performance Tends to be insufficient.

【0035】本発明で使用するポリエチレンは、エチレ
ンを主体とした結晶性の重合体である高密度ポリエチレ
ン、又はエチレン単位に対してプロピレン、ブテン、ペ
ンテン、ヘキセン、オクテン等のα−オレフィンの単位
を4モル%以下の割合で含む共重合体(線状共重合ポリ
エチレン)であってもよい。さらに、これらにポリプロ
ピレン、中密度ポリエチレン、線状低密度ポリエチレ
ン、低密度ポリエチレン、EPR等のポリオレフィンを
30%以下の割合でブレンドしてもかまわないが、中で
も、高密度ポリエチレンが加工性の点から好ましい。
The polyethylene used in the present invention is a high-density polyethylene which is a crystalline polymer mainly composed of ethylene, or a unit of an α-olefin such as propylene, butene, pentene, hexene and octene with respect to the ethylene unit. A copolymer (linear copolymer polyethylene) containing 4 mol% or less may be used. Polyolefins such as polypropylene, medium-density polyethylene, linear low-density polyethylene, low-density polyethylene, and EPR may be blended with these at a ratio of 30% or less. preferable.

【0036】本発明で使用するポリエチレンの重量平均
分子量は特に限定されないが、好ましくは38万未満、
より好ましくは35万未満、最も好ましくは30万未満
である。平均分子量は、GPC(ゲルパーミエーション
クロマトグラフィー)測定等により得られる重量平均分
子量をさすものであるが、一般的に平均分子量が100
万を超えるような樹脂については、正確なGPC測定が
困難であるので、その代用として粘度法による粘度平均
分子量をあてはめることができる。重量平均分子量が3
8万以上であると、均一に溶融混練し難くなる傾向があ
る。
The weight average molecular weight of the polyethylene used in the present invention is not particularly limited, but is preferably less than 380,000.
More preferably less than 350,000, most preferably less than 300,000. The average molecular weight refers to a weight average molecular weight obtained by GPC (gel permeation chromatography) measurement or the like.
Since accurate GPC measurement is difficult for a resin having more than 10,000, the viscosity average molecular weight by a viscosity method can be applied as a substitute. Weight average molecular weight of 3
If it is 80,000 or more, it tends to be difficult to uniformly melt and knead.

【0037】次に、本発明のポリエチレン微多孔膜の製
造方法について説明する。ポリエチレンをその融点以上
で可塑剤と呼ばれる溶媒に溶解し、ポリマー溶液を作成
する。ここで、ポリマー溶液は構造ファクター値を適正
なものとするため、ポリマー濃度が希薄であることが好
ましい。ポリエチレンポリマー溶液を作成した後、ポリ
マー溶液を結晶化温度以下まで冷却して高分子ゲル体を
生成させ、さらに高分子ゲル体から可塑剤を抽出してポ
リエチレン成形体を得る。その後、可塑剤抽出後にポリ
エチレン成形体を適正な倍率で延伸することによってポ
リエチレン微多孔膜を製造する。ポリエチレン成形体の
延伸後に熱固定あるいは熱緩和等の熱処理を行ってもよ
い。
Next, a method for producing the microporous polyethylene membrane of the present invention will be described. Polyethylene is dissolved in a solvent called a plasticizer at a temperature higher than its melting point to prepare a polymer solution. Here, the polymer solution preferably has a low polymer concentration in order to make the structure factor value appropriate. After preparing the polyethylene polymer solution, the polymer solution is cooled to a temperature lower than the crystallization temperature to form a polymer gel, and a plasticizer is extracted from the polymer gel to obtain a polyethylene molded body. Thereafter, the polyethylene molded body is stretched at an appropriate magnification after extraction of the plasticizer to produce a polyethylene microporous membrane. After stretching the polyethylene molded body, heat treatment such as heat fixing or thermal relaxation may be performed.

【0038】可塑剤としては、その沸点以下の温度でポ
リエチレンと均一な溶液を形成し得る有機化合物が用い
られる。具体的には、デカリン、キシレン、ジオクチル
フタレート、ジブチルフタレート、ステアリルアルコー
ル、オレイルアルコール、デシルアルコール、ノニルア
ルコール、ジフェニルエーテル、n−デカン、n−ドデ
カン、流動パラフィン、パラフィンワックス等が挙げら
れる。これらのうち、流動パラフィン、ジオクチルフタ
レート、デカリンが好ましい。ポリマー溶液中の可塑剤
の重量分率は特に限定されないが、ポリマー溶液は構造
ファクター値を適正なものとするため、ポリマー濃度
は、重量分率が10〜45%の、希薄な濃度であること
が好ましい。
As the plasticizer, an organic compound capable of forming a uniform solution with polyethylene at a temperature lower than its boiling point is used. Specific examples include decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, liquid paraffin, paraffin wax and the like. Of these, liquid paraffin, dioctyl phthalate, and decalin are preferred. The weight fraction of the plasticizer in the polymer solution is not particularly limited. However, in order to make the structure factor value of the polymer solution appropriate, the polymer concentration is a dilute concentration with a weight fraction of 10 to 45%. Is preferred.

【0039】本発明では、可塑剤の重量分率は、90〜
55%であることが好ましく、より好ましくは80〜6
0%、最も好ましくは75〜65%である。55%未満
では適切な構造ファクター値を持つ微多孔膜を得難くな
る傾向にあり、一方、90%を越えると熱溶液の粘度が
低下して成形が困難となり、たとえ成形できたとして
も、膜強度の低下や微粒子阻止性能の低下をきたす。本
発明の微多孔膜を製造するために、先ず、このようにし
て得られたポリエチレン溶液を用いて製膜する。
In the present invention, the weight fraction of the plasticizer is 90 to
It is preferably 55%, more preferably 80 to 6%.
0%, most preferably 75-65%. If it is less than 55%, it tends to be difficult to obtain a microporous membrane having an appropriate structural factor value. On the other hand, if it exceeds 90%, the viscosity of the hot solution decreases and molding becomes difficult. This results in a decrease in strength and a decrease in the ability to prevent fine particles. In order to produce the microporous membrane of the present invention, first, a membrane is formed using the polyethylene solution thus obtained.

【0040】製膜方法は特に限定はされないが、例え
ば、押出し機にポリエチレンのパウダーと可塑剤を供給
し溶融混練したあと、コートハンガーダイから冷却ロー
ルの上へキャストすることによって数10μmから数m
mまでのシートを連続的に成形することができる。本発
明においては超高分子量ポリエチレンを必須成分としな
いため、特別な加熱溶解設備を必要とせず、押出し機に
ポリエチレンと可塑剤を添加するだけで極めて簡便に均
質なゲル状シートの調整を行うことができる。
Although there is no particular limitation on the film forming method, for example, polyethylene powder and a plasticizer are supplied to an extruder, melt-kneaded, and then cast from a coat hanger die onto a cooling roll to obtain a film having a thickness of several tens μm to several m.
m can be formed continuously. In the present invention, since ultra-high molecular weight polyethylene is not an essential component, a special heating and melting equipment is not required, and adjustment of a homogeneous gel-like sheet can be extremely easily performed only by adding polyethylene and a plasticizer to an extruder. Can be.

【0041】次に、得られたゲル状成形物から可塑剤を
抽出除去することによって多孔質膜を製造する。抽出溶
剤としては、例えば、n−ヘキサンやシクロヘキサン等
の炭化水素類、塩化メチレンや1,1,1,−トリクロ
ロエタン等のハロゲン化炭化水素類、エタノールやイソ
プロパノール等のアルコール類、ジエチルエーテルやテ
トラヒドロフラン等のエーテル類、アセトンや2−ブタ
ノン等のケトン類が挙げられる。さらに、環境適応性、
安全性、衛生性を考慮すると、前記溶剤の中でもアルコ
ール類およびケトン類が好適である。
Next, a porous film is produced by extracting and removing the plasticizer from the obtained gel-like molded product. Examples of the extraction solvent include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1, -trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether and tetrahydrofuran. And ketones such as acetone and 2-butanone. In addition, environmental adaptability,
In consideration of safety and hygiene, alcohols and ketones are preferable among the solvents.

【0042】抽出方法は特に限定されないが、可塑剤と
して流動パラフィンやジオクチルフタレートを使用する
場合は、前記抽出溶剤で可塑剤を抽出したあと、得られ
た多孔性膜の孔が閉塞する温度以下で加熱乾燥すること
によって抽出溶剤を除去することができる。また、可塑
剤にデカリン等の低沸点化合物を使用する場合は、微多
孔膜の孔が閉塞する温度以下で加熱乾燥するだけで抽出
溶剤を除去することが可能である。
Although the extraction method is not particularly limited, when liquid paraffin or dioctyl phthalate is used as the plasticizer, after extracting the plasticizer with the above-mentioned extraction solvent, the extraction is performed at a temperature not higher than the temperature at which the pores of the obtained porous membrane are closed. The extraction solvent can be removed by heating and drying. When a low boiling point compound such as decalin is used as the plasticizer, the extraction solvent can be removed only by heating and drying at a temperature lower than the temperature at which the pores of the microporous membrane are closed.

【0043】次に、可塑剤を抽出して得られた多孔性膜
を、少なくとも一軸方向に延伸する。延伸方法としては
特に限定はされないが、構造ファクター値を適切なもの
とするため、適正な倍率で同時二軸延伸あるいは逐次二
軸延伸することが好ましい。延伸温度は、縦方向/横方
向ともに、20〜140℃、好ましくは30〜135
℃、より好ましくは50〜125℃である。延伸倍率
は、好ましくは縦方向/横方向ともに、2〜4倍であ
り、より好ましくは2.5〜4倍、最も好ましくは3〜
4倍である。延伸倍率が2倍未満であると、構造ファク
ター値Fの改善が不十分であり、4倍を越えると、必要
以上に孔構造が粗大になるため、微粒子阻止性能に劣る
ものとなる。それと同時に、延伸倍率が4倍を越える
と、微多孔膜の強度が低下するため望ましくない。
Next, the porous membrane obtained by extracting the plasticizer is stretched in at least one direction. The stretching method is not particularly limited, but it is preferable to perform simultaneous biaxial stretching or sequential biaxial stretching at an appropriate magnification in order to make the structural factor value appropriate. The stretching temperature is 20 to 140 ° C., preferably 30 to 135 in both the longitudinal and transverse directions.
° C, more preferably 50 to 125 ° C. The stretching ratio is preferably 2 to 4 times in both the longitudinal and transverse directions, more preferably 2.5 to 4 times, and most preferably 3 to 4 times.
4 times. If the stretching ratio is less than 2 times, the improvement of the structural factor value F is insufficient, and if it exceeds 4 times, the pore structure becomes unnecessarily coarse, resulting in poor particle blocking performance. At the same time, if the stretching ratio exceeds 4 times, the strength of the microporous membrane decreases, which is not desirable.

【0044】[0044]

【発明の実施の形態】実施例によって本発明をさらに具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。実施例において示される試験方法は次
の通りである。 (1)膜厚 ダイヤルゲージ(尾崎製作所製ピーコックNo.25)
にて測定する。 (2)気孔率 微多孔膜の体積V(cm3)と質量W(g)を測定し、
次式から気孔率ε(%)を計算する。式中、ρは樹脂の
密度(g/cm3)である。 ε=100×(1−W/(ρ×V))
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The test method shown in the examples is as follows. (1) Dial gauge (peacock No.25 manufactured by Ozaki Seisakusho)
Measure with. (2) Porosity The volume V (cm 3 ) and the mass W (g) of the microporous membrane were measured,
The porosity ε (%) is calculated from the following equation. In the formula, ρ is the density of the resin (g / cm 3 ). ε = 100 × (1-W / (ρ × V))

【0045】(3)平均孔径 ハーフドライ法に準拠し、湿潤液体として表面張力γが
9〜16mN/mのフロンを使用して、乾燥曲線及び湿
潤曲線について印可圧力及び空気透過量の測定を行い、
得られた乾燥曲線の1/2の曲線と湿潤曲線が交わる圧
力PHD(Pa)から、次式により平均孔径r(μm)を
求める。 r=2860× γ/PHD (4)重量平均分子量および分子量分布 装置としてWATERS/150−GPC、カラムとし
てShodex/GPCAT−807/S(1本)及び
Tosoh/TSK−GELGMH6−HT(2本)、
溶媒として1,2,4−トリクロロベンゼンを用い、1
60℃、2.5時間の条件で試料を溶解して試料濃度
0.05%(インジェクション量500μl)に調製す
る。測定温度140℃にてGPC(ゲルパーミエーショ
ンクロマトグラフィー)測定を行い、ポリスチレン標準
試料に対してポリエチレン換算定数0.48を用い3次
で計算したキャリブレーションカーブより重量平均分子
量(Mw)及び数平均分子量(Mn)を求め、重量平均
分子量と数平均分子量の比(Mw/Mn)から分子量分
布を求める。
(3) Average Pore Size According to the half-dry method, using fluorocarbon having a surface tension γ of 9 to 16 mN / m as a wetting liquid, the application pressure and the amount of air permeation were measured for the drying curve and the wetting curve. ,
From the pressure P HD (Pa) at which the half of the obtained dry curve and the wet curve intersect, the average pore diameter r (μm) is determined by the following equation. r = 2860 × γ / P HD (4) Weight average molecular weight and molecular weight distribution WATERS / 150-GPC as a device, Shodex / GPCAT-807 / S (1) as a column and Tosoh / TSK-GELGMH 6 -HT (2) ),
Using 1,2,4-trichlorobenzene as a solvent, 1
The sample is dissolved at 60 ° C. for 2.5 hours to adjust the sample concentration to 0.05% (injection amount: 500 μl). GPC (gel permeation chromatography) measurement was performed at a measurement temperature of 140 ° C., and a weight average molecular weight (Mw) and a number average were obtained from a third-order calibration curve using a polyethylene conversion constant of 0.48 with respect to a polystyrene standard sample. The molecular weight (Mn) is determined, and the molecular weight distribution is determined from the ratio (Mw / Mn) between the weight average molecular weight and the number average molecular weight.

【0046】(5)透水量 直径20mmのPP製透液セルに、あらかじめアルコー
ルに浸しておいた微多孔膜をセットし、膜のアルコール
を純水で洗浄したあと、温度25℃、差圧9.81×1
4Paで純水を透過させ、30秒間経過した際の透過
量から、単位時間、単位圧力、単位面積あたりの透過量
を計算し、これを透水量(m3/(秒・m2・Pa))とす
る。 (6)空気透過速度 JISP−8117準拠のガーレー式透気度計にて透気
度を測定する。透気度の値から単位時間、単位圧力、単
位面積あたりの透過量を計算し、これを空気透過速度Q
air(m3/(秒・m2・Pa))とする。
(5) Water Permeation A microporous membrane previously immersed in alcohol was set in a PP liquid permeation cell having a diameter of 20 mm, and the membrane was washed with pure water. .81 x 1
0 4 is transmitted through pure water in Pa, the transmission amount of time has elapsed 30 seconds, the time unit, unit pressure, and calculates the permeation amount per unit area, which water permeation rate (m 3 / (s · m 2 · Pa)). (6) Air Permeation Rate Air permeability is measured with a Gurley-type air permeability meter based on JISP-8117. Calculate the amount of permeation per unit time, unit pressure, and unit area from the value of air permeability, and calculate the permeation rate Q
air (m 3 / (second · m 2 · Pa)).

【0047】(7)マトリクス突刺し強度 カトーテック社製圧縮試験機KES−G5を用いて、針
先端の曲率半径0.5mm、突き刺し速度2mm/秒、
測定温度23±2℃の試験条件で突き刺し試験を行い、
破壊点における最大荷重E(N)を観測した。最大荷重
E、気孔率ε(%)、および膜厚d(μm)より、次式
により規格化して、マトリクス突き刺し強度S(N)と
する。 S=100×E/(d×(100−ε))
(7) Matrix piercing strength Using a compression tester KES-G5 manufactured by Kato Tech Co., Ltd., the radius of curvature of the needle tip is 0.5 mm, the piercing speed is 2 mm / sec,
Perform a piercing test under the test conditions of a measurement temperature of 23 ± 2 ° C.
The maximum load E (N) at the breaking point was observed. Based on the maximum load E, the porosity ε (%), and the film thickness d (μm), the matrix puncture strength S (N) is normalized by the following equation. S = 100 × E / (d × (100−ε))

【0048】[0048]

【実施例1】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)30質量部、流動
パラフィン70質量部及び酸化防止剤としてポリエチレ
ンに対して0.3質量部のテトラキス−[メチレン−3
−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフ
ェニル)プロピオネート]メタンをラボプラストミルを
用い窒素雰囲気下200℃の温度で均一に混練した。混
練後、プレス成形機を用いてゲル状シートを得た。2−
ブタノンを用いて、得られたゲル状シートから流動パラ
フィンを抽出除去し、厚さ230μmのポリエチレンシ
ートを得た。次いで、シートを試験二軸延伸機を用いて
80℃の温度で縦方向/横方向それぞれ50%/秒、1
0%/秒の速度で4×3倍に逐次二軸延伸を行い微多孔
膜を得た。膜の物性を表1に示す。
Example 1 High-density polyethylene (weight average molecular weight 25
30, molecular weight distribution 7, density 0.956) 30 parts by mass, liquid paraffin 70 parts by mass, and 0.3 parts by mass of tetrakis- [methylene-3 based on polyethylene as an antioxidant.
-(3 ', 5'-Di-tert-butyl-4'-hydroxyphenyl) propionate] methane was uniformly kneaded at 200 ° C in a nitrogen atmosphere using a Labo Plastomill. After kneading, a gel-like sheet was obtained using a press molding machine. 2-
Liquid paraffin was extracted and removed from the obtained gel-like sheet using butanone to obtain a polyethylene sheet having a thickness of 230 µm. Then, the sheet was subjected to a test biaxial stretching machine at a temperature of 80.degree.
Biaxial stretching was sequentially performed 4 × 3 times at a rate of 0% / sec to obtain a microporous membrane. Table 1 shows the physical properties of the film.

【0049】[0049]

【実施例2】流動パラフィンを抽出除去したポリエチレ
ンシートを、試験二軸延伸機を用いて90℃の温度で逐
次二軸延伸を行った以外は実施例1と同様の条件で微多
孔膜を得た。膜の物性を表1に示す。
Example 2 A microporous membrane was obtained under the same conditions as in Example 1 except that the polyethylene sheet from which the liquid paraffin had been extracted and removed was sequentially biaxially stretched at 90 ° C. using a test biaxial stretching machine. Was. Table 1 shows the physical properties of the film.

