JP2002114727A - Method for producing glyceryl ether - Google Patents
Method for producing glyceryl etherInfo
- Publication number
- JP2002114727A JP2002114727A JP2000303398A JP2000303398A JP2002114727A JP 2002114727 A JP2002114727 A JP 2002114727A JP 2000303398 A JP2000303398 A JP 2000303398A JP 2000303398 A JP2000303398 A JP 2000303398A JP 2002114727 A JP2002114727 A JP 2002114727A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- group
- ether
- glycidyl ether
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Polyethers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はグリセリルエーテル
の製法に関し、詳しくは、高収率で、反応中に生じる顕
著な発熱を制御でき、かつ反応所要時間を大幅に短縮で
きるグリセリルエーテルの製法に関する。The present invention relates to a process for producing glyceryl ether, and more particularly to a process for producing glyceryl ether which can control a remarkable exotherm generated during the reaction in a high yield and can greatly shorten the time required for the reaction.
【0002】[0002]
【従来の技術】グリセリルエーテルの製法としては、
(1)酸又はアルカリの存在下にグリシジルエーテルを加
水分解する方法、(2)相間移動触媒の存在下、エチレン
グリコールモノアルキルエーテルを溶媒としてグリシジ
ルエーテルを加水分解する方法、(3)アルキルハライド
あるいはアルキルスルホン酸エステルと1,2-O-イソプ
ロピリデングリセロールのアルコラートとを反応させた
後、加水分解する方法、(4)グリシジルエーテルとカル
ボニル化合物を反応させて1,3-ジオキソラン化合物を生
成させた後、加水分解する方法、(5)グリシジルエーテ
ルをカルボン酸と反応させてグリセロールモノエステル
を生成させた後、加水分解する方法、(6)グリシジルエ
ーテルと酸無水物とを触媒下で反応させグリセロールジ
エステルを生成させた後、加水分解する方法などが知ら
れている。2. Description of the Related Art As a method for producing glyceryl ether,
(1) a method of hydrolyzing glycidyl ether in the presence of an acid or alkali, (2) a method of hydrolyzing glycidyl ether using ethylene glycol monoalkyl ether as a solvent in the presence of a phase transfer catalyst, (3) an alkyl halide or A method of reacting an alkyl sulfonate with an alcoholate of 1,2-O-isopropylidene glycerol and then hydrolyzing it, (4) reacting glycidyl ether with a carbonyl compound to produce a 1,3-dioxolane compound After, a method of hydrolysis, (5) a method of reacting glycidyl ether with a carboxylic acid to form a glycerol monoester, and then a method of hydrolysis, (6) a reaction of glycidyl ether and an acid anhydride under a catalyst to glycerol A method of producing a diester and then hydrolyzing it is known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら上記の製
法のうち、(1)の方法は反応系が不均一であるため、目
的物の分解又は原料の重合が生じ、収率低下や品質の低
下を招くという問題があり、これを改善する方法が特開
平6-25053号公報、特開平5-43500号公報等に開示されて
いるが、収率が不十分である上に、反応系を均一化させ
るための物質を多量に要し製造コストが嵩んでしまう。
(2)の方法では反応系の不均一は改善されるものの、グ
リシジルエーテルが溶媒と反応してしまい、収率が低下
するという問題がある。(3)の方法は原料の入手が困難
であり、また反応を無水状態で行わねばならない。(4)
の方法は副生物による着色や着臭の問題がある。(5)の
方法は生成した目的物に更にグリシジルエーテルが反応
してしまうため、カルボン酸を大過剰用いる必要があ
る。(6)の方法は厳密な温度制御が必要であり、また酸
無水物を大過剰用いる必要がある。またグリシジルエー
テルの開環時には過大な反応熱が発生するため、(3)以
外の方法を回分的手法で行う場合は反応液の高温化又は
高圧化を来す恐れがあり、反応装置に余裕のある冷却能
力又は耐圧能力が必要となる場合が多い。However, among the above-mentioned production methods, the method (1) has a non-uniform reaction system, so that decomposition of the target substance or polymerization of the raw materials occurs, which leads to a decrease in yield and quality. There is a problem of inviting, a method for improving this is disclosed in JP-A-6-25053, JP-A-5-43500 and the like, but the yield is insufficient and the reaction system is homogenized This requires a large amount of a substance to be used, and increases the production cost.
In the method (2), although the heterogeneity of the reaction system is improved, there is a problem that glycidyl ether reacts with the solvent and the yield decreases. In the method (3), it is difficult to obtain raw materials, and the reaction must be performed in an anhydrous state. (Four)
The method has problems of coloring and odor by by-products. In the method (5), the glycidyl ether is further reacted with the produced target product, so that it is necessary to use a large excess of carboxylic acid. The method (6) requires strict temperature control, and requires a large excess of an acid anhydride. In addition, since excessive heat of reaction is generated at the time of ring opening of glycidyl ether, when a method other than (3) is performed in a batchwise manner, the reaction solution may be heated or pressurized, so that there is not enough room for the reaction apparatus. In many cases, a certain cooling capacity or pressure resistance is required.
【0004】本発明は、一工程にて容易に高い反応収率
を得ることができ、かつ反応中に発生する発熱を安定に
制御できるグリセリルエーテルの製法を提供することを
課題とする。An object of the present invention is to provide a process for producing glyceryl ether, which can easily obtain a high reaction yield in one step and can stably control the heat generated during the reaction.
【0005】[0005]
【課題を解決するための手段】本発明者らは、カルボン
酸、塩基及び水の存在する混合液にグリシジルエーテル
を供給しながら反応を行うことにより、原料を一括に仕
込み反応させる場合と比べ、格段に反応収率が向上で
き、また原料供給速度をコントロールすることにより反
応中に生じる過大な反応熱量を制御でき、かつ過大な時
間を要する反応条件においてかなりの時間短縮効果が得
られることを見出した。Means for Solving the Problems The inventors of the present invention carry out a reaction while supplying glycidyl ether to a mixed solution containing a carboxylic acid, a base and water. It has been found that the reaction yield can be remarkably improved, the amount of reaction heat generated during the reaction can be controlled by controlling the raw material supply rate, and a considerable time reduction effect can be obtained under reaction conditions requiring an excessive amount of time. Was.
【0006】すなわち、本発明は、カルボン酸、塩基及
び水を含有する混合液に、一般式(1)[0006] That is, the present invention relates to a mixed solution containing a carboxylic acid, a base and water, which has the general formula (1)
【0007】[0007]
【化4】 Embedded image
【0008】〔式中、R1は炭素数1〜32の炭化水素基
を示し、A1は炭素数2〜4のアルキレン基を示し、p
は0〜200の数を示す。〕で表されるグリシジルエーテ
ル(以下、「グリシジルエーテル(1)」という)を供給
しながらエポキシ基の開環反応を行う、一般式(2)Wherein R 1 represents a hydrocarbon group having 1 to 32 carbon atoms; A 1 represents an alkylene group having 2 to 4 carbon atoms;
Represents a number from 0 to 200. A ring-opening reaction of an epoxy group is performed while supplying a glycidyl ether represented by the following formula (hereinafter, referred to as “glycidyl ether (1)”);
【0009】[0009]
【化5】 Embedded image
【0010】〔式中、R1、A1及びpは前記と同じ意味
を示す。〕で表されるグリセリルエーテル(以下、「グ
リセリルエーテル(2)」という)の製法を提供するもの
である。[Wherein R 1 , A 1 and p have the same meaning as described above. ] (Hereinafter referred to as "glyceryl ether (2)").
【0011】[0011]
【発明の実施の形態】一般式(1)中のR1で示される炭素
数1〜32の炭化水素基としては、炭素数1〜32の直鎖又
は分岐鎖のアルキル基、炭素数2〜32の直鎖又は分岐鎖
のアルケニル基、炭素数6〜14のアリール基等が挙げら
れる。A1で示される炭素数2〜4のアルキレン基とし
ては、エチレン基、トリメチレン基、プロピレン基、ブ
チレン基等が挙げられる。pとしては0が好ましい。R
1-(OA1)p−の具体例としては、メチル基、エチル基、
n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル
基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシ
ル基、n-ウンデシル基、n-ドデシル基、n-トリデシル
基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデ
シル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナ
デシル基、n-エイコシル基、n-ヘンエイコシル基、n-ド
コシル基、n-トリコシル基、n-テトラコシル基、n-ペン
タコシル基、n-ヘキサコシル基、2-エチルヘキシル基、
3,5-ジメチルヘキシル基、フェニル基、ナフチル基、9-
オクタデセニル基、9,12-オクタデカジエニル基、n-ブ
トキシエトキシエチル基、n-オクチルオキシエチル基等
が挙げられる。BEST MODE FOR CARRYING OUT THE INVENTION The hydrocarbon group having 1 to 32 carbon atoms represented by R 1 in the general formula (1) is a linear or branched alkyl group having 1 to 32 carbon atoms, Examples thereof include a linear or branched alkenyl group having 32 carbon atoms and an aryl group having 6 to 14 carbon atoms. Examples of the alkylene group having 2 to 4 carbon atoms represented by A 1 include an ethylene group, a trimethylene group, a propylene group, and a butylene group. p is preferably 0. R
1 - (OA 1) p - Specific examples are methyl group, an ethyl group,
n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group, n-heneicosyl group, n-docosyl group, n-tricosyl group, n-tetracosyl group, n-pentacosyl group, n-hexacosyl group, 2-ethylhexyl group,
3,5-dimethylhexyl group, phenyl group, naphthyl group, 9-
Examples include an octadecenyl group, a 9,12-octadecadienyl group, an n-butoxyethoxyethyl group, and an n-octyloxyethyl group.
【0012】カルボン酸としては、炭素数1〜36の直鎖
又は分岐鎖の、飽和又は不飽和のカルボン酸が挙げられ
る。このようなカルボン酸としては、ギ酸、酢酸、オク
タン酸、ラウリン酸、ステアリン酸、トリアコンタン
酸、2-エチルヘキサン酸、3,5-ジメチルヘキサン酸等の
飽和脂肪酸;オレイン酸、リノール酸等の不飽和脂肪
酸;シュウ酸、コハク酸、グルタル酸、アジピン酸等の
2価の脂肪酸;安息香酸、フタル酸等の芳香族カルボン
酸;グリコール酸、乳酸、クエン酸、リンゴ酸、グルコ
ン酸等のヒドロキシカルボン酸;クロロ酢酸等のハロゲ
ノカルボン酸が挙げられる。この中でも炭素数8〜24の
カルボン酸は、塩基との共存により、カルボン酸塩を形
成して乳化作用を発現し、反応の不均一性を緩和できる
ため好ましい。カルボン酸の添加量は、グリシジルエー
テル(1)の総供給量に対し0.002〜0.5001当量、特に0.02
〜0.31当量が好ましい。Examples of the carboxylic acid include a linear or branched, saturated or unsaturated carboxylic acid having 1 to 36 carbon atoms. Examples of such carboxylic acids include saturated fatty acids such as formic acid, acetic acid, octanoic acid, lauric acid, stearic acid, triacontanic acid, 2-ethylhexanoic acid, and 3,5-dimethylhexanoic acid; oleic acid, linoleic acid, and the like. Unsaturated fatty acids; divalent fatty acids such as oxalic acid, succinic acid, glutaric acid and adipic acid; aromatic carboxylic acids such as benzoic acid and phthalic acid; hydroxy such as glycolic acid, lactic acid, citric acid, malic acid and gluconic acid Carboxylic acids; halogenocarboxylic acids such as chloroacetic acid. Among them, a carboxylic acid having 8 to 24 carbon atoms is preferable because coexistence with a base forms a carboxylate to exhibit an emulsifying action and can reduce the nonuniformity of the reaction. The amount of the carboxylic acid to be added is 0.002 to 0.5001 equivalents, particularly 0.02 to the total supply of the glycidyl ether (1).
~ 0.31 equivalents are preferred.
【0013】塩基としては、水酸化ナトリウム、水酸化
カリウム等のアルカリ金属水酸化物、水酸化カルシウ
ム、水酸化バリウム等のアルカリ土類金属水酸化物が挙
げられるが、経済面からは水酸化ナトリウム及び水酸化
カリウムが好ましい。塩基の添加量は、グリシジルエー
テル(1)の総供給量に対し0.001〜0.5当量、特に0.01〜
0.3当量が好ましい。[0013] Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide. And potassium hydroxide are preferred. The amount of the base added is 0.001 to 0.5 equivalent, particularly 0.01 to 0.5 equivalent to the total supply amount of glycidyl ether (1).
0.3 equivalent is preferred.
【0014】カルボン酸と塩基の比率を、カルボン酸の
カルボキシ基が塩基に対し過剰とすることにより、グリ
セリルエーテル(2)の反応収率を高くすることができ
る。なお、ここでいう反応収率とは、グリシジルエーテ
ル(1)に対する生成されたグリセリルエーテル(2)とグリ
セロールカルボン酸モノエステルの和のモル比率を指
す。グリセロールカルボン酸モノエステルは反応終了し
た液のカルボン酸に対する塩基のモル比を等量以上とす
ることにより容易にグリセリルエーテル(2)へ変換する
ことができる。カルボン酸の過剰度としては、グリシジ
ルエーテル(1)の総供給量に対するカルボン酸の当量数
から塩基の当量数を減じた値が0.001〜0.5当量、特に0.
01〜0.3当量となるのが好ましい。The reaction ratio of glyceryl ether (2) can be increased by making the ratio of the carboxylic acid to the base an excess of the carboxy group of the carboxylic acid to the base. Here, the reaction yield refers to the molar ratio of the sum of glyceryl ether (2) and glycerol carboxylic acid monoester to glycidyl ether (1). Glycerol carboxylic acid monoester can be easily converted to glyceryl ether (2) by making the molar ratio of the base to carboxylic acid in the solution after the reaction equal to or more than the equivalent. As the excess of the carboxylic acid, the value obtained by subtracting the number of equivalents of the base from the number of equivalents of the carboxylic acid relative to the total supply amount of glycidyl ether (1) is 0.001 to 0.5 equivalents, particularly 0.1.
It is preferably from 01 to 0.3 equivalent.
【0015】水の使用量は、グリシジルエーテル(1)の
総供給量に対し、1〜100モル当量、特に1〜10モル当
量が好ましい。水の使用量が多いと反応液が不均一化し
やすく、塩基濃度が希薄となるため反応速度が遅れる、
単位容量あたりのグリセリルエーテルの生産性が低下す
るといった問題が生じる。また、水は反応液の均一化を
助長する目的で、反応中にグリシジルエーテル(1)の供
給に並行して任意量を追加供給してもよい。The amount of water used is preferably from 1 to 100 molar equivalents, particularly preferably from 1 to 10 molar equivalents, based on the total supply of glycidyl ether (1). If the amount of water used is large, the reaction solution is likely to be non-uniform, and the base concentration will be diluted, resulting in a slow reaction rate.
There is a problem that the productivity of glyceryl ether per unit volume is reduced. Further, an arbitrary amount of water may be additionally supplied in parallel with the supply of glycidyl ether (1) during the reaction for the purpose of promoting uniformity of the reaction solution.
【0016】グリシジルエーテル(1)の供給方法は、時
間的に連続に一定供給速度で行う方法、時間的に連続に
供給速度を変化させる方法、間欠的に一定供給速度で行
う方法、間欠的に供給速度を変化させる方法などが挙げ
られる。供給位置についても、反応液中、反応液気液界
面、反応液気液界面上のいずれでもよい。The method of supplying the glycidyl ether (1) includes a method of continuously supplying at a constant supply rate over time, a method of continuously changing the supply rate over time, a method of performing an intermittent supply at a constant supply rate, A method of changing the supply speed is exemplified. The supply position may be any position in the reaction solution, on the gas-liquid interface of the reaction solution, or on the gas-liquid interface of the reaction solution.
【0017】グリシジルエーテル(1)の供給は、供給す
るグリシジルエーテル(1)が反応液中で速やかに反応消
費され濃度的な蓄積を及ぼさない速度で行うことが好ま
しい。このようなグリシジルエーテル(1)が速やかに消
費される速度で供給した場合には、反応量に比例した反
応熱が発生することから、必要となる冷却能力を容易に
見込むことができる。逆に消費される速度より速い供給
を行うと、反応系内にグリシジルエーテル(1)が蓄積
し、最初から一括で仕込み反応する条件に近づき、本発
明の効果が薄れてしまう。グリシジルエーテル(1)の濃
度的な蓄積を確認する方法として、反応液の濁り具合を
指標とすることができる。反応液中の生成したグリセリ
ルエーテルに対するグリシジルエーテル(1)の比率が大
きくなると、分層し外観が濁る現象が観察される。これ
を利用し、反応液の透明性を維持するようにグリシジル
エーテル(1)の供給量を制御することにより、前記目的
を達することができる。透明性を管理する方法として
は、特に限定されないが、透明ガラス容器で事前に濁り
の生じない反応条件を予め選定しておく方法、吸光光度
計を利用して濁りが発生した際にグリシジルエーテル
(1)の供給量を調整する方法等を挙げることができる。
この場合において、石英ガラスセル(10mm光路長,20
℃)を用い600nmの波長にて反応液の透過光を測定した
とき、反応液の透明性の指標として、グリシジルエーテ
ル(1)をブランクとした際の吸光度1以下が好ましく、
0.3以下がより好ましい。The glycidyl ether (1) is preferably supplied at such a rate that the glycidyl ether (1) to be supplied is rapidly consumed in the reaction solution and does not cause concentration accumulation. When such a glycidyl ether (1) is supplied at a speed at which the glycidyl ether (1) is rapidly consumed, the required cooling capacity can be easily estimated because reaction heat proportional to the reaction amount is generated. Conversely, if the supply is performed at a rate higher than the consumption rate, glycidyl ether (1) accumulates in the reaction system, and the conditions for the batch reaction from the beginning are approached, and the effect of the present invention is diminished. As a method for confirming the concentration accumulation of glycidyl ether (1), the degree of turbidity of the reaction solution can be used as an index. When the ratio of glycidyl ether (1) to the generated glyceryl ether in the reaction solution increases, a phenomenon in which the layers are separated and the appearance becomes turbid is observed. By utilizing this, the above object can be achieved by controlling the supply amount of glycidyl ether (1) so as to maintain the transparency of the reaction solution. The method for controlling the transparency is not particularly limited, but a method in which reaction conditions in which turbidity does not occur in a transparent glass container is previously selected, and glycidyl ether is used when turbidity occurs using an absorptiometer.
The method of adjusting the supply amount of (1) can be mentioned.
In this case, a quartz glass cell (10 mm optical path length, 20 mm
C)), when measuring the transmitted light of the reaction solution at a wavelength of 600 nm, as an index of the transparency of the reaction solution, preferably an absorbance of 1 or less when glycidyl ether (1) is blank,
0.3 or less is more preferable.
【0018】本発明においては、カルボン酸、塩基及び
水を含有する混合液中に界面活性剤を添加しておくこと
により、分層する反応液が乳化分散又は均一化し、反応
速度が加速し、反応所要時間の大幅な短縮効果を得るこ
とができる。かかる界面活性剤としては、陰イオン界面
活性剤、陽イオン界面活性剤、両性界面活性剤、非イオ
ン界面活性剤のいずれも用いることができる。陰イオン
界面活性剤としては、石鹸、硫酸アルキル塩、硫酸アル
キルポリオキシエチレン塩、アルキルベンゼンスルホン
酸塩、α-オレフィンスルホン酸塩、モノアルキルリン
酸塩、N-アシル-N-メチルタウレート、アシルイセチオ
ン酸塩、N-アシルグルタメート、N-アシルザルコシネー
ト、アルケニルコハク酸塩等が挙げられ、陽イオン界面
活性剤としては、アルキルトリメチルアンモニウム塩、
ジアルキルジメチルアンモニウム塩、トリエタノールア
ミン・ジ脂肪酸エステル四級塩、アルキルベンゼンジメ
チルアンモニウム塩、アルキルアンモニウム塩、アルキ
ルピリジニウム塩等が挙げられ、両性界面活性剤として
は、アルキルジメチルアミンオキシド、アルキルカルボ
キシベタイン、アルキルスルホベタイン、アミドアミノ
酸塩等が挙げられ、非イオン界面活性剤としては、ポリ
オキシエチレンアルキルエーテル、ポリエオキシエチレ
ンアルキルフェニルエーテル、脂肪酸ポリオキシエチレ
ンエステル、脂肪酸ソルビタンエステル、脂肪酸ポリオ
キシエチレンソルビタンエステル、脂肪酸ショ糖エステ
ル、アルキルポリグルコシド、脂肪酸ジエタノールアミ
ド、脂肪酸モノグリセリド、アルキルモノグリセリルエ
ーテル等が挙げられる。これらの中でもアルキルグリセ
リルエーテル、特に次の一般式(3)In the present invention, by adding a surfactant to a mixed solution containing a carboxylic acid, a base and water, the reaction solution to be separated is emulsified or dispersed, and the reaction speed is accelerated. A significant effect of shortening the required reaction time can be obtained. As such a surfactant, any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used. Examples of anionic surfactants include soap, alkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, α-olefin sulfonate, monoalkyl phosphate, N-acyl-N-methyltaurate, and acyl isethione. Acid salts, N-acyl glutamates, N-acyl sarcosinates, alkenyl succinates, and the like.As the cationic surfactant, alkyl trimethyl ammonium salt,
Dialkyldimethylammonium salts, triethanolamine / difatty acid ester quaternary salts, alkylbenzenedimethylammonium salts, alkylammonium salts, alkylpyridinium salts, etc., and the amphoteric surfactants include alkyldimethylamine oxide, alkylcarboxybetaine, alkyl Sulfobetaine, amide amino acid salts and the like, and nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, fatty acid polyoxyethylene ester, fatty acid sorbitan ester, fatty acid polyoxyethylene sorbitan ester, fatty acid Sucrose ester, alkyl polyglucoside, fatty acid diethanolamide, fatty acid monoglyceride, alkyl monoglyceryl ether and the like. That. Among these, alkyl glyceryl ethers, particularly the following general formula (3)
【0019】[0019]
【化6】 Embedded image
【0020】〔式中、R2は炭素数1〜32の炭化水素基
を示し、A2は炭素数2〜4のアルキレン基を示し、q
は0〜200の数を示す。〕Wherein R 2 represents a hydrocarbon group having 1 to 32 carbon atoms, A 2 represents an alkylene group having 2 to 4 carbon atoms, and q
Represents a number from 0 to 200. ]
【0021】で表されるアルキルグリセリルエーテル
は、グリシジルエーテル(1)の分子構造に類似している
ため、反応系を均相化する能力が高いこと、グリシジル
エーテル(1)の加水分解により容易に得られることから
非常に好ましい。一般式(3)中のR 2、A2及びqとして
は、それぞれ前述の一般式(1)中のR1、A1及びpと同
様のものが挙げられる。Alkyl glyceryl ether represented by
Is similar to the molecular structure of glycidyl ether (1)
Because of its high ability to equalize the reaction system, glycidyl
Easily obtained by hydrolysis of ether (1)
Very preferred. R in the general formula (3) Two, ATwoAnd q
Is R in the aforementioned general formula (1).1, A1Same as p
And the like.
【0022】界面活性剤としてアルキルグリセリルエー
テルを使用する場合、反応生成物の一部を反応開始時に
利用してもよい。When alkyl glyceryl ether is used as the surfactant, a part of the reaction product may be used at the start of the reaction.
【0023】界面活性剤の添加量は、グリシジルエーテ
ル(1)の総供給量に対して0.1〜50重量%、特に1〜30重
量%が好ましい。添加する量が少な過ぎると反応液が乳
化又は均一化しにくくなり、グリシジルエーテル(1)を
供給できる速度が制約されたり、反応収率の低下を引き
起こしたりする。また添加量が多すぎると、単位容積あ
たりのグリセリルエーテル生成量が減少し、生産効率が
低下してしまう。The amount of the surfactant to be added is preferably 0.1 to 50% by weight, particularly preferably 1 to 30% by weight, based on the total amount of the glycidyl ether (1). If the added amount is too small, the reaction liquid is difficult to emulsify or homogenize, and the rate at which glycidyl ether (1) can be supplied is restricted, or the reaction yield is reduced. On the other hand, if the addition amount is too large, the amount of glyceryl ether produced per unit volume decreases, and the production efficiency decreases.
【0024】反応温度は、60〜300℃、特に80〜200℃が
好ましい。温度が低すぎると反応に長時間を要すること
となり、温度が高すぎると水蒸気圧により高圧化し設備
的な負荷が大きくなる。The reaction temperature is preferably from 60 to 300 ° C, particularly preferably from 80 to 200 ° C. If the temperature is too low, a long time is required for the reaction, and if the temperature is too high, the pressure increases due to the steam pressure, and the facility load increases.
【0025】本発明に用いる攪拌翼については特に限定
されないが、平羽根、傾斜付平羽根、平羽根ディスクタ
ービン、傾斜羽根ディスクタービン、湾曲羽根、プロペ
ラ、ファウドラー型、ブルマージン型、アンカー型、フ
ルゾーン型、マックスブレンド型、ホモミキサー等を挙
げることができる。この中でも、不均一相での反応には
平羽根、傾斜付平羽根、平羽根ディスクタービン、傾斜
羽根ディスクタービン、ホモミキサーのような高剪断力
タイプの攪拌翼を用いることが、反応性の面から好まし
い。The stirring blade used in the present invention is not particularly limited. Flat blades, inclined flat blades, flat blade disk turbines, inclined blade disk turbines, curved blades, propellers, faudler types, bull margin types, anchor types, full zones Mold, a max blend type, a homomixer and the like. Among them, for the reaction in the heterogeneous phase, it is necessary to use a high-shear type stirring blade such as a flat blade, a flat blade with a slope, a flat blade disk turbine, a tilted blade disk turbine, and a homomixer. Is preferred.
【0026】[0026]
【実施例】実施例1 酢酸(キシダ化学社製;1級,純度99%以上)434g、
水酸化ナトリウム(和光純薬工業社製;特級,純度95
%)286g及びイオン交換水1289gを20Lオートクレー
ブに入れ、2枚傾斜平羽根(幅3cm,高さ1cm,傾斜角
45度)にて680rpmの攪拌を行いながら、マントルヒータ
にて200℃まで昇温した。次いで200℃に保ちながら、n-
オクチルグリシジルエーテル(純度98%)6800gを一定
流量にて2時間連続的にオートクレーブ内に滴下し、熟
成のため1時間恒温保持した後、80℃まで冷却した。計
3時間の反応操作において、昇温を防止するための空冷
や水冷などの冷却操作を必要としなかった。更に反応生
成物に水酸化ナトリウムを15g添加し、1時間攪拌保持
した後、最終的な反応生成物をガスクロマトグラフィー
にて定量分析を行った結果、n-オクチルグリセリルエー
テルの収率は98%であった。Example 1 434 g of acetic acid (manufactured by Kishida Chemical Co .; primary grade, purity 99% or more),
Sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 95)
%) 286 g and ion-exchanged water 1289 g are put into a 20 L autoclave, and two inclined flat blades (width 3 cm, height 1 cm, inclination angle)
While stirring at 680 rpm at 45 °), the temperature was raised to 200 ° C. by a mantle heater. Then, while maintaining at 200 ° C, n-
6800 g of octyl glycidyl ether (purity: 98%) was continuously dropped into the autoclave at a constant flow rate for 2 hours, kept at a constant temperature for 1 hour for aging, and then cooled to 80 ° C. In the reaction operation for a total of 3 hours, a cooling operation such as air cooling or water cooling for preventing temperature rise was not required. Further, 15 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octylglyceryl ether was 98%. Met.
【0027】比較例1 実施例1において、n-オクチルグリシジルエーテル、酢
酸、水酸化ナトリウム及びイオン交換水を一括して仕込
み、800rpmで攪拌しながら200℃で3時間保持した後冷
却する以外は同様に操作を行ったところ、200℃到達18
分後に、発熱のため235℃になったので、送風により200
℃まで空冷した後、200℃を維持した。またn-オクチル
グリセリルエーテルの収率は94%であった。Comparative Example 1 The procedure of Example 1 was repeated, except that n-octyl glycidyl ether, acetic acid, sodium hydroxide and ion-exchanged water were charged all at once, kept at 200 ° C. for 3 hours with stirring at 800 rpm, and then cooled. 200 ° C reached 18 ° C
Minutes later, the temperature reached 235 ° C due to heat generation.
After air cooling to 200C, the temperature was maintained at 200C. The yield of n-octyl glyceryl ether was 94%.
【0028】実施例2 アジピン酸(和光純薬工業社製;特級,純度99.5%以
上)5.12g、水酸化ナトリウム2.58g及びイオン交換水
78.90gを300mLオートクレーブに入れ、2枚傾斜平羽根
(幅3cm,高さ1cm,傾斜角45度)にて800rpmの攪拌を
行いながら、マントルヒータにて100℃まで昇温した。
次いで100℃に保ちながら、n-ブチルグリシジルエーテ
ル(キシダ化学社製;1級,純度95%以上)120gを一
定流量にて18時間連続的にオートクレーブ内に滴下し、
熟成のため1時間恒温保持した後、80℃まで冷却した。
更に反応生成物に水酸化ナトリウムを0.37g添加し、1
時間攪拌保持した後、最終的な反応生成物をガスクロマ
トグラフィーにて定量分析を行った結果、n-ブチルグリ
セリルエーテルの収率は95%であった。Example 2 5.12 g of adipic acid (manufactured by Wako Pure Chemical Industries; special grade, purity of 99.5% or more), 2.58 g of sodium hydroxide and ion-exchanged water
78.90 g was placed in a 300 mL autoclave, and the temperature was raised to 100 ° C. with a mantle heater while stirring at 800 rpm with two inclined flat blades (width 3 cm, height 1 cm, inclination angle 45 °).
Then, while maintaining the temperature at 100 ° C., 120 g of n-butyl glycidyl ether (manufactured by Kishida Chemical Co., Ltd., primary grade, purity of 95% or more) was dropped into the autoclave continuously at a constant flow rate for 18 hours,
After being kept at a constant temperature for one hour for aging, it was cooled to 80 ° C.
Further, 0.37 g of sodium hydroxide was added to the reaction product, and 1
After stirring and maintaining for a period of time, the final reaction product was subjected to quantitative analysis by gas chromatography, and as a result, the yield of n-butylglyceryl ether was 95%.
【0029】比較例2 実施例2において、n-ブチルグリシジルエーテル、アジ
ピン酸、水酸化ナトリウム及びイオン交換水を一括して
仕込み、100℃で18時間撹拌保持した後冷却する以外は
同様に操作を行ったところ、n-ブチルグリセリルエーテ
ルの収率は92%であった。Comparative Example 2 The procedure of Example 2 was repeated except that n-butyl glycidyl ether, adipic acid, sodium hydroxide and ion-exchanged water were charged all at once, stirred at 100 ° C. for 18 hours, cooled and cooled. As a result, the yield of n-butyl glyceryl ether was 92%.
【0030】実施例3 クエン酸(キシダ化学社製;特級,純度99.5%以上)0.
98g、水酸化カルシウム(和光純薬工業社製;特級,純
度96%以上)0.30g及びイオン交換水110.46gを300mL
オートクレーブに入れ、2枚傾斜平羽根(幅3cm,高さ
1cm,傾斜角45度)にて800rpmの攪拌を行いながら、マ
ントルヒータにて200℃まで昇温した。次いで200℃に保
ちながら、n-ブチルグリシジルエーテル(キシダ化学社
製;1級,純度95%以上)105gを一定流量にて3時間
連続的にオートクレーブ内に滴下し、熟成のため1.5時
間恒温保持した後、80℃に冷却した。計4.5時間の反応
操作において、昇温を防止するための空冷や水冷などの
冷却操作を必要としなかった。更に反応生成物に水酸化
カルシウムを0.30g添加し、1時間攪拌保持した後、最
終的な反応生成物をガスクロマトグラフィーにて定量分
析を行った結果、n-ブチルグリセリルエーテルの収率は
93%であった。Example 3 Citric acid (manufactured by Kishida Chemical Co .; special grade, purity 99.5% or more)
300 g of 98 g, 0.30 g of calcium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 96% or more) and 110.46 g of ion-exchanged water
The mixture was placed in an autoclave and heated to 200 ° C. with a mantle heater while stirring at 800 rpm with two inclined flat blades (width 3 cm, height 1 cm, inclination angle 45 °). Then, while maintaining at 200 ° C., 105 g of n-butyl glycidyl ether (manufactured by Kishida Chemical Co .; primary grade, purity of 95% or more) was continuously dropped into the autoclave at a constant flow rate for 3 hours, and kept at a constant temperature for 1.5 hours for aging. Then, it was cooled to 80 ° C. In the reaction operation for a total of 4.5 hours, no cooling operation such as air cooling or water cooling for preventing temperature rise was required. Further, 0.30 g of calcium hydroxide was added to the reaction product, and the mixture was stirred and held for 1 hour. The final reaction product was quantitatively analyzed by gas chromatography. As a result, the yield of n-butyl glyceryl ether was as follows.
93%.
【0031】比較例3 実施例3において、n-ブチルグリシジルエーテル、クエ
ン酸、水酸化カルシウム及びイオン交換水を一括して仕
込み、200℃で1時間撹拌保持した後冷却する以外は同
様に操作を行ったところ、n-ブチルグリセリルエーテル
の収率は90%であった。Comparative Example 3 The procedure of Example 3 was repeated except that n-butyl glycidyl ether, citric acid, calcium hydroxide and ion-exchanged water were charged all at once, stirred at 200 ° C. for 1 hour, cooled and cooled. As a result, the yield of n-butyl glyceryl ether was 90%.
【0032】実施例4 ラウリン酸(商品名ルナックL-98,花王社製,純度98%
以上)86.00g、水酸化カリウム(キシダ化学社製;1
級,純度85%)17.35g及びイオン交換水75.84gを2L
オートクレーブに入れ、4枚湾曲平羽根(幅5cm,高さ
1.1cm)にて400rpmの攪拌を行いながら、マントルヒー
タにて110℃まで昇温した。次いで110℃に保ちながら、
n-オクチルグリシジルエーテル(純度98%)1000g及び
イオン交換水113.76gを一定流量にて6時間連続的にオ
ートクレーブ内に滴下し、熟成のため2時間恒温保持し
た後、80℃に冷却した。更に反応生成物に水酸化カリウ
ムを10.41g添加し、1時間攪拌保持した後、最終的な
反応生成物をガスクロマトグラフィーにて定量分析を行
った結果、n-オクチルグリセリルエーテルの収率は97%
であった。Example 4 Lauric acid (trade name: LUNAC L-98, manufactured by Kao Corporation, purity 98%)
86.00 g, potassium hydroxide (Kishida Chemical; 1
Grade, purity 85%) 2L of 17.35g and 75.84g of deionized water
Put in an autoclave, 4 flat curved blades (5 cm wide, height
While stirring at 400 rpm at 1.1 cm), the temperature was increased to 110 ° C. by a mantle heater. Then, while keeping at 110 ° C,
1000 g of n-octyl glycidyl ether (98% purity) and 113.76 g of ion-exchanged water were continuously dropped into the autoclave at a constant flow rate for 6 hours, kept at a constant temperature for aging for 2 hours, and then cooled to 80 ° C. Further, 10.41 g of potassium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octylglyceryl ether was 97%. %
Met.
【0033】比較例4 実施例4において、n-オクチルグリシジルエーテル、ラ
ウリン酸、水酸化カリウム及びイオン交換水を一括して
仕込み、110℃で7時間撹拌保持した後冷却する以外は
同様に操作したところ、n-オクチルグリセリルエーテル
の収率は94%であった。Comparative Example 4 The procedure of Example 4 was repeated except that n-octyl glycidyl ether, lauric acid, potassium hydroxide and ion-exchanged water were charged all at once, stirred at 110 ° C. for 7 hours, cooled and cooled. However, the yield of n-octyl glyceryl ether was 94%.
【0034】実施例5 ラウリン酸(商品名ルナックL-98,花王社製,純度98%
以上)12.88g、水酸化ナトリウム(和光純薬工業社
製;特級,純度95%)2.27g及びイオン交換水24.33g
を300mLオートクレーブに入れ、2枚傾斜平羽根(幅3c
m,高さ1cm,傾斜角45度)にて800rpmの攪拌を行いな
がら、マントルヒータにて100℃まで昇温した。次いで1
00℃に保ちながら、n-オクタデシルグリシジルエーテル
(純度98%)150gを一定流量にて3時間連続的にオー
トクレーブ内に滴下し、熟成のため4時間恒温保持した
後、80℃に冷却した。更に反応生成物に水酸化ナトリウ
ムを0.38g添加し、1時間攪拌保持した後、最終的な反
応生成物をガスクロマトグラフィーにて定量分析を行っ
た結果、n-オクタデシルグリセリルエーテルの収率は81
%であった。Example 5 Lauric acid (trade name: LUNAC L-98, manufactured by Kao Corporation, purity 98%)
12.88 g), 2.27 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, 95% purity) and 24.33 g of ion-exchanged water
Into a 300mL autoclave, and insert two flat blades (width 3c
m, height 1 cm, inclination angle 45 °), and the temperature was raised to 100 ° C with a mantle heater while stirring at 800 rpm. Then 1
While maintaining the temperature at 00 ° C, 150 g of n-octadecylglycidyl ether (98% purity) was continuously dropped into the autoclave at a constant flow rate for 3 hours, kept at a constant temperature for aging for 4 hours, and then cooled to 80 ° C. Further, 0.38 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and held for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octadecylglyceryl ether was 81%.
%Met.
【0035】比較例5 実施例5において、n-オクタデシルグリシジルエーテ
ル、ラウリン酸、水酸化ナトリウム及びイオン交換水を
一括して仕込み、100℃で7時間撹拌保持した後冷却す
る以外は同様に操作したところ、n-オクタデシルグリセ
リルエーテルの収率は73%であった。Comparative Example 5 The procedure of Example 5 was repeated except that n-octadecylglycidyl ether, lauric acid, sodium hydroxide and ion-exchanged water were charged at once, stirred at 100 ° C. for 7 hours, and then cooled. However, the yield of n-octadecylglyceryl ether was 73%.
【0036】実施例6 酢酸(キシダ化学社製;1級,純度99%以上)9.57g、
水酸化ナトリウム(和光純薬工業社製;特級,純度95
%)4.98g、ラウリル硫酸ナトリウム(商品名エマール
O,花王社製)15g及びイオン交換水28.44gを300mLオ
ートクレーブに入れ、2枚傾斜平羽根(幅3cm,高さ1
cm,傾斜角45度)にて800rpmの攪拌を行いながら、マン
トルヒータにて110℃まで昇温した。次いで110℃に保ち
ながら、n-オクチルグリシジルエーテル(純度98%)15
0gを一定流量にて12時間連続的にオートクレーブ内に
滴下し、熟成のため3時間恒温保持した後、80℃に冷却
した。更に反応生成物に水酸化ナトリウムを1.66g添加
し、1時間攪拌保持した後、最終的な反応生成物をガス
クロマトグラフィーにて定量分析を行った結果、n-オク
チルグリセリルエーテルの収率は98%であった。Example 6 9.57 g of acetic acid (manufactured by Kishida Chemical Co .; primary grade, purity of 99% or more),
Sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 95)
%) 4.98 g, 15 g of sodium lauryl sulfate (trade name: Emar O, manufactured by Kao Corporation) and 28.44 g of ion-exchanged water are placed in a 300 mL autoclave, and two inclined flat blades (width 3 cm, height 1)
The temperature was raised to 110 ° C. with a mantle heater while stirring at 800 rpm at an inclination angle of 45 cm. Then, while maintaining the temperature at 110 ° C, n-octyl glycidyl ether (purity 98%) 15
0 g was continuously dropped into the autoclave at a constant flow rate for 12 hours, kept at a constant temperature for 3 hours for aging, and then cooled to 80 ° C. Further, 1.66 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octylglyceryl ether was 98%. %Met.
【0037】実施例7 酢酸(キシダ化学社製;1級,純度99%以上)9.57g、
水酸化ナトリウム(和光純薬工業社製;特級,純度95
%)4.98g、ポリオキシエチレンラウリルエーテル(商
品名エマルゲン123P,花王社製)15g及びイオン交換水
28.44gを300mLオートクレーブに入れ、2枚傾斜平羽根
(幅3cm,高さ1cm,傾斜角45度)にて800rpmの攪拌を
行いながら、マントルヒータにて110℃まで昇温した。
次いで110℃に保ちながら、n-オクチルグリシジルエー
テル(純度98%)150gを一定流量にて12時間連続的に
オートクレーブ内に滴下し、熟成のため3時間恒温保持
した後、80℃に冷却した。更に反応生成物に水酸化ナト
リウムを1.66g添加し、1時間攪拌保持した後、最終的
な反応生成物をガスクロマトグラフィーにて定量分析を
行った結果、n-オクチルグリセリルエーテルの収率は98
%であった。Example 7 9.57 g of acetic acid (manufactured by Kishida Chemical Co .; first grade, purity 99% or more)
Sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 95)
%) 4.98 g, polyoxyethylene lauryl ether (trade name Emulgen 123P, manufactured by Kao Corporation) 15 g and ion-exchanged water
28.44 g was put in a 300 mL autoclave, and the temperature was raised to 110 ° C. with a mantle heater while stirring at 800 rpm with two inclined flat blades (width 3 cm, height 1 cm, inclination angle 45 °).
Then, while maintaining at 110 ° C., 150 g of n-octyl glycidyl ether (98% purity) was continuously dropped into the autoclave at a constant flow rate for 12 hours, kept at a constant temperature for 3 hours for aging, and then cooled to 80 ° C. Further, 1.66 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octylglyceryl ether was 98%.
%Met.
【0038】実施例8 酢酸(キシダ化学社製;1級,純度99%以上)9.57g、
水酸化ナトリウム(和光純薬工業社製;特級,純度95
%)4.98g、n-オクチルグリセリルエーテル(純度99
%)15g及びイオン交換水28.44gを300mLオートクレー
ブに入れ、2枚傾斜平羽根(幅3cm,高さ1cm,傾斜角
45度)にて800rpmの攪拌を行いながら、マントルヒータ
にて110℃まで昇温した。次いで110℃に保ちながら、n-
オクチルグリシジルエーテル(純度98%)150gを一定
流量にて12時間連続的にオートクレーブ内に滴下し、熟
成のため3時間恒温保持した後、80℃に冷却した。更に
反応生成物に水酸化ナトリウムを1.66g添加し、1時間
攪拌保持した後、最終的な反応生成物をガスクロマトグ
ラフィーにて定量分析を行った結果、n-オクチルグリセ
リルエーテルの収率は98%であった。Example 8 9.57 g of acetic acid (manufactured by Kishida Chemical Co .; primary grade, purity 99% or more),
Sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 95)
%) 4.98 g, n-octyl glyceryl ether (purity 99
%) And 28.44 g of ion-exchanged water are placed in a 300 mL autoclave, and two inclined flat blades (width 3 cm, height 1 cm, inclination angle)
The temperature was raised to 110 ° C. by a mantle heater while stirring at 800 rpm at 45 °). Then, while maintaining the temperature at 110 ° C, n-
150 g of octyl glycidyl ether (purity: 98%) was continuously dropped into the autoclave at a constant flow rate for 12 hours, kept at a constant temperature for aging for 3 hours, and then cooled to 80 ° C. Further, 1.66 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. After quantitative analysis of the final reaction product by gas chromatography, the yield of n-octylglyceryl ether was 98%. %Met.
【0039】実施例9 酢酸(キシダ化学社製;1級,純度99%以上)9.57g、
2-エチルヘキシルグリセリルエーテル(純度99%)30
g、イオン交換水2.00g及び水酸化ナトリウム(和光純
薬工業社製;特級,純度95%)6.61gの条件で300mL丸
底フラスコに2つ用意し、各々三日月羽根(幅4cm,高
さ1.6cm)にて300rpmの攪拌を行いながら、110℃まで昇
温した。この際、発生する水蒸気は冷却器にて凝縮し再
び丸底フラスコに戻るようにした。次いで110℃に保ち
ながら各々のフラスコに、一方は2-エチルヘキシルグリ
シジルエーテル(シェルジャパン社製,純度99%)150
g及びイオン交換水26.44gを一定流量にて1時間で、
他方は、反応液の濁度を目視により連続的に監視しなが
ら、反応液が清透化している時のみ一定流量にて計6時
間で滴下した。反応はガスクロマトグラフィーによる定
量分析にて転化率99%となった時点で終了し、80℃に冷
却後反応生成物を得た。更に反応生成物に水酸化ナトリ
ウムを0.04g添加し、1時間攪拌保持した。最終的な反
応生成物をガスクロマトグラフィーにて定量分析を行っ
た結果、2-エチルヘキシルグリセリルエーテルの収率は
1時間の供給を行った場合は89%、濁度の監視を行った
場合は93%であった。Example 9 9.57 g of acetic acid (manufactured by Kishida Chemical Co .; primary grade, purity 99% or more),
2-ethylhexyl glyceryl ether (99% purity) 30
g, 2.00 g of ion-exchanged water and 6.61 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, 95% purity) in a 300 mL round bottom flask, each having a crescent blade (width 4 cm, height 1.6). The temperature was raised to 110 ° C. while stirring at 300 rpm in (cm). At this time, the generated steam was condensed in the cooler and returned to the round bottom flask again. Then, while keeping the temperature at 110 ° C., each flask was charged with 150 g of 2-ethylhexyl glycidyl ether (manufactured by Shell Japan, 99% purity).
g and ion-exchanged water at a constant flow rate in one hour,
On the other hand, while continuously monitoring the turbidity of the reaction solution visually, the solution was dropped at a constant flow rate for a total of 6 hours only when the reaction solution was clarified. The reaction was terminated when the conversion was 99% by quantitative analysis by gas chromatography, and the reaction product was obtained after cooling to 80 ° C. Further, 0.04 g of sodium hydroxide was added to the reaction product, and the mixture was stirred and maintained for 1 hour. As a result of quantitative analysis of the final reaction product by gas chromatography, the yield of 2-ethylhexyl glyceryl ether was 89% when supplied for 1 hour, and 93% when turbidity was monitored. %Met.
【0040】比較例6 実施例9において、2-エチルヘキシルグリセリルエーテ
ルを添加せず、2-エチルヘキシルグリシジルエーテル、
酢酸、イオン交換水及び水酸化ナトリウムを一括して仕
込み、110℃で撹拌保持し、転化率99%に達した後冷却
する以外は同様に操作を行ったところ、2-エチルヘキシ
ルグリセリルエーテルの収率は87%であった。Comparative Example 6 In Example 9, 2-ethylhexyl glycidyl ether was added without adding 2-ethylhexyl glyceryl ether.
Acetic acid, ion-exchanged water and sodium hydroxide were charged all at once, stirred and maintained at 110 ° C, and cooled to a conversion of 99%. The same operation was performed except that the yield was 2-ethylhexyl glyceryl ether. Was 87%.
【0041】実施例10 ラウリン酸(商品名ルナックL-98,花王社製,純度98%
以上)88.90g及びイオン交換水391.90gに対し、水酸
化カリウム(キシダ化学社製;1級,純度85%)28.35
g、25.11g、14.35gの3種類の条件で各々2Lオート
クレーブに入れ、4枚湾曲平羽根(幅5cm,高さ1.1c
m)にて400rpmの攪拌を行いながら、マントルヒータに
て160℃まで昇温した。次いで160℃に保ちながら各々の
オートクレーブに、n-アミルグリシジルエーテル(純度
98%)800gを一定流量にて1時間連続的にフラスコ内
に滴下し、熟成のため1時間恒温保持した後、80℃に冷
却した。計2時間の反応操作において、昇温を防止する
ための空冷や水冷などの冷却操作を必要としなかった。
更に反応生成物に水酸化カリウムを累計添加量が28.70
gとなるように添加し、1時間攪拌保持した後、最終的
な反応生成物をガスクロマトグラフィーにて定量分析を
行った結果、n-アミルグリセリルエーテルの収率は、水
酸化カリウム量が28.35gの場合は89%、25.11gの場合
は93%、14.35gの場合は97%であった。Example 10 Lauric acid (trade name: LUNAC L-98, manufactured by Kao Corporation, purity 98%)
28.35 g of potassium hydroxide (available from Kishida Chemical; first grade, purity 85%) for 88.90 g and 391.90 g of ion-exchanged water.
g, 25.11 g, and 14.35 g each in a 2 L autoclave, and four curved flat blades (5 cm in width, 1.1 c in height)
While stirring at 400 rpm in m), the temperature was raised to 160 ° C. with a mantle heater. Then, while maintaining the temperature at 160 ° C., add n-amyl glycidyl ether (purity) to each autoclave.
(98%) 800 g was continuously dropped into the flask at a constant flow rate for 1 hour, kept at a constant temperature for 1 hour for aging, and then cooled to 80 ° C. In the reaction operation for a total of 2 hours, no cooling operation such as air cooling or water cooling for preventing temperature rise was required.
Further, the cumulative addition amount of potassium hydroxide to the reaction product is 28.70.
g, and the mixture was stirred and maintained for 1 hour. The final reaction product was quantitatively analyzed by gas chromatography. As a result, the yield of n-amyl glyceryl ether was 28.35. g was 89%, 25.11 g was 93%, and 14.35 g was 97%.
【0042】比較例7 実施例10において、n-アミルグリシジルエーテル、ラウ
リン酸、イオン交換水及び水酸化カリウムを一括して仕
込み、160℃で2時間撹拌保持した後冷却する以外は同
様に操作を行ったところ、反応中に171〜179℃への昇温
を観測したため空冷による冷却操作を行った。n-アミル
グリセリルエーテルの収率は、水酸化カリウム量が28.3
5gの場合は78%、25.11gの場合は86%、14.35gの場
合は93%であった。Comparative Example 7 The procedure of Example 10 was repeated, except that n-amylglycidyl ether, lauric acid, ion-exchanged water and potassium hydroxide were charged at once, stirred at 160 ° C. for 2 hours, cooled and cooled. When the temperature was raised to 171 to 179 ° C. during the reaction, a cooling operation by air cooling was performed. The yield of n-amyl glyceryl ether was 28.3% for potassium hydroxide.
It was 78% for 5 g, 86% for 25.11 g, and 93% for 14.35 g.
【0043】実施例11 酢酸(キシダ化学社製;1級,純度99%以上)63.82
g、n-オクチルグリセリルエーテル(純度99%)100g
及びイオン交換水189.60gに対し、水酸化ナトリウム
(和光純薬工業社製;特級,純度95%)44.08g、42.08
g、22.14gの3種類の条件で各々2Lオートクレーブ
に入れ、4枚湾曲平羽根(幅5cm,高さ1.1cm)にて400
rpmの攪拌を行いながら、マントルヒータにて110℃まで
昇温した。次いで110℃に保ちながら各々のオートクレ
ーブに、n-オクチルグリシジルエーテル(純度98%)10
00gを一定流量にて12時間連続的にフラスコ内に滴下
し、熟成のため3時間恒温保持した後、80℃に冷却し
た。計15時間の反応操作において、昇温を防止するため
の空冷や水冷などの冷却操作を特に必要としなかった。
更に反応生成物に水酸化ナトリウムの累計添加量がを4
4.29gとなるように添加し、1時間攪拌保持した後、最
終的な反応生成物をガスクロマトグラフィーにて定量分
析を行った結果、n-オクチルグリセリルエーテルの収率
は、水酸化ナトリウム量が44.08gの場合は93%、42.08
gの場合は97%、22.14gの場合は99%であった。Example 11 Acetic acid (manufactured by Kishida Chemical Co .; first grade, purity 99% or more) 63.82
g, 100 g of n-octyl glyceryl ether (99% purity)
And 189.60 g of ion-exchanged water and 44.08 g of sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, 95% purity), 42.08
g, 22.14 g in each 2L autoclave, 400 sheets with 4 curved flat blades (5cm width, 1.1cm height)
While stirring at rpm, the temperature was raised to 110 ° C. by a mantle heater. Then, while keeping at 110 ° C., each autoclave was charged with n-octyl glycidyl ether (98% purity).
00 g was continuously dropped into the flask at a constant flow rate for 12 hours, kept at a constant temperature for 3 hours for aging, and then cooled to 80 ° C. In the reaction operation for a total of 15 hours, a cooling operation such as air cooling or water cooling for preventing temperature rise was not particularly required.
Further, when the total amount of sodium hydroxide added to the reaction product is 4
4.29 g was added and stirred for 1 hour. After the final reaction product was analyzed quantitatively by gas chromatography, the yield of n-octylglyceryl ether was 93% for 44.08g, 42.08
g was 97% and 22.14 g was 99%.
【0044】比較例8 実施例11において、n-オクチルグリセリルエーテルを添
加せず、n-オクチルグリシジルエーテル、酢酸、イオン
交換水及び水酸化ナトリウムを一括して仕込み、110℃
で100時間撹拌保持した後冷却する以外は同様に操作し
たところ、熟成中に突然112〜115℃への昇温を観測した
ため空冷による冷却操作を行った。n-オクチルグリセリ
ルエーテルの収率は、水酸化ナトリウム量が44.08gの
場合は87%、42.08gの場合は94%、22.14gの場合は97
%であった。Comparative Example 8 In Example 11, n-octyl glycidyl ether, acetic acid, ion-exchanged water and sodium hydroxide were added all at once without adding n-octyl glyceryl ether, and 110 ° C.
The operation was carried out in the same manner except that the mixture was cooled after stirring for 100 hours, and a cooling operation by air cooling was performed because a sudden rise in temperature to 112 to 115 ° C. was observed during ripening. The yield of n-octyl glyceryl ether is 87% when the amount of sodium hydroxide is 44.08 g, 94% when 42.08 g, and 97% when 22.14 g.
%Met.
【0045】実施例12 酢酸(キシダ化学社製;1級,純度99%以上)9.57g、
水酸化ナトリウム(和光純薬工業社製;特級,純度95
%)4.98g及びイオン交換水28.44gを300mLオートクレ
ーブに入れ、2枚傾斜平羽根(幅3cm,高さ1cm,傾斜
角45度)にて800rpmの攪拌を行いながら、マントルヒー
タにて110℃まで昇温した。次いで110℃を保ちながら、
n-オクチルグリシジルエーテル(純度98%)30gを間欠
的に40時間でオートクレーブ内に滴下し、次いで120g
を連続的に10時間でオートクレーブ内に滴下し、ガスク
ロマトグラフィーでの定量分析にてグリセリルエーテル
への転化率が99%となった52時間目に、80℃に冷却後反
応生成物を得た。更に反応生成物に水酸化ナトリウムを
1.66g添加し、1時間攪拌保持した後、最終的な反応生
成物をガスクロマトグラフィーにて定量分析を行った結
果、n-オクチルグリセリルエーテルの収率は98%であっ
た。Example 12 9.57 g of acetic acid (manufactured by Kishida Chemical Co .; first grade, purity: 99% or more)
Sodium hydroxide (manufactured by Wako Pure Chemical Industries; special grade, purity 95)
%) 4.98 g and ion-exchanged water 28.44 g were placed in a 300 mL autoclave, and stirred at 800 rpm with two inclined flat blades (width 3 cm, height 1 cm, inclination angle 45 °), and heated to 110 ° C with a mantle heater. The temperature rose. Then, while maintaining 110 ° C,
30 g of n-octyl glycidyl ether (98% purity) are intermittently dropped into the autoclave in 40 hours, and then 120 g.
Was continuously dropped into the autoclave in 10 hours, and the reaction product was obtained after cooling to 80 ° C. at the 52th hour when the conversion to glyceryl ether was 99% by quantitative analysis by gas chromatography. . In addition, sodium hydroxide is added to the reaction product.
After adding 1.66 g and keeping stirring for 1 hour, the final reaction product was subjected to quantitative analysis by gas chromatography. As a result, the yield of n-octylglyceryl ether was 98%.
【0046】比較例9 n-オクチルグリシジルエーテル、酢酸、水酸化ナトリウ
ム及びイオン交換水を一括して仕込み、110℃で撹拌保
持し、ガスクロマトグラフィーでの定量分析にてグリセ
リルエーテルへの転化率が99%となった85時間目に冷却
した以外は同様に操作したところ、n-オクチルグリセリ
ルエーテルの収率は96%であった。Comparative Example 9 n-octyl glycidyl ether, acetic acid, sodium hydroxide and ion-exchanged water were charged all at once, stirred and maintained at 110 ° C., and the conversion to glyceryl ether was determined by quantitative analysis by gas chromatography. The same operation was performed except that the mixture was cooled at the 85th hour when it became 99%, and the yield of n-octylglyceryl ether was 96%.
【0047】[0047]
【発明の効果】本発明のグリセリルエーテルの製法によ
れば、極めて高い反応収率が得られ、また反応中に生じ
る過大な反応熱量を容易に制御でき、かつ反応時間を大
幅に短縮できる。According to the process for producing glyceryl ether of the present invention, an extremely high reaction yield can be obtained, an excessive amount of heat generated during the reaction can be easily controlled, and the reaction time can be greatly reduced.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 広史 和歌山県和歌山市湊1334 花王株式会社研 究所内 (72)発明者 森下 貢 和歌山県和歌山市湊1334 花王株式会社研 究所内 Fターム(参考) 4H006 AA02 AC41 BA02 BA06 BA29 BA49 GP01 GP10 4H039 CA60 CF90 4J005 AA03 BD01 BD03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroshi Oka 1334 Minato, Wakayama City, Wakayama Prefecture, Kao Corporation Research Laboratory (72) Inventor Mitsugu Morishita, 1334 Minato, Wakayama City, Wakayama Prefecture, Kao Research Center F-term (reference) 4H006 AA02 AC41 BA02 BA06 BA29 BA49 GP01 GP10 4H039 CA60 CF90 4J005 AA03 BD01 BD03
Claims (6)
液に、一般式(1) 【化1】 〔式中、R1は炭素数1〜32の炭化水素基を示し、A1は
炭素数2〜4のアルキレン基を示し、pは0〜200の数
を示す。〕で表されるグリシジルエーテルを供給しなが
らエポキシ基の開環反応を行う、一般式(2) 【化2】 〔式中、R1、A1及びpは前記と同じ意味を示す。〕で
表されるグリセリルエーテルの製法。1. A mixed solution containing a carboxylic acid, a base and water is added with a compound of the general formula (1) [Wherein, R 1 represents a hydrocarbon group having 1 to 32 carbon atoms, A 1 represents an alkylene group having 2 to 4 carbon atoms, and p represents a number of 0 to 200. A ring-opening reaction of an epoxy group is carried out while supplying the glycidyl ether represented by the general formula (2). [Wherein, R 1 , A 1 and p have the same meanings as described above. Glyceryl ether represented by the formula:
請求項1記載の製法。2. The method according to claim 1, wherein the carboxylic acid has 8 to 24 carbon atoms.
のである請求項1又は2記載の製法。3. The method according to claim 1, wherein the liquid mixture contains a surfactant.
炭素数2〜4のアルキレン基を示し、qは0〜200の数
を示す。〕で表されるグリセリルエーテルである請求項
3記載の製法。4. The surfactant is represented by the general formula (3): [In the formula, R 2 represents a hydrocarbon group having 1 to 32 carbon atoms, A 2 represents an alkylene group having 2 to 4 carbon atoms, and q represents a number of 0 to 200. 4. The method according to claim 3, wherein the glyceryl ether is represented by the formula:
ルの供給速度を、反応液が透明性を有するように制御す
る請求項1〜4のいずれかに記載の製法。5. The process according to claim 1, wherein the feed rate of the glycidyl ether represented by the general formula (1) is controlled so that the reaction solution has transparency.
当量に対し過剰である請求項1〜5のいずれかに記載の
製法。6. The process according to claim 1, wherein the equivalent of the carboxylic acid in the mixture is in excess of the equivalent of the base.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303398A JP3905296B2 (en) | 2000-10-03 | 2000-10-03 | Manufacturing method of glyceryl ether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000303398A JP3905296B2 (en) | 2000-10-03 | 2000-10-03 | Manufacturing method of glyceryl ether |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002114727A true JP2002114727A (en) | 2002-04-16 |
JP3905296B2 JP3905296B2 (en) | 2007-04-18 |
Family
ID=18784603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000303398A Expired - Fee Related JP3905296B2 (en) | 2000-10-03 | 2000-10-03 | Manufacturing method of glyceryl ether |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3905296B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005120036A (en) * | 2003-10-17 | 2005-05-12 | Kao Corp | Method for producing glyceryl ether |
CN101948371A (en) * | 2009-07-08 | 2011-01-19 | 乔治洛德方法研究和开发液化空气有限公司 | The method for preparing the 1-alkyl glycerylether |
KR101528751B1 (en) * | 2014-11-05 | 2015-06-16 | 여명바이오켐 주식회사 | Method for producing ethylhexylglycerin |
KR101878433B1 (en) * | 2018-01-23 | 2018-07-13 | 대달산업주식회사 | Methods for preparing alkylglyceryl ethers |
KR101924027B1 (en) | 2017-04-20 | 2018-11-30 | 주식회사 케미랜드 | High Purity 2-Ethylhexylglycerolether, Preparation Method for High Purity 2-Ethylhexylglycerolether and Use thereof |
-
2000
- 2000-10-03 JP JP2000303398A patent/JP3905296B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005120036A (en) * | 2003-10-17 | 2005-05-12 | Kao Corp | Method for producing glyceryl ether |
CN101948371A (en) * | 2009-07-08 | 2011-01-19 | 乔治洛德方法研究和开发液化空气有限公司 | The method for preparing the 1-alkyl glycerylether |
DE102009032235A1 (en) | 2009-07-08 | 2011-01-20 | Schülke & Mayr GmbH | Process for the preparation of 1-alkylglycerol ethers |
EP2277849A1 (en) | 2009-07-08 | 2011-01-26 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Process for the preparation of 1-alkyl glycerol ethers |
US8877983B2 (en) | 2009-07-08 | 2014-11-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for the preparation of 1-alkyl glycerol ethers |
CN106673970A (en) * | 2009-07-08 | 2017-05-17 | 乔治洛德方法研究和开发液化空气有限公司 | Process for the preparation of 1-alkyl glycerol ethers |
KR101528751B1 (en) * | 2014-11-05 | 2015-06-16 | 여명바이오켐 주식회사 | Method for producing ethylhexylglycerin |
KR101924027B1 (en) | 2017-04-20 | 2018-11-30 | 주식회사 케미랜드 | High Purity 2-Ethylhexylglycerolether, Preparation Method for High Purity 2-Ethylhexylglycerolether and Use thereof |
KR101878433B1 (en) * | 2018-01-23 | 2018-07-13 | 대달산업주식회사 | Methods for preparing alkylglyceryl ethers |
Also Published As
Publication number | Publication date |
---|---|
JP3905296B2 (en) | 2007-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6833463B2 (en) | Transesterification using phase transfer catalysts | |
KR930702363A (en) | Improved process for producing highly esterified polyol fatty acid polyesters with reduced amounts of difatty ketones and β-ketoesters | |
WO2008142374A1 (en) | Method of making polyglycerol esters | |
EP3127896A1 (en) | Method for preparing iminodisuccinate chelating agent | |
JP2002114727A (en) | Method for producing glyceryl ether | |
KR100202472B1 (en) | Process for producing light-coloured pastes of -g (a)-sulfo fatty acid alkyl ester alkali metal salts | |
JPH09136860A (en) | Production of fatty-acid-esterified propoxylated glycerin | |
JPH0142320B2 (en) | ||
JPH08231478A (en) | New quaternary ammonium salt and its production | |
JP2507276B2 (en) | Method for producing alkylene glycol solution containing 5-sulfoisophthalic acid alkylene glycol ester metal salt | |
JP2015506335A (en) | Method for producing azelaic acid from 9-octadecenedioic acid | |
JP2003342361A (en) | Method for manufacturing alkoxylate compound | |
CN104428279B (en) | The preparation of the ester of fatty acid and hydroxycarboxylic acid | |
JP2769221B2 (en) | Method for producing sulfosuccinic acid monoester | |
JP4670426B2 (en) | Method for producing dicarboxylic acid diester | |
JP2999554B2 (en) | Preparation of high-concentration paste of alpha-sulfo fatty acid alkyl ester alkali metal salt | |
WO2005105259A1 (en) | Process for producing esters employing hydrolyzable catalysts | |
JP2001002633A (en) | PRODUCTION OF alpha-SULFOFATTY ACID ALKYL ESTER SALT AND SULFONATION APPARATUS THEREFOR | |
US1084581A (en) | Manufacture of esters and ethers of ethylidene glycol and of vinyl alcohol. | |
JP4856406B2 (en) | Method for producing amine oxide | |
JP6207898B2 (en) | Liquid softener composition | |
JP2003252838A (en) | Cationic surfactant and method for producing the same | |
JPH08217723A (en) | Production of polyglycerol fatty acid ester | |
CN115703716A (en) | Process for producing amino acid-based surfactant | |
JP3174142B2 (en) | Method for producing di-long chain tertiary amine salt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060825 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070111 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3905296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120119 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140119 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |