Nothing Special   »   [go: up one dir, main page]

JP2002198048A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002198048A
JP2002198048A JP2000396559A JP2000396559A JP2002198048A JP 2002198048 A JP2002198048 A JP 2002198048A JP 2000396559 A JP2000396559 A JP 2000396559A JP 2000396559 A JP2000396559 A JP 2000396559A JP 2002198048 A JP2002198048 A JP 2002198048A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000396559A
Other languages
Japanese (ja)
Inventor
Kenji Nakai
賢治 中井
Yuichi Takatsuka
祐一 高塚
Yoshimasa Koishikawa
佳正 小石川
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000396559A priority Critical patent/JP2002198048A/en
Publication of JP2002198048A publication Critical patent/JP2002198048A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which is of high capacity and high output yet can keep high output for a long time. SOLUTION: The cylindrical lithium ion battery 20 has a group of electrodes with positive electrodes, negative electrodes and separators wound around, a connecting part for connecting the group of electrodes with each electrode terminal, and a nonaqueous electrolyte solution. As a positive electrode active substance, lithium manganate which has dissolution volume of manganese into nonaqueous electrolyte solution of not less than 5% in a lithium manganate standard at a region where electrode potential against metal lithium is not less than 4.8 V, and as a negative electrode active substance, graphite is used which can store and release lithium ion by charging and discharging.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に、電池容器に正極、負極及びセパレータを
有する電極群と該電極群から各極端子へ接続するための
接続部と非水電解液とを内蔵し、リチウムマンガン複酸
化物と導電材とを含む活物質合剤が箔状集電体の両面に
塗着された正極を用いた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to an electrode group having a positive electrode, a negative electrode and a separator in a battery container, and a connecting portion for connecting the electrode group to each electrode terminal. The present invention relates to a non-aqueous electrolyte secondary battery using a positive electrode which contains a non-aqueous electrolyte and has an active material mixture containing a lithium manganese double oxide and a conductive material applied to both surfaces of a foil-shaped current collector.

【0002】[0002]

【従来の技術】非水電解液二次電池を代表するリチウム
イオン二次電池は、高エネルギー密度であるメリットを
活かして、主にVTRカメラやノートパソコン、携帯電
話等のポータブル機器の電源に使用されている。この電
池の内部構造は、通常以下に示されるような捲回式構造
とされている。電極は正極、負極共に活物質が金属箔に
塗着された帯状であり、セパレータを挟んで正極、負極
が直接接触しないように断面が渦巻状に捲回され、捲回
群が形成されている。この捲回群が電池容器となる円筒
形の電池缶に収納され、電解液注液後、封口されてい
る。
2. Description of the Related Art Lithium ion secondary batteries, which represent non-aqueous electrolyte secondary batteries, are mainly used for powering portable devices such as VTR cameras, notebook computers, and mobile phones, taking advantage of their high energy density. Have been. The internal structure of this battery is usually a wound structure as shown below. Each of the electrodes has a positive electrode and a negative electrode in a band shape in which an active material is applied to a metal foil, and a cross section is spirally wound so that the positive electrode and the negative electrode do not come into direct contact with each other with a separator interposed therebetween, thereby forming a wound group. . The wound group is housed in a cylindrical battery can serving as a battery container, and is sealed after the electrolyte is injected.

【0003】一般的な円筒形リチウムイオン二次電池の
外径寸法は、18650型と呼ばれる、直径18mm、
高さ65mmであり、小形民生用リチウムイオン電池と
して広く普及している。18650型リチウムイオン二
次電池の正極活物質には、高容量、長寿命を特徴とする
コバルト酸リチウムが主として用いられており、電池容
量は、おおむね1.3Ah〜1.7Ah、出力はおよそ
10W程度である。
[0003] The outer diameter of a general cylindrical lithium ion secondary battery is called 18650 type, having a diameter of 18 mm.
It has a height of 65 mm and is widely used as a small consumer lithium ion battery. As the positive electrode active material of the 18650 type lithium ion secondary battery, lithium cobalt oxide having high capacity and long life is mainly used. The battery capacity is approximately 1.3 Ah to 1.7 Ah, and the output is about 10 W. It is about.

【0004】一方、自動車産業界においては環境問題に
対応すべく、排出ガスのない、動力源を完全に電池のみ
とした電気自動車と、内燃機関エンジンと電池との両方
を動力源とするハイブリッド(電気)自動車の開発が加
速され、一部実用化の段階に到達している。電気自動車
の電源となる電池には当然高出力、高エネルギーが得ら
れる特性が要求され、この要求にマッチした電池として
リチウムイオン電池が注目されている。
On the other hand, in the automobile industry, in order to cope with environmental problems, an electric vehicle having no exhaust gas and having only a battery as a power source, and a hybrid (using both an internal combustion engine and a battery as a power source) have been proposed. The development of electric vehicles has been accelerated and some of them have reached the stage of practical use. A battery serving as a power source for an electric vehicle is required to have characteristics capable of obtaining high output and high energy, and a lithium ion battery has attracted attention as a battery that meets these requirements.

【0005】これらの電気自動車の普及のためには、電
池の低価格化が必須であり、そのためには、低コスト電
池材料の使用が求められ、例えば、正極活物質であれ
ば、資源的に豊富なマンガンの酸化物が特に注目され、
電池の高性能化を狙った改善がなされてきた。また、電
気自動車用電池には、高容量だけではなく、加速性能な
どを左右する高出力化、つまり電池の内部抵抗の低減が
求められる。電極反応面積の増大を狙って、正極活物質
に比表面積の大きいマンガン酸リチウム等のリチウムマ
ンガン複酸化物を用いることでこの要求に対応すること
ができる。
In order to spread these electric vehicles, it is essential to reduce the price of the battery. For this purpose, it is required to use a low-cost battery material. Abundant manganese oxides are of particular interest,
Improvements have been made to improve the performance of batteries. In addition, batteries for electric vehicles are required to have not only high capacity but also high output that affects acceleration performance and the like, that is, reduction of internal resistance of the battery. This requirement can be met by using a lithium manganese double oxide such as lithium manganate having a large specific surface area as the positive electrode active material for the purpose of increasing the electrode reaction area.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、正極活
物質にリチウムマンガン複酸化物を用いると、初期容量
や初期出力は高くても、充放電の繰り返しによって電池
性能が劣化し非水電解液二次電池が早期寿命となる、と
いう問題点がある。これは当然自動車の早期寿命や早期
電池交換という二次的な問題を惹起し、電気自動車の普
及への大きな妨げとなる。
However, when a lithium manganese double oxide is used as the positive electrode active material, the battery performance deteriorates due to repetition of charge / discharge even if the initial capacity and the initial output are high. There is a problem that the battery has an early life. This naturally causes secondary problems such as early life of the vehicle and early battery replacement, and is a great hindrance to the spread of electric vehicles.

【0007】本発明は上記事案に鑑み、高容量、高出力
でありながらも、高出力を長期間維持可能な非水電解液
二次電池を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of maintaining high output for a long time while having high capacity and high output.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1態様は、電池容器に正極、負極及びセ
パレータを有する電極群と該電極群から各極端子へ接続
するための接続部と非水電解液とを内蔵し、リチウムマ
ンガン複酸化物と導電材とを含む活物質合剤が箔状集電
体の両面に塗着された正極を用いた非水電解液二次電池
において、金属リチウムに対する電極電位が4.8V以
上の領域で、前記非水電解液中へのマンガンの溶出量が
リチウムマンガン複酸化物を基準として5%以上のリチ
ウムマンガン複酸化物を正極活物質に用い、充放電によ
りリチウムイオンを吸蔵、放出可能な黒鉛を負極活物質
に用いたことを特徴とする。
In order to solve the above problems, a first aspect of the present invention is to provide an electrode group having a positive electrode, a negative electrode and a separator in a battery container, and a method for connecting the electrode group to each electrode terminal. A non-aqueous electrolyte secondary using a positive electrode that contains a connection part and a non-aqueous electrolyte and has an active material mixture containing a lithium manganese double oxide and a conductive material applied to both surfaces of a foil-shaped current collector In the battery, in a region where the electrode potential with respect to metallic lithium is 4.8 V or more, the amount of manganese eluted into the nonaqueous electrolyte is 5% or more based on the lithium manganese double oxide. It is characterized in that graphite, which can insert and extract lithium ions by charge and discharge, is used as a negative electrode active material.

【0009】また、本発明の第2態様は、電池容器に正
極、負極及びセパレータを有する電極群と該電極群から
各極端子へ接続するための接続部と非水電解液とを内蔵
し、リチウムマンガン複酸化物と導電材とを含む活物質
合剤が箔状集電体の両面に塗着された正極を用いた非水
電解液二次電池において、金属リチウムに対する電極電
位が4.8V以上の領域で、前記非水電解液中へのマン
ガンの溶出量がリチウムマンガン複酸化物を基準として
7%以上のリチウムマンガン複酸化物を正極活物質に用
い、充放電によりリチウムイオンを吸蔵、放出可能な非
晶質炭素を負極活物質に用いたことを特徴とする。
According to a second aspect of the present invention, a battery container includes an electrode group having a positive electrode, a negative electrode, and a separator, a connecting portion for connecting the electrode group to each electrode terminal, and a non-aqueous electrolyte. In a nonaqueous electrolyte secondary battery using a positive electrode in which an active material mixture containing a lithium manganese double oxide and a conductive material is coated on both surfaces of a foil-like current collector, the electrode potential with respect to metallic lithium is 4.8 V In the above region, the amount of manganese eluted in the non-aqueous electrolyte is 7% or more based on the lithium manganese double oxide, and the lithium manganese double oxide is used as the positive electrode active material, and lithium ions are absorbed by charging and discharging. It is characterized in that releasable amorphous carbon is used for the negative electrode active material.

【0010】本発明では、高容量、高出力の非水電解液
二次電池を得るために、正極活物質にリチウムマンガン
複酸化物が、負極活物質に充放電によりリチウムイオン
を吸蔵、放出可能な黒鉛又は非晶質炭素がそれぞれ用い
られている。負極活物質に黒鉛を用いる場合に、正極活
物質に、金属リチウムに対する電極電位が4.8V以上
の領域で非水電解液中へのマンガンの溶出量がリチウム
マンガン複酸化物を基準として5%以上のリチウムマン
ガン複酸化物を用いることにより、又は、負極活物質に
非晶質炭素を用いる場合に、正極活物質に、金属リチウ
ムに対する電極電位が4.8V以上の領域で非水電解液
中へのマンガンの溶出量がリチウムマンガン複酸化物を
基準として7%以上のリチウムマンガン複酸化物を用い
ることにより、高い出力維持率を確保することができ
る。このため、本発明によれば、高容量、高出力であり
ながらも、出力維持率の高い非水電解液二次電池を実現
することができる。
According to the present invention, in order to obtain a high-capacity, high-output non-aqueous electrolyte secondary battery, a lithium manganese double oxide can be inserted into the positive electrode active material, and lithium ions can be inserted into and discharged from the negative electrode active material by charging and discharging. Graphite or amorphous carbon is used, respectively. When graphite is used as the negative electrode active material, the elution amount of manganese into the nonaqueous electrolyte in the region where the electrode potential with respect to metallic lithium is 4.8 V or more is 5% based on the lithium manganese double oxide in the positive electrode active material. By using the above-mentioned lithium manganese double oxide, or when using amorphous carbon as the negative electrode active material, the positive electrode active material is used in a non-aqueous electrolyte in a region where the electrode potential with respect to metallic lithium is 4.8 V or more. By using a lithium manganese double oxide having a manganese elution amount of 7% or more based on the lithium manganese double oxide, a high output retention ratio can be secured. Therefore, according to the present invention, it is possible to realize a nonaqueous electrolyte secondary battery having a high capacity and a high output but a high output maintenance ratio.

【0011】この場合において、リチウムマンガン複酸
化物のLi/Mnの比を0.55未満とすれば容量維持
率が低下し、0.6を超えると初期容量の低下を招くの
で、リチウムマンガン複酸化物のLi/Mnの比は0.
55以上、0.6以下であることが好ましい。このと
き、負極活物質に非晶質炭素を用い、リチウムマンガン
複酸化物の非水電解液中へのマンガンの溶出量を、該リ
チウムマンガン複酸化物を基準として7.5%以上とす
れば、高い初期容量、初期出力を確保することができる
と共に、高い容量維持率、出力維持率を長期間確保する
ことができる。
In this case, if the ratio of Li / Mn of the lithium manganese composite oxide is less than 0.55, the capacity retention ratio decreases, and if it exceeds 0.6, the initial capacity decreases. The ratio of Li / Mn of the oxide is 0.1.
It is preferably 55 or more and 0.6 or less. At this time, if amorphous carbon is used as the negative electrode active material and the amount of manganese eluted into the non-aqueous electrolyte of the lithium manganese composite oxide is 7.5% or more based on the lithium manganese composite oxide, In addition, a high initial capacity and an initial output can be secured, and a high capacity maintenance rate and an output maintenance rate can be secured for a long time.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明に係
る非水電解液二次電池を電気自動車用電源として用いら
れる円筒形リチウムイオン電池に適用した実施の形態に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a nonaqueous electrolyte secondary battery according to the present invention is applied to a cylindrical lithium ion battery used as a power supply for an electric vehicle will be described below with reference to the drawings.

【0013】(正極板の作製)図1に示すように、正極
活物質としてのマンガン酸リチウム(LiMn
粉末と、導電材としての黒鉛粉末及びアセチレンブラッ
クと、結着剤としてポリフッ化ビニリデン(PVDF)
と、を質量比83:10:2:5で混合し、これに分散
溶媒のN−メチル−2−ピロリドン(NMP)を添加、
混練したスラリを、厚さ20μmのアルミニウム箔W1
(正極集電体)の両面に塗布した。このとき、正極板長
寸方向の一方の側縁に幅30mmの未塗布部を残した。
その後乾燥、プレス、裁断して幅82mm、長さ342
cm、活物質合剤塗布部W2厚さ109μmの正極板を
得た。正極活物質合剤層W2のかさ密度は2.65g/
cmとした。上記未塗布部に切り欠きを入れ、切り欠
き残部を正極リード片2とした。隣り合う正極リード片
2を50mm間隔とし、正極リード片2の幅を5mmと
した。
(Preparation of positive electrode plate) As shown in FIG. 1, lithium manganate (LiMn 2 O 4 ) as a positive electrode active material
Powder, graphite powder and acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder
Are mixed at a mass ratio of 83: 10: 2: 5, and N-methyl-2-pyrrolidone (NMP) as a dispersion solvent is added thereto,
The kneaded slurry is applied to an aluminum foil W1 having a thickness of 20 μm.
(Positive electrode current collector). At this time, an uncoated portion having a width of 30 mm was left on one side edge in the longitudinal direction of the positive electrode plate.
After drying, pressing and cutting, the width is 82 mm and the length is 342
cm, a positive electrode plate having an active material mixture application portion W2 and a thickness of 109 μm. The bulk density of the positive electrode active material mixture layer W2 is 2.65 g /
cm 3 . A cutout was made in the uncoated portion, and the remaining cutout was used as a positive electrode lead piece 2. Adjacent positive electrode lead pieces 2 were set at intervals of 50 mm, and the width of the positive electrode lead pieces 2 was set at 5 mm.

【0014】(負極板の作製)所定の炭素粉末92質量
部に結着剤として8質量部のポリフッ化ビニリデンを添
加し、これに分散溶媒のN−メチル−2−ピロリドンを
添加、混練したスラリを厚さ10μmの圧延銅箔W3
(負極集電体)の両面に塗布した。このとき、負極板長
寸方向の一方の側縁に幅30mmの未塗布部を残した。
その後乾燥、プレス、裁断して幅86mm、後述する所
定長さ及び活物質塗布部W4所定厚さの負極板を得た。
負極活物質層W4の空隙率が約35%となるように負極
板を圧縮した。上記未塗布部に正極板と同様に切り欠き
を入れ、切り欠き残部を負極リード片3とした。隣り合
う負極リード片3を50mm間隔とし、負極リード片3
の幅を5mmとした。
(Preparation of Negative Electrode Plate) A slurry prepared by adding 8 parts by mass of polyvinylidene fluoride as a binder to 92 parts by mass of a predetermined carbon powder, adding N-methyl-2-pyrrolidone as a dispersion solvent thereto and kneading the mixture. Is rolled copper foil W3 having a thickness of 10 μm.
(Negative electrode current collector). At this time, an uncoated portion having a width of 30 mm was left on one side edge in the longitudinal direction of the negative electrode plate.
Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode plate having a width of 86 mm, a predetermined length described later, and a predetermined thickness of the active material application portion W4.
The negative electrode plate was compressed such that the porosity of the negative electrode active material layer W4 was about 35%. A cutout was made in the uncoated portion in the same manner as the positive electrode plate, and the remaining cutout was used as a negative electrode lead piece 3. Adjacent negative electrode lead pieces 3 are set at intervals of 50 mm.
Was 5 mm in width.

【0015】(電池の作製)上記作製した正極板と負極
板とを、これら両極板が直接接触しないように幅90m
m、厚さ40μmのポリエチレン製セパレータW5と共
に捲回した。捲回の中心には、ポリプロピレン製の中空
円筒状の軸芯1を用いた。このとき、正極リード片2と
負極リード片3とが、それぞれ捲回群6の互いに反対側
の両端面に位置するようにした。また、正極板、負極
板、セパレータの長さを調整し、捲回群6の直径を38
±0.1mmとした。
(Preparation of Battery) The above-prepared positive electrode plate and negative electrode plate were 90 m wide so that these two electrode plates did not come into direct contact with each other.
m, together with a polyethylene separator W5 having a thickness of 40 μm. At the center of the winding, a hollow cylindrical shaft core 1 made of polypropylene was used. At this time, the positive electrode lead piece 2 and the negative electrode lead piece 3 were located on both end faces on the opposite side of the winding group 6, respectively. Further, the length of the positive electrode plate, the negative electrode plate, and the separator was adjusted, and the diameter of the winding group 6 was adjusted to 38.
± 0.1 mm.

【0016】正極リード片2を変形させ、その全てを、
捲回群6の軸芯1のほぼ延長線上にある正極集電リング
4の周囲から一体に張り出した鍔部周面付近に集合、接
触させた後、正極リード片2と鍔部周面とを超音波溶接
して正極リード片2を鍔部周面に接続した。一方、負極
集電リング5と負極リード片3との接続操作も、正極集
電リング4と正極リード片2との接続操作と同様に実施
した。
The positive electrode lead piece 2 is deformed, and all of the
After gathering and contacting the vicinity of the flange peripheral surface integrally projecting from the periphery of the positive electrode current collecting ring 4 substantially on the extension line of the shaft core 1 of the winding group 6, the positive electrode lead piece 2 and the flange peripheral surface are separated. The positive electrode lead piece 2 was connected to the flange peripheral surface by ultrasonic welding. On the other hand, the connection operation between the negative electrode current collector ring 5 and the negative electrode lead piece 3 was also performed in the same manner as the connection operation between the positive electrode current collector ring 4 and the positive electrode lead piece 2.

【0017】その後、正極集電リング4の鍔部周面全周
に絶縁被覆を施した。この絶縁被覆には、基材がポリイ
ミドで、その片面にヘキサメタアクリレートからなる粘
着剤を塗布した粘着テープを用いた。この粘着テープを
鍔部周面から捲回群6外周面に亘って一重以上巻いて絶
縁被覆とし、捲回群6をニッケルメッキが施されたスチ
ール製の電池容器7内に挿入した。電池容器7の外形は
40mm、内径は39mmである。
Thereafter, an insulating coating was applied to the entire peripheral surface of the flange portion of the positive electrode current collecting ring 4. For this insulating coating, a pressure-sensitive adhesive tape was used in which the base material was polyimide and one side thereof was coated with a pressure-sensitive adhesive composed of hexamethacrylate. This adhesive tape was wound one or more times from the peripheral surface of the flange portion to the outer peripheral surface of the winding group 6 to form an insulating coating, and the winding group 6 was inserted into a nickel-plated steel battery container 7. The outer shape of the battery container 7 is 40 mm, and the inner diameter is 39 mm.

【0018】負極集電リング5には予め電気的導通のた
めの負極リード板8が溶接されており、電池容器7に捲
回群6を挿入後、電池容器7の底部と負極リード板8と
を溶接した。
A negative electrode lead plate 8 for electrical conduction is welded to the negative electrode current collecting ring 5 in advance. After the winding group 6 is inserted into the battery container 7, the bottom of the battery container 7 and the negative electrode lead plate 8 are connected to each other. Was welded.

【0019】一方、正極集電リング4には、予め複数枚
のアルミニウム製のリボンを重ね合わせて構成した正極
リード9を溶接しておき、正極リード9の他端を、電池
容器7を封口するための電池蓋の下面に溶接した。電池
蓋には、円筒形リチウムイオン電池20の内圧上昇に応
じて開裂する内圧開放機構としての開裂弁11が設けら
れている。開裂弁11の開裂圧は、約9×10Paに
設定した。電池蓋は、蓋ケース12と、蓋キャップ13
と、気密を保つ弁押え14と、開裂弁11とで構成され
ており、これらが積層されて蓋ケース12の周縁をカシ
メることによって組立てられている。
On the other hand, a positive electrode lead 9 formed by laminating a plurality of aluminum ribbons is welded to the positive electrode current collecting ring 4 in advance, and the other end of the positive electrode lead 9 is sealed with the battery container 7. To the lower surface of the battery lid. The battery lid is provided with a cleavage valve 11 as an internal pressure release mechanism that is opened according to an increase in the internal pressure of the cylindrical lithium ion battery 20. The cleavage pressure of the cleavage valve 11 was set to about 9 × 10 5 Pa. The battery lid includes a lid case 12 and a lid cap 13.
, A valve retainer 14 for maintaining airtightness, and a cleavage valve 11, which are stacked and assembled by caulking the periphery of the lid case 12.

【0020】非水電解液を所定量電池容器7内に注入
し、その後、正極リード9を折りたたむようにして電池
蓋で電池容器7に蓋をし、EPDM樹脂製ガスケット1
0を介してカシメて密封することにより円筒形リチウム
イオン電池20を完成させた。
A predetermined amount of a non-aqueous electrolyte is injected into the battery case 7, and then the battery case 7 is covered with the battery cover so that the positive electrode lead 9 is folded.
The cylindrical lithium-ion battery 20 was completed by caulking and sealing through the inside of the battery.

【0021】非水電解液には、エチレンカーボネートと
ジメチルカーボネートとジエチルカーボネートの体積比
1:1:1の混合溶液中へ6フッ化リン酸リチウム(L
iPF)を1モル/リットル溶解したものを用いた。
なお、円筒形リチウムイオン電池20には、電池内圧の
上昇に応じて電気的に作動する、例えば、PTC(Posit
ive Temperature Coefficient) 素子等の電流遮断機構
は設けられていない。
The non-aqueous electrolyte contains lithium hexafluorophosphate (L) in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate at a volume ratio of 1: 1: 1.
iPF 6 ) dissolved at 1 mol / liter was used.
The cylindrical lithium-ion battery 20 is electrically operated in response to an increase in battery internal pressure, for example, PTC (Posit).
ive Temperature Coefficient) There is no current interruption mechanism such as an element.

【0022】ところで、本実施形態では、金属リチウム
に対する電極電位が4.8V以上の領域で、非水電解液
中へのマンガンの溶出量が、マンガン酸リチウムを基準
として5%以上のマンガン酸リチウムを正極活物質に用
い、充放電によりリチウムイオンを吸蔵、放出可能な黒
鉛を負極活物質に用いるか、又は、非水電解液中へのマ
ンガンの溶出量が、マンガン酸リチウムを基準として7
%以上のマンガン酸リチウムを正極活物質に用い、充放
電によりリチウムイオンを吸蔵、放出可能な非晶質炭素
を負極活物質に用いた。
In this embodiment, in the region where the electrode potential with respect to metallic lithium is 4.8 V or more, the amount of manganese eluted into the non-aqueous electrolyte is 5% or more of lithium manganate based on lithium manganate. Is used as the positive electrode active material, and graphite capable of occluding and releasing lithium ions by charge and discharge is used as the negative electrode active material, or the amount of manganese eluted into the nonaqueous electrolyte is 7% based on lithium manganate.
% Or more of lithium manganate was used as a positive electrode active material, and amorphous carbon capable of inserting and extracting lithium ions by charge and discharge was used as a negative electrode active material.

【0023】金属リチウムに対する電極電位が4.8V
以上の領域で、マンガンの非水電解液中への溶出量が、
マンガン酸リチウムを基準として上述した所定%以上の
マンガン酸リチウムを具体的に得るには、粒子径を限定
したり、比表面積を限定したり、マンガン酸リチウムの
合成原料や、合成条件を制御する等種々の因子があり、
制御因子及びその他の因子が複雑に絡み合って溶出量が
変化しバラツキが大きくなるので、因子単独で全てを特
定することは難しい。本実施形態では、このため種々の
条件で数ロットのマンガン酸リチウムを調製し、そこか
ら上記の要件を有するロットを選別して使用した。
The electrode potential for metal lithium is 4.8 V
In the above region, the amount of manganese eluted into the non-aqueous electrolyte is
In order to specifically obtain lithium manganate of the above-mentioned predetermined percentage or more based on lithium manganate, the particle diameter is limited, the specific surface area is limited, and the synthesis raw material of lithium manganate and the synthesis conditions are controlled. There are various factors such as
Since the control factor and other factors are intertwined in a complicated manner, the amount of elution changes and the variation increases, it is difficult to specify all of the factors alone. In this embodiment, for this purpose, several lots of lithium manganate were prepared under various conditions, and lots having the above requirements were selected therefrom and used.

【0024】また、マンガン酸リチウムのマンガン溶出
量の測定は、以下の手順で行った。上記のように作製し
た正極の一部を切り出し、金属リチウムを参照電極とし
て非水電解液中で4.8V以上の電位に24時間以上保
持し、非水電解液中に溶出したマンガンと、対極に析出
したマンガンとを定量分析し、その総量をマンガン酸リ
チウム基準で算出した。なお、このマンガン溶出量の測
定において、6V以上の電位では非水電解液が分解する
ので、6V未満とすることが好ましい。
The amount of manganese eluted from lithium manganate was measured according to the following procedure. A part of the positive electrode prepared as described above was cut out, and the potential was held at a potential of 4.8 V or more in a nonaqueous electrolyte for 24 hours or more in a nonaqueous electrolyte using metallic lithium as a reference electrode, and manganese eluted in the nonaqueous electrolyte and a counter electrode. Was quantitatively analyzed with respect to the manganese precipitated on the substrate, and the total amount was calculated on the basis of lithium manganate. In the measurement of the manganese elution amount, the non-aqueous electrolyte is decomposed at a potential of 6 V or more.

【0025】[0025]

【実施例】次に、本実施形態に従って作製した円筒形リ
チウムイオン電池20の実施例について説明する。比較
のために作製した比較例の電池についても併記する。
Next, an example of the cylindrical lithium ion battery 20 manufactured according to this embodiment will be described. A battery of a comparative example produced for comparison is also described.

【0026】(実施例1)下表1に示すように、実施例
1では、正極活物質にロットNo.1のマンガン酸リチ
ウム(LiMn)粉末を用い、負極活物質にメソ
フェーズ系球状黒鉛であるMCMBを用い、負極活物質
層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.52、マ
ンガン溶出量は、5.0%であった。
Example 1 As shown in Table 1 below, in Example 1, lot No. 1 was used as the positive electrode active material. Using lithium manganate (LiMn 2 O 4 ) powder of No. 1 and MCMB which is a mesophase-based spherical graphite as the negative electrode active material, the thickness of the negative electrode active material layer (active material coated portion) W4 (the current collector thickness is (Not included)) and a length of 354 cm to produce a battery. The Li / Mn ratio of this positive electrode active material was 0.52, and the manganese elution amount was 5.0%.

【0027】なお、作製した電極は、捲回したときに、
捲回最内周では捲回方向に正極が負極からはみ出すこと
がなく、また最外周でも捲回方向に正極が負極からはみ
出すことがないように負極長さは正極長さよりも12c
m長くなるようにした。また、捲回方向と垂直方向にお
いても正極活物質塗布部が負極活物質塗布部からはみ出
すことがないように、負極活物質塗布部W4の幅は、正
極活物質塗布部W2の幅よりも4mm長くした(以下の
実施例及び比較例においても同じ。)。
It should be noted that, when the manufactured electrode is wound,
The length of the negative electrode is 12 c longer than the length of the positive electrode so that the positive electrode does not protrude from the negative electrode in the winding direction at the innermost circumference of the winding and the positive electrode does not protrude from the negative electrode in the winding direction even at the outermost circumference.
m longer. Also, the width of the negative electrode active material application part W4 is 4 mm larger than the width of the positive electrode active material application part W2 so that the positive electrode active material application part does not protrude from the negative electrode active material application part even in the winding direction and the vertical direction. (The same applies to the following Examples and Comparative Examples.)

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例2)表1に示すように、実施例2
では、正極活物質にロットNo.2のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.52、マ
ンガン溶出量は、5.5%であった。
Example 2 As shown in Table 1, Example 2
In the positive electrode active material, lot No. The lithium manganate powder of No. 2 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material application portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.52, and the manganese elution amount was 5.5%.

【0030】(実施例3)表1に示すように、実施例3
では、正極活物質にロットNo.3のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.52、マ
ンガン溶出量は、6.9%であった。
Example 3 As shown in Table 1, Example 3
In the positive electrode active material, lot No. The lithium manganate powder of No. 3 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.52, and the manganese elution amount was 6.9%.

【0031】(実施例4)表1に示すように、実施例4
では、正極活物質にロットNo.4のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.52、マ
ンガン溶出量は、9.2%であった。
(Embodiment 4) As shown in Table 1, Embodiment 4
In the positive electrode active material, lot No. The lithium manganate powder of No. 4 was used, MCMB was used as the negative electrode active material, and the thickness (not including the current collector thickness) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.52, and the manganese elution amount was 9.2%.

【0032】(実施例5)表1に示すように、実施例5
では、正極活物質にロットNo.5のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.55、マ
ンガン溶出量は、7.0%であった。
Example 5 As shown in Table 1, Example 5
In the positive electrode active material, lot No. The lithium manganate powder of No. 5 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.55, and the manganese elution amount was 7.0%.

【0033】(実施例6)表1に示すように、実施例6
では、正極活物質にロットNo.6のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.58、マ
ンガン溶出量は、7.1%であった。
(Embodiment 6) As shown in Table 1, Embodiment 6
In the positive electrode active material, lot No. The lithium manganate powder of No. 6 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.58, and the manganese elution amount was 7.1%.

【0034】(実施例7)表1に示すように、実施例7
では、正極活物質にロットNo.7のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.60、マ
ンガン溶出量は、7.1%であった。
(Embodiment 7) As shown in Table 1, the embodiment 7
In the positive electrode active material, lot No. The lithium manganate powder of No. 7 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.60, and the manganese elution amount was 7.1%.

【0035】(実施例8)表1に示すように、実施例8
では、正極活物質にロットNo.8のマンガン酸リチウ
ム粉末を用い、負極活物質にMCMBを用い、負極活物
質層(活物質塗布部)W4の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.61、マ
ンガン溶出量は、7.2%であった。
Example 8 As shown in Table 1, Example 8
In the positive electrode active material, lot No. The lithium manganate powder of No. 8 was used, MCMB was used as the negative electrode active material, and the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) W4 was 79 μm and the length was 354 cm. A battery was manufactured. The Li / Mn ratio of this positive electrode active material was 0.61, and the manganese elution amount was 7.2%.

【0036】(実施例9)表1に示すように、実施例9
では、正極活物質にロットNo.9のマンガン酸リチウ
ム粉末を用い、負極活物質に非晶質炭素を用い、負極活
物質層(活物質塗布部)W4の厚さ(集電体厚さは含ま
ない。)を79μm、長さを354cmとして電池を作
製した。この正極活物質のLi/Mn比は、0.52、
マンガン溶出量は、7.0%であった。
Example 9 As shown in Table 1, Example 9
In the positive electrode active material, lot No. 9, a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of amorphous carbon as the negative electrode active material. Was set to 354 cm to produce a battery. The Li / Mn ratio of this positive electrode active material was 0.52,
The manganese elution amount was 7.0%.

【0037】(実施例10)表1に示すように、実施例
10では、正極活物質にロットNo.10のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
52、マンガン溶出量は、7.4%であった。
Example 10 As shown in Table 1, in Example 10, lot No. was used as the positive electrode active material. Using lithium manganate powder of No. 10, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
52, the manganese elution amount was 7.4%.

【0038】(実施例11)表1に示すように、実施例
11では、正極活物質にロットNo.11のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
52、マンガン溶出量は、8.3%であった。
Example 11 As shown in Table 1, in Example 11, lot No. was used as the positive electrode active material. Using lithium manganate powder of No. 11, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
52, the manganese elution amount was 8.3%.

【0039】(実施例12)表1に示すように、実施例
12では、正極活物質にロットNo.12のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
52、マンガン溶出量は、10.7%であった。
Example 12 As shown in Table 1, in Example 12, lot No. 1 was used as the positive electrode active material. 12 lithium manganate powder, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
52, the manganese elution amount was 10.7%.

【0040】(実施例13)表1に示すように、実施例
13では、正極活物質にロットNo.13のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
55、マンガン溶出量は、7.5%であった。
Example 13 As shown in Table 1, in Example 13, lot No. 1 was used as the positive electrode active material. 13, using lithium manganate powder, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
55, the manganese elution amount was 7.5%.

【0041】(実施例14)表1に示すように、実施例
14では、正極活物質にロットNo.14のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
58、マンガン溶出量は、7.6%であった。
Example 14 As shown in Table 1, in Example 14, lot No. 1 was used as the positive electrode active material. Using lithium manganate powder of No. 14, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
58, the manganese elution amount was 7.6%.

【0042】(実施例15)表1に示すように、実施例
15では、正極活物質にロットNo.15のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
60、マンガン溶出量は、7.7%であった。
Example 15 As shown in Table 1, in Example 15, lot No. was used as the positive electrode active material. Using lithium manganate powder of No. 15, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
60, the manganese elution amount was 7.7%.

【0043】(実施例16)表1に示すように、実施例
16では、正極活物質にロットNo.16のマンガン酸
リチウム粉末を用い、負極活物質に非晶質炭素を用い、
負極活物質層(活物質塗布部)W4の厚さ(集電体厚さ
は含まない。)を79μm、長さを354cmとして電
池を作製した。この正極活物質のLi/Mn比は、0.
61、マンガン溶出量は、7.6%であった。
Example 16 As shown in Table 1, in Example 16, lot No. 1 was used as the positive electrode active material. Using lithium manganate powder of No. 16, using amorphous carbon as the negative electrode active material,
A battery was manufactured with a negative electrode active material layer (active material coated portion) W4 having a thickness (not including the current collector thickness) of 79 μm and a length of 354 cm. The Li / Mn ratio of this positive electrode active material is 0.1.
61, the manganese elution amount was 7.6%.

【0044】(比較例1)表1に示すように、比較例1
では、正極活物質にロットNo.31のマンガン酸リチ
ウム(LiMn)粉末を用い、負極活物質にメソ
フェーズ系球状黒鉛であるMCMBを用い、負極活物質
層(活物質塗布部)の厚さ(集電体厚さは含まない。)
を79μm、長さを354cmとして電池を作製した。
この正極活物質のLi/Mn比は、0.58、マンガン
溶出量は、4.7%であった。
Comparative Example 1 As shown in Table 1, Comparative Example 1
In the positive electrode active material, lot No. Using lithium manganate (LiMn 2 O 4 ) powder of No. 31 and MCMB which is a mesophase-based spherical graphite as the negative electrode active material, the thickness of the negative electrode active material layer (active material coated portion) (including the thickness of the current collector) Absent.)
Was 79 μm and the length was 354 cm to produce a battery.
The Li / Mn ratio of this positive electrode active material was 0.58, and the manganese elution amount was 4.7%.

【0045】(比較例2)表1に示すように、比較例2
では、正極活物質にロットNo.32のマンガン酸リチ
ウム粉末を用い、負極活物質にMCMBを用い、負極活
物質層(活物質塗布部)の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.58、マ
ンガン溶出量は、3.8%であった。
Comparative Example 2 As shown in Table 1, Comparative Example 2
In the positive electrode active material, lot No. Using lithium manganate powder of No. 32 and MCMB as the negative electrode active material, the thickness of the negative electrode active material layer (active material coated portion) was 79 μm, and the length was 354 cm. Was prepared. The Li / Mn ratio of this positive electrode active material was 0.58, and the manganese elution amount was 3.8%.

【0046】(比較例3)表1に示すように、比較例3
では、正極活物質にロットNo.33のマンガン酸リチ
ウム粉末を用い、負極活物質にMCMBを用い、負極活
物質層(活物質塗布部)の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.58、マ
ンガン溶出量は、6.6%であった。
Comparative Example 3 As shown in Table 1, Comparative Example 3
In the positive electrode active material, lot No. Using lithium manganate powder of No. 33, MCMB as the negative electrode active material, the thickness of the negative electrode active material layer (active material coated portion) is 79 μm, and the length is 354 cm. Was prepared. The Li / Mn ratio of this positive electrode active material was 0.58, and the manganese elution amount was 6.6%.

【0047】(比較例4)表1に示すように、比較例4
では、正極活物質にロットNo.34のマンガン酸リチ
ウム粉末を用い、負極活物質にMCMBを用い、負極活
物質層(活物質塗布部)の厚さ(集電体厚さは含まな
い。)を79μm、長さを354cmとして電池を作製
した。この正極活物質のLi/Mn比は、0.58、マ
ンガン溶出量は、4.5%であった。
Comparative Example 4 As shown in Table 1, Comparative Example 4
In the positive electrode active material, lot No. Using lithium manganate powder of No. 34, MCMB as the negative electrode active material, the thickness (excluding the thickness of the current collector) of the negative electrode active material layer (active material coated portion) was 79 μm, and the length was 354 cm. Was prepared. The Li / Mn ratio of this positive electrode active material was 0.58, and the manganese elution amount was 4.5%.

【0048】<試験・評価>次に、このようにして作製
した実施例及び比較例の各電池について、以下の一連の
試験を行った。
<Test / Evaluation> Next, the following series of tests were performed on the batteries of the examples and the comparative examples thus manufactured.

【0049】実施例及び比較例の各電池を、充電した後
放電し、放電容量を測定した。充電条件は、4.2V定
電圧、制限電流5A、3.5時間とした。放電条件は、
5A定電流、終止電圧2.7Vとした。
The batteries of Examples and Comparative Examples were charged and then discharged, and the discharge capacities were measured. The charging conditions were a constant voltage of 4.2 V, a limited current of 5 A, and 3.5 hours. The discharge conditions are
The constant current was 5 A, and the final voltage was 2.7 V.

【0050】また、上記条件で充電状態の電池の放電出
力を測定した。測定条件は、1A、3A、6Aの各放電
電流で5秒目の電圧を読み取り、横軸電流値に対して縦
軸にプロットし、3点を結ぶ近似直線が、2.7Vと交
差するところの電流値と、2.7Vとの積を出力とし
た。
The discharge output of the battery in the charged state under the above conditions was measured. The measurement conditions were as follows: the voltage at the 5th second was read at each discharge current of 1A, 3A, and 6A, plotted on the vertical axis against the horizontal axis current value, and the approximate line connecting the three points intersected 2.7 V And the product of the current value of 2.7 V and 2.7 V was used as the output.

【0051】更に、実施例及び比較例の電池を、上記条
件で充放電を100回繰り返した後、容量を測定し、初
期の出力に対する維持率を百分率で示した。当然のこと
ながら、この維持率が高いほうが寿命特性がよいことに
なる。
Further, after repeating charging and discharging 100 times under the above-mentioned conditions, the capacities of the batteries of the examples and the comparative examples were measured, and the retention ratio to the initial output was shown as a percentage. Naturally, the higher the maintenance ratio, the better the life characteristics.

【0052】試験結果を下表2に示す。なお、上記充放
電、容量及び出力の測定は、いずれも環境温度25±1
°Cの雰囲気で行った。
The test results are shown in Table 2 below. The charge / discharge, capacity, and output measurements were all performed at an environmental temperature of 25 ± 1.
Performed in an atmosphere of ° C.

【0053】[0053]

【表2】 [Table 2]

【0054】表2に示すように、実施例1〜16の電池
では、高容量、高出力な電池が得られ、かつ、充放電を
100回繰り返した後の容量及び出力も高く維持されて
いる。一方、負極に黒鉛を用い、正極活物質であるマン
ガン酸リチウムのマンガンの溶出量が、5%を下回った
比較例1及び比較例2の電池、負極に非晶質炭素を用
い、正極活物質であるマンガン酸リチウムのマンガンの
溶出量が7%を下回った比較例3及び比較例4の電池で
は、高容量、高出力な電池が得られるものの、充放電を
100回繰り返した後の出力維持率が低下していること
が分かる。
As shown in Table 2, in the batteries of Examples 1 to 16, high-capacity, high-output batteries were obtained, and the capacities and outputs after repeating charge / discharge 100 times were also kept high. . On the other hand, the batteries of Comparative Examples 1 and 2 in which graphite was used as the negative electrode and the manganese elution amount of lithium manganate as the positive electrode active material was less than 5%, and the amorphous carbon was used as the negative electrode, In the batteries of Comparative Example 3 and Comparative Example 4 in which the manganese elution amount of lithium manganate was less than 7%, a high-capacity, high-output battery was obtained, but the output was maintained after repeating charging and discharging 100 times. It can be seen that the rate has decreased.

【0055】マンガン酸リチウムのLi/Mn比が、
0.55以上である実施例5〜7及び13〜15の電池
では、容量維持率が極めて高い。ところが、0.60を
上回る実施例8及び実施例16の電池では、著しい容量
の低下を伴う結果となり、Li/Mn比は、0.55〜
0.60の範囲が好ましいことが分かる。
When the Li / Mn ratio of lithium manganate is
In the batteries of Examples 5 to 7 and 13 to 15, which are 0.55 or more, the capacity retention ratio is extremely high. However, in the batteries of Example 8 and Example 16 exceeding 0.60, the result was accompanied by a remarkable decrease in capacity, and the Li / Mn ratio was 0.55 to 0.55.
It turns out that the range of 0.60 is preferable.

【0056】中でも、負極に非晶質炭素を用いた実施例
9〜16の電池では、高い出力、かつ、高い出力維持率
が得られた。従って、実施例9〜16の電池は、高容
量、高出力で、かつ、寿命特性に優れる、全体バランス
の優れた電池であるということができる。特に、負極活
物質に非晶質炭素を用い、Li/Mn比が0.55〜
0.60、マンガン溶出量が7.5%以上の実施例13
〜15の電池は、充放電を100回繰り返した後の容量
維持率が96%以上と最も高く、更に寿命特性に優れた
電池ということができる。
In particular, in the batteries of Examples 9 to 16 in which amorphous carbon was used for the negative electrode, a high output and a high output retention ratio were obtained. Therefore, it can be said that the batteries of Examples 9 to 16 are high-capacity, high-output, and excellent in life characteristics, and excellent in overall balance. In particular, using amorphous carbon as the negative electrode active material, the Li / Mn ratio is 0.55 to 0.55.
Example 13 in which the manganese elution amount was 0.60 or more and 7.5% or more
Batteries Nos. To 15 have the highest capacity retention ratio of 96% or more after repeating charging and discharging 100 times, and can be said to be batteries having more excellent life characteristics.

【0057】以上のように、本実施形態の円筒形リチウ
ムイオン電池20は、初期容量、初期出力並びに容量維
持率及び出力維持率に優れた電池である。このように、
高容量、高出力で、容量維持率及び出力維持率の高い電
池は、特に電気自動車の電源に適している。
As described above, the cylindrical lithium ion battery 20 of the present embodiment is a battery having excellent initial capacity, initial output, capacity retention rate, and output retention rate. in this way,
A battery having a high capacity, a high output, and a high capacity retention rate and a high power retention rate is particularly suitable for a power source of an electric vehicle.

【0058】なお、本実施形態では、電気自動車用電源
に用いられる大形の二次電池について例示したが、電池
の大きさ、電池容量には限定されず、電池容量としてお
おむね3〜10Ah程度の電池に対して本発明は効果を
著しく発揮することが確認されている。また、本実施形
態では円筒形電池について例示したが、本発明は電池の
形状についても限定されず、角形、その他の多角形の電
池にも適用可能である。更に、本発明の適用可能な形状
としては、上述した有底筒状容器(缶)に電池上蓋がカ
シメによって封口されている構造の電池以外であっても
構わない。このような構造の一例として正負外部端子が
電池蓋を貫通し電池容器内で軸芯を介して正負外部端子
が押し合っている状態の電池を挙げることができる。
In the present embodiment, a large secondary battery used as a power source for an electric vehicle has been described as an example. However, the size and capacity of the battery are not limited, and the battery capacity is approximately 3 to 10 Ah. It has been confirmed that the present invention exerts remarkable effects on batteries. Further, in the present embodiment, the cylindrical battery is exemplified, but the present invention is not limited to the shape of the battery, and is applicable to a square battery and other polygon batteries. Furthermore, as a shape to which the present invention can be applied, a battery other than the battery having a structure in which the battery upper lid is sealed in the above-described bottomed cylindrical container (can) by caulking may be used. An example of such a structure is a battery in which the positive and negative external terminals penetrate the battery cover and the positive and negative external terminals press against each other via the shaft core in the battery container.

【0059】また、本実施形態では、絶縁被覆に、基材
がポリイミドで、その片面にヘキサメタアクリレートか
らなる粘着剤を塗布した粘着テープを用いた例を示した
が、例えば、基材がポリプロピレンやポリエチレン等の
ポリオレフィンで、その片面又は両面にヘキサメタアク
リレートやブチルアクリレート等のアクリル系粘着剤を
塗布した粘着テープや、粘着剤を塗布しないポリオレフ
ィンやポリイミドからなるテープ等も好適に使用するこ
とができる。
Further, in this embodiment, an example is shown in which an adhesive tape is used in which an insulating coating is made of polyimide as a base material and an adhesive made of hexamethacrylate is applied to one surface of the base material. Or a polyolefin such as polyethylene, an adhesive tape coated with an acrylic adhesive such as hexamethacrylate or butyl acrylate on one or both sides thereof, or a tape made of a polyolefin or polyimide not coated with an adhesive can also be suitably used. it can.

【0060】更に、本実施形態では、リチウムイオン電
池用の正極にマンガン酸リチウム、負極に非晶質炭素、
電解液にエチレンカーボネートとジメチルカーボネート
とジエチルカーボネートの体積比1:1:1の混合溶液
中へ6フッ化リン酸リチウムを1モル/リットル溶解し
たものを用いたが、本発明の電池には特に制限はなく、
また、導電材、結着剤も通常用いられているいずれのも
のも使用可能である。なお、一般に、マンガン酸リチウ
ムは、適当なリチウム塩と酸化マンガンとを混合、焼成
して合成することができるが、リチウム塩と酸化マンガ
ンの仕込み比を制御することによって所望のLi/Mn
比とすることができる。
Further, in this embodiment, lithium manganate is used for the positive electrode for lithium ion batteries, amorphous carbon is used for the negative electrode,
The electrolyte used was one in which lithium hexafluorophosphate was dissolved at 1 mol / l in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1. There are no restrictions,
In addition, any of commonly used conductive materials and binders can be used. In general, lithium manganate can be synthesized by mixing and baking an appropriate lithium salt and manganese oxide. However, by controlling the charging ratio of the lithium salt and manganese oxide, desired Li / Mn can be obtained.
It can be a ratio.

【0061】また、本実施形態以外で用いることのでき
るリチウムイオン電池用極板活物質結着剤としては、テ
フロン(登録商標)、ポリエチレン、ポリスチレン、ポ
リブタジエン、ブチルゴム、ニトリルゴム、スチレン/
ブタジエンゴム、多硫化ゴム、ニトロセルロース、シア
ノエチルセルロース、各種ラテックス、アクリロニトリ
ル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレ
ン、フッ化クロロプレン等の重合体及びこれらの混合体
などがある。
The electrode active material binder for lithium ion batteries that can be used in other than this embodiment includes Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene /
Examples thereof include butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, polymers such as acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene, and mixtures thereof.

【0062】また更に、本実施形態以外で用いることの
できるリチウムイオン電池用正極活物質としては、リチ
ウムを挿入・脱離可能な材料であり、予め十分な量のリ
チウムを挿入したリチウムマンガン複酸化物が好まし
く、スピネル構造を有したマンガン酸リチウムや、結晶
中のマンガンやリチウムの一部をそれら以外の元素で置
換あるいはドープした材料を使用するようにしてもよ
い。
Further, the positive electrode active material for lithium ion batteries that can be used in other than this embodiment is a material into which lithium can be inserted and desorbed, and a lithium manganese double oxide into which a sufficient amount of lithium has been inserted in advance. It is preferable to use lithium manganate having a spinel structure, or a material in which a part of manganese or lithium in the crystal is substituted or doped with another element.

【0063】更にまた、本実施形態以外で用いることの
できるリチウムイオン電池用負極活物質も上記特許請求
範囲に記載した事項以外に特に制限はない。例えば、天
然黒鉛や、人造の各種黒鉛材、コークス、非晶質炭素な
どの炭素質材料等でよく、その粒子形状においても、鱗
片状、球状、繊維状、塊状等、特に制限されるものでは
ない。
Furthermore, the negative electrode active material for a lithium ion battery that can be used in other than this embodiment is not particularly limited except for the matters described in the claims. For example, natural graphite, artificial graphite materials, coke, carbonaceous materials such as amorphous carbon and the like may be used, and even in the particle shape thereof, flakes, spheres, fibers, lump, and the like are not particularly limited. Absent.

【0064】また、非水電解液としては、一般的なリチ
ウム塩を電解質とし、これを有機溶媒に溶解した電解液
が用いられる。しかし、用いられるリチウム塩や有機溶
媒は特に制限されない。例えば、電解質としては、Li
ClO4、LiAsF6、LiPF6、LiBF4、LiB
(C654、CH3SO3Li、CF3SO3Li等やこ
れらの混合物を用いることができる。非水電解液有機溶
媒としては、プロピレンカーボネート、エチレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトニル等またはこれら
2種類以上の混合溶媒を用いるようにしてもよく、混合
配合比についても限定されるものではない。
As the non-aqueous electrolytic solution, an electrolytic solution obtained by dissolving a general lithium salt as an electrolyte in an organic solvent is used. However, the lithium salt or organic solvent used is not particularly limited. For example, as the electrolyte, Li
ClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB
(C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, and the like, and a mixture thereof can be used. Non-aqueous electrolyte organic solvents include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran,
1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl, etc. or a mixed solvent of two or more of these may be used, and the mixing ratio is also limited. It is not something to be done.

【0065】[0065]

【発明の効果】以上説明したように、本発明によれば、
正極活物質にリチウムマンガン複酸化物、負極活物質に
黒鉛又は非晶質炭素を用いたので、高容量、高出力の非
水電解液二次電池とすることができると共に、負極活物
質に黒鉛を用いる場合に、正極活物質に、金属リチウム
に対する電極電位が4.8V以上の領域で非水電解液中
へのマンガンの溶出量がリチウムマンガン複酸化物を基
準として5%以上のリチウムマンガン複酸化物を用い、
又は、負極活物質に非晶質炭素を用いる場合に、正極活
物質に、金属リチウムに対する電極電位が4.8V以上
の領域で非水電解液中へのマンガンの溶出量がリチウム
マンガン複酸化物を基準として7%以上のリチウムマン
ガン複酸化物を用いたので、出力維持率の高い非水電解
液二次電池を実現することができる、という効果を得る
ことができる。
As described above, according to the present invention,
Since lithium-manganese double oxide is used for the positive electrode active material and graphite or amorphous carbon is used for the negative electrode active material, a high capacity, high output non-aqueous electrolyte secondary battery can be obtained, and graphite is used for the negative electrode active material. When lithium is used as the positive electrode active material, the amount of manganese eluted into the nonaqueous electrolyte is 5% or more based on the lithium manganese double oxide in a region where the electrode potential with respect to metallic lithium is 4.8 V or more. Using oxide,
Alternatively, when amorphous carbon is used as the negative electrode active material, the amount of manganese eluted into the nonaqueous electrolyte in the region where the electrode potential with respect to metallic lithium is 4.8 V or more is used as the positive electrode active material. Since a lithium manganese double oxide of 7% or more is used on the basis of the above, an effect that a nonaqueous electrolyte secondary battery having a high output maintenance ratio can be realized can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

1 軸芯 2 正極リード片(正極の一部) 3 負極リード片(負極の一部) 4 正極集電リング(接続部の一部) 5 負極集電リング(接続部の一部) 6 捲回群(電極群) 7 電池容器 8 負極リード板(接続部の一部) 9 正極リード(接続部の一部) 10 ガスケット 11 開裂弁 12 蓋ケース 13 蓋キャップ 14 弁押え 20 円筒形リチウムイオン電池(非水電解液二次電
池) W1 正極集電体 W2 正極活物質層 W3 負極集電体 W4 負極活物質層 W5 セパレータ
DESCRIPTION OF SYMBOLS 1 Shaft core 2 Positive electrode lead piece (part of positive electrode) 3 Negative electrode lead piece (part of negative electrode) 4 Positive electrode current collecting ring (part of connection part) 5 Negative electrode current collecting ring (part of connection part) 6 Winding Group (electrode group) 7 Battery container 8 Negative electrode lead plate (part of connection part) 9 Positive electrode lead (part of connection part) 10 Gasket 11 Cleavage valve 12 Lid case 13 Lid cap 14 Valve holder 20 Cylindrical lithium ion battery ( Non-aqueous electrolyte secondary battery) W1 Positive electrode current collector W2 Positive electrode active material layer W3 Negative electrode current collector W4 Negative electrode active material layer W5 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小石川 佳正 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AK03 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ12 CJ22 DJ05 DJ07 DJ18 HJ01 HJ02 HJ18 5H050 AA02 BA17 CA09 CB07 CB08 CB09 DA04 FA05 FA20 GA12 GA22 HA01 HA02 HA18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshimasa Koishikawa 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo No.Shin Kobe Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電池容器に正極、負極及びセパレータを
有する電極群と該電極群から各極端子へ接続するための
接続部と非水電解液とを内蔵し、リチウムマンガン複酸
化物と導電材とを含む活物質合剤が箔状集電体の両面に
塗着された正極を用いた非水電解液二次電池において、
金属リチウムに対する電極電位が4.8V以上の領域
で、前記非水電解液中へのマンガンの溶出量がリチウム
マンガン複酸化物を基準として5%以上のリチウムマン
ガン複酸化物を正極活物質に用い、充放電によりリチウ
ムイオンを吸蔵、放出可能な黒鉛を負極活物質に用いた
ことを特徴とする非水電解液二次電池。
1. A battery container, comprising: an electrode group having a positive electrode, a negative electrode, and a separator; a connection portion for connecting the electrode group to each electrode terminal; and a non-aqueous electrolytic solution. In a non-aqueous electrolyte secondary battery using a positive electrode coated with an active material mixture containing both sides of a foil-shaped current collector,
In the region where the electrode potential with respect to lithium metal is 4.8 V or more, the amount of manganese eluted into the non-aqueous electrolyte is 5% or more based on the lithium manganese double oxide. A non-aqueous electrolyte secondary battery characterized in that graphite capable of occluding and releasing lithium ions by charge and discharge is used as a negative electrode active material.
【請求項2】 電池容器に正極、負極及びセパレータを
有する電極群と該電極群から各極端子へ接続するための
接続部と非水電解液とを内蔵し、リチウムマンガン複酸
化物と導電材とを含む活物質合剤が箔状集電体の両面に
塗着された正極を用いた非水電解液二次電池において、
金属リチウムに対する電極電位が4.8V以上の領域
で、前記非水電解液中へのマンガンの溶出量がリチウム
マンガン複酸化物を基準として7%以上のリチウムマン
ガン複酸化物を正極活物質に用い、充放電によりリチウ
ムイオンを吸蔵、放出可能な非晶質炭素を負極活物質に
用いたことを特徴とする非水電解液二次電池。
2. A battery container, comprising: an electrode group having a positive electrode, a negative electrode, and a separator; a connection portion for connecting the electrode group to each electrode terminal; and a non-aqueous electrolytic solution. In a non-aqueous electrolyte secondary battery using a positive electrode coated with an active material mixture containing both sides of a foil-shaped current collector,
In the region where the electrode potential with respect to metallic lithium is 4.8 V or more, the amount of manganese eluted into the nonaqueous electrolyte is 7% or more based on the lithium manganese double oxide. A non-aqueous electrolyte secondary battery using amorphous carbon capable of occluding and releasing lithium ions by charge and discharge as a negative electrode active material.
【請求項3】 前記リチウムマンガン複酸化物のLi/
Mnの比が、0.55以上、0.6以下であることを特
徴とする請求項1又は請求項2に記載の非水電解液二次
電池。
3. The method according to claim 1, wherein the lithium / manganese double oxide has a Li /
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a ratio of Mn is 0.55 or more and 0.6 or less.
【請求項4】 前記負極活物質に非晶質炭素を用い、か
つ、前記リチウムマンガン複酸化物の前記非水電解液中
へのマンガンの溶出量が該リチウムマンガン複酸化物を
基準として7.5%以上であることを特徴とする請求項
3に記載の非水電解液二次電池。
4. An amorphous carbon is used as the negative electrode active material, and the amount of manganese eluted into the non-aqueous electrolyte of the lithium manganese double oxide is determined based on the lithium manganese double oxide. The non-aqueous electrolyte secondary battery according to claim 3, wherein the content is 5% or more.
JP2000396559A 2000-12-27 2000-12-27 Nonaqueous electrolyte secondary battery Pending JP2002198048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396559A JP2002198048A (en) 2000-12-27 2000-12-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396559A JP2002198048A (en) 2000-12-27 2000-12-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002198048A true JP2002198048A (en) 2002-07-12

Family

ID=18861829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396559A Pending JP2002198048A (en) 2000-12-27 2000-12-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002198048A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133873A (en) * 2020-09-25 2020-12-25 东北师范大学 Manganese-cobalt oxide modified composite diaphragm and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112133873A (en) * 2020-09-25 2020-12-25 东北师范大学 Manganese-cobalt oxide modified composite diaphragm and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5286200B2 (en) Lithium ion secondary battery
JP2000311676A (en) Cylindrical lithium ion battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2004006264A (en) Lithium secondary battery
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP2001229970A (en) Cylindrical lithium battery
JP3988384B2 (en) Non-aqueous electrolyte secondary battery
JP2002373655A (en) Lithium secondary battery
JP4048763B2 (en) Non-aqueous electrolyte secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP3591506B2 (en) Non-aqueous electrolyte secondary battery
JP2002373701A (en) Method of manufacturing for nonaqueous electrolyte secondary battery
JP4688527B2 (en) Lithium secondary battery
JP2001185220A (en) Cylindrical lithium ion battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP5433484B2 (en) Lithium ion secondary battery
JP3624793B2 (en) Lithium ion battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same
JP3620512B2 (en) Non-aqueous electrolyte secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP2001015168A (en) Lithium secondary battery
JP3719139B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122