Nothing Special   »   [go: up one dir, main page]

JP2002177788A - Exhaust gas cleaning catalyst and its manufacturing method - Google Patents

Exhaust gas cleaning catalyst and its manufacturing method

Info

Publication number
JP2002177788A
JP2002177788A JP2000372119A JP2000372119A JP2002177788A JP 2002177788 A JP2002177788 A JP 2002177788A JP 2000372119 A JP2000372119 A JP 2000372119A JP 2000372119 A JP2000372119 A JP 2000372119A JP 2002177788 A JP2002177788 A JP 2002177788A
Authority
JP
Japan
Prior art keywords
exhaust gas
noble metal
catalyst
gas purifying
purifying catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000372119A
Other languages
Japanese (ja)
Other versions
JP4600710B2 (en
Inventor
Shinji Yamamoto
伸司 山本
Hironori Wakamatsu
広憲 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000372119A priority Critical patent/JP4600710B2/en
Publication of JP2002177788A publication Critical patent/JP2002177788A/en
Application granted granted Critical
Publication of JP4600710B2 publication Critical patent/JP4600710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst capable of efficiently cleaning the hydrocarbon, carbon monoxide and SOF in an exhaust gas of an internal combustion engine including a diesel engine and to provide its manufacturing method. SOLUTION: The exhaust gas cleaning catalyst is obtained by coating a catalyst component on an integrated structure type carrier, and the catalyst component contains a hydrocarbon adsorbing marital and a noble metal deposited on a heat resistant inorganic oxide carrier, and in which particles different in noble metal particle size coexist. In the manufacturing method for the exhaust gas cleaning catalyst, an organic acid is contained in a noble metal salt aqueous solution so that a molar ratio of the organic acid and the noble metal may be a fixed range, and the noble metal is deposited on the heat resistant inorganic oxide carrier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒及びその製造方法に係り、更に詳細には、内燃機関の
エンジン始動直後から350℃以下の酸素過剰雰囲気下
において、排気ガスを浄化し、特に排気ガス中の炭化水
素、一酸化炭素及び有機溶媒可溶成分を高効率で浄化す
る排気ガス浄化用触媒及びその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas and a method for producing the same. More specifically, the present invention relates to a catalyst for purifying exhaust gas immediately after starting an engine of an internal combustion engine under an oxygen-excess atmosphere of 350 ° C. or less. More particularly, the present invention relates to an exhaust gas purifying catalyst for purifying hydrocarbon, carbon monoxide and organic solvent soluble components in exhaust gas with high efficiency and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、内燃機関の排気ガス中の炭化
水素(HC)、一酸化炭素(CO)等の浄化を目的に、
貴金属を浄化成分に用いた排気ガス浄化用触媒が開発さ
れている。特に、ディーゼルエンジン排気ガス中のH
C、CO及び有機溶媒可溶成分(SOF)の浄化を目的
として、ガソリン車で使われているような通常のモノリ
ス型触媒の開発が進められている。
2. Description of the Related Art Conventionally, for the purpose of purifying hydrocarbons (HC), carbon monoxide (CO) and the like in exhaust gas of an internal combustion engine,
Exhaust gas purification catalysts using noble metals as purification components have been developed. In particular, H in diesel engine exhaust
For the purpose of purifying C, CO and organic solvent soluble components (SOF), development of ordinary monolithic catalysts such as those used in gasoline vehicles has been advanced.

【0003】一般に、ディーゼルエンジン排気ガス浄化
用触媒としては、(1)HC、COのほかSOFなどの
有害成分の低温からの浄化除去効率が高いこと、(2)
燃料として用いる軽油中に多量に含まれる硫黄成分から
発生する二酸化硫黄(SO)の三酸化硫黄(SO
への酸化能が低く、且つサルフェート(二酸化硫黄が酸
化されて三酸化硫黄や硫酸ミストになったもの)の生成
が抑制できること、(3)活性成分の硫黄成分による性
能低下が小さいこと、(4)触媒表面に粒子状物質が付
着した場合でも性能低下が小さいこと、(5)高負荷で
の連続運転下でも耐えられる、いわゆる高温耐久性が高
いこと、という性能を有する触媒が望まれている。
In general, catalysts for purifying diesel engine exhaust gas include (1) a high efficiency of purifying and removing harmful components such as HC, CO and SOF from low temperatures;
Sulfur trioxide (SO 3 ) of sulfur dioxide (SO 2 ) generated from a large amount of sulfur components contained in light oil used as fuel
(3) the ability to suppress the production of sulfate (sulfur dioxide is oxidized into sulfur trioxide or sulfuric acid mist) is low, (3) the performance decrease due to the sulfur component of the active ingredient is small, and (4) A catalyst is desired that has a performance such that the performance degradation is small even when particulate matter adheres to the catalyst surface, and (5) the so-called high-temperature durability that can withstand continuous operation under a high load. .

【0004】また、従来から、HC、CO及びSOF、
炭素系粒子状物質などの燃焼除去効率を高める目的で種
々の提案がなされている。例えば、特開昭55−245
97号公報には、白金族元素系触媒として、ロジウム
(7.5%)白金合金、白金/パラジウム(50/5
0)混合物、酸化タンタルまたは酸化セリウム上にパラ
ジウムを担持したもの、更にはパラジウムと75%以下
の白金とから成る合金等が開示されている。
[0004] Conventionally, HC, CO and SOF,
Various proposals have been made for the purpose of increasing the efficiency of burning and removing carbon-based particulate matter and the like. For example, JP-A-55-245
No. 97 discloses, as a platinum group element-based catalyst, rhodium (7.5%) platinum alloy, platinum / palladium (50/5).
0) A mixture, one in which palladium is supported on tantalum oxide or cerium oxide, and an alloy composed of palladium and 75% or less of platinum are disclosed.

【0005】その他に、特開昭61−129030号公
報、特開昭61−149222号公報及び特開昭61−
146314号公報には、パラジウムとロジウムとを主
な活性成分とし、さらに、アルカリ金属、アルカリ土類
金属、銅、ランタン、亜鉛及びマンガンなどを添加した
触媒組成物が開示され、また、特開昭59−82944
号公報には、銅、アルカリ金属、モリブデン又はバナジ
ウム及びこれらの任意の組み合せに係る金属とを組合せ
た触媒組成物が開示されている。
In addition, JP-A-61-129030, JP-A-61-149222, and
JP-A-146314 discloses a catalyst composition containing palladium and rhodium as main active components and further adding an alkali metal, an alkaline earth metal, copper, lanthanum, zinc, manganese and the like. 59-82944
The publication discloses a catalyst composition in which copper, an alkali metal, molybdenum or vanadium and a metal according to any combination thereof are combined.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述の
ような従来の触媒は、ディーゼルエンジン排気ガスの低
温・酸素過剰雰囲気下におけるHC、CO及びSOFの
除去、低温域で微粒子状物質が付着した際の活性低下の
抑制、又は硫黄による活性成分の性能低下抑制などが不
十分であるという課題があった。即ち、ディーゼルエン
ジン排気ガス浄化用触媒として、HC、CO及びSOF
を高効率で浄化できる触媒は未だ見出されていない。
However, the conventional catalyst as described above removes HC, CO, and SOF in a low-temperature, oxygen-excess atmosphere of diesel engine exhaust gas, and removes particulate matter in a low-temperature region. There is a problem that the suppression of the decrease in the activity of the active ingredient or the suppression of the decrease in the performance of the active component due to sulfur is insufficient. That is, HC, CO and SOF are used as a catalyst for purifying diesel engine exhaust gas.
There has not yet been found a catalyst capable of purifying methane with high efficiency.

【0007】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、ディーゼルエンジン排気ガスを始めとする内燃機関
の排気ガス中のHC、CO及びSOFを効率良く浄化で
きる排気ガス浄化用触媒とその製造方法を提供すること
にある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide HC, CO, and CO contained in exhaust gas of an internal combustion engine including a diesel engine exhaust gas. An object of the present invention is to provide an exhaust gas purifying catalyst capable of efficiently purifying SOF and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を行った結果、耐熱性無機酸化物
担体上に、異なる粒径の貴金属粒子を混在させることに
より、上記課題が解決できることを見出し、本発明を完
成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by mixing noble metal particles having different particle sizes on a heat-resistant inorganic oxide carrier, The inventors have found that the problem can be solved, and have completed the present invention.

【0009】即ち、本発明の排気ガス浄化用触媒は、一
体構造型担体上に触媒成分を被覆して成る排気ガス浄化
用触媒であって、上記触媒成分が、HC吸着材と、耐熱
性無機酸化物担体に担持された貴金属とを含有し、上記
貴金属の粒径が異なる粒子が混在していることを特徴と
する。
That is, an exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst comprising a catalyst component coated on a monolithic carrier, wherein the catalyst component comprises an HC adsorbent and a heat-resistant inorganic material. And a precious metal supported on an oxide carrier, wherein particles having different particle diameters of the noble metal are mixed.

【0010】また、本発明の排気ガス浄化用触媒の好適
形態は、上記貴金属の粒径が、直径1nm以上5nm未
満である小粒子と、5nm以上20nm以下である大粒
子を含むことを特徴とする。
Further, a preferred embodiment of the exhaust gas purifying catalyst of the present invention is characterized in that the noble metal includes small particles having a diameter of 1 nm or more and less than 5 nm and large particles having a diameter of 5 nm or more and 20 nm or less. I do.

【0011】また、本発明の排気ガス浄化用触媒の製造
方法は、排気ガス浄化用触媒を製造するに当たり、貴金
属塩の水溶液に、クエン酸、酢酸及び蓚酸から成る群よ
り選ばれた少なくとも1種の有機酸を含有させ、上記貴
金属と上記有機酸のモル比が、有機酸の総モル数/貴金
属のモル数=0.25〜2.0であることを特徴とす
る。
In the method for producing an exhaust gas purifying catalyst according to the present invention, in producing the exhaust gas purifying catalyst, the aqueous solution of the noble metal salt may contain at least one kind selected from the group consisting of citric acid, acetic acid and oxalic acid. Wherein the molar ratio between the noble metal and the organic acid is such that the total number of moles of the organic acid / the number of moles of the noble metal is 0.25 to 2.0.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。なお、「%」は特記しない限り、質量百分率を示
す。本発明の排気ガス浄化用触媒は、一体構造型担体上
に触媒成分を被覆して成る。この触媒成分は、HC吸着
材と、耐熱性無機酸化物担体に担持された貴金属とを含
有し、この貴金属としては、白金(Pt)、パラジウム
(Pd)やロジウム(Rh)等が挙げられ、これら貴金
属は、排気ガス中のCO、HC、窒素酸化物(NOx)
やSOF成分等の酸化還元反応を促進する。特に、ディ
ーゼルエンジン排気ガス浄化用触媒においては、Ptを
用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In addition, "%" shows a mass percentage unless otherwise specified. The exhaust gas purifying catalyst of the present invention is obtained by coating a catalyst component on a monolithic carrier. The catalyst component contains an HC adsorbent and a noble metal supported on a heat-resistant inorganic oxide carrier. Examples of the noble metal include platinum (Pt), palladium (Pd), and rhodium (Rh). These noble metals include CO, HC, and nitrogen oxides (NOx) in exhaust gas.
And redox reaction of SOF components and the like. In particular, in a diesel engine exhaust gas purifying catalyst, it is preferable to use Pt.

【0013】上記貴金属は、微粒子の形で上記耐熱性無
機酸化物に担持されているが、この粒子には異なる粒径
のものが混在しており、小粒子(DS)と大粒子(D
L)に分けることができる。透過型電子顕微鏡(TE
M)による測定で、粒径が1nm以上5nm未満の粒子
をDS、5nm以上20nm以下の粒子をDLとし、こ
れらが分散担持されていることが好ましい。このよう
に、上記耐熱性無機酸化物担体上にDSとDLを共存さ
せることにより、DS上では、COの酸化反応が起こり
やすく、DLでは未燃焼HCの酸化反応が起こりやすく
なる。
The noble metal is supported on the heat-resistant inorganic oxide in the form of fine particles. These particles are mixed with particles having different particle sizes, and are small particles (DS) and large particles (D).
L). Transmission electron microscope (TE
In the measurement according to M), it is preferable that particles having a particle size of 1 nm or more and less than 5 nm are DS, and particles having a particle size of 5 nm or more and 20 nm or less are DL, and these are dispersed and supported. As described above, by allowing DS and DL to coexist on the heat-resistant inorganic oxide carrier, the oxidation reaction of CO easily occurs on DS, and the oxidation reaction of unburned HC easily occurs on DL.

【0014】また、上記耐熱性無機酸化物担体にDSと
DLが担持された状態で、TEMでDSとDLによって
占められる面積を測定したときに、DSの総面積/DL
の総面積=1/4〜4/1であることが好ましい。即
ち、上記耐熱性無機酸化物担体を上から見て平面上に貴
金属粒子を投影した場合のDSとDLの総面積比、更に
言い換えれば、DSとDLを球冠状に切断した場合のD
SとDLの総断面積比が1/4〜4/1であることが好
ましい。DSとDLとの面積比が上記範囲をはずれる
と、低温・酸素過剰雰囲気下におけるHC、CO及びS
OFの除去効率が低下してしまうことがある。具体的に
は、DS/DLが1/4未満では、DSが少ないため、
HC・CO浄化は主にDL上で行われると推察され、十
分なHC・CO浄化性能が発揮されない。DS/DLが
1/1では、DS上とDL上の両方でHC・CO浄化が
行われ、且つDLがヒートスポットとなり、排気ガスが
低温で触媒が暖まりにくくても、浄化活性を保つことが
できる。また、DS/DLが4/1を超えると、DLに
対しDSが多すぎて、DLのヒートスポット効果が薄れ
てしまい、触媒が暖まりにくく、十分なHC・CO浄化
性能が得られないことがある。
When the area occupied by DS and DL is measured by TEM with DS and DL supported on the heat-resistant inorganic oxide carrier, the total area of DS / DL
Is preferably 1/4 to 4/1. That is, the total area ratio of DS and DL when the noble metal particles are projected on a plane when the heat-resistant inorganic oxide carrier is viewed from above, in other words, when DS and DL are cut into a spherical crown, D
It is preferable that the total cross-sectional area ratio of S and DL is 1/4 to 4/1. If the area ratio between DS and DL is out of the above range, HC, CO and S in a low temperature and oxygen excess atmosphere
OF removal efficiency may be reduced. Specifically, when DS / DL is less than 1/4, DS is small,
It is presumed that HC / CO purification is mainly performed on the DL, and sufficient HC / CO purification performance is not exhibited. When DS / DL is 1/1, HC / CO purification is performed on both DS and DL, and DL becomes a heat spot, so that even if the exhaust gas is at a low temperature and the catalyst is not easily heated, the purification activity can be maintained. it can. When DS / DL is more than 4/1, the amount of DS is too large for DL, the heat spot effect of DL is weakened, the catalyst is hardly heated, and sufficient HC / CO purification performance cannot be obtained. is there.

【0015】また、上記触媒成分は、上述の如く、HC
吸着材も含有し、エンジン始動直後から200℃以下の
低温域では、このHC吸着材に優先的に液状のSOFが
捕捉される。また、上記触媒成分中にこのHC吸着材と
上記貴金属粒子が共存することにより、上記貴金属粒子
上にSOFが吸着してしまうのを防止して貴金属粒子の
活性開始の悪化を抑制することができるとともに、上記
Pt等の貴金属と未燃焼HC及びCOとの浄化反応の発
現を促進することができる。更に、未燃焼のHCの酸化
反応が起こるDLは、ヒートスポットとなり、上記HC
吸着材に捕捉されたSOFの酸化反応を促進することが
できると推測される。 このように、触媒中にHC、C
O及びSOFの酸化反応が発現しやすい反応場を設ける
ことにより、低温・酸素過剰雰囲気下においてもHC、
CO及びSOFを効率良く除去できる。
Further, as described above, the catalyst component is HC
In the low temperature range of 200 ° C. or less immediately after the start of the engine, liquid SOF is preferentially captured by the HC adsorbent. Further, since the HC adsorbent and the noble metal particles coexist in the catalyst component, it is possible to prevent SOF from being adsorbed on the noble metal particles and to suppress the deterioration of the noble metal particles from being activated. At the same time, it is possible to promote the development of a purification reaction between the precious metal such as Pt and the unburned HC and CO. Further, DL in which the oxidation reaction of unburned HC occurs becomes a heat spot,
It is presumed that the oxidation reaction of the SOF captured by the adsorbent can be promoted. Thus, HC, C in the catalyst
By providing a reaction field where the oxidation reaction of O and SOF easily occurs, HC,
CO and SOF can be efficiently removed.

【0016】また、上記HC吸着材は、ZSM5、モル
デナイト、USY又はβ−ゼオライト及びこれらの任意
の組み合わせに係るゼオライトであることが好ましい。
エンジン始動直後から200℃以下の低温域でも、液状
のSOFを優先的にHC吸着材に捕捉させることができ
る。更に、上記ゼオライトの含有率は、該触媒成分の5
0%〜90%であることが好ましい。含有率が50%未
満ではHC吸着材としての効果が十分に発現せず、90
%を越えるとHC吸着材としての効果が飽和し、これ以
上増量しても効果が上がらないことがある。また、該含
有率の範囲内にあれば、SOFの捕捉効率を上げ、上記
Pt等の貴金属粒子上へのSOFを吸着を抑制し、上記
貴金属とCO・未燃焼HCとの浄化反応を促進すること
ができる。
Further, the HC adsorbent is preferably a zeolite according to ZSM5, mordenite, USY or β-zeolite and any combination thereof.
Even immediately after the start of the engine, the liquid SOF can be preferentially captured by the HC adsorbent even in a low temperature range of 200 ° C. or less. Further, the content of the zeolite is 5% of the catalyst component.
It is preferably 0% to 90%. If the content is less than 50%, the effect as an HC adsorbent is not sufficiently exhibited, and
%, The effect as an HC adsorbent is saturated, and even if the amount is further increased, the effect may not be improved. Further, when the content is within the range, the trapping efficiency of SOF is increased, the adsorption of SOF on the noble metal particles such as Pt is suppressed, and the purification reaction between the noble metal and CO / unburned HC is promoted. be able to.

【0017】また、上記触媒成分に含有される該耐熱性
無機酸化物担体は、次式 WZr1−X… (式中のWは、タングステン、Xは、0.05〜0.2
5を示す)で表されるジルコニウム酸化物とすることが
できる。Xは0.05〜0.25が好ましく、0.05
未満ではWの効果が十分に発現せず、逆に、0.25を
越えるとWの効果が飽和してしまうことがある。更に、
上記耐熱性無機酸化物担体は、次式 SZr1−XO2… (式中のSは、硫黄、Xは、0.05〜0.25を示
す)で表されるジルコニウム酸化物を用いることもで
き、これらのジルコニウム酸化物を混合して用いてもか
まわない。Xは式のジルコニウム酸化物と同様、0.
05〜0.25が好ましく、0.05未満ではSの効果
が十分に発現せず、逆に、0.25を越えるとSの効果
が飽和してしまうことがある。上記耐熱性無機酸化物担
体にこれらのジルコニウム酸化物を用いることにより、
低温・酸素過剰雰囲気下であっても、活性点であるPt
等の貴金属粒子上に吸着し難いHC成分を、優先的に吸
着させ、酸化除去することができる。
The heat-resistant inorganic oxide carrier contained in the catalyst component is represented by the following formula: W X Zr 1-X O 2 (wherein W is tungsten, and X is 0.05 to 0. 2
5)). X is preferably 0.05 to 0.25, and 0.05
If it is less than W, the effect of W will not be sufficiently exhibited. Conversely, if it exceeds 0.25, the effect of W may be saturated. Furthermore,
As the heat-resistant inorganic oxide carrier, a zirconium oxide represented by the following formula S X Zr 1-X O 2 (where S represents sulfur and X represents 0.05 to 0.25) is used. These zirconium oxides may be used as a mixture. X is in the range of 0.
If it is less than 0.05, the effect of S is not sufficiently exhibited, and if it exceeds 0.25, the effect of S may be saturated. By using these zirconium oxide for the heat-resistant inorganic oxide carrier,
Even in a low-temperature, oxygen-excess atmosphere, the active site Pt
HC components which are hardly adsorbed on the noble metal particles can be preferentially adsorbed and oxidized and removed.

【0018】更に、上記耐熱性無機酸化物担体は、粒径
100nm以下のチタニウム酸化物(二酸化チタン)で
あることが好ましく、該チタニウム酸化物の50%以上
がアナターゼ型構造であることが好ましい。チタニウム
酸化物を用いることにより、低温・酸素過剰雰囲気下に
おいて、活性点であるPt等の貴金属粒子上でCOの低
温酸化・除去できる。また、粒径が100nmを越える
と酸化チタンの低温CO酸化反応の促進効果が低下し、
アナターゼ型構造の含有率が50%未満になると低温C
O酸化反応の促進効果が低下してしまうことがある。
Further, the heat-resistant inorganic oxide carrier is preferably a titanium oxide (titanium dioxide) having a particle diameter of 100 nm or less, and preferably 50% or more of the titanium oxide has an anatase structure. By using a titanium oxide, CO can be oxidized and removed at a low temperature and in an oxygen-excess atmosphere on a noble metal particle such as Pt which is an active site. When the particle size exceeds 100 nm, the effect of promoting the low-temperature CO oxidation reaction of titanium oxide is reduced,
When the content of the anatase type structure is less than 50%, low temperature C
The effect of promoting the O oxidation reaction may be reduced.

【0019】本発明の排気ガス浄化用触媒を製造するに
当たり、上記耐火性無機酸化物担体に上記貴金属を担持
する際に、水溶性貴金属塩の水溶液に、クエン酸、酢酸
又は蓚酸及びこれらの任意の組み合わせに係る有機酸を
含有させ、上記貴金属と該有機酸のモル比が、有機酸の
総モル数/貴金属のモル数=0.25〜2.0であるこ
とが好ましい。上記耐火性無機酸化物担体に貴金属粒子
を担持させるには、通常、貴金属の水溶液を作り、それ
を上記耐火性無機酸化物担体にしみ込ませてから乾燥、
焼成し、貴金属だけを残す方法が採られる。上記モル比
で上記貴金属水溶液に該有機酸を含有させると、上述の
DSとDLの面積比が1/4〜4/1になるように貴金
属の担持をコントロールできる。上記モル比が2.0を
越えると有機酸の分解燃焼時の発熱が大きく、貴金属粒
子径の分布が所定の範囲に設定できず、0.25未満で
は有機酸の効果が十分に発現せず、同様に貴金属粒子径
の分布が所定の範囲に設定できないことがある。
In producing the exhaust gas purifying catalyst of the present invention, when the above-mentioned noble metal is supported on the above-mentioned refractory inorganic oxide carrier, an aqueous solution of a water-soluble noble metal salt contains citric acid, acetic acid or oxalic acid and any of these. And the molar ratio of the noble metal and the organic acid is preferably 0.25 to 2.0 in total moles of the organic acid / moles of the noble metal. In order to support the noble metal particles on the refractory inorganic oxide carrier, usually, an aqueous solution of the noble metal is prepared, and then dried by impregnating the aqueous solution with the refractory inorganic oxide carrier.
A method of firing and leaving only noble metal is adopted. If the organic acid is contained in the aqueous solution of the noble metal at the above molar ratio, the loading of the noble metal can be controlled so that the area ratio of DS and DL becomes 1/4 to 4/1. If the molar ratio exceeds 2.0, the heat generated during decomposition and combustion of the organic acid is large, and the distribution of the noble metal particle diameter cannot be set within a predetermined range. Similarly, the distribution of the noble metal particle diameter may not be set in a predetermined range.

【0020】また、上記触媒成分の総担持量は、耐火性
モノリス担体1リットル当たり、10〜350g/Lが
好ましく、さらに、上記HC吸着材の担持量は5〜20
0g/L、上記耐熱性無機酸化物担体の担持量は1〜2
00g/L、上記貴金属の担持量は0.1〜10g/L
であることが好ましい。
The total amount of the catalyst component supported is preferably 10 to 350 g / L per liter of the refractory monolithic carrier, and the supported amount of the HC adsorbent is 5 to 20 g / L.
0 g / L, the loading amount of the heat-resistant inorganic oxide carrier is 1-2.
00 g / L, supported amount of the above-mentioned noble metal is 0.1 to 10 g / L
It is preferred that

【0021】なお、上記一体構造型担体には、耐熱性材
料から成る担体構造体が好ましく、例えばセラミック製
のオープンフロー又はウォールフローの担体構造体、S
iC製担体やメタル製担体でも使用できる。
The above-mentioned monolithic carrier is preferably a carrier structure made of a heat-resistant material, such as a ceramic open-flow or wall-flow carrier structure.
An iC carrier or a metal carrier can also be used.

【0022】[0022]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0023】(実施例1)平均粒子径が30nmの酸化
チタン(アナターゼ型構造が80%以上)粉末に、ジニ
トロジアンミン酸白金とクエン酸を溶解した水溶液(有
機酸の総モル数/白金モル数=1.0)を含浸し、15
0℃で24時間乾燥した後、300℃で1時間、次い
で、600℃で1時間焼成し、Pt担持酸化チタン粉末
(粉末a)を得た。この粉末aのPt濃度は15.0%
であった。上記Pt担持酸化チタン粉末(粉末a)26
7g、β−ゼオライト粉末1000g、活性アルミナ粉
末483g、硝酸酸性アルミナゾル50g(ベーマイト
アルミナ10%に10%の硝酸を添加することによって
得られたゾル)及び純水2000gを磁性ボールミルに
投入し、混合粉砕してスラリー液を得た。このスラリー
液をコージェライト質モノリス担体(400セル/8ミ
ル、1.3L)に付着させ、空気流にてセル内の余剰の
スラリーを取り除いて乾燥し、400℃で1時間焼成
し、コート層重量180g/Lになるまでコーティング
作業を繰り返し、本例の触媒−aを得た。
(Example 1) An aqueous solution in which platinum dinitrodiamminate and citric acid were dissolved in powder of titanium oxide (anatase type structure is 80% or more) having an average particle diameter of 30 nm (total moles of organic acid / moles of platinum) = 1.0) and 15
After drying at 0 ° C. for 24 hours, the mixture was calcined at 300 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain Pt-supported titanium oxide powder (powder a). The Pt concentration of this powder a was 15.0%
Met. Pt-supported titanium oxide powder (powder a) 26
7 g, β-zeolite powder 1000 g, activated alumina powder 483 g, nitric acid acidic alumina sol 50 g (sol obtained by adding 10% nitric acid to 10% boehmite alumina) and 2000 g of pure water are put into a magnetic ball mill, and mixed and ground. Thus, a slurry liquid was obtained. This slurry liquid was attached to a cordierite-based monolithic carrier (400 cells / 8 mil, 1.3 L), excess slurry in the cells was removed by air flow, dried, and baked at 400 ° C. for 1 hour to form a coating layer. The coating operation was repeated until the weight reached 180 g / L to obtain Catalyst-a of this example.

【0024】(実施例2)平均粒子径が30nmの酸化
チタン(アナターゼ型構造が80%以上)粉末に、ジニ
トロジアンミン酸白金とクエン酸を溶解した水溶液(有
機酸の総モル数/白金モル数=1.0)を含浸し、15
0℃で24時間乾燥した後、300℃で1時間、次い
で、600℃で1時間焼成し、Pt担持酸化チタン粉末
(粉末b)を得た。この粉末bのPt濃度は5.0%で
あった。上記Pt担持酸化チタン粉末(粉末b)800
g、β−ゼオライト粉末980g、硝酸酸性アルミナゾ
ル20g(ベーマイトアルミナ10%に10%の硝酸を
添加することによって得られたゾル)及び純水2000
gを磁性ボールミルに投入し、混合粉砕してスラリー液
を得た。このスラリー液をコージェライト質モノリス担
体(400セル/8ミル、1.3L)に付着させ、空気
流にてセル内の余剰のスラリーを取り除いて乾燥し、4
00℃で1時間焼成し、コート層重量180g/Lにな
るまでコーティング作業を繰り返し、本例の触媒−bを
得た。
(Example 2) An aqueous solution in which platinum dinitrodiamminate and citric acid were dissolved in a titanium oxide powder having an average particle diameter of 30 nm (anatase type structure is 80% or more) (total number of moles of organic acid / number of moles of platinum) = 1.0) and 15
After drying at 0 ° C. for 24 hours, the mixture was calcined at 300 ° C. for 1 hour and then at 600 ° C. for 1 hour to obtain Pt-supported titanium oxide powder (powder b). The Pt concentration of this powder b was 5.0%. Pt-supported titanium oxide powder (powder b) 800
g, β-zeolite powder 980 g, nitric acid acidic alumina sol 20 g (sol obtained by adding 10% nitric acid to 10% boehmite alumina) and pure water 2000
g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was adhered to a cordierite-based monolithic carrier (400 cells / 8 mil, 1.3 L), and the excess slurry in the cells was removed by an air stream and dried.
It was baked at 00 ° C. for 1 hour, and the coating operation was repeated until the coat layer weight became 180 g / L, to obtain Catalyst-b of this example.

【0025】(実施例3)有機酸の総モル数/白金モル
数=1.5とした以外は、実施例1と同様の操作を繰り
返し、本例の触媒−cを得た。
Example 3 The same operation as in Example 1 was repeated except that the total number of moles of organic acid / the number of moles of platinum was 1.5, to obtain a catalyst-c of this example.

【0026】(実施例4)有機酸の総モル数/白金モル
数=2.0とした以外は、実施例1と同様の操作を繰り
返し、本例の触媒−dを得た。
Example 4 The same operation as in Example 1 was repeated except that the total number of moles of organic acid / the number of moles of platinum was 2.0, to obtain a catalyst-d of this example.

【0027】(実施例5)有機酸の総モル数/白金モル
数=0.5とした以外は、実施例1と同様の操作を繰り
返し、本例の触媒−eを得た。
Example 5 The same operation as in Example 1 was repeated except that the total number of moles of organic acid / the mole number of platinum was 0.5, to obtain a catalyst-e of this example.

【0028】(実施例6)平均粒子径が30nmの酸化
チタン(アナターゼ型構造が80%以上)粉末の代わり
に、W0.1Zr0.9粉末を用い、ジニトロジア
ンミン酸白金とクエン酸を溶解した水溶液(有機酸の総
モル数/白金モル数=1.0)を含浸し、150℃で2
4時間乾燥した後、300℃で1時間、次いで、600
℃で1時間焼成し、Pt担持酸化ジルコニウム粉末(粉
末c)を得た。この粉末cのPt濃度は15.0%であ
った。上記Pt担持酸化ジルコニウム粉末(粉末c)2
67g、β−ゼオライト粉末1000g、活性アルミナ
粉末483g、硝酸酸性アルミナゾル50g(ベーマイ
トアルミナ10%に10%の硝酸を添加することによっ
て得られたゾル)及び純水2000gを磁性ボールミル
に投入し、混合粉砕してスラリー液を得た。このスラリ
ー液をコージェライト質モノリス担体(400セル/8
ミル、1.3L)に付着させ、空気流にてセル内の余剰
のスラリーを取り除いて乾燥し、400℃で1時間焼成
し、コート層重量180g/Lになるまでコーティング
作業を繰り返し、本例の触媒−fを得た。
(Example 6) Instead of titanium oxide powder having an average particle diameter of 30 nm (anatase type structure is 80% or more) powder, W 0.1 Zr 0.9 O 2 powder was used, and platinum dinitrodiamminate and citric acid were used. Impregnated with an aqueous solution of an acid (total moles of organic acid / moles of platinum = 1.0)
After drying for 4 hours, at 300 ° C. for 1 hour, then 600 ° C.
C. for 1 hour to obtain Pt-supported zirconium oxide powder (powder c). The Pt concentration of this powder c was 15.0%. Pt-supported zirconium oxide powder (powder c) 2
67 g, β-zeolite powder 1000 g, activated alumina powder 483 g, nitric acid acidic alumina sol 50 g (sol obtained by adding 10% nitric acid to 10% boehmite alumina) and 2000 g of pure water are put into a magnetic ball mill and mixed and pulverized. Thus, a slurry liquid was obtained. This slurry liquid is applied to a cordierite monolithic carrier (400 cells / 8
Mill, 1.3 L), the excess slurry in the cell was removed by an air stream, dried, baked at 400 ° C. for 1 hour, and the coating operation was repeated until the coat layer weight became 180 g / L. Of catalyst-f was obtained.

【0029】(実施例7)W0.1Zr0.9粉末
の代わりに、S0.1Zr0.9粉末を用いた以外
は、実施例6と同様の操作を繰り返して、本例の触媒−
gを得た。
(Example 7) The same operation as in Example 6 was repeated except that S 0.1 Zr 0.9 O 2 powder was used instead of W 0.1 Zr 0.9 O 2 powder. , The catalyst of this example-
g was obtained.

【0030】(実施例8)β−ゼオライト粉末1000
gの代わりに、β−ゼオライト粉末700g、ZSM5
粉末300gを用いた以外は、実施例1と同様の操作を
繰り返して、本例の触媒−hを得た。
Example 8 β-zeolite powder 1000
g instead of β-zeolite powder 700 g, ZSM5
The same operation as in Example 1 was repeated, except that 300 g of the powder was used, to obtain a catalyst-h of this example.

【0031】(実施例9)β−ゼオライト粉末1000
gの代わりに、β−ゼオライト粉末400g、モルデナ
イト粉末200g、ZSM5粉末200g、USY粉末
200gを用いた以外は、実施例1と同様の操作を行
い、本例の触媒−iを得た。
Example 9 β-zeolite powder 1000
Catalyst-i of this example was obtained in the same manner as in Example 1, except that 400 g of β-zeolite powder, 200 g of mordenite powder, 200 g of ZSM5 powder, and 200 g of USY powder were used instead of g.

【0032】(実施例10)粉末a267gの代わり
に、粉末a134gとPt15.0%担持ZrO粉末
134gを用いた以外は、実施例1と同様の操作を行
い、本例の触媒−jを得た。
Example 10 The same operation as in Example 1 was carried out except that 134 g of powder a and 134 g of ZrO 2 powder supporting 15.0% of Pt were used instead of 267 g of powder a, to obtain catalyst-j of this example. Was.

【0033】(実施例11)粉末a267gの代わり
に、粉末a134gとPt15.0%担持W0.1Zr
0.9粉末134gを用いた以外は、実施例1と同
様の操作を行い、本例の触媒−kを得た。
(Example 11) Instead of 267 g of powder a, 134 g of powder a and W 0.1 Zr carrying 15.0% Pt were used.
Except that 134 g of 0.9 O 2 powder was used, the same operation as in Example 1 was performed to obtain Catalyst-k of this example.

【0034】(実施例12)粉末a267gの代わり
に、粉末a134gとPt15.0%担持S0.1Zr
0.9粉末134gを用いた以外は、実施例1と同
様の操作を行い、本例の触媒−lを得た。
Example 12 Instead of 267 g of powder a, 134 g of powder a and S 0.1 Zr carrying 15.0% Pt were used.
Except for using 134 g of 0.9 O 2 powder, the same operation as in Example 1 was performed to obtain Catalyst 1 of this example.

【0035】(実施例13)粉末aの代わりに、粉末a
220g、Pt1.0%担持β−ゼオライト粉末700
gを用いた以外は、実施例1と同様の操作を行い、本例
の触媒−mを得た。
(Example 13) Instead of powder a, powder a
220 g, Pt 1.0% supported β-zeolite powder 700
Except for using g, the same operation as in Example 1 was performed to obtain Catalyst-m of this example.

【0036】(実施例14)β−ゼオライト粉末100
0gの代わりに、β−ゼオライト粉末700gを用いた
以外は、実施例1と同様の操作を行い、本例の触媒−n
を得た。
Example 14 β-zeolite powder 100
The same operation as in Example 1 was carried out except that 700 g of β-zeolite powder was used instead of 0 g, and the catalyst-n of this example was used.
I got

【0037】(実施例15)β−ゼオライト粉末100
0gの代わりに、β−ゼオライト粉末1500gを用い
た以外は、実施例1と同様の操作を行い、本例の触媒−
oを得た。
Example 15 β-zeolite powder 100
The same operation as in Example 1 was carried out except that 1500 g of β-zeolite powder was used instead of 0 g, and the catalyst of the present example was used.
o was obtained.

【0038】(実施例16)クエン酸の代わりに酢酸を
用いた以外は、実施例1と同様の操作を行い、本例の触
媒−pを得た。
Example 16 The same operation as in Example 1 was carried out except that acetic acid was used instead of citric acid, to obtain a catalyst-p of this example.

【0039】(実施例17)クエン酸の代わりに蓚酸を
用いた以外は、実施例1と同様の操作を行い、本例の触
媒−qを得た。
Example 17 The same operation as in Example 1 was carried out except that oxalic acid was used instead of citric acid, to obtain a catalyst q of this example.

【0040】(実施例18)平均粒径100nmの酸化
チタンを用いた以外は、実施例1と同様の操作を行い、
本例の触媒−rを得た。
Example 18 The same operation as in Example 1 was performed except that titanium oxide having an average particle diameter of 100 nm was used.
Catalyst-r of this example was obtained.

【0041】(比較例1)β−ゼオライトを用いなかっ
た以外は、実施例1と同様の操作を行い、本例の触媒−
aaを得た。
Comparative Example 1 The same operation as in Example 1 was carried out except that β-zeolite was not used.
aa was obtained.

【0042】(比較例2)粉末a267gの代わりにP
t15%担持β−ゼオライト267gを用いた以外は、
実施例1と同様の操作を行い、本例の触媒−bbを得
た。
Comparative Example 2 Instead of 267 g of powder a, P
Except for using 267 g of β-zeolite carrying t15%,
The same operation as in Example 1 was performed to obtain catalyst-bb of this example.

【0043】(比較例3)有機酸を用いなかった以外
は、実施例1と同様の操作を行い、本例の触媒−ccを
得た。
Comparative Example 3 The same operation as in Example 1 was carried out except that no organic acid was used, to obtain a catalyst-cc of this example.

【0044】(比較例4)有機酸の総モル数/白金モル
数=10とした以外は、実施例1と同様の操作を行い、
本例の触媒−ddを得た。
(Comparative Example 4) The same operation as in Example 1 was carried out except that the total number of moles of organic acid / the number of moles of platinum was set to 10,
The catalyst-dd of this example was obtained.

【0045】(比較例5)平均粒径100nm、ルチル
型構造の酸化チタンを用いた以外は、実施例1と同様の
操作を行い、本例の触媒−eeを得た。
Comparative Example 5 The same operation as in Example 1 was carried out except that titanium oxide having an average particle size of 100 nm and a rutile structure was used, to obtain a catalyst-ee of this example.

【0046】上記各実施例及び比較例の排気ガス浄化用
触媒の仕様を表1に示した。
Table 1 shows the specifications of the exhaust gas purifying catalysts of the above Examples and Comparative Examples.

【0047】[0047]

【表1】 [Table 1]

【0048】上記各実施例及び比較例について、図1の
評価システムを用いて、下記評価条件でHC、COの浄
化特性評価(欧州のECE+EUDC)を行った。
For each of the above Examples and Comparative Examples, HC and CO purification characteristics were evaluated (ECE + EUDC in Europe) using the evaluation system shown in FIG. 1 under the following evaluation conditions.

【0049】<耐久条件> エンジン排気量 2500cc 燃料 JIS2号軽油 触媒入口ガス温度 600℃ 耐久時間 100時間<Endurance conditions> Engine displacement 2500cc Fuel JIS No. 2 light oil Catalyst inlet gas temperature 600 ° C Endurance time 100 hours

【0050】<性能評価条件> 触媒容量 触媒1.3L 評価車両 日産自動車株式会社製 V型6
気筒 2.5Lディーゼルエンジン
<Performance evaluation conditions> Catalyst capacity Catalyst 1.3L Evaluation vehicle Nissan Motor Co., Ltd. V type 6
Cylinder 2.5L diesel engine

【0051】また、HC及びCOの浄化率については、
次式及び HC浄化率(%) =([触媒入口HC濃度]−[触媒出口HC濃度])/[触媒入口HC濃度]×100 … CO浄化率(%) =([触媒入口CO濃度]−[触媒出口CO濃度])/[触媒入口CO濃度]×100 … で示される式で求め、その結果を表2に示した。
Further, regarding the purification rates of HC and CO,
The following equation and HC purification rate (%) = ([catalyst inlet HC concentration] − [catalyst outlet HC concentration]) / [catalyst inlet HC concentration] × 100 CO purification rate (%) = ([catalyst inlet CO concentration] − [Catalyst outlet CO concentration]) / [Catalyst inlet CO concentration] × 100 An expression was obtained, and the results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】上記各実施例は、上記各比較例と比べて、
いずれも触媒活性が高く、未燃焼HC、CO及びSOF
の低温からの浄化性能に優れ、ディーゼルエンジン排気
ガス浄化用触媒として、HC、CO及びSOFを高効率
で浄化することができることが確認できた。
Each of the above Examples is different from each of the above Comparative Examples.
All have high catalytic activity, unburned HC, CO and SOF
Has excellent purifying performance from low temperatures, and it has been confirmed that HC, CO and SOF can be purified with high efficiency as a catalyst for purifying diesel engine exhaust gas.

【0054】[0054]

【発明の効果】本発明の触媒は、耐熱性無機酸化物担体
上に、異なる粒径の貴金属粒子を混在させることとした
ため、ディーゼルエンジン排気ガスを始めとする内燃機
関の排気ガス中のHC、CO及びSOFを効率良く浄化
できる触媒を提供することができる。
According to the catalyst of the present invention, noble metal particles having different particle diameters are mixed on the heat-resistant inorganic oxide carrier. A catalyst capable of efficiently purifying CO and SOF can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気ガス浄化用触媒の評価システムを示すシス
テム構成図である。
FIG. 1 is a system configuration diagram showing an evaluation system for an exhaust gas purifying catalyst.

【符号の説明】[Explanation of symbols]

1 エンジン 2 触媒 1 engine 2 catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 37/02 301 F01N 3/08 A F01N 3/08 3/10 A 3/10 3/24 E 3/24 B01D 53/36 104B 104Z Fターム(参考) 3G091 AA02 AA18 AA28 AB01 AB10 BA00 BA03 BA14 BA15 BA19 BA39 FA02 FA04 FB02 FB10 FC04 FC07 GA06 GB01X GB05W GB06W GB07W GB09Y GB10X GB16X GB19X HA18 4D048 AA13 AA14 AA18 AB01 AB07 BA03X BA07X BA08X BA10X BA11X BA27X BA30X BA31Y BA32Y BA33Y BA41X BA42X BA46X BB02 BB17 DA03 DA06 EA04 4G066 AA61B BA05 CA51 DA02 FA03 FA14 FA21 FA22 FA37 4G069 AA03 AA08 AA09 BA01A BA01B BA04A BA04B BA07A BA07B BA13A BA13B BA21C BB02A BB02B BB06A BB06B BB10A BB10B BC51A BC51B BC60A BC60B BC69A BC71A BC72A BC75A BC75B BE08C EA19 EB18X EB18Y EC22Y FA01 FA06 FB14 FB16 FC04 FC08 ZA05A ZA06A ZA11A ZA19A ZA19B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 37/02 301 F01N 3/08 A F01N 3/08 3/10 A 3/10 3/24 E 3 / 24 B01D 53/36 104B 104Z F-term (reference) 3G091 AA02 AA18 AA28 AB01 AB10 BA00 BA03 BA14 BA15 BA19 BA39 FA02 FA04 FB02 FB10 FC04 FC07 GA06 GB01X GB05W GB06W GB07W GB09Y GB10X GB16X GB19X HA18 4A048 A03 BA18 BA11X BA27X BA30X BA31Y BA32Y BA33Y BA41X BA42X BA46X BB02 BB17 DA03 DA06 EA04 4G066 AA61B BA05 CA51 DA02 FA03 FA14 FA21 FA22 FA37 4G069 AA03 AA08 AA09 BC01A BA01B BA04A BA04BBA10BBABBBABBABAB BC75A BC75B BE08C EA19 EB18X EB18Y EC22Y FA01 FA06 FB14 FB16 FC04 FC08 ZA05A ZA06A ZA11A ZA 19A ZA19B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一体構造型担体上に触媒成分を被覆して
成る排気ガス浄化用触媒であって、 上記触媒成分が、HC吸着材と、耐熱性無機酸化物担体
に担持された貴金属とを含有し、 上記貴金属の粒径が異なる粒子が混在していることを特
徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst comprising a catalyst component coated on a monolithic carrier, wherein the catalyst component comprises an HC adsorbent and a noble metal supported on a heat-resistant inorganic oxide carrier. An exhaust gas purifying catalyst comprising: a mixture of particles having different particle diameters of the noble metal.
【請求項2】 上記貴金属の粒径が、直径1nm以上5
nm未満である小粒子と、5nm以上20nm以下であ
る大粒子を含むことを特徴とする請求項1記載の排気ガ
ス浄化用触媒。
2. The particle size of the noble metal is 1 nm or more and 5 nm or more.
The exhaust gas purifying catalyst according to claim 1, comprising small particles having a particle size of less than 10 nm and large particles having a size of 5 nm or more and 20 nm or less.
【請求項3】 上記耐熱性無機酸化物担体に担持された
貴金属の小粒子と大粒子の総断面積比が、1/4〜4/
1であることを特徴とする請求項1又は2記載の排気ガ
ス浄化用触媒。
3. The total cross-sectional area ratio of small particles and large particles of a noble metal supported on the heat-resistant inorganic oxide carrier is 1/4 to 4 /
The exhaust gas purifying catalyst according to claim 1, wherein the catalyst is 1.
【請求項4】 上記貴金属が、白金、パラジウム及びロ
ジウムから成る群より選ばれた少なくとも1種の貴金属
であることを特徴とする請求項1〜3のいずれか1つの
項に記載の排気ガス浄化用触媒。
4. The exhaust gas purification according to claim 1, wherein the noble metal is at least one noble metal selected from the group consisting of platinum, palladium and rhodium. Catalyst.
【請求項5】 上記耐熱性無機酸化物担体が、ジルコニ
ウム酸化物を含有して成り、該ジルコニウム酸化物が、
次式 WZr1−X… (式中のWは、タングステン、Xは、0.05〜0.2
5を示す)、及び/又は次式 SZr1−X… (式中のSは、硫黄、Xは、0.05〜0.25を示
す)で表されることを特徴とする請求項1〜4のいずれ
か1つの項に記載の排気ガス浄化用触媒。
5. The heat-resistant inorganic oxide carrier comprises zirconium oxide, wherein the zirconium oxide is
Equation W X Zr 1-X O 2 ... (W in the formula, tungsten, X is 0.05 to 0.2
5) and / or the following formula S X Zr 1-X O 2 (wherein S represents sulfur and X represents 0.05 to 0.25). The exhaust gas purifying catalyst according to any one of claims 1 to 4.
【請求項6】 上記耐熱性無機酸化物担体が、チタニウ
ム酸化物を含有して成り、該チタニウム酸化物の粒径
が、100nm以下であることを特徴とする請求項1〜
5のいずれか1つの項に記載の排気ガス浄化用触媒。
6. The heat-resistant inorganic oxide carrier contains a titanium oxide, and the titanium oxide has a particle size of 100 nm or less.
Item 5. The exhaust gas purifying catalyst according to any one of Items 5 to 5.
【請求項7】 上記HC吸着材が、ZSM5、モルデナ
イト、USY及びβ−ゼオライトから成る群より選ばれ
た少なくとも1種のゼオライトであり、且つ上記HC吸
着材の含有率が、触媒成分の50〜90%であることを
特徴とする請求項1〜6のいずれか1つの項に記載の排
気ガス浄化用触媒。
7. The HC adsorbent is at least one zeolite selected from the group consisting of ZSM5, mordenite, USY and β-zeolite, and the content of the HC adsorbent is 50 to 50% of the catalyst component. The exhaust gas purifying catalyst according to any one of claims 1 to 6, wherein the catalyst is 90%.
【請求項8】 請求項1〜7のいずれか1つの項に記載
の排気ガス浄化用触媒を製造するに当たり、 貴金属塩の水溶液に、クエン酸、酢酸及び蓚酸から成る
群より選ばれた少なくとも1種の有機酸を含有させ、上
記貴金属と上記有機酸のモル比が、有機酸の総モル数/
貴金属のモル数=0.25〜2.0であることを特徴と
する排気ガス浄化用触媒の製造方法。
8. The method for producing an exhaust gas purifying catalyst according to any one of claims 1 to 7, wherein the aqueous solution of the noble metal salt contains at least one selected from the group consisting of citric acid, acetic acid, and oxalic acid. Kinds of organic acids, and the molar ratio of the noble metal to the organic acid is the total number of moles of the organic acid /
A method for producing an exhaust gas purifying catalyst, wherein the number of moles of the noble metal is from 0.25 to 2.0.
JP2000372119A 2000-12-06 2000-12-06 Exhaust gas purification catalyst Expired - Fee Related JP4600710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372119A JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372119A JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2002177788A true JP2002177788A (en) 2002-06-25
JP4600710B2 JP4600710B2 (en) 2010-12-15

Family

ID=18841714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372119A Expired - Fee Related JP4600710B2 (en) 2000-12-06 2000-12-06 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4600710B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125705A (en) * 2007-11-27 2009-06-11 Ishifuku Metal Ind Co Ltd Manufacturing method of titanium oxide carrier carrying platinum group metal or alloy of platinum group metal and other metal
WO2014050296A1 (en) * 2012-09-26 2014-04-03 エヌ・イーケムキャット株式会社 Platinum oxidation catalyst and method for purifying exhaust gas using same
US8980209B2 (en) 2012-12-12 2015-03-17 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
US9321042B2 (en) 2012-12-12 2016-04-26 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using large particle molecular sieves
JP2016173251A (en) * 2015-03-16 2016-09-29 株式会社日本自動車部品総合研究所 Particulate matter detection sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180639A (en) * 1989-01-06 1990-07-13 N E Chemcat Corp Exhaust gas purifying catalyst for reducing generation of hydrogen sulfide and its manufacture
JPH05293380A (en) * 1992-04-15 1993-11-09 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, production of this catalyst, and purifying method of exhaust gas
JPH09103679A (en) * 1995-10-11 1997-04-22 Toyota Motor Corp Exhaust gas-purifying catalyst for diesel engine
JPH1033985A (en) * 1996-07-19 1998-02-10 Ict:Kk Catalyst for purifying exhaust gas from diesel engine
JP2001058131A (en) * 1999-08-20 2001-03-06 Toyota Central Res & Dev Lab Inc Catalyst for exhaust gas treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180639A (en) * 1989-01-06 1990-07-13 N E Chemcat Corp Exhaust gas purifying catalyst for reducing generation of hydrogen sulfide and its manufacture
JPH05293380A (en) * 1992-04-15 1993-11-09 Toyota Central Res & Dev Lab Inc Catalyst for purification of exhaust gas, production of this catalyst, and purifying method of exhaust gas
JPH09103679A (en) * 1995-10-11 1997-04-22 Toyota Motor Corp Exhaust gas-purifying catalyst for diesel engine
JPH1033985A (en) * 1996-07-19 1998-02-10 Ict:Kk Catalyst for purifying exhaust gas from diesel engine
JP2001058131A (en) * 1999-08-20 2001-03-06 Toyota Central Res & Dev Lab Inc Catalyst for exhaust gas treatment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125705A (en) * 2007-11-27 2009-06-11 Ishifuku Metal Ind Co Ltd Manufacturing method of titanium oxide carrier carrying platinum group metal or alloy of platinum group metal and other metal
WO2014050296A1 (en) * 2012-09-26 2014-04-03 エヌ・イーケムキャット株式会社 Platinum oxidation catalyst and method for purifying exhaust gas using same
JPWO2014050296A1 (en) * 2012-09-26 2016-08-22 エヌ・イーケムキャット株式会社 Platinum-based oxidation catalyst and exhaust gas purification method using the same
US8980209B2 (en) 2012-12-12 2015-03-17 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
US9321042B2 (en) 2012-12-12 2016-04-26 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using large particle molecular sieves
JP2016173251A (en) * 2015-03-16 2016-09-29 株式会社日本自動車部品総合研究所 Particulate matter detection sensor

Also Published As

Publication number Publication date
JP4600710B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP5652848B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using the same
JP4564645B2 (en) Exhaust gas purification catalyst
US9370769B2 (en) Diesel oxidation catalyst
JP4711860B2 (en) Exhaust gas purification oxidation catalyst, exhaust gas purification catalyst structure, and exhaust gas purification method
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JP5938515B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2002001124A (en) Catalyst for purification of exhaust gas and method for purification of exhaust gas
JP2004330046A (en) Catalyst for cleaning diesel engine exhaust gas and its production method
JP2022503538A (en) Nitrogen oxide reduction catalyst
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH09271674A (en) Oxidizing catalyst for diesel exhaust gas
WO2006030808A1 (en) Oxidation catalyst for exhaust gas purification, catalyst structure for exhaust gas purification and method for purifying exhaust gas
JP2002210368A (en) Molten salt type catalyst
JP4600710B2 (en) Exhaust gas purification catalyst
JP3764760B2 (en) Catalyst for purifying exhaust gas from lean burn engine and purification method
JP3664201B2 (en) Exhaust gas purification catalyst
JP2003326137A (en) Exhaust gas purification method and catalyst for exhaust gas purification
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP3805079B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP2004000978A (en) Cleaning method of exhaust gas and catalyst for cleaning of exhaust gas
JP4380880B2 (en) Exhaust gas purification catalyst
JP3503073B2 (en) Catalyst for purifying diesel engine exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees