JP2002181678A - Shape freezability evaluation method for plastic working - Google Patents
Shape freezability evaluation method for plastic workingInfo
- Publication number
- JP2002181678A JP2002181678A JP2000385544A JP2000385544A JP2002181678A JP 2002181678 A JP2002181678 A JP 2002181678A JP 2000385544 A JP2000385544 A JP 2000385544A JP 2000385544 A JP2000385544 A JP 2000385544A JP 2002181678 A JP2002181678 A JP 2002181678A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- material piece
- evaluation method
- plastic working
- punch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高機能化を目的とし
た組織制御型新素材の塑性加工時における形状凍結性を
基本的な材料特性として評価する形状凍結性評価方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape freezing property evaluation method for evaluating shape freezing property as a basic material property at the time of plastic working of a structure control type new material for high performance.
【0002】[0002]
【従来の技術】従来、材料の形状凍結性評価の際には引
っ張り試験から得られる降伏応力や引っ張り強さ、伸び
といったマクロなパラメータを指標としていた。しかし
微視組織の影響が材料特性に顕著に現れる新素材、たと
えば複合組織鋼では、マクロなパラメータから成形性を
予測することが困難である。加えて製造現場では各部品
ごとに個別に成形性の評価を行っているため、部品形状
や金型による素材の拘束、荷重圧力などの影響がすべて
混在しており、材料固有の成形性について分離・抽出し
て評価することは不可能である。2. Description of the Related Art Heretofore, macroscopic parameters such as yield stress, tensile strength and elongation obtained from a tensile test have been used as indices when evaluating the shape freezing property of a material. However, in the case of a new material in which the influence of the microstructure is remarkable in the material properties, for example, a composite structure steel, it is difficult to predict the formability from macro parameters. In addition, since the formability of each part is evaluated individually at the manufacturing site, the effects of the shape of the part, material restraint by the mold, load pressure, etc. are all mixed, and the formability unique to the material is separated.・ It is impossible to extract and evaluate.
【0003】また、自動車業界等では車体の軽量化と衝
突安全性の向上を目的とした強靱複合組織鋼の汎用化が
進んでいる。加えて鋼の高強度化に伴い、素材自身の剛
性を生かすことにより加工時の拘束を無くし、自由度を
高めた加工法が開発されつつある。しかしその反面では
拘束条件が比較的緩やかであるため加工精度不良が生じ
やすいという問題が生じ、それを見込んだ正確な加工を
行うためには、素材の形状凍結性を正確に把握すること
が重要である。しかしながら、現在の段階において材料
特性として形状凍結性を評価する基本的な形状凍結性評
価方法は存在しない。[0003] In the automotive industry and the like, the use of tough composite structure steels for the purpose of reducing the weight of a vehicle body and improving collision safety has been increasing. In addition, with the increase in the strength of steel, a processing method has been developed in which the rigidity of the material itself is utilized to eliminate constraints during processing and increase the degree of freedom. However, on the other hand, there is a problem that machining accuracy is likely to be poor due to relatively loose constraint conditions, and it is important to accurately grasp the shape freezing property of the material in order to perform accurate machining with that in mind It is. However, at the present stage, there is no basic shape freezing evaluation method for evaluating shape freezing as a material property.
【0004】[0004]
【発明が解決しようとする課題】そこで本発明はその評
価法として強靱化複合組織鋼や一般構造材料等における
材料の微視組織の影響から材料特性を見極める新しい形
状凍結性評価方法を提供することにより、上記問題点を
解決することを目的とする。本発明は、パンチによる押
し込みに対しダイによる受けを設けず、拘束のない曲げ
加工を施した後の弾性回復量(スプリングバック量)を
計測することで材料の形状凍結性を特定する。この評価
方法により、従来の製品レベルでの評価では不可能であ
った影響因子(材料微視組織、金型、加工条件など)の
分離抽出を可能とし、素材が本来有している形状凍結性
を正確に評価できる。SUMMARY OF THE INVENTION Accordingly, the present invention provides a new shape freezing evaluation method for evaluating the material properties from the influence of the microstructure of the material in toughened composite structure steel, general structural materials, and the like. Accordingly, an object of the present invention is to solve the above problem. The present invention specifies the shape freezing property of a material by measuring the amount of elastic recovery (spring-back amount) after performing unrestricted bending without providing a support by a die in response to pressing by a punch. This evaluation method enables the separation and extraction of influential factors (material microstructure, mold, processing conditions, etc.) that were not possible with the conventional product-level evaluation, and the material's inherent freezing shape Can be accurately evaluated.
【0005】[0005]
【課題を解決するための手段】このため、本発明が採用
した技術解決手段は、被測定材料片をダイ上に非拘束状
態で載置し、パンチで前記被測定材料片を押圧し、その
ときの被測定材料片の曲げ角度と、その後、押圧力を開
放したときの被測定材料片の曲げ角度の差Δθをスプリ
ングバック量とし、このスプリングバック量と予め同じ
条件で求めてある公知の材料のスプリングバック量とを
比較し、被測定材料片の形状凍結性を評価することを特
徴とする塑性加工の形状凍結性評価方法である。また、
前記被測定材料片はパンチによりV曲げされることを特
徴とする塑性加工の形状凍結性評価方法である。For this purpose, a technical solution adopted by the present invention is to place a material to be measured on a die in an unconstrained state and press the material to be measured with a punch, and The bending angle of the measured material piece at the time, and then, the difference Δθ between the bending angle of the measured material piece when the pressing force is released is defined as the springback amount, and a known springback amount is obtained in advance under the same conditions as the springback amount. This is a shape freezing evaluation method for plastic working, which comprises comparing the amount of springback of a material and evaluating the shape freezing of a material piece to be measured. Also,
A method for evaluating the shape freezing property of plastic working, wherein the material to be measured is V-bent by a punch.
【0006】[0006]
【実施の形態】本発明に係る塑性加工の形状凍結性評価
方法について図面を参照して説明すると、図1は本発明
の形状凍結性評価方法の説明図、図2はパンチによる材
料押し込み状態の説明図、図3はスプリングバック量の
測定方法の説明図、図4はダイの正面図、図5はパンチ
の正面図で(イ)は先端の曲率半径がR=2mmのも
の、(ロ)は先端の曲率半径がR=20mmのものであ
る。また、図6は測定結果を示すグラフである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for evaluating the shape freezing property of plastic working according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of the method for evaluating the shape freezing property of the present invention, and FIG. FIG. 3 is an explanatory view of a method of measuring the amount of springback, FIG. 4 is a front view of a die, FIG. 5 is a front view of a punch, (a) is a tip having a radius of curvature of R = 2 mm, (b) Has a radius of curvature of R = 20 mm at the tip. FIG. 6 is a graph showing the measurement results.
【0007】図1において、1はダイであり、このダイ
は図1に示すように少なくとも被測定材料片である素材
2の幅よりも大きな幅を持ち、正面において略V型の押
し込み凹部1Aが形成されている。2は被測定材料片と
しての素材であり、所定の被測定材料片2として加工し
たものである。3は素材を押し込むパンチであり、少な
くとも被測定材料片である素材2の幅よりも大きな幅を
持ち、パンチ3の先端には図5(イ)、(ロ)に示すよ
うな半円形が成されている。先端の曲率半径は、図 に
しめすようにR=2、R=20に限定されず他の曲率半
径をもった形状とすることも可能である。In FIG. 1, reference numeral 1 denotes a die. As shown in FIG. 1, the die has a width larger than at least the width of a material 2 which is a piece of a material to be measured. Is formed. Reference numeral 2 denotes a material as a material to be measured, which is processed as a predetermined material to be measured 2. Reference numeral 3 denotes a punch for pushing the material, which has a width at least larger than the width of the material 2 which is the material piece to be measured, and has a semicircular shape at the tip of the punch 3 as shown in FIGS. Have been. The radius of curvature of the tip is not limited to R = 2 and R = 20 as shown in the figure, but may be a shape having another radius of curvature.
【0008】上記ダイ1、パンチ3を使用して被測定材
料片の塑性加工の形状凍結性評価方法について説明す
る。まず図1に示すように被測定材料片を非拘束状態で
ダイ上に載置し、例えば先端曲率半径が曲率半径がR=
2のものを使用して押し込む。この時の押し込み量は自
由に設定できるが、例えば図2に示すように材料片の曲
げ角度が60°、90°、120°となるように押し込
み量を変えて押し込む。そして押し込み量毎のスプリン
グバック量を測定する。このスプリングバック量は図3
に示すように、パンチ3を所定量押し込んだ状態で材料
片を曲げている時の曲げ角度と、パンチによる負荷を解
除した時の材料片の曲げ角度とを計測し、その差をスプ
リングバック量とする。たとえば、図2に示すようにパ
ンチによる材料片の曲げ角度が60°、90°、120
°の時のスプリングバック量を測定する。A method for evaluating the shape freezing property of plastic working of a material to be measured by using the die 1 and the punch 3 will be described. First, as shown in FIG. 1, a material piece to be measured is placed on a die in an unconstrained state.
Push in using two things. The pushing amount at this time can be freely set. For example, as shown in FIG. 2, the pushing is performed by changing the pushing amount so that the bending angle of the material piece is 60 °, 90 °, and 120 °. Then, the springback amount for each pushing amount is measured. This springback amount is shown in FIG.
As shown in (2), the bending angle when the material piece is bent with the punch 3 pushed in by a predetermined amount and the bending angle of the material piece when the load by the punch is released are measured, and the difference between them is measured by the springback amount. And For example, as shown in FIG. 2, the bending angle of the material piece by the punch is 60 °, 90 °, 120 °.
Measure the amount of springback at °.
【0009】このスプリングバック量と曲げ角度の関係
を図6に示す。求めたスプリングバック量と、予め上記
と同じ条件でスプリングバック量を計測し、形状凍結性
が評価されている公知の種々の素材とを比較して被測定
材料片の形状凍結性を評価する。即ち、被測定材料片の
形状凍結性は公知の素材の材料のなかでもっとも被測定
材料片のスプリングバック量に近い材料と同じ程度の形
状凍結性を有していると評価する。そして、スプリング
バック量は加工誤差でありこれが少ないことは形状凍結
性が良好であると見なす。FIG. 6 shows the relationship between the amount of springback and the bending angle. The determined springback amount is measured in advance under the same conditions as described above, and the shape freezing property of the material to be measured is evaluated by comparing the springback amount with various known materials whose shape freezing properties are evaluated. That is, it is evaluated that the shape freezing property of the material piece to be measured has the same degree of shape freezing property as the material having the closest springback amount to the material piece to be measured among the known materials. The amount of springback is a processing error, and the smaller the amount is, the better the shape freezing property is.
【0010】〔実施例〕以下に本発明の実施例を示す。
被測定材料片は縦150mm、横30mm,板厚1.6
mmの鋼板(複合組織鋼)を使用した。鋼種は5種類
(均質組織鋼及び複合組織鋼)であり、これを用いて図
1に示す装置でパンチ肩R=2mmの金型で3種類の曲
げ角(60度、90度、120度)のV曲げ試験を行い
形状凍結性を評価した。図6に示す測定結果から、複合
組織鋼は同強度の均質組織鋼と比べて形状凍結性が良好
であり1ランク下の強度(100MPa下)である均質
鋼と同程度の形状凍結性を有していることが分かった。Embodiments Embodiments of the present invention will be described below.
The material to be measured has a length of 150 mm, a width of 30 mm, and a thickness of 1.6.
mm steel plate (composite structure steel) was used. There are five types of steel (homogeneous structure steel and composite structure steel), and three types of bending angles (60 degrees, 90 degrees, and 120 degrees) are prepared using the apparatus shown in FIG. Was subjected to a V-bending test to evaluate the shape freezing property. From the measurement results shown in FIG. 6, the composite structure steel has better shape freezing property than the homogeneous structure steel having the same strength, and has the same shape freezing property as the homogeneous steel having the strength one level lower (under 100 MPa). I knew I was doing it.
【0011】以上、本発明の実施の形態について説明し
てきたが、本発明の対称となる材料は強靱化複合組織鋼
や一般構造材料等、広く対称とすることができる。ま
た、本発明は上記実施形態に限定することなく、本発明
はその精神または主要な特徴から逸脱することなく、他
のいかなる形でも実施できる。そのため、前述の実施形
態はあらゆる点で単なる例示にすぎず限定的に解釈して
はならない。Although the embodiment of the present invention has been described above, the symmetrical material of the present invention can be widely symmetrical, such as a toughened composite structure steel or a general structural material. Further, the present invention is not limited to the above embodiment, and the present invention can be implemented in any other form without departing from the spirit or main features. Therefore, the above-described embodiment is merely an example in every aspect and should not be interpreted in a limited manner.
【0012】[0012]
【発明の効果】これまで詳述してきたように本発明によ
れば、複雑な組織を有する新素材の形状凍結性を正しく
評価することが可能となり本来困難とされていた高強度
材料に対する塑性加工技術が飛躍的に向上することが期
待できる。またDual Phase鋼(PD鋼)に代表される複
合組織に限らずAlやTiなどの非鉄金属を含んだすべての
金属材料の成型性評価に対応できる。さらに、鉄鋼材料
では軟質相と硬質相を有する複合組織鋼に対する凍結性
評価も精度よく評価できる、等の優れた効果を奏するこ
とができる。As described in detail above, according to the present invention, it is possible to correctly evaluate the shape freezing property of a new material having a complicated structure, and it is possible to perform plastic working on a high-strength material which was originally difficult. The technology can be expected to improve dramatically. In addition, it is applicable to the evaluation of formability of all metal materials including non-ferrous metals such as Al and Ti as well as the composite structure represented by Dual Phase steel (PD steel). Further, in the case of iron and steel materials, excellent effects such as the ability to accurately evaluate the freezing property of a composite structure steel having a soft phase and a hard phase can be exhibited.
【図1】 本発明の形状凍結性評価方法の説明図であ
る。FIG. 1 is an explanatory diagram of a shape freezing property evaluation method of the present invention.
【図2】 パンチによる被測定材料片押し込み状態の説
明図である。FIG. 2 is an explanatory diagram of a state where a piece of a material to be measured is pushed by a punch.
【図3】 スプリングバック量の測定方法説明図であ
る。FIG. 3 is an explanatory diagram of a method of measuring a springback amount.
【図4】 ダイの正面図である。FIG. 4 is a front view of a die.
【図5】 パンチの正面図で(イ)は先端の曲率半径が
R=2のもの、(ロ)は先端の曲率半径がR=20のも
のである。5A is a front view of the punch, in which the radius of curvature of the tip is R = 2, and FIG. 5B is that in which the radius of curvature of the tip is R = 20.
【図6】 測定結果を示すグラフである。FIG. 6 is a graph showing measurement results.
1 ダイ 2 被測定材料片 3 パンチ 1 Die 2 Material to be measured 3 Punch
Claims (2)
し、パンチで前記被測定材料片を押圧し、そのときの被
測定材料片の曲げ角度と、その後、押圧力を開放したと
きの被測定材料片の曲げ角度の差Δθをスプリングバッ
ク量とし、このスプリングバック量と予め同じ条件で求
めてある公知の材料のスプリングバック量とを比較し、
被測定材料片の形状凍結性を評価することを特徴とする
塑性加工の形状凍結性評価方法。An object piece to be measured is placed on a die in an unconstrained state, and the material piece to be measured is pressed by a punch, and the bending angle of the material piece to be measured at that time and the pressing force are released. The difference Δθ of the bending angle of the material piece to be measured at the time is defined as a springback amount, and the springback amount is compared with the springback amount of a known material which has been obtained in advance under the same conditions.
A shape freezing evaluation method for plastic working, which comprises evaluating the shape freezing of a material piece to be measured.
れることを特徴とする請求項1に記載の塑性加工の形状
凍結性評価方法。2. The method according to claim 1, wherein the material piece to be measured is V-bent by a punch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000385544A JP2002181678A (en) | 2000-12-19 | 2000-12-19 | Shape freezability evaluation method for plastic working |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000385544A JP2002181678A (en) | 2000-12-19 | 2000-12-19 | Shape freezability evaluation method for plastic working |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002181678A true JP2002181678A (en) | 2002-06-26 |
Family
ID=18852791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000385544A Pending JP2002181678A (en) | 2000-12-19 | 2000-12-19 | Shape freezability evaluation method for plastic working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002181678A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102262029A (en) * | 2011-04-22 | 2011-11-30 | 刘颖绚 | Device for preparing thin-strip resilience body and application thereof |
CN102262014A (en) * | 2011-04-22 | 2011-11-30 | 昆明三利特科技有限责任公司 | Manufacture device and use of thin strip rebound body |
CN102262028A (en) * | 2011-04-22 | 2011-11-30 | 昆明三利特科技有限责任公司 | Device for preparing thin-strip resilience body and application thereof |
KR101205166B1 (en) | 2011-08-30 | 2012-11-27 | 현대제철 주식회사 | Frozen Test for Sintered fuel |
CN102825137A (en) * | 2012-08-22 | 2012-12-19 | 合肥科烨电物理设备制造有限公司 | R bending mold for bending high-strength superconductors |
CN103163029A (en) * | 2013-03-12 | 2013-06-19 | 福建省莆田市衡力传感器有限公司 | Device for testing metal steel plate bending resistance |
CN103969128A (en) * | 2014-05-20 | 2014-08-06 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for detecting bending mechanical property of sample |
JP2021081433A (en) * | 2019-11-22 | 2021-05-27 | 燕山大学Yanshan University | Mechanical performance measuring device on which plate-shaped material is loaded repeatedly |
CN112903474A (en) * | 2021-01-14 | 2021-06-04 | 上海交通大学 | Metal sheet current-assisted micro-bending mechanical property testing device |
-
2000
- 2000-12-19 JP JP2000385544A patent/JP2002181678A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102262029A (en) * | 2011-04-22 | 2011-11-30 | 刘颖绚 | Device for preparing thin-strip resilience body and application thereof |
CN102262014A (en) * | 2011-04-22 | 2011-11-30 | 昆明三利特科技有限责任公司 | Manufacture device and use of thin strip rebound body |
CN102262028A (en) * | 2011-04-22 | 2011-11-30 | 昆明三利特科技有限责任公司 | Device for preparing thin-strip resilience body and application thereof |
KR101205166B1 (en) | 2011-08-30 | 2012-11-27 | 현대제철 주식회사 | Frozen Test for Sintered fuel |
CN102825137A (en) * | 2012-08-22 | 2012-12-19 | 合肥科烨电物理设备制造有限公司 | R bending mold for bending high-strength superconductors |
CN103163029A (en) * | 2013-03-12 | 2013-06-19 | 福建省莆田市衡力传感器有限公司 | Device for testing metal steel plate bending resistance |
CN103969128A (en) * | 2014-05-20 | 2014-08-06 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for detecting bending mechanical property of sample |
JP2021081433A (en) * | 2019-11-22 | 2021-05-27 | 燕山大学Yanshan University | Mechanical performance measuring device on which plate-shaped material is loaded repeatedly |
CN112903474A (en) * | 2021-01-14 | 2021-06-04 | 上海交通大学 | Metal sheet current-assisted micro-bending mechanical property testing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111163875B (en) | Deformation limit evaluation method, fracture prediction method, and press die design method | |
Wenner | On work hardening and springback in plane strain draw forming | |
JP4814851B2 (en) | Estimation method of stretch flange crack in thin plate press forming simulation | |
Chen et al. | The evaluation of formability of the 3rd generation advanced high strength steels QP980 based on digital image correlation method | |
Ayres | SHAPESET: a process to reduce sidewall curl springback in high-strength steel rails | |
WO2020170496A1 (en) | Method for estimating stress-strain relationship | |
Julsri et al. | Study of springback effect of AHS steels using a microstructure based modeling | |
JP2004181502A (en) | Press working method excellent in shape freezing property and working tool used for the same | |
KR20140105761A (en) | Method for designing die for press forming, and die for press forming | |
JP2002181678A (en) | Shape freezability evaluation method for plastic working | |
Kong et al. | Deep drawing and bulging forming limit of dual-phase steel under different mechanical properties | |
WO2012133867A1 (en) | Press forming analysis method | |
JP6288468B2 (en) | Forming limit test method and forming limit test apparatus for metal sheet | |
Park et al. | Development of automotive seat rail parts for improving shape fixability of ultra high strength steel of 980MPa | |
JP2010061249A (en) | Method for calculating material characteristic parameter | |
JP6246074B2 (en) | Tensile compression test method for high strength steel sheet | |
Liu et al. | Eliminating springback error in U-shaped part forming by variable blankholder force | |
CN109916686A (en) | A kind of test sample of the anisotropy breaking strength of sheet metal | |
Park et al. | Process design of automobile seat rail lower parts using ultra-high strength, DP980 steel | |
Nikhare | Experiment and predictions of strain and stress based failure limits for advanced high strength steel0 | |
Padmanabhan et al. | Influence of draw restraining force on the springback in advanced high strength steels | |
Viswanadham et al. | Evaluation and study of formability characteristics of sheet metals through stretch-bend test | |
EP4112201A1 (en) | Press forming method and shape evaluation method for press formed article | |
Ameen | Effect of sheet thickness and type of alloys on the springback phenomenon for cylindrical die | |
JP7556084B1 (en) | Fracture determination method, device, and program in press molding analysis, and method for manufacturing press molded products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060307 |