【0050】[0050]

【実施例3】流動パラフィンを抽出除去したポリエチレ
ンシートを、試験二軸延伸機を用いて100℃の温度で
逐次二軸延伸を行った以外は実施例1と同様の条件で微
多孔膜を得た。膜の物性を表1に示す。
Example 3 A microporous membrane was obtained under the same conditions as in Example 1 except that the polyethylene sheet from which the liquid paraffin had been extracted and removed was successively biaxially stretched at 100 ° C. using a test biaxial stretching machine. Was. Table 1 shows the physical properties of the film.

【0051】[0051]

【実施例4】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)32質量部、流動
パラフィン68質量部及び酸化防止剤としてポリエチレ
ンに対して0.3質量部のテトラキス−[メチレン−3
−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフ
ェニル)プロピオネート]メタンを35mm二軸押出機
を用いて窒素雰囲気下200℃で混練し、混練物をリッ
プ間200μmのハンガーコートダイから冷却ロール上
に押出キャストしてゲル状シートを得た。2−ブタノン
を用いて、得られたゲル状シートから流動パラフィンを
抽出除去し、ポリエチレンシートを得た。
Example 4 High-density polyethylene (weight average molecular weight 25
30, molecular weight distribution 7, density 0.956) 32 parts by mass, liquid paraffin 68 parts by mass and 0.3 parts by mass of tetrakis- [methylene-3 based on polyethylene as an antioxidant.
-(3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane is kneaded at 200 ° C. in a nitrogen atmosphere using a 35 mm twin screw extruder, and the kneaded material is hanger-coated with a lip distance of 200 μm. The gel-like sheet was obtained by extrusion casting from a die onto a cooling roll. Liquid paraffin was extracted and removed from the obtained gel-like sheet using 2-butanone to obtain a polyethylene sheet.

【0052】得られたポリエチレンシートをロール延伸
機を用いて80℃で4倍に延伸を行い、テンターを用い
て100℃で幅方向に3倍延伸した後、幅方向の延伸倍
率を10%緩和させつつ100℃にて熱処理し微多孔膜
を得た。膜の物性を表1に示す。
The obtained polyethylene sheet is stretched 4 times at 80 ° C. using a roll stretching machine, stretched 3 times in the width direction at 100 ° C. using a tenter, and the stretching ratio in the width direction is relaxed by 10%. Then, a heat treatment was performed at 100 ° C. to obtain a microporous film. Table 1 shows the physical properties of the film.

【0053】[0053]

【実施例5】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)35質量部、流動
パラフィン65質量部及び酸化防止剤としてポリエチレ
ンに対して0.3質量部のテトラキス−[メチレン−3
−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフ
ェニル)プロピオネート]メタンをヘンシェルミキサー
を用いてドライブレンドし、35mm二軸押出機にて窒
素雰囲気下200℃で混練し、混練物をリップ間200
μmのハンガーコートダイから冷却ロール上に押出キャ
ストしてゲル状シートを得た。2−ブタノンを用いて、
得られたゲル状シートから流動パラフィンを抽出除去
し、ポリエチレンシートを得た。
Example 5 High-density polyethylene (weight average molecular weight 25
35 parts by mass, molecular weight distribution 7, density 0.956), 35 parts by mass of liquid paraffin, and 0.3 parts by mass of tetrakis- [methylene-3 based on polyethylene as an antioxidant.
-(3 ', 5'-Di-t-butyl-4'-hydroxyphenyl) propionate] Methane is dry-blended using a Henschel mixer, kneaded at 200 ° C under a nitrogen atmosphere in a 35 mm twin-screw extruder, and kneaded. Thing between lip 200
A gel sheet was obtained by extrusion casting from a μm hanger coat die onto a cooling roll. Using 2-butanone,
Liquid paraffin was extracted and removed from the obtained gel-like sheet to obtain a polyethylene sheet.

【0054】次いで、ポリエチレンシートを、二軸延伸
機を用いて110℃の温度で縦方向/横方向それぞれ1
0%/秒の速度で3×3倍に逐次二軸延伸を行い、微多
孔性膜を得た。膜の物性を表1に示す。
Then, the polyethylene sheet was subjected to a biaxial stretching machine at 110 ° C. for 1
Biaxial stretching was sequentially performed 3 × 3 times at a rate of 0% / sec to obtain a microporous membrane. Table 1 shows the physical properties of the film.

【0055】[0055]

【実施例6】試験二軸延伸機を用い、120℃で縦横そ
れぞれ10%/秒の速度で4倍に逐次二軸延伸を行った
こと以外は、実施例4と同様にして微多孔膜を得た。膜
の物性を表1に示す。
Example 6 A microporous membrane was formed in the same manner as in Example 4 except that the test biaxial stretching machine was used to perform biaxial stretching four times at 120 ° C. at a rate of 10% / sec in each of longitudinal and transverse directions. Obtained. Table 1 shows the physical properties of the film.

【0056】[0056]

【比較例1】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)40質量部、流動
パラフィン60質量部及び酸化防止剤としてポリエチレ
ンに対して0.3質量部の2, 6−ジ−t−ブチル−p
−クレゾールをヘンシェルミキサーを用いてドライブレ
ンドし、35mm二軸押出機にて窒素雰囲気下200℃
で混練し、混練物を調整し、リップ間200μmのハン
ガーコートダイから冷却ロール上に押出しキャストして
厚さ200μmのゲル状シートを得た。
Comparative Example 1 High-density polyethylene (weight average molecular weight 25
10,000 parts by weight, molecular weight distribution 7, density 0.956) 40 parts by weight, liquid paraffin 60 parts by weight, and 0.3 parts by weight of 2,6-di-t-butyl-p based on polyethylene as an antioxidant.
-Cresol is dry-blended using a Henschel mixer and 200 ° C. in a 35 mm twin screw extruder under a nitrogen atmosphere.
The mixture was kneaded, and the mixture was adjusted and extruded from a hanger coat die having a lip interval of 200 μm onto a cooling roll and cast to obtain a gel-like sheet having a thickness of 200 μm.

【0057】2−ブタノンを用いて、得られたゲル状シ
ートから流動パラフィンを抽出除去し、その後に、付着
した2−ブタノンを乾燥除去した。さらに試験二軸延伸
機を用い、110℃の温度条件下、縦延伸速度、横延伸
速度をそれぞれ500%/秒、20%/秒で、縦延伸倍
率および横延伸倍率をそれぞれ1.5倍で逐次二軸延伸
した。膜の物性を表2に示す。
Using 2-butanone, liquid paraffin was extracted and removed from the obtained gel-like sheet, and then attached 2-butanone was dried and removed. Further, using a test biaxial stretching machine, under a temperature condition of 110 ° C., the longitudinal stretching speed and the transverse stretching speed were respectively 500% / sec and 20% / sec, and the longitudinal stretching ratio and the transverse stretching ratio were each 1.5 times. The film was successively biaxially stretched. Table 2 shows the physical properties of the film.

【0058】[0058]

【比較例2】実施例4で得られたポリエチレンシート
を、110℃の温度条件下、延伸速度10%/秒で倍率
3倍に一軸延伸を行うことによりポリエチレン微多孔膜
を得た。膜の物性を表2に示す。
Comparative Example 2 The polyethylene sheet obtained in Example 4 was uniaxially stretched at a stretching rate of 10% / sec and a magnification of 3 times at a temperature of 110 ° C. to obtain a microporous polyethylene membrane. Table 2 shows the physical properties of the film.

【0059】[0059]

【比較例3】高密度ポリエチレン(重量平均分子量25
万、分子量分布7、密度0.956)50重量部、流動
パラフィン50重量部及び酸化防止剤として、ポリエチ
レンに対して0.3重量部の2, 6−ジ−t−ブチル−
p−クレゾールをヘンシェルミキサーを用いてドライブ
レンドし、35mm二軸押出機にて窒素雰囲気下200
℃で混練し、混練物を調整し、リップ間200μmのハ
ンガーコートダイから冷却ロール上に押出しキャストし
ゲル状シートを得た。
Comparative Example 3 High-density polyethylene (weight average molecular weight 25
10,000, molecular weight distribution 7, density 0.956) 50 parts by weight, liquid paraffin 50 parts by weight and 0.3 parts by weight of 2,6-di-t-butyl-based on polyethylene as an antioxidant.
p-Cresol was dry-blended using a Henschel mixer, and 200 mm in a 35 mm twin-screw extruder under a nitrogen atmosphere.
The mixture was kneaded at ℃, the kneaded material was adjusted, and extruded from a hanger coat die with a lip between 200 μm onto a cooling roll and cast to obtain a gel-like sheet.

【0060】得られたゲル状シートを試験二軸延伸機を
用い、120℃の温度条件下、縦延伸速度、横延伸速度
をそれぞれ10%/秒で、縦延伸倍率および横延伸倍率
をそれぞれ3倍で逐次二軸延伸した。次いで、2−ブタ
ノンを用いて、延伸膜から流動パラフィンを抽出除去
し、付着した2−ブタノンを乾燥除去した。膜の物性を
表2に示す。
Using a test biaxial stretching machine, the obtained gel-like sheet was subjected to a longitudinal stretching speed and a transverse stretching speed of 10% / sec and a longitudinal stretching ratio and a transverse stretching ratio of 3% at 120 ° C., respectively. The film was successively biaxially stretched by a factor of two. Next, liquid paraffin was extracted and removed from the stretched film using 2-butanone, and the attached 2-butanone was dried and removed. Table 2 shows the physical properties of the film.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】[0063]

【発明の効果】本発明のポリエチレン微多孔膜は、構造
ファクターを1.5×107-2・m- 1・Pa-2以上に
することによって、優れた強度性能、優れた微粒子阻止
性能、良好なハンドリング性を有しつつ、かつ、液体あ
るいは気体透過性を極限まで高めたポリエチレン微多孔
膜を提供することができ、各種フィルター材料として好
適である。
Microporous polyethylene membrane of the present invention exhibits the structure factor 1.5 × 10 7 seconds -2 · m - by the 1 · Pa -2 or more, excellent strength properties, excellent particulate rejection It is possible to provide a microporous polyethylene membrane having excellent handling properties and at the same time as having a liquid or gas permeability as high as possible, and is suitable for various filter materials.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C081 AC15 BB02 BB08 BC02 CA021 CB011 DA02 DB05 DB06 DB08 4D006 GA02 GA12 GA41 MA03 MA22 MA23 MA31 MB02 MB03 MB16 MC22X NA05 NA10 NA66 PB24 PC01 PC41 PC80 4F074 AA18 AD01 CB34 CB37 CC02Z CC04X CC05Y DA03 DA08 DA10 DA23 DA24 DA43 5H021 CC08 EE04 HH00 HH02 HH03 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C081 AC15 BB02 BB08 BC02 CA021 CB011 DA02 DB05 DB06 DB08 4D006 GA02 GA12 GA41 MA03 MA22 MA23 MA31 MB02 MB03 MB16 MC22X NA05 NA10 NA66 PB24 PC01 PC41 PC80 4F074 AA18 CC01 CC05 CC04 CC05 CC DA03 DA08 DA10 DA23 DA24 DA43 5H021 CC08 EE04 HH00 HH02 HH03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレン樹脂からなり、膜厚が25
μmを越え1mm以下、平均孔径が0.01〜10μ
m、数式(1)で示される構造ファクターFが1.5×
107-2・m-1・Pa-2以上であることを特徴とする
高透過性微多孔膜。 【数1】 [式中、Fは構造ファクター( 秒-2・m-1・P
-2)、 QH2Oは数式(2)に示す透水量(m3/(秒
・m2・Pa))、 Qairは数式(3)に示す空気透過
量(m3/(秒・m2・Pa)] 【数2】 【数3】 (式中、rは平均孔径(μm)、εは気孔率(%)、η
は水の粘度(Pa・秒)、τは屈曲率、dは膜厚(μ
m)、νは気体の分子速度(m/秒)、Psは標準圧力
(101325Pa))
1. A film made of polyethylene resin and having a thickness of 25
More than μm and 1 mm or less, average pore size is 0.01 to 10 μm
m, the structure factor F represented by the equation (1) is 1.5 ×
High permeability microporous membrane characterized in that it is 10 7 seconds -2 · m -1 · Pa -2 or more. (Equation 1) [Where F is the structural factor (sec - 2m -1P
a -2 ), Q H2O is the amount of water permeation (m 3 / (sec · m 2 · Pa)) shown in equation (2), and Q air is the amount of air permeation (m 3 / (sec · m) shown in equation (3). 2 · Pa)] (Equation 3) (Where r is the average pore diameter (μm), ε is the porosity (%), η
Is the viscosity of water (Pa · sec), τ is the flexural modulus, d is the film thickness (μ
m), ν is the molecular velocity of the gas (m / sec), Ps is the standard pressure (101325 Pa))
【請求項2】 マトリクス突刺し強度が9.5×10-2
N以上である請求項1記載の高透過性微多孔膜。
2. The matrix piercing strength is 9.5 × 10 −2.
2. The highly permeable microporous membrane according to claim 1, wherein the number is N or more.
【請求項3】 気孔率が80%より大きく95%以下で
ある請求項1又は2記載の高透過性微多孔膜。
3. The highly permeable microporous membrane according to claim 1, wherein the porosity is more than 80% and 95% or less.
【請求項4】 請求項1、2又は3記載の高透過性微多
孔膜を含む電子産業用フィルター。
4. A filter for the electronic industry, comprising the highly permeable microporous membrane according to claim 1.
【請求項5】 請求項1、2又は3に記載の高透過性微
多孔膜を含む医用分離フィルター。
5. A medical separation filter comprising the highly permeable microporous membrane according to claim 1, 2 or 3.
JP2001067244A 2001-03-09 2001-03-09 Highly permeable microporous membrane Expired - Fee Related JP5079188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001067244A JP5079188B2 (en) 2001-03-09 2001-03-09 Highly permeable microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001067244A JP5079188B2 (en) 2001-03-09 2001-03-09 Highly permeable microporous membrane

Publications (2)

Publication Number Publication Date
JP2002265658A true JP2002265658A (en) 2002-09-18
JP5079188B2 JP5079188B2 (en) 2012-11-21

Family

ID=18925624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001067244A Expired - Fee Related JP5079188B2 (en) 2001-03-09 2001-03-09 Highly permeable microporous membrane

Country Status (1)

Country Link
JP (1) JP5079188B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054114A (en) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd Lithium ion secondary battery
JP2015167889A (en) * 2014-03-05 2015-09-28 三菱樹脂株式会社 Porous support for water treatment membrane, production method of porous support for water treatment membrane and water treatment membrane
CN107528035A (en) * 2016-06-21 2017-12-29 住友化学株式会社 Layered product
JPWO2018182027A1 (en) * 2017-03-30 2020-02-06 東レ株式会社 Separation membrane and method for producing separation membrane
WO2020183955A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Membrane for concentrating biological particles, concentrating device, concentrating system, concentrating method, and method for detecting biological particles
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20210124410A (en) 2019-03-14 2021-10-14 데이진 가부시키가이샤 Hydrophilic composite porous membrane
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
WO2021216390A1 (en) * 2020-04-20 2021-10-28 Celgard, Llc Material for personal protective equipment
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH0812799A (en) * 1991-06-21 1996-01-16 Tonen Corp Polyolefin finely porous film and its manufacture
JPH11130900A (en) * 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd Finely porous polyethylene membrane
JP2000230074A (en) * 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd Novel partially hydrophilic fine porous membrane and preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812799A (en) * 1991-06-21 1996-01-16 Tonen Corp Polyolefin finely porous film and its manufacture
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH11130900A (en) * 1997-10-27 1999-05-18 Asahi Chem Ind Co Ltd Finely porous polyethylene membrane
JP2000230074A (en) * 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd Novel partially hydrophilic fine porous membrane and preparation thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054114A (en) * 2010-09-01 2012-03-15 Nissan Motor Co Ltd Lithium ion secondary battery
JP2015167889A (en) * 2014-03-05 2015-09-28 三菱樹脂株式会社 Porous support for water treatment membrane, production method of porous support for water treatment membrane and water treatment membrane
CN107528035A (en) * 2016-06-21 2017-12-29 住友化学株式会社 Layered product
CN107528035B (en) * 2016-06-21 2021-05-25 住友化学株式会社 Laminated body
JPWO2018182027A1 (en) * 2017-03-30 2020-02-06 東レ株式会社 Separation membrane and method for producing separation membrane
US11446611B2 (en) 2017-03-30 2022-09-20 Toray Industries, Inc. Separating membrane and method for manufacturing separating membrane
JP7115309B2 (en) 2017-03-30 2022-08-09 東レ株式会社 Separation membrane and method for producing separation membrane
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11038208B2 (en) 2017-12-19 2021-06-15 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158883B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
KR20210124410A (en) 2019-03-14 2021-10-14 데이진 가부시키가이샤 Hydrophilic composite porous membrane
KR20210129131A (en) 2019-03-14 2021-10-27 데이진 가부시키가이샤 Concentration membrane for biological particles, concentration device, concentration system and method for concentration, and method for detecting biological particles
WO2020183955A1 (en) 2019-03-14 2020-09-17 帝人株式会社 Membrane for concentrating biological particles, concentrating device, concentrating system, concentrating method, and method for detecting biological particles
WO2021216390A1 (en) * 2020-04-20 2021-10-28 Celgard, Llc Material for personal protective equipment

Also Published As

Publication number Publication date
JP5079188B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US7635513B1 (en) Heat resistant microporous film
JP4012822B2 (en) Microporous membrane and method for producing the same
CN115487695A (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
TWI669152B (en) Microporous polyvinylidene fluoride flat membrane and producing method thereof
KR102617741B1 (en) Porous polyethylene filter membrane with asymmetric pore structure, and related filters and methods
JP5079188B2 (en) Highly permeable microporous membrane
TWI501806B (en) Porous polymeric membrane, method of processing a fluid, and method of making asymmetric porous polymeric membranes
JP2004016930A (en) Microporous membrane and its production method
CN113694745A (en) UPE porous membrane with high specific surface area, and preparation method and application thereof
WO2007032331A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for production thereof
JP2024138238A (en) Porous polymeric membranes and related filters and methods - Patents.com
JP5909766B2 (en) High throughput membrane with channels
JP6260016B2 (en) PTFE / PFSA blend membrane
JP4855414B2 (en) Skinless porous membrane and manufacturing method thereof
KR20160026820A (en) Porous polytetrafluoroethylene film and method for producing same
TWI795102B (en) Porous polyethylene filter membrane and related filters and related methods
JP4822596B2 (en) Method for producing microporous membrane
JP2017149966A (en) Robust polymeric membrane
CN118179294A (en) PVDF (polyvinylidene fluoride) degerming film and preparation method thereof
CN118179295A (en) Asymmetric PVDF (polyvinylidene fluoride) degerming membrane and preparation method thereof
WO2024162331A1 (en) Polyolefin microporous membrane
CN116571103A (en) UPE porous filter membrane and preparation method and application thereof
JP2017137384A (en) Polyolefin porous membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees