Nothing Special   »   [go: up one dir, main page]

JP2002193670A - Burning method for silicon carbide compact - Google Patents

Burning method for silicon carbide compact

Info

Publication number
JP2002193670A
JP2002193670A JP2000390636A JP2000390636A JP2002193670A JP 2002193670 A JP2002193670 A JP 2002193670A JP 2000390636 A JP2000390636 A JP 2000390636A JP 2000390636 A JP2000390636 A JP 2000390636A JP 2002193670 A JP2002193670 A JP 2002193670A
Authority
JP
Japan
Prior art keywords
silicon carbide
molded body
firing
carbide molded
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000390636A
Other languages
Japanese (ja)
Other versions
JP2002193670A5 (en
JP3998910B2 (en
Inventor
Takamitsu Saijo
貴満 西城
Kenichiro Kasai
健一郎 葛西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2000390636A priority Critical patent/JP3998910B2/en
Publication of JP2002193670A publication Critical patent/JP2002193670A/en
Publication of JP2002193670A5 publication Critical patent/JP2002193670A5/en
Application granted granted Critical
Publication of JP3998910B2 publication Critical patent/JP3998910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide compact burning method by which porous silicon carbide members can be manufactured at small variation of their mean pore diameters and in almost uniform flexural strengths because the silicon carbide compact can be heated at an almost uniform temperature. SOLUTION: The burning method for silicon carbide compact is to burn the silicon carbide compacts by putting them on burning tools after degreasing the columnar silicon carbide compacts including silicon carbide powder, a binder and a dispersion medium liquid. The burning method for the silicon carbide compact has features that a stacked body is formed by stacking the burning tools with the degreased silicon carbide compacts put on them in a plurality of steps, that spaces between the silicon carbide compacts and the upper and lower burning tools are settled, and that the stacked body is heated from the upper and lower parts of it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス中のパテ
ィキュレートを捕集するためのセラミックフィルターを
製造する際の炭化珪素成形体の焼成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for firing a silicon carbide molded body when manufacturing a ceramic filter for collecting particulates in exhaust gas.

【0002】[0002]

【従来の技術】バス、トラック等の車両や建設機械等の
内燃機関から排出される排気ガス中に含有されるパティ
キュレートが環境や人体に害を及ぼすことが最近問題と
なっている。この排気ガスを多孔質セラミックを通過さ
せることにより、排気ガス中のパティキュレートを捕集
して排気ガスを浄化するセラミックフィルタが種々提案
されている。
2. Description of the Related Art Recently, it has become a problem that particulates contained in exhaust gas discharged from internal combustion engines such as vehicles such as buses and trucks and construction machines cause harm to the environment and human bodies. Various ceramic filters have been proposed which purify the exhaust gas by collecting the particulates in the exhaust gas by passing the exhaust gas through a porous ceramic.

【0003】セラミックフィルタは、通常、図3に示す
ような多孔質炭化珪素部材40が複数個結束されてセラ
ミックフィルタ30を構成している。また、この多孔質
炭化珪素部材40は、図4に示すように、長手方向に多
数の貫通孔41が並設され、貫通孔41同士を隔てる隔
壁43がフィルタとして機能するようになっている。
[0003] In a ceramic filter, a plurality of porous silicon carbide members 40 as shown in FIG. Further, as shown in FIG. 4, the porous silicon carbide member 40 has a large number of through holes 41 arranged in a longitudinal direction, and a partition 43 separating the through holes 41 functions as a filter.

【0004】すなわち、多孔質炭化珪素部材40に形成
された貫通孔41は、図4(b)に示すように、排気ガ
スの入り口側又は出口側の端部のいずれかが充填材42
により目封じされ、一の貫通孔41に流入した排気ガス
は、必ず貫通孔41を隔てる隔壁43を通過した後、他
の貫通孔41から流出するようになっており、排気ガス
がこの隔壁43を通過する際、パティキュレートが隔壁
43部分で捕捉され、排気ガスが浄化される。このよう
な多孔質炭化珪素部材40は、極めて耐熱性に優れ、再
生処理等も容易であるため、種々の大型車両やディーゼ
ルエンジン搭載車両等に使用されている。
That is, as shown in FIG. 4 (b), the through hole 41 formed in the porous silicon carbide member 40 has a filling material 42 at either the inlet or outlet end of the exhaust gas.
The exhaust gas that has been plugged in and has flowed into one through hole 41 always passes through a partition 43 separating the through hole 41 and then flows out from another through hole 41. When passing through, the particulates are trapped in the partition 43 and the exhaust gas is purified. Such a porous silicon carbide member 40 has extremely excellent heat resistance and is easy to regenerate, so that it is used for various large vehicles and vehicles equipped with a diesel engine.

【0005】従来、このような多孔質炭化珪素部材を製
造する際には、まず、炭化珪素粉末とバインダーと分散
媒液とを混合して成形体製造用の混合組成物を調製した
後、この混合組成物の押出成形等を行うことにより、炭
化珪素成形体を作製する。
Conventionally, when producing such a porous silicon carbide member, first, a silicon carbide powder, a binder, and a dispersion medium are mixed to prepare a mixed composition for producing a molded body. Extrusion molding or the like of the mixed composition is performed to produce a silicon carbide molded body.

【0006】次に、得られた炭化珪素成形体をヒーター
等を用いて乾燥させ、一定の強度を有し、容易に取り扱
うことができる炭化珪素成形体の乾燥体を製造する。
Next, the obtained silicon carbide molded body is dried using a heater or the like to produce a dried silicon carbide molded body having a certain strength and which can be easily handled.

【0007】この乾燥工程の後、炭化珪素成形体を酸素
含有雰囲気下において、400〜650℃に加熱し、有
機バインダー成分中の溶剤を揮発させるとともに、樹脂
成分を分解消失させる脱脂工程を行い、さらに、炭化珪
素粉末を不活性ガス雰囲気下、2000〜2200℃に
加熱することにより焼結させる焼成工程を経て、多孔質
炭化珪素部材が製造される。
After the drying step, the silicon carbide compact is heated to 400 to 650 ° C. in an oxygen-containing atmosphere to volatilize the solvent in the organic binder component and perform a degreasing process for decomposing and eliminating the resin component. Further, a porous silicon carbide member is manufactured through a firing step of sintering the silicon carbide powder by heating it to 2000 to 2200 ° C. in an inert gas atmosphere.

【0008】図5(a)は、従来の炭化珪素成形体の焼
成工程を模式的に示した縦断面図であり、(b)は、そ
の部分拡大断面図である。図5(a)、(b)に示した
通り、従来の炭化珪素成形体の焼成工程では、まず、脱
脂工程を経た炭化珪素成形体52を、焼成用治具53内
に下駄材55を介して複数個載置し、炭化珪素成形体5
2が載置された焼成用治具53を複数個積み重ねて積層
体を形成する。そして、この積層体を支持台57上に載
置した後、ベルトコンベア等の移動台54上に搬送し、
移動台54の左右方向に設けたヒーター51で炭化珪素
成形体52を加熱することにより、多孔質炭化珪素部材
を製造していた。
FIG. 5A is a longitudinal sectional view schematically showing a conventional firing step of a silicon carbide molded body, and FIG. 5B is a partially enlarged sectional view thereof. As shown in FIGS. 5A and 5B, in the conventional firing process of the silicon carbide molded body, first, the silicon carbide molded body 52 that has undergone the degreasing step is placed in a firing jig 53 via a clog 55. A plurality of silicon carbide compacts 5
A plurality of firing jigs 53 on which 2 is placed are stacked to form a laminate. Then, after placing the stacked body on the support base 57, the stacked body is transferred onto a moving base 54 such as a belt conveyor,
The porous silicon carbide member has been manufactured by heating the silicon carbide molded body 52 with the heater 51 provided in the left and right direction of the moving table 54.

【0009】しかしながら、このような従来の炭化珪素
成形体の焼成工程においては、焼成用治具内に載置した
炭化珪素成形体の左右方向から加熱を行っていたたた
め、炭化珪素成形体の中央付近の温度が両端付近に比べ
て低くなり、炭化珪素成形体中に温度分布が発生してい
た。また、支持台をベルトコンベア等の移動台上に載置
していたため、焼成炉の底面からの熱が移動台により遮
られ、下方に積み重ねた炭化珪素成形体の温度が上方に
積み重ねた炭化珪素成形体の温度に比べて低くなり、各
炭化珪素成形体の間に温度差が発生していた。
However, in such a conventional firing process of the silicon carbide molded body, since the silicon carbide molded body placed in the firing jig is heated from the left and right directions, the center of the silicon carbide molded body is heated. The temperature in the vicinity was lower than that in the vicinity of both ends, and a temperature distribution occurred in the silicon carbide molded body. In addition, since the support table was placed on a transfer table such as a belt conveyor, the heat from the bottom of the firing furnace was blocked by the transfer table, and the temperature of the silicon carbide molded body stacked below was increased. The temperature was lower than the temperature of the compact, and a temperature difference occurred between the silicon carbide compacts.

【0010】上記炭化珪素成形体の焼成工程において、
炭化珪素成形体中に温度分布が存在すると、炭化珪素粒
子の粒成長が均一に行われず、製造する多孔質炭化珪素
部材の平均気孔径に、場所による大きなバラツキが存在
してしまうことになる。このように、平均気孔径に大き
なバラツキが存在する多孔質炭化珪素部材は、その曲げ
強度にもバラツキが発生し、また、このような多孔質炭
化珪素部材を用いたセラミックフィルタは、その曲げ強
度にバラツキが発生するとともに、パティキュレートの
捕集効率に劣るものであった。また、上方に積み重ねた
炭化珪素成形体と下方に積み重ねた炭化珪素成形体との
平均気孔径も異なったものとなるため、一定の平均気孔
径及び曲げ強度を有する多孔質炭化珪素部材を製造する
ことが困難であった。
In the firing step of the silicon carbide compact,
If there is a temperature distribution in the silicon carbide compact, the silicon carbide particles will not grow uniformly, and the average pore diameter of the porous silicon carbide member to be produced will have large variations depending on the location. As described above, a porous silicon carbide member having a large variation in the average pore diameter also has a variation in bending strength, and a ceramic filter using such a porous silicon carbide member has a large bending strength. And the collection efficiency of particulates was poor. In addition, since the average pore diameter of the silicon carbide molded body stacked above and the silicon carbide molded body stacked below are different, a porous silicon carbide member having a constant average pore diameter and a certain bending strength is manufactured. It was difficult.

【0011】また、上述した従来の焼成工程において、
移動台の移動速度を落とし、焼成時間を長時間とするこ
とで、炭化珪素成形体に発生する温度分布をある程度低
減させることは可能であるが、生産性が極端に低下して
しまい、現実的でない。
Further, in the above-mentioned conventional firing step,
By lowering the moving speed of the moving table and increasing the firing time, it is possible to reduce the temperature distribution generated in the silicon carbide molded body to some extent, but the productivity is extremely reduced, and it is practical. Not.

【0012】[0012]

【発明が解決しようとする課題】本発明は、これらの問
題を解決するためになされたもので、炭化珪素成形体の
焼成工程において、炭化珪素成形体を略均一な温度に加
熱することができるため、焼結した多孔質炭化珪素部材
の平均気孔径のバラツキが小さく、略均一な曲げ強度を
有する多孔質炭化珪素部材を得ることができる炭化珪素
成形体の焼成方法を提供することを目的とするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and can heat a silicon carbide molded body to a substantially uniform temperature in a firing step of the silicon carbide molded body. Therefore, it is an object of the present invention to provide a method for firing a silicon carbide molded body capable of obtaining a porous silicon carbide member having small variation in average pore diameter of a sintered porous silicon carbide member and having substantially uniform bending strength. Is what you do.

【0013】[0013]

【課題を解決するための手段】本発明の炭化珪素成形体
の焼成方法は、炭化珪素粉末とバインダーと分散媒液と
を含む柱状の炭化珪素成形体を脱脂した後、焼成用治具
上に載置して焼成する上記炭化珪素成形体の焼成方法で
あって、脱脂後の炭化珪素成形体を載置した焼成用治具
を複数段に積み重ねて積層体を形成するとともに、上記
炭化珪素成形体と上下の焼成用治具との間に空間を設
け、かつ、上記積層体の上下方向から加熱することを特
徴とする。
According to the method of firing a silicon carbide compact of the present invention, a columnar silicon carbide compact containing silicon carbide powder, a binder and a dispersion medium is degreased and then placed on a firing jig. A method of firing the silicon carbide molded body, which is mounted and fired, comprising stacking a plurality of firing jigs on which the degreased silicon carbide molded body is mounted to form a laminate, and forming the silicon carbide molded body. A space is provided between the body and the upper and lower firing jigs, and the laminate is heated from above and below.

【0014】[0014]

【発明の実施の形態】以下、本発明の炭化珪素成形体の
焼成方法について、必要により、図1を参照しながら説
明する。本発明では、初めに、炭化珪素粉末とバインダ
ーと分散媒液とを含む柱状の炭化珪素成形体を作製す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for firing a silicon carbide molded body of the present invention will be described with reference to FIG. 1 as necessary. In the present invention, first, a columnar silicon carbide molded body including a silicon carbide powder, a binder, and a dispersion medium is prepared.

【0015】上記炭化珪素成形体の構造としては特に限
定されず、例えば、上記従来の技術で説明したような、
多数の貫通孔が隔壁を隔てて長手方向に並設された柱状
のものや、その内部に多数の連通した気孔を有する柱状
のもの等を挙げることができる。また、その形状は特に
限定されず、例えば、円柱状、楕円柱状、角柱状等のも
のを挙げることができる。なお、以下の説明において
は、炭化珪素成形体の形状は、多数の貫通孔が隔壁を隔
てて長手方向に並設された柱状のものを用いることとす
る。
The structure of the silicon carbide compact is not particularly limited. For example, as described in the prior art,
A columnar structure in which a large number of through holes are juxtaposed in the longitudinal direction across a partition wall, a columnar structure having a large number of communicating pores therein, and the like can be given. The shape is not particularly limited, and examples thereof include a columnar shape, an elliptical columnar shape, and a prismatic shape. In the following description, the shape of the silicon carbide molded body is assumed to be a columnar shape in which a large number of through-holes are juxtaposed in the longitudinal direction across partition walls.

【0016】上記炭化珪素粉末の粒径は特に限定されな
いが、後の焼成過程で収縮が少ないものが好ましく、例
えば、0.3〜50μm程度の平均粒子径を有する粉末
100重量部と0.1〜1.0μm程度の平均粒子径を
有する粉末5〜65重量部とを組み合わせたものが好ま
しい。
The particle size of the silicon carbide powder is not particularly limited, but preferably has a small shrinkage in the subsequent firing step. For example, 100 parts by weight of powder having an average particle size of about 0.3 to 50 μm and 0.1 part by weight. It is preferable to use a combination of 5 to 65 parts by weight of a powder having an average particle diameter of about 1.0 μm.

【0017】上記バインダーとしては特に限定されない
が、例えば、メチルセルロース、カルボキシメチルセル
ロース、ヒドロキシエチルセルロース、ポリエチレング
リコール、フェノール樹脂、エポキシ樹脂等を挙げるこ
とができる。上記バインダーの配合量は、通常、炭化珪
素粉末100重量部に対して、1〜10重量部程度が好
ましい。
The binder is not particularly restricted but includes, for example, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethylene glycol, phenolic resins and epoxy resins. Generally, the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the silicon carbide powder.

【0018】上記分散媒液としては特に限定されない
が、例えば、ベンゼン等の有機溶媒;メタノール等のア
ルコール、水等を挙げることができる。上記分散媒液
は、混合組成物の粘度が一定範囲内となるように、適量
配合される。
The dispersion medium is not particularly restricted but includes, for example, organic solvents such as benzene; alcohols such as methanol, and water. The dispersion medium is mixed in an appropriate amount so that the viscosity of the mixed composition falls within a certain range.

【0019】これら炭化珪素粉末とバインダーと分散媒
液等とは、アトライター等で混合された後、ニーダー等
で充分に混練され、押し出し成形法等により柱状の炭化
珪素成形体が作製される。
The silicon carbide powder, the binder, the dispersion medium and the like are mixed by an attritor or the like and then sufficiently kneaded by a kneader or the like, and a columnar silicon carbide molded body is manufactured by an extrusion molding method or the like.

【0020】この後、上記工程により作製された炭化珪
素成形体の脱脂を行う。上記炭化珪素成形体の脱脂工程
では、通常、上記炭化珪素成形体を脱脂用治具に載置し
た後、脱脂炉に搬入し、酸素含有雰囲気下、400〜6
50℃に加熱する。これにより、バインダー等が揮散す
るとともに、分解、消失し、ほぼ炭化珪素粉末のみが残
留する。
Thereafter, the silicon carbide molded body produced by the above steps is degreased. In the degreasing step of the silicon carbide molded body, usually, the silicon carbide molded body is placed on a degreasing jig, and then carried into a degreasing furnace, and is subjected to 400 to 6 under an oxygen-containing atmosphere.
Heat to 50 ° C. As a result, the binder and the like volatilize, as well as decompose and disappear, and almost only the silicon carbide powder remains.

【0021】次に、脱脂した炭化珪素成形体12を、焼
成用治具13上に載置し、焼成用治具13を複数段積み
重ねて積層体を形成するとともに、該積層体の上下方向
からヒーター11で加熱することにより炭化珪素成形体
12を焼成する。この焼成工程では、窒素、アルゴン等
の不活性ガス雰囲気下、脱脂した炭化珪素成形体12を
2000〜2200℃で加熱し、炭化珪素粉末を焼結さ
せて多孔質炭化珪素部材を製造する。脱脂後の炭化珪素
成形体は、機械的強度が低く、壊れ易いため、焼成用治
具13を脱脂用治具を兼ねたものとし、脱脂工程の後、
脱脂用治具を兼ねた焼成用治具13を複数段積み重ねて
積層体を形成してもよい。
Next, the degreased silicon carbide molded body 12 is placed on a firing jig 13, and the firing jigs 13 are stacked in a plurality of stages to form a laminate. The silicon carbide molded body 12 is fired by heating with the heater 11. In this firing step, the degreased silicon carbide molded body 12 is heated at 2000 to 2200 ° C. in an atmosphere of an inert gas such as nitrogen or argon to sinter the silicon carbide powder to produce a porous silicon carbide member. Since the silicon carbide molded body after degreasing has a low mechanical strength and is easily broken, the firing jig 13 is also used as a degreasing jig, and after the degreasing step,
A stacked body may be formed by stacking a plurality of firing jigs 13 which also serve as a degreasing jig.

【0022】本発明において、積層体を加熱する方向は
その上下方向からである。このように、積層体を上下方
向から加熱することで、積層体内に載置した炭化珪素成
形体12を略均一な温度に加熱することができる。ま
た、上下に設けたヒーター11の発熱量を制御すること
で、上方に積み重ねた炭化珪素成形体12と下方に積み
重ねた炭化珪素成形体12との間に生じる温度分布を小
さくすることができる。
In the present invention, the direction in which the laminate is heated is from above and below. By heating the stacked body from above and below, the silicon carbide compact 12 placed in the stacked body can be heated to a substantially uniform temperature. Further, by controlling the amount of heat generated by heaters 11 provided above and below, it is possible to reduce the temperature distribution generated between silicon carbide compacts 12 stacked above and silicon carbide compacts 12 stacked below.

【0023】また、本発明では、上記積層体を支持台1
7上に載置し、マッフル14中を移動しながらヒーター
11により上記積層体を加熱するが、その際、上記積層
体及び支持台17を移動させる手段としては、ローラー
(図示せず)を用いることが好ましい。下に設けたヒー
ター11で上記積層体を加熱する際、ローラーによる遮
蔽面積が小さいため、ヒーター11から放射された熱が
積層体の炭化珪素成形体に届き易いからである。しかし
ながら、通常、上記ローラーを用いて上記積層体の移動
を行った場合であっても、下方の炭化珪素成形体の温度
は上方の炭化珪素成形体に比べて若干低くなる。従っ
て、上下の炭化珪素成形体間で温度分布が発生すること
を防止するために、上記積層体の下方に設けたヒーター
の発熱量を上方に設けたヒーターの発熱量よりも若干多
くすることが望ましい。
Further, in the present invention, the above-mentioned laminated body is
The laminate is heated by the heater 11 while being placed on the muffler 7 and moving in the muffle 14. At this time, as a means for moving the laminate and the support 17, a roller (not shown) is used. Is preferred. This is because, when the laminate is heated by the heater 11 provided below, the heat radiated from the heater 11 easily reaches the silicon carbide molded body of the laminate because the area covered by the roller is small. However, usually, even when the above-mentioned laminate is moved using the above-mentioned roller, the temperature of the lower silicon carbide molded body is slightly lower than that of the upper silicon carbide molded body. Therefore, in order to prevent a temperature distribution from occurring between the upper and lower silicon carbide molded bodies, the calorific value of the heater provided below the laminated body may be slightly larger than the calorific value of the heater provided above. desirable.

【0024】本発明では、炭化珪素成形体12を焼成す
る際に、炭化珪素成形体12と上下の焼成用治具13と
の間に空間を設ける。これは、以下に挙げるような理由
による。
In the present invention, when firing the silicon carbide molded body 12, a space is provided between the silicon carbide molded body 12 and the upper and lower firing jigs 13. This is for the following reasons.

【0025】即ち、通常、上記焼成用治具としては、カ
ーボン製のものが用いられるが、炭化珪素成形体は、そ
の製造条件に起因して炭化珪素粉末中に約3%程度のS
iO2を含有している。従って、焼成工程において、炭
化珪素成形体から上記SiO2が昇華して放出され、そ
の一部がSiOガスとなり、このSiOガスと焼成用治
具11を構成する炭素との下記反応式(1);
That is, usually, the firing jig is made of carbon. However, the silicon carbide molded body contains about 3% of S in the silicon carbide powder due to the manufacturing conditions.
Contains iO 2 . Therefore, in the firing step, the above-mentioned SiO 2 is sublimated and released from the silicon carbide molded body, a part of which is converted into SiO gas, and the following reaction formula (1) of the SiO gas and carbon constituting the firing jig 11 is used. ;

【0026】SiO+2C→SiC+CO・・・(1)SiO + 2C → SiC + CO (1)

【0027】に示す反応が進行する。その結果、炭化珪
素からなる粗大粒子が焼成用治具表面に形成され、焼成
用治具表面の平滑性が失われてしまうとともに、炭化珪
素成形体と焼成用治具とのくっつき等が生じ、得られる
多孔質炭化珪素部材に欠けやピンホールを発生させ、歩
留まりが低減する原因となる。しかしながら、炭化珪素
成形体12と上下の焼成用治具13との間に空間を設け
ることにより、炭化珪素成形体と焼成用治具とのくっつ
き等が発生することはない。また、この空間をガス等が
流通しやすくなるため、発生したSiO等のガスも拡散
し易く、焼結もスムーズに進行する。
The reaction shown in FIG. As a result, coarse particles made of silicon carbide are formed on the surface of the firing jig, the smoothness of the surface of the firing jig is lost, and sticking between the silicon carbide molded body and the firing jig occurs. Chips and pinholes are generated in the obtained porous silicon carbide member, which causes a reduction in yield. However, by providing a space between the silicon carbide molded body 12 and the upper and lower firing jigs 13, the sticking between the silicon carbide molded body and the firing jig does not occur. Further, since gas and the like easily flow through this space, the generated gas such as SiO is also easily diffused, and sintering proceeds smoothly.

【0028】上記焼成用治具と上記炭化珪素成形体との
間に空間を設ける方法としては特に限定されないが、例
えば、図1(b)に示したような、炭化珪素成形体12
と焼成用治具13との間に下駄材15を挿入する方法が
挙げられる。
The method for providing a space between the firing jig and the silicon carbide molded body is not particularly limited. For example, as shown in FIG.
And a method of inserting the clogging material 15 between the baking jig 13 and the baking jig 13.

【0029】下駄材15は、焼成時の高温に耐え得る耐
熱性が必要であることから、そのような耐熱性を有する
セラミック材料であることが好ましい。
Since the clogs 15 need to have heat resistance to withstand high temperatures during firing, it is preferable that the clogs 15 be a ceramic material having such heat resistance.

【0030】上記セラミック材料としては、比較的熱伝
導率の高いものが好ましく、例えば、カーボン、炭化珪
素、窒化アルミニウム、窒化ケイ素等が挙げられる。
As the ceramic material, those having relatively high thermal conductivity are preferable, and examples thereof include carbon, silicon carbide, aluminum nitride, and silicon nitride.

【0031】このなかで上記炭化珪素は、SiOガスと
全く反応せず、製造される多孔質炭化珪素部材と材料が
同じであるため好ましいが、この炭化珪素は硬すぎるた
め上記炭化珪素成形体を傷付けやすい。従って、これら
の事項を総合的に勘案すると、カーボンがより好まし
い。また、カーボンであれば、その形態は特に限定され
ないが、炭化珪素成形体を傷付けにくい、フェルト
(布)状のものや糸状のものを組み上げたもの等が好ま
しい。
Among these, the silicon carbide does not react at all with the SiO gas, and is preferably made of the same material as the porous silicon carbide member to be produced. Easy to hurt. Therefore, carbon is more preferable when these matters are comprehensively considered. The form of carbon is not particularly limited, but is preferably formed by assembling a felt (cloth) -like or thread-like one that is unlikely to damage the silicon carbide molded body.

【0032】下駄材15の厚さは、炭化珪素成形体12
の下からの熱伝導を考慮すると、1〜10mmの範囲が
好ましい。具体的な厚さは、実際に用いる下駄材15の
熱伝導率を考慮して適宜調整すればよい。
The thickness of the clogging material 15 is
Considering heat conduction from below, the range of 1 to 10 mm is preferable. The specific thickness may be appropriately adjusted in consideration of the thermal conductivity of the clog 15 actually used.

【0033】上記下駄材の具体的な形状としては特に限
定されないが、炭化珪素成形体12を載置した際の安定
性の面から四角柱状が好ましい。また、炭化珪素成形体
の下に配置する下駄材の数としては、炭化珪素成形体と
焼成用治具との間に空間を設けることができるならば特
に限定されず、炭化珪素成形体の両端に2本載置しても
良いし、それ以上載置しても良い。
The specific shape of the clogging material is not particularly limited, but is preferably a quadrangular prism from the viewpoint of stability when the silicon carbide molded body 12 is placed. The number of clogs disposed under the silicon carbide molded body is not particularly limited as long as a space can be provided between the silicon carbide molded body and the firing jig. And two or more may be placed.

【0034】上記焼成用治具は、上述した通り、通常、
カーボン製のものが使用され、その形状としては、図2
に示した通り、箱型であることが好ましい。内部に載置
した炭化珪素成形体を保温性に優れるとともに、内部の
温度を均一化させることができるからである。なお、図
2は、焼成用治具13内に炭化珪素成形体12を下駄材
(図示せず)を介して複数本載置した斜視図である。
As described above, the firing jig is usually
The one made of carbon is used.
As shown in the above, it is preferably a box type. This is because the silicon carbide molded body placed inside is excellent in heat retention and the internal temperature can be made uniform. FIG. 2 is a perspective view in which a plurality of silicon carbide compacts 12 are placed in a firing jig 13 via clogs (not shown).

【0035】このような焼成用治具13を積み重ねるこ
とで、その内部に載置した炭化珪素成形体12と、その
上方に積み重ねた焼結用治具13の底面との間に空間を
設けることができる。なお、炭化珪素成形体12の上面
に空間を設ける理由は、上述した下駄材15において説
明した理由と同様である。
By stacking such firing jigs 13, a space is provided between the silicon carbide molded body 12 placed therein and the bottom surface of the sintering jigs 13 stacked thereabove. Can be. The reason for providing the space on the upper surface of silicon carbide molded body 12 is the same as the reason described for clogging material 15 described above.

【0036】炭化珪素成形体12と、上方の焼成用治具
13との間の空間は、上述した下駄材15により形成さ
れる空間と同程度であることが好ましい。また、最上層
の焼成用治具の上面は、カーボン製の板で覆われている
ことが好ましい。炭化珪素成形体の保温効率を向上させ
るとともに、焼成中にスス等の落下物が炭化珪素成形体
に付着することを防止するためである。
The space between the silicon carbide compact 12 and the upper firing jig 13 is preferably substantially the same as the space formed by the clogs 15 described above. Further, it is preferable that the upper surface of the uppermost firing jig is covered with a carbon plate. This is to improve the heat retaining efficiency of the silicon carbide molded body and to prevent falling objects such as soot from adhering to the silicon carbide molded body during firing.

【0037】このような焼成用治具13を積み重ねる個
数としては特に限定されないが、4〜10段であること
が好ましい。4段未満であると充分に炭化珪素成形体を
焼成することはできるが、生産性が低下してしまう。一
方、10段を超えると中央付近の炭化珪素成形体を充分
に焼成することが困難となり、また、装置を大型化する
必要が生じ、効率的な製造が困難となる。
The number of such firing jigs 13 to be stacked is not particularly limited, but is preferably 4 to 10 steps. If it is less than 4 steps, the silicon carbide molded body can be sufficiently fired, but productivity will be reduced. On the other hand, if it exceeds 10 steps, it will be difficult to sufficiently fire the silicon carbide molded body near the center, and it will be necessary to increase the size of the apparatus, making efficient production difficult.

【0038】なお、脱脂工程から焼成工程に至る一連の
工程では、上述したように、焼成用治具上に下駄材を介
して炭化珪素成形体を載せ、そのまま、脱脂工程及び焼
成工程を行うことが好ましい。脱脂工程及び焼成工程を
効率的に行うことができ、また、載せ代え等において、
炭化珪素成形体が傷つくのを防止することができるから
である。
In a series of steps from the degreasing step to the firing step, as described above, the silicon carbide molded body is placed on the firing jig via the clogging material, and the degreasing step and the firing step are performed as it is. Is preferred. The degreasing step and the sintering step can be performed efficiently.
This is because the silicon carbide molded body can be prevented from being damaged.

【0039】このように本発明の炭化珪素成形体の焼成
方法を用いることにより、炭化珪素成形体内を略均一な
温度に加熱することができ、焼結した多孔質炭化珪素部
材の平均気孔径のバラツキが小さく、略均一な曲げ強度
を有する多孔質炭化珪素部材を得ることができる。ま
た、炭化珪素成形体を複数段に積み重ねて焼成を行って
も、各段における温度のバラツキも小さなものとするこ
とができるため、一定の平均気孔径及び曲げ強度を有す
る多孔質炭化珪素部材を安定して製造することができ
る。
By using the method for firing a silicon carbide molded body of the present invention, the silicon carbide molded body can be heated to a substantially uniform temperature, and the average pore diameter of the sintered porous silicon carbide member can be reduced. It is possible to obtain a porous silicon carbide member having a small variation and a substantially uniform bending strength. Further, even if the silicon carbide molded bodies are stacked in multiple stages and fired, the variation in temperature at each stage can be reduced, so that a porous silicon carbide member having a constant average pore diameter and bending strength can be obtained. It can be manufactured stably.

【0040】[0040]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0041】実施例1 平均粒子径30μmのα型炭化珪素粉末70重量部、平
均粒子径0.28μmのβ型炭化珪素粉末30重量部、
メチルセルロース5重量部、分散剤4重量部、水20重
量部を配合して均一に混合することにより、原料の混合
組成物を調製した。この混合組成物を押出成形機に充填
し、押出速度2cm/分にて図4に示した多孔質炭化珪
素部材40と同形状の炭化珪素成形体を作製した。この
炭化珪素成形体は、その大きさが33mm×33mm×
300mmで、貫通孔の数が31個/cm2 、隔壁の厚
さが0.35mmであった。
Example 1 70 parts by weight of α-type silicon carbide powder having an average particle diameter of 30 μm, 30 parts by weight of β-type silicon carbide powder having an average particle diameter of 0.28 μm,
5 parts by weight of methylcellulose, 4 parts by weight of a dispersant, and 20 parts by weight of water were blended and uniformly mixed to prepare a mixed composition of raw materials. This mixed composition was charged into an extruder, and a silicon carbide molded body having the same shape as the porous silicon carbide member 40 shown in FIG. 4 was produced at an extrusion speed of 2 cm / min. This silicon carbide compact has a size of 33 mm × 33 mm ×
The thickness was 300 mm, the number of through holes was 31 / cm 2 , and the thickness of the partition wall was 0.35 mm.

【0042】次に、ポーラスカーボン(東海カーボン社
製 G100)からなり、その一主面が開口した箱型の
焼成用治具(45mm×350mm×430mm)内
に、カーボンフェルト(3mm×5mm×410mm、
熱伝導率0.24W/m・K)からなる下駄材を載置
し、この上に乾燥した炭化珪素成形体を10個載置した
後、5%の酸素濃度を有する空気と窒素との混合ガス雰
囲気下、450℃で加熱することにより脱脂工程を行っ
た。
Next, carbon felt (3 mm × 5 mm × 410 mm) was placed in a box-shaped firing jig (45 mm × 350 mm × 430 mm) made of porous carbon (G100 manufactured by Tokai Carbon Co., Ltd.) and opened on one main surface. ,
A clog material having a thermal conductivity of 0.24 W / m · K) is placed, ten dried silicon carbide molded bodies are placed thereon, and then a mixture of air and nitrogen having an oxygen concentration of 5% is mixed. The degreasing step was performed by heating at 450 ° C. in a gas atmosphere.

【0043】次に、脱脂工程を経た炭化珪素成形体載置
した焼成用治具を4段積み重ね、最上層の焼成用治具の
上にポーラスカーボンからなる板(10mm×360m
m×450mm)を載置して蓋をし、積層体を形成し
た。そして、上記積層体を2列に並べて焼成装置に搬入
し、窒素ガス雰囲気下、上記積層体をその下方に設けた
ローラーで移動させながら、上記焼成用治具の上下方向
から、最高温度が2200℃、その温度における加熱時
間が3時間となるように加熱することにより炭化珪素成
形体の焼成を行い、多孔質炭化珪素部材を製造した(図
1参照)。得られた多孔質炭化珪素部材について、以下
の方法で物性を調べた。その結果を下記表1に示す。
Next, the firing jig on which the silicon carbide compact having undergone the degreasing process is mounted is stacked in four stages, and a plate made of porous carbon (10 mm × 360 m) is placed on the uppermost firing jig.
m × 450 mm) and placed on the lid to form a laminate. Then, the laminates are arranged in two rows and carried into a baking apparatus. Under a nitrogen gas atmosphere, the laminate is moved by a roller provided thereunder, and the maximum temperature of the baking jig is 2200 from the vertical direction. The silicon carbide molded body was fired by heating so that the heating time at that temperature and the temperature was 3 hours, thereby producing a porous silicon carbide member (see FIG. 1). The physical properties of the obtained porous silicon carbide member were examined by the following methods. The results are shown in Table 1 below.

【0044】評価方法 (1)平均気孔径の差 水銀ポロシメータにより、水銀を気孔中に充填し、圧力
と充填量との相関検量線により、各段における多孔質炭
化珪素部材の両端付近と中央付近との平均気孔径を測定
し、これらの値から、上下方向での平均気孔径の差、及
び、左右方向での平均気孔径の差の最大値を測定した。 (2)平均気孔径のバラツキ 上記(1)で測定した各多孔質炭化珪素部材の平均気孔
径の値から、標準偏差を算出し、平均気孔径のバラツキ
を評価した。 (3)温度差 炭化珪素成形体を焼成する際の積層体における上下及び
左右方向での温度差を、上記(1)で測定した平均気孔
径と、予め測定しておいた多孔質炭化珪素部材の平均気
孔径と温度とに関する検量線とから算出した。すなわ
ち、上記(1)で測定した平均気孔径から、各部分にお
ける温度を求め、このデータをもとにして温度差を算出
した。 (4)曲げ強度 曲げ強度試験機を用い、得られた多孔質炭化珪素部材の
3点曲げ試験を行い、曲げ強度の平均値を測定し、各曲
げ強度の値から標準偏差を算出し、曲げ強度のバラツキ
を評価した。
Evaluation method (1) Difference in average pore diameter Mercury is filled in the pores by a mercury porosimeter, and the vicinity of both ends and the center of the porous silicon carbide member in each stage are obtained by a correlation calibration curve between pressure and filling amount. And the average pore diameter in the vertical direction and the maximum value of the difference in the average pore diameter in the left-right direction were measured from these values. (2) Variation of average pore diameter Standard deviation was calculated from the value of the average pore diameter of each porous silicon carbide member measured in (1) above, and the variation of the average pore diameter was evaluated. (3) Temperature difference The average pore diameter measured in (1) above and the porous silicon carbide member measured in advance in the vertical and horizontal directions of the laminated body when firing the silicon carbide molded body. And the calibration curve for the average pore diameter and temperature. That is, the temperature in each part was obtained from the average pore diameter measured in the above (1), and the temperature difference was calculated based on this data. (4) Bending strength Using a bending strength tester, a three-point bending test is performed on the obtained porous silicon carbide member, an average value of bending strength is measured, and a standard deviation is calculated from each bending strength value. The variation in strength was evaluated.

【0045】実施例2 焼成用治具を5段積み重ねたほかは、実施例1と同様に
して多孔質炭化珪素部材を製造した。
Example 2 A porous silicon carbide member was manufactured in the same manner as in Example 1, except that five firing jigs were stacked.

【0046】本実施例2で得られた多孔質炭化珪素部材
も実施例1と同様にして物性を調べた。その結果を下記
表1に示す。
The physical properties of the porous silicon carbide member obtained in Example 2 were examined in the same manner as in Example 1. The results are shown in Table 1 below.

【0047】比較例1 実施例1で形成した焼成用治具を4段積み重ねた積層体
を、ベルトコンベア上に直接載置して焼成装置に1列で
搬入し、上記積層体の左右方向からヒーターで加熱し、
焼成を行ったほかは、実施例と同様にして多孔質炭化珪
素部材を製造した(図5参照)。本比較例1で得られた
多孔質炭化珪素部材も実施例1と同様にして物性を調べ
た。但し、本比較例1においては、上記積層体を1列で
焼成処理を行ったため、平均気孔径の左右方向の差は、
1つの多孔質炭化珪素部材の左右方向における平均気孔
径の差の最大値を測定した。その結果を下記表1に示
す。
Comparative Example 1 A laminate obtained by stacking the firing jigs formed in Example 1 in four stages is directly placed on a belt conveyor and carried in a line in a firing device. Heat with a heater,
A porous silicon carbide member was manufactured in the same manner as in the example except that the firing was performed (see FIG. 5). The physical properties of the porous silicon carbide member obtained in Comparative Example 1 were examined in the same manner as in Example 1. However, in Comparative Example 1, since the laminate was fired in one row, the difference in the average pore diameter in the left-right direction was:
The maximum value of the difference in average pore diameter in the left-right direction of one porous silicon carbide member was measured. The results are shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】表1に示した結果から明らかなように、実
施例1及び実施例2に係る多孔質炭化珪素部材は、その
上下及び左右方向に関する平均気孔径の差や平均気孔径
のバラツキは小さく、焼成時の上下及び左右方向での温
度差も小さい。また、その曲げ強度も高く、バラツキも
小さなものであり、充分に優れた特性を有していた。ま
た、上記積層体を2列に並べて同時に焼成処理を行うこ
とができるため、その生産性に優れたものであった。
As is clear from the results shown in Table 1, the porous silicon carbide members according to Example 1 and Example 2 have a small difference in the average pore diameter in the vertical and horizontal directions and a small variation in the average pore diameter. Also, the temperature difference in the vertical and horizontal directions during firing is small. Further, its bending strength was high, the dispersion was small, and it had sufficiently excellent characteristics. In addition, since the laminates can be arranged in two rows and simultaneously fired, the productivity was excellent.

【0050】一方、比較例1に係る多孔質炭化珪素部材
は、その上下方向における平均気孔径の差、平均気孔径
のバラツキ、及び、焼成時の温度差は大きく、その曲げ
強度のバラツキも大きなものであった。また、比較例1
に係る多孔質炭化珪素部材における左右方向に関する平
均気孔径の差、平均気孔径のバラツキ、及び、焼成時の
温度差は、実施例1、2の場合と比較して若干優れるも
のとなっているが、余り大きな差はなかった。比較例1
に係る多孔質炭化珪素部材が、左右方向の特性に関して
若干優れているのは、積層体を1列にして焼成している
ことに起因している。すなわち、通常、積層体を1列に
した場合には、2列にした場合と比較して、その幅が半
分となり、熱容量も半分となるため、焼成時の温度差が
大きく改善されると考えられるが、比較例1と実施例
1、2とを比較すると、比較例1の場合が若干優れてい
るのみであり、実施例2と比較例1とを比べると、殆ど
差がない。従って、同じ条件(すなわち、積層体を2列
にした場合)で比べると、実施例1、2の方がはるかに
平均気孔径のバラツキ(温度差)が少なくなると考えら
れる。なお、この実施例1、2に係る多孔質炭化珪素部
材の左右方向の気孔径の差は、充分に許容範囲内のもの
であった。
On the other hand, in the porous silicon carbide member according to Comparative Example 1, the difference in the average pore diameter in the vertical direction, the variation in the average pore diameter, and the temperature difference during firing are large, and the variation in the bending strength is also large. Was something. Comparative Example 1
In the porous silicon carbide member according to the above, the difference in the average pore diameter in the left-right direction, the variation in the average pore diameter, and the temperature difference during firing are slightly better than those in Examples 1 and 2. But there was not much difference. Comparative Example 1
The reason that the porous silicon carbide member according to the above is slightly superior in the characteristics in the left-right direction is due to the fact that the laminate is fired in one row. That is, in general, when the laminated body is arranged in one row, the width is reduced to half and the heat capacity is reduced to half compared to the case where the laminated body is arranged in two rows, so that the temperature difference during firing is greatly improved. However, when Comparative Example 1 is compared with Examples 1 and 2, Comparative Example 1 is only slightly superior, and Example 2 and Comparative Example 1 have almost no difference. Therefore, when compared under the same conditions (that is, when the laminated bodies are arranged in two rows), it is considered that the variations (temperature difference) of the average pore diameter are much smaller in Examples 1 and 2. Note that the difference in pore diameter in the left-right direction of the porous silicon carbide members according to Examples 1 and 2 was sufficiently within an allowable range.

【0051】以上のように、積層体を上下方向から加熱
する実施例1、2の加熱方法では、積層体の上下の温度
分布が大きく改善されるとともに、積層体の左右方向の
温度分布のばらつきも小さくなり、得られる多孔質炭化
珪素部材の気孔径のばらつきや強度のばらつきが小さく
なる。
As described above, according to the heating methods of Embodiments 1 and 2 in which the laminated body is heated from the vertical direction, the temperature distribution in the vertical direction of the laminated body is greatly improved, and the temperature distribution in the lateral direction of the laminated body is varied. And the variation in pore diameter and the variation in strength of the resulting porous silicon carbide member are reduced.

【0052】[0052]

【発明の効果】本発明の炭化珪素成形体の焼成方法は、
上述の通りであるので、その平均気孔径のバラツキが小
さく、略均一な曲げ強度を有する多孔質炭化珪素部材を
得ることができる。
The method for firing a silicon carbide molded body according to the present invention comprises:
As described above, it is possible to obtain a porous silicon carbide member having a small variation in the average pore diameter and having a substantially uniform bending strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、本発明の炭化珪素成形体の焼成方法
の一例を模式的に示した縦断面図であり、(b)は、
(a)の部分拡大図である。
FIG. 1A is a longitudinal sectional view schematically showing one example of a method for firing a silicon carbide molded body of the present invention, and FIG.
It is the elements on larger scale of (a).

【図2】本発明の炭化珪素成形体の焼成方法において使
用する焼成用治具の一例を模式的に示した斜視図であ
る。
FIG. 2 is a perspective view schematically showing an example of a firing jig used in the method of firing a silicon carbide molded body of the present invention.

【図3】セラミック構造体を模式的に示した斜視図であ
る。
FIG. 3 is a perspective view schematically showing a ceramic structure.

【図4】(a)は、セラミック構造体を構成する多孔質
炭化珪素部材を模式的に示した斜視図であり、(b)
は、(a)に示した多孔質炭化珪素部材のA−A線断面
図である。
FIG. 4A is a perspective view schematically showing a porous silicon carbide member constituting a ceramic structure, and FIG.
FIG. 3 is a cross-sectional view of the porous silicon carbide member shown in FIG.

【図5】(a)は、従来の炭化珪素成形体の焼成方法の
一例を模式的に示した縦断面図であり、(b)は、
(a)の部分拡大図である。
FIG. 5A is a longitudinal sectional view schematically showing an example of a conventional method for firing a silicon carbide molded body, and FIG.
It is the elements on larger scale of (a).

【符号の説明】[Explanation of symbols]

11、51 ヒーター 12、52 炭化珪素成形体 13、53 焼成用治具 14 マッフル 15、55 下駄材 17、57 支持台 54 コンベアベルト 11, 51 Heater 12, 52 Silicon carbide molded body 13, 53 Firing jig 14 Muffle 15, 55 Geta material 17, 57 Support stand 54 Conveyor belt

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D019 AA01 BA05 BB06 BC12 CA01 CB04 CB06 4G001 BA22 BB22 BC26 BC34 BC54 BD14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D019 AA01 BA05 BB06 BC12 CA01 CB04 CB06 4G001 BA22 BB22 BC26 BC34 BC54 BD14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素粉末とバインダーと分散媒液と
を含む柱状の炭化珪素成形体を脱脂した後、焼成用治具
上に載置して焼成する前記炭化珪素成形体の焼成方法で
あって、脱脂後の炭化珪素成形体を載置した焼成用治具
を複数段に積み重ねて積層体を形成するとともに、前記
炭化珪素成形体と上下の焼成用治具との間に空間を設
け、かつ、前記積層体の上下方向から加熱することを特
徴とする炭化珪素成形体の焼成方法。
1. A method for firing a silicon carbide molded body, comprising: degreased a columnar silicon carbide molded body containing a silicon carbide powder, a binder, and a dispersion medium solution, and then placing it on a firing jig and firing. A firing jig on which the degreased silicon carbide molded body is placed is stacked in a plurality of stages to form a laminate, and a space is provided between the silicon carbide molded body and upper and lower firing jigs, A method for firing a silicon carbide molded body, comprising heating the laminate from above and below.
JP2000390636A 2000-12-22 2000-12-22 Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter Expired - Fee Related JP3998910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390636A JP3998910B2 (en) 2000-12-22 2000-12-22 Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390636A JP3998910B2 (en) 2000-12-22 2000-12-22 Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter

Publications (3)

Publication Number Publication Date
JP2002193670A true JP2002193670A (en) 2002-07-10
JP2002193670A5 JP2002193670A5 (en) 2005-09-22
JP3998910B2 JP3998910B2 (en) 2007-10-31

Family

ID=18856961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390636A Expired - Fee Related JP3998910B2 (en) 2000-12-22 2000-12-22 Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter

Country Status (1)

Country Link
JP (1) JP3998910B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013931A1 (en) 2004-08-04 2006-02-09 Ibiden Co., Ltd. Firing furnace and method for producing porous ceramic fired article using the firing furnace
EP1666826A1 (en) * 2004-08-06 2006-06-07 Ibiden Co., Ltd. Sintering furnace and method for producing sintered body of porous ceramic using that furnace
JP2007229709A (en) * 2006-02-28 2007-09-13 Ibiden Co Ltd Drying jig, method for drying honeycomb formed body, and method for manufacturing honeycomb structured body
JP2007230859A (en) * 2006-02-28 2007-09-13 Ibiden Co Ltd Manufacturing method of honeycomb structure
WO2008126320A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Process for producing honeycomb structure
US7498544B2 (en) 2004-08-25 2009-03-03 Ibiden Co., Ltd. Firing furnace and method for manufacturing porous ceramic fired object with firing furnace
JP2009280409A (en) * 2007-03-30 2009-12-03 Ibiden Co Ltd Method for manufacturing porous silicon carbide sintered compact
EP2327945A1 (en) 2009-11-25 2011-06-01 Ibiden Co., Ltd. Method for manufacturing ceramic fired body and method for manufacturing honeycomb structured body
JP7565765B2 (en) 2020-07-22 2024-10-11 日鉄鉱業株式会社 Method for forming dust-collecting layer on porous body without using binder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013931A1 (en) 2004-08-04 2006-02-09 Ibiden Co., Ltd. Firing furnace and method for producing porous ceramic fired article using the firing furnace
EP1818639A1 (en) * 2004-08-04 2007-08-15 Ibiden Co., Ltd. Firing furnace and method for producing porous ceramic fired article using the firing furnace
EP1818639A4 (en) * 2004-08-04 2007-08-29 Ibiden Co Ltd Firing furnace and method for producing porous ceramic fired article using the firing furnace
EP1666826A1 (en) * 2004-08-06 2006-06-07 Ibiden Co., Ltd. Sintering furnace and method for producing sintered body of porous ceramic using that furnace
EP1666826A4 (en) * 2004-08-06 2008-04-09 Ibiden Co Ltd Sintering furnace and method for producing sintered body of porous ceramic using that furnace
US7498544B2 (en) 2004-08-25 2009-03-03 Ibiden Co., Ltd. Firing furnace and method for manufacturing porous ceramic fired object with firing furnace
JP2007229709A (en) * 2006-02-28 2007-09-13 Ibiden Co Ltd Drying jig, method for drying honeycomb formed body, and method for manufacturing honeycomb structured body
JP2007230859A (en) * 2006-02-28 2007-09-13 Ibiden Co Ltd Manufacturing method of honeycomb structure
WO2008126320A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Process for producing honeycomb structure
JP2009280409A (en) * 2007-03-30 2009-12-03 Ibiden Co Ltd Method for manufacturing porous silicon carbide sintered compact
EP2327945A1 (en) 2009-11-25 2011-06-01 Ibiden Co., Ltd. Method for manufacturing ceramic fired body and method for manufacturing honeycomb structured body
JP7565765B2 (en) 2020-07-22 2024-10-11 日鉄鉱業株式会社 Method for forming dust-collecting layer on porous body without using binder

Also Published As

Publication number Publication date
JP3998910B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JPWO2007015550A1 (en) Silicon carbide firing jig and method for producing porous silicon carbide body
EP1647790A1 (en) Jig for baking ceramic and method of manufacturing porous ceramic body
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
US10350532B2 (en) Porous alpha-SiC-containing shaped body having a contiguous open pore structure
US20040020846A1 (en) Mullite-aluminum titanate diesel exhaust filter
US20060118546A1 (en) Firing furnace and method for manufacturing porous ceramic fired object with firing furnace
US8584375B2 (en) Method of drying honeycomb article, and drying apparatus therefor
WO2007108076A1 (en) Drying device, method of drying ceramic molding, and method of producing honeycomb structure body
EP2105424B1 (en) Method for manufacturing a honeycomb structured body
JP3998910B2 (en) Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter
JPH07138083A (en) Production of porous aluminum titanate sintered compact
US20090093358A1 (en) Porous Silicone Carbide
JP4111676B2 (en) Method for producing porous silicon carbide sintered body
JPH0971466A (en) Silicone-carbide honeycomb structure and its production
US20150183692A1 (en) Method of preparing high porosity ceramic material
Young et al. Silicon carbide for diesel particulate filter applications: material development and thermal design
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
EP3202480A1 (en) Method for producing honeycomb filter
JP2002037673A (en) Manufacturing method of binder and ceramic component, manufacturing method of sintered body and manufacturing method of porous silicon carbide member
JP4349727B2 (en) Method for firing silicon carbide molded body, method for producing porous silicon carbide member, and method for producing ceramic filter
KR100993044B1 (en) Method of manufacturing porous silicon carbide ceramics
JP2001072472A (en) Jig for burning silicon carbide
JP2002293660A (en) Method for manufacturing porous silicon carbide member
JP2002273131A (en) Honeycomb filter and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Ref document number: 3998910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees