JP2002165482A - Motor controller - Google Patents
Motor controllerInfo
- Publication number
- JP2002165482A JP2002165482A JP2000357281A JP2000357281A JP2002165482A JP 2002165482 A JP2002165482 A JP 2002165482A JP 2000357281 A JP2000357281 A JP 2000357281A JP 2000357281 A JP2000357281 A JP 2000357281A JP 2002165482 A JP2002165482 A JP 2002165482A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- phase
- voltage
- current
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims description 35
- 230000003313 weakening effect Effects 0.000 claims description 12
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000001172 regenerating effect Effects 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 description 13
- 230000002265 prevention Effects 0.000 description 13
- 238000012937 correction Methods 0.000 description 9
- 238000005070 sampling Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/14—Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、単相交流電源から
三相モータを可変速で駆動できるモータ制御装置に関す
る。The present invention relates to a motor control device capable of driving a three-phase motor at a variable speed from a single-phase AC power supply.
【0002】[0002]
【従来の技術】以下、従来のモータ制御装置について説
明する。従来のこの種のモータ制御装置としては、特開
平10-150795号公報、および特開2000-83
397号公報などに開示された手段がある。2. Description of the Related Art A conventional motor control device will be described below. Conventional motor control devices of this type are disclosed in JP-A-10-15079 and JP-A-2000-8395.
There is a means disclosed in, for example, Japanese Patent No. 397.
【0003】まず、特開平10−150795号公報に
記載された内容について図面を参照しながら説明する。
図4に示したように、単相交流電源1の出力を全波整流
する整流回路2と、整流回路2の整流出力をスイッチン
グして得た可変電圧・可変周波数の交流出力により三相
モータ3を駆動するインバータ主回路4と、インバータ
主回路4を制御する制御手段5と、三相モータ3の回転
子位置の情報を与える位置センサ6とを備え、前記制御
手段5は、電圧指令値に基づいて前記インバータ主回路
4内のスイッチング素子をオンオフさせるためのPWM
信号を発生する信号発生手段を備えている。First, the contents described in Japanese Patent Application Laid-Open No. 10-150795 will be described with reference to the drawings.
As shown in FIG. 4, a three-phase motor 3 is provided by a rectifier circuit 2 for full-wave rectifying the output of the single-phase AC power supply 1 and a variable voltage / variable frequency AC output obtained by switching the rectified output of the rectifier circuit 2. , A control unit 5 for controlling the inverter main circuit 4, and a position sensor 6 for providing information on the rotor position of the three-phase motor 3. PWM for turning on / off a switching element in the inverter main circuit 4 based on the
Signal generation means for generating a signal is provided.
【0004】上記構成において、制御手段5は、電源リ
プルに対応して前記信号発生手段により常に所望のイン
バータ出力電圧を得ることができるようにPWM信号の
パルス幅の増減制御を行い、最大パルス幅において所望
のインバータ出力を得ることができない飽和状態となっ
た場合には、前記PWM信号の出力タイミングを早めて
インバータ出力電圧の位相を進ませて所望のインバータ
出力を得ることを可能にしている。In the above configuration, the control means 5 controls the pulse width of the PWM signal to increase or decrease so that a desired inverter output voltage can always be obtained by the signal generation means in response to the power supply ripple. In this case, when a saturation state occurs in which a desired inverter output cannot be obtained, the output timing of the PWM signal is advanced to advance the phase of the inverter output voltage, thereby making it possible to obtain a desired inverter output.
【0005】つぎに、特開2000−83397号公報
に記載された内容について図面を参照しながら説明す
る。図5に示したように、単相交流電源1の出力を全波
整流する整流回路2と、整流回路2の整流出力をスイッ
チングして得た可変電圧・可変周波数の交流出力により
三相モータ3を駆動するインバータ主回路4と、インバ
ータ主回路4を制御する制御手段5とを備え、制御手段
5は、同一相におけるスイッチング素子のデッドタイム
期間中の三相モータ3の端子電圧を検出する相電圧検出
手段5aと、相電圧検出手段5aにより検出された前記
端子電圧から相電流の符号が変化したタイミングを検出
する相電流符号変化検出手段5bと、前記相電流符号変
化タイミングと相印加電圧との位相差に基づいてPWM
信号を発生するスイッチング素子変調手段5cとを備え
ている。Next, the contents described in JP-A-2000-83397 will be described with reference to the drawings. As shown in FIG. 5, a three-phase motor 3 is provided by a rectifier circuit 2 for full-wave rectifying the output of the single-phase AC power supply 1 and a variable voltage / variable frequency AC output obtained by switching the rectified output of the rectifier circuit 2. And a control means 5 for controlling the inverter main circuit 4. The control means 5 detects a terminal voltage of the three-phase motor 3 during a dead time period of the switching element in the same phase. Voltage detection means 5a, phase current sign change detection means 5b for detecting the timing at which the sign of the phase current has changed from the terminal voltage detected by the phase voltage detection means 5a, and the phase current sign change timing and phase applied voltage. PWM based on the phase difference of
Switching element modulating means 5c for generating a signal.
【0006】上記構成において、スイッチング素子のデ
ッドタイム期間中の三相モータ3の端子電圧を相電圧検
出手段5aにより検出することにより相電流の符号を検
出し、この相電流の符号変化を相電流符号変化検出手段
5bにより検出する。検出された相電流符号変化タイミ
ングより三相モータ3の回転子位置を推定し、スイッチ
ング素子変調手段5cにより、この相電流符号変化タイ
ミングと相印加電圧との位相差制御を行う。In the above configuration, the sign of the phase current is detected by detecting the terminal voltage of the three-phase motor 3 during the dead time of the switching element by the phase voltage detecting means 5a, and the sign change of the phase current is detected. It is detected by the sign change detecting means 5b. The rotor position of the three-phase motor 3 is estimated from the detected phase current sign change timing, and the switching element modulator 5c controls the phase difference between the phase current sign change timing and the phase applied voltage.
【0007】また、平滑用および回生電流用として十分
大きな容量のコンデンサ7を備えたコンデンサ入力型の
整流回路2では、図6に示したように、抵抗8aとリレ
ー8bとにより構成される突入電流防止回路8が備えら
れている。これは電源投入直後の少しの間は抵抗8aを
介してコンデンサ7を充電し、その後、リレー8bをオ
ンとすることにより電源投入時に大きな充電電流(突入
電流)が流れて単相交流電源1としての商用電源の電圧
が一瞬低下することによる周辺機器の誤動作を防止して
いる。Further, in the capacitor input type rectifier circuit 2 provided with a capacitor 7 having a sufficiently large capacity for smoothing and regenerative current, as shown in FIG. 6, an inrush current constituted by a resistor 8a and a relay 8b is provided. A prevention circuit 8 is provided. This is because the capacitor 7 is charged via the resistor 8a for a short time immediately after the power is turned on, and then a large charging current (rush current) flows when the power is turned on by turning on the relay 8b. This prevents the peripheral equipment from malfunctioning due to a momentary drop in the commercial power supply voltage.
【0008】[0008]
【発明が解決しようとする課題】このような従来のモー
タ制御装置において、上記の特開平10−150795
号公報に開示されたモータ制御装置では、モータ駆動に
必要不可欠な三相モータ3の回転子位置情報を位置セン
サ6により検出しているため、この位置センサ6が過酷
な温度・圧力条件にさらされる圧縮機などのような密閉
状態での駆動を実現させることができない。また、上記
の特開2000−83397号公報などが開示している
従来の位置センサレス駆動手段を用いると、コンデンサ
7の小容量化に伴うインバータ主回路4の出力補正に相
電流が増加する弱め界磁制御を用いる前記モータ制御装
置において、電機子反作用による相誘起電圧の進み位相
角の影響が大きくなるため、三相モータ3の相誘起電圧
に基づいて回転子位置を推定する従来の技術では、位置
検出誤差が大きくなると言う問題があった。In such a conventional motor control device, the above-mentioned Japanese Patent Application Laid-Open No. 10-150795 is disclosed.
In the motor control device disclosed in Japanese Patent Application Laid-Open Publication No. H11-260, since the position sensor 6 detects the rotor position information of the three-phase motor 3 essential for driving the motor, the position sensor 6 is exposed to severe temperature and pressure conditions. It is not possible to realize driving in a closed state such as a compressor that is used. Further, when the conventional position sensorless driving means disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-83397 is used, the field current weakening control in which the phase current increases for the output correction of the inverter main circuit 4 accompanying the reduction in the capacity of the capacitor 7 is performed. In the above-described motor control device, the influence of the leading phase angle of the phase induced voltage due to the armature reaction becomes large. Therefore, in the conventional technique of estimating the rotor position based on the phase induced voltage of the three-phase motor 3, the position detection is not performed. There was a problem that the error increased.
【0009】また、単相交流電源1を整流したのちの電
源リプルは電源周波数の2倍の周波数となるため、10
0Hzまたは120Hzの電源リプルをPWM信号のパ
ルス幅の増減制御および弱め界磁制御により補正する必
要がある。これらの補正による効果が実際にモータの駆
動に作用するまでにはある期間が必要となる。このため
リアルタイムにこれらの補正を行う上記制御方法では、
駆動対象である三相モータ3の回転数変動やこれに伴う
振動、騒音を十分に抑制できないと言う問題があった。Further, the power supply ripple after rectifying the single-phase AC power supply 1 has a frequency twice as high as the power supply frequency.
It is necessary to correct the power supply ripple of 0 Hz or 120 Hz by controlling the increase and decrease of the pulse width of the PWM signal and the field weakening control. It takes a certain period before the effects of these corrections actually act on the driving of the motor. Therefore, in the above control method for performing these corrections in real time,
There is a problem that fluctuations in the rotation speed of the three-phase motor 3 to be driven, and vibration and noise accompanying the rotation speed cannot be sufficiently suppressed.
【0010】さらに、整流回路2の出力端子間に接続さ
れたコンデンサ7の容量が十分大きな場合、電源投入時
にコンデンサ7を充電するために流れる突入電流を防止
するために突入電流防止回路8を挿入する必要があり、
部品点数が多くなると言う問題があった。Further, when the capacity of the capacitor 7 connected between the output terminals of the rectifier circuit 2 is sufficiently large, an inrush current prevention circuit 8 is inserted to prevent an inrush current flowing to charge the capacitor 7 when the power is turned on. Need to
There is a problem that the number of parts increases.
【0011】本発明は、上記の課題を解決するもので、
コンデンサ7の容量を少なくする、またはなくすことに
より、突入電流防止回路8を不要とし、さらに、三相モ
ータ3の相誘起電圧に基づいて回転子位置を推定する手
法において、モータ電流に依存した電機子反作用による
相誘起電圧の進み位相角を考慮した回転子位置推定を行
うことで正確な回転子位置推定を行い、また、コンデン
サ7の小容量化に伴う電源リプルを予測してPWM信号
パルス幅増減制御および弱め界磁制御を行うことで、回
転数変動およびこれに伴う振動、騒音などを抑制して安
定な駆動を行うモータ制御装置を提供すること目的とす
る。The present invention solves the above-mentioned problems, and
By reducing or eliminating the capacity of the capacitor 7, the inrush current prevention circuit 8 becomes unnecessary, and further, in a method of estimating the rotor position based on the phase induced voltage of the three-phase motor 3, an electric motor depending on the motor current is used. Accurate rotor position estimation is performed by estimating the rotor position in consideration of the advancing phase angle of the phase induced voltage due to the child reaction, and the power supply ripple due to the reduction in the capacity of the capacitor 7 is predicted to obtain the PWM signal pulse width. An object of the present invention is to provide a motor control device which performs stable control by performing increase / decrease control and field weakening control to suppress fluctuations in rotation speed and accompanying vibration and noise.
【0012】[0012]
【課題を解決するための手段】請求項1に係わる本発明
は、単相交流電源の出力を全波整流する整流回路と、前
記整流回路の出力端子間に接続されて駆動対象であるモ
ータからの回生電流を流すための小容量のコンデンサ
と、前記コンデンサに印加される電圧をスイッチングし
て得た可変電圧・可変周波数の交流出力により前記モー
タを駆動するインバータ主回路と、全体の動作を制御す
る制御手段とを備え、前記制御手段は、電圧指令値に基
づいて前記インバータ主回路内のスイッチング素子をオ
ンオフするPWM信号のパルス幅増減制御と、前記PW
M信号のパルス幅の増大制御で前記電圧指令値に相当し
たインバータ出力電圧が得られない飽和状態となったと
きには前記PWM信号の出力タイミングを早めてインバ
ータ出力電圧の位相を進ませる弱め界磁制御とを行う制
御において、前記モータの電流量に依存する電機子反作
用を考慮した相誘起電圧に基づいて回転子位置を推定し
て位置センサレス駆動を行うようにしたモータ制御装置
である。According to a first aspect of the present invention, there is provided a rectifier circuit for full-wave rectifying an output of a single-phase AC power supply, and a motor connected between output terminals of the rectifier circuit to be driven. A small-capacity capacitor for flowing a regenerative current, an inverter main circuit for driving the motor by an AC output of a variable voltage and a variable frequency obtained by switching a voltage applied to the capacitor, and controlling the overall operation. Control means for controlling a pulse width of a PWM signal for turning on and off a switching element in the inverter main circuit based on a voltage command value;
When the saturation of the inverter output voltage corresponding to the voltage command value cannot be obtained by the increase control of the pulse width of the M signal, a field weakening control that advances the output timing of the PWM signal to advance the phase of the inverter output voltage is performed. In the control to be performed, a motor control device is configured to perform position sensorless driving by estimating a rotor position based on a phase induced voltage in consideration of an armature reaction depending on a current amount of the motor.
【0013】本発明により、モータの電流量に依存する
電機子反作用の影響を補正した推定回転子位置により、
位置センサレスで安定に駆動することができる。According to the present invention, the estimated rotor position corrected for the effect of the armature reaction depending on the current amount of the motor
It can be driven stably without a position sensor.
【0014】請求項2に係わる本発明は、整流回路の出
力端子間電圧とPWM信号のパルス幅とモータ回転数と
からモータの電流量を推定し、電機子反作用による相誘
起電圧の進み位相角を前記推定した電流量により補正
し、補正した相誘起電圧に基づいて回転子位置を推定す
るようにした請求項1に係わるモータ制御装置である。According to a second aspect of the present invention, the amount of current of the motor is estimated from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the number of revolutions of the motor, and the leading phase angle of the phase induced voltage due to the armature reaction. 3. The motor control device according to claim 1, wherein the motor current is corrected by the estimated current amount, and the rotor position is estimated based on the corrected phase induced voltage.
【0015】本発明により、電流センサなしてモータの
電流量を推定して回転子位置の補正に用いることができ
る。According to the present invention, the current amount of the motor can be estimated without using the current sensor and used for correcting the rotor position.
【0016】請求項3に係わる本発明は、PWM信号の
パルス幅の増減制御および弱め界磁制御を、モータ駆動
に作用するまでの遅延を考慮して行うようにした請求項
1に係わるモータ制御装置である。According to a third aspect of the present invention, there is provided a motor control device according to the first aspect, wherein the control for increasing / decreasing the pulse width of the PWM signal and the field weakening control are performed in consideration of a delay until the operation is applied to the motor drive. is there.
【0017】本発明により、整流回路に接続するコンデ
ンサの容量を小さくしたりなくしたとき、それに伴う電
源リプルの影響を的確に補正して安定に駆動することが
できる。According to the present invention, when the capacitance of the capacitor connected to the rectifier circuit is reduced or eliminated, the effect of the power supply ripple accompanying the reduction can be accurately corrected and the drive can be stably performed.
【0018】請求項4に係わる本発明は、電源投入時に
整流回路の出力端子間に接続されたコンデンサを充電す
るために流れる突入電流から周辺機器の回路を保護する
突入電流防止回路を備えない構成とした請求項1に係わ
るモータ制御装置である。According to a fourth aspect of the present invention, there is provided a configuration without an inrush current prevention circuit for protecting a peripheral device circuit from an inrush current flowing to charge a capacitor connected between output terminals of a rectifier circuit when power is turned on. The motor control device according to claim 1, wherein
【0019】本発明により、全体の構成を簡単にするこ
とができる。According to the present invention, the overall configuration can be simplified.
【0020】[0020]
【発明の実施の形態】請求項1に係わる本発明は、単相
交流電源の出力を全波整流する整流回路と、前記整流回
路の出力端子間に接続されて駆動対象であるモータから
の回生電流を流すための小容量のコンデンサと、前記コ
ンデンサに印加される電圧をスイッチングして得た可変
電圧・可変周波数の交流出力により前記モータを駆動す
るインバータ主回路と、全体の動作を制御する制御手段
とを備え、前記制御手段は、電圧指令値に基づいて前記
インバータ主回路内のスイッチング素子をオンオフする
PWM信号のパルス幅増減制御と、前記PWM信号のパ
ルス幅の増大制御で前記電圧指令値に相当したインバー
タ出力電圧が得られない飽和状態となったときには前記
PWM信号の出力タイミングを早めてインバータ出力電
圧の位相を進ませる弱め界磁制御とを行う制御におい
て、前記モータの電流量に依存する電機子反作用を考慮
した相誘起電圧に基づいて回転子位置を推定して位置セ
ンサレス駆動を行うようにしたモータ制御装置とする。DETAILED DESCRIPTION OF THE INVENTION The present invention according to claim 1 is a rectifier circuit for full-wave rectifying the output of a single-phase AC power supply, and a regenerative motor connected between output terminals of the rectifier circuit and driven by a motor. A small-capacity capacitor for flowing a current, an inverter main circuit for driving the motor with a variable voltage / variable frequency AC output obtained by switching a voltage applied to the capacitor, and control for controlling the entire operation Means for controlling a pulse width of a PWM signal for turning on and off a switching element in the inverter main circuit based on a voltage command value, and increasing and decreasing a pulse width of the PWM signal. When a saturation state occurs where an inverter output voltage corresponding to the above is not obtained, the output timing of the PWM signal is advanced to advance the phase of the inverter output voltage. In the control to perform the field weakening control, the motor control apparatus that performs position-sensorless drive to estimate the rotor position based on the phase induced voltage in consideration of the armature reaction which depends on the current amount of the motor.
【0021】本発明において、制御手段は、位置センサ
なしで相誘起電圧と相電流符号変化とから回転子位置を
推定するとき、電流量に依存する電機子反作用が相誘起
電圧に与える影響を補正し、補正した相誘起電圧を用い
て回転子位置を推定する。In the present invention, when estimating the rotor position from the phase induced voltage and the phase current sign change without a position sensor, the control means corrects the effect of the armature reaction depending on the current amount on the phase induced voltage. Then, the rotor position is estimated using the corrected phase induced voltage.
【0022】請求項2に係わるモータ制御装置は、整流
回路の出力端子間電圧とPWM信号のパルス幅とモータ
回転数とからモータの電流量を推定し、電機子反作用に
よる相誘起電圧の進み位相角を前記推定した電流量によ
り補正し、補正した相誘起電圧に基づいて回転子位置を
推定するようにした請求項1記載のモータ制御装置とす
る。According to a second aspect of the present invention, the motor control device estimates the amount of current of the motor from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the number of revolutions of the motor, and calculates the leading phase of the phase induced voltage due to the armature reaction. The motor control device according to claim 1, wherein the angle is corrected by the estimated current amount, and the rotor position is estimated based on the corrected phase induced voltage.
【0023】本発明において、制御手段は、整流回路の
出力端子間電圧とPWM信号のパルス幅とモータ回転数
とからモータの電流量を推定し、推定した電流量を用い
て相誘起電圧の電機子反作用による進み位相角を補正
し、補正した相誘起電圧を用いて回転子位置を推定す
る。In the present invention, the control means estimates the amount of current of the motor from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the number of revolutions of the motor, and uses the estimated amount of current to determine the motor of the phase induced voltage. The leading phase angle due to the child reaction is corrected, and the rotor position is estimated using the corrected phase induced voltage.
【0024】請求項3に係わるモータ制御装置は、PW
M信号のパルス幅の増減制御および弱め界磁制御を、モ
ータ駆動に作用するまでの遅延を考慮して行うようにし
た請求項1記載に係わるモータ制御装置とする。According to a third aspect of the present invention, the motor control device comprises a PW
The motor control device according to claim 1, wherein the control for increasing / decreasing the pulse width of the M signal and the field weakening control are performed in consideration of a delay until the signal acts on the motor drive.
【0025】本発明において、制御手段は、整流回路の
出力端子間に接続されたコンデンサの小容量化に伴う電
源リプルの、単相交流電源の周期ごとにおける半周期前
のA/Dサンプリングデータを用いて、PWM信号のパ
ルス幅の増減制御および弱め界磁制御を行う。これによ
り、リアルタイム処理を行うために必要なA/Dサンプ
リング速度が高速でかつ処理能力の速い高性能マイコン
を不要とし、また、電源リプルを半周期前のA/Dサン
プリングデータから予測することにより、モータ駆動に
作用するまでの遅延を考慮した制御を行うこととなる。In the present invention, the control means converts the A / D sampling data half a cycle before the cycle of the single-phase AC power supply of the power supply ripple accompanying the reduction in the capacity of the capacitor connected between the output terminals of the rectifier circuit. The control of increasing / decreasing the pulse width of the PWM signal and the field-weakening control are carried out. This eliminates the need for a high-performance microcomputer with a high A / D sampling rate and a high processing capacity required for performing real-time processing, and predicts power ripple from A / D sampling data half a cycle before. In other words, control is performed in consideration of a delay until the motor is actuated.
【0026】請求項4に係わるモータ制御装置は、電源
投入時に整流回路の出力端子間に接続されたコンデンサ
を充電するために流れる突入電流から周辺機器の回路を
保護する突入電流防止回路を備えない構成とした請求項
1に係わるモータ制御装置とする。According to a fourth aspect of the present invention, the motor control device does not include an inrush current prevention circuit that protects a peripheral device circuit from an inrush current flowing to charge a capacitor connected between output terminals of the rectifier circuit when the power is turned on. A motor control device according to claim 1 having a configuration.
【0027】本発明において、モータ制御装置は、整流
回路の出力端子間に接続されたコンデンサの容量を小さ
く、またはコンデンサを設けない構成とし、これにより
電源投入時の突入電流を小さく、またはなくし、突入電
流防止回路を不要としている。In the present invention, the motor control device has a structure in which the capacitance of the capacitor connected between the output terminals of the rectifier circuit is reduced or no capacitor is provided, thereby reducing or eliminating the rush current at the time of turning on the power. Eliminates the need for an inrush current prevention circuit.
【0028】以下、本発明の実施例について説明する。Hereinafter, embodiments of the present invention will be described.
【0029】[0029]
【実施例】以下、本発明のモータ制御装置の一実施例に
ついて図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the motor control device according to the present invention will be described below with reference to the drawings.
【0030】図1は、本実施例の構成を示すブロック
図、図2は、電機子反作用による相誘起電圧の進み位相
角を示す波形図、図3は、電源リプルと補正のタイミン
グとを示す波形図である。なお、図6に示した従来例と
同じ構成要素には同一符号を付与している。FIG. 1 is a block diagram showing the configuration of the present embodiment, FIG. 2 is a waveform diagram showing a leading phase angle of a phase induced voltage due to an armature reaction, and FIG. 3 shows a power supply ripple and a correction timing. It is a waveform diagram. The same components as those of the conventional example shown in FIG. 6 are denoted by the same reference numerals.
【0031】上記構成において、まず、単相交流電源1
を整流回路2により整流し、整流回路2の出力端子間に
駆動対象である三相モータ3からの回生電流を流すため
の小容量のコンデンサ7を接続し、コンデンサ7の端子
に印加される電圧をインバータ主回路4により可変電圧
・可変周波数の交流出力に変換し、三相モータ3を駆動
する構成となっている。本実施例のモータ制御装置で
は、電源投入時の突入電流による周辺機器の誤動作を防
止するための突入電流防止回路は組み込まれていない。In the above configuration, first, the single-phase AC power supply 1
Is rectified by the rectifier circuit 2, a small-capacity capacitor 7 for flowing a regenerative current from the three-phase motor 3 to be driven is connected between output terminals of the rectifier circuit 2, and a voltage applied to the terminal of the capacitor 7 Is converted into a variable voltage / variable frequency AC output by the inverter main circuit 4 to drive the three-phase motor 3. The motor control device according to the present embodiment does not include a rush current prevention circuit for preventing malfunction of peripheral devices due to rush current when the power is turned on.
【0032】本実施例のモータ制御装置において、電機
子反作用による相誘起電圧の進み位相角を考慮した位相
制御を、相電圧検出手段5aと相電流符号変化検出手段
5bとスイッチング素子変調手段5cと電流値推定手段
5dとにより行い、また、PWM信号のパルス幅の増減
制御および弱め界磁制御を、モータ駆動に作用するまで
の遅延を考慮して、前記スイッチング素子変調手段5c
と相電流符号変化検出手段5bと電源周波数検出手段5
eとにより行う。In the motor control device of the present embodiment, the phase control in consideration of the leading phase angle of the phase induced voltage due to the armature reaction is performed by the phase voltage detecting means 5a, the phase current sign change detecting means 5b, and the switching element modulating means 5c. The current value estimating means 5d performs the control of increasing / decreasing the pulse width of the PWM signal and the field-weakening control in consideration of a delay until the motor is driven.
And phase current sign change detecting means 5b and power supply frequency detecting means 5
e.
【0033】上記モータ制御において、スイッチング素
子変調手段5cからの相印加電圧指令の符号が変化する
タイミングと、相電圧検出手段5aと相電流符号変化検
出手段5bとにより検出された相電流の符号が変化する
タイミングとの位相差を任意に設定する位相差制御につ
いては従来の技術と同じであるため、ここでは詳細な説
明は省略する。In the motor control, the timing at which the sign of the phase applied voltage command from the switching element modulating means 5c changes, and the sign of the phase current detected by the phase voltage detecting means 5a and the phase current sign change detecting means 5b are changed. The phase difference control for arbitrarily setting the phase difference with the changing timing is the same as that of the related art, and thus the detailed description is omitted here.
【0034】まず、電機子反作用による相誘起電圧の進
み位相角を考慮した制御について説明する。無通電時の
相誘起電圧は図2(a)に示したようになる。しかし、
実際に三相モータ3を駆動している通電時では電機子反
作用により図2(c)に示したような電圧が重畳されて
相誘起電圧は図2(b)に示すようになる。ただし、こ
こでは説明を簡単にするため電機子反作用で発生する電
圧を矩形波状に示している。このように電機子反作用の
影響を受けると相誘起電圧のゼロクロスポイントは無通
電時の相誘起電圧に比べて進むことになる。また、この
電機子反作用による影響はモータ電流に依存するため、
電流量が増加すると相誘起電圧のゼロクロスポイントの
進み具合もθ1<θ2と大きくなる。したがって、相電
圧検出手段5aおよび相電流符号変化検出手段5bによ
る相電流符号変化ポイントから三相モータ3の回転子位
置を推定する位相制御では回転子位置情報を正しく検出
することができない。First, control in consideration of the leading phase angle of the phase induced voltage due to the armature reaction will be described. The phase induced voltage at the time of non-energization is as shown in FIG. But,
When the three-phase motor 3 is actually energized, the voltage as shown in FIG. 2C is superimposed due to the armature reaction, and the phase induced voltage becomes as shown in FIG. 2B. Here, for the sake of simplicity, the voltage generated by the armature reaction is shown as a rectangular wave. Thus, under the influence of the armature reaction, the zero cross point of the phase induced voltage is advanced as compared with the phase induced voltage when no current is supplied. Also, since the effect of this armature reaction depends on the motor current,
When the amount of current increases, the progress of the zero cross point of the phase induced voltage also increases as θ1 <θ2. Therefore, in the phase control of estimating the rotor position of the three-phase motor 3 from the phase current sign change point by the phase voltage detection means 5a and the phase current sign change detection means 5b, the rotor position information cannot be correctly detected.
【0035】そこで、電流量により電機子反作用による
影響を考慮するため、相電流符号変化検出手段5bから
得る回転子位置情報を補正して位相制御を行う。ここ
で、電流値推定手段5dは、電機子反作用による影響の
大小を判断する電流量を、整流回路2の出力端子間電圧
Vdc、PWM信号のパルス幅、および三相モータ3の
回転数から推定する。このように、電流量に依存する電
機子反作用の影響を考慮して相誘起電圧の進み位相角θ
を補正することにより、電流量に伴う位置検出誤差をな
くした位相制御を行うことができる。Therefore, in order to consider the influence of the armature reaction based on the current amount, the phase control is performed by correcting the rotor position information obtained from the phase current sign change detecting means 5b. Here, the current value estimating means 5d estimates the amount of current for determining the magnitude of the effect of the armature reaction from the voltage Vdc between the output terminals of the rectifier circuit 2, the pulse width of the PWM signal, and the rotation speed of the three-phase motor 3. I do. As described above, the leading phase angle θ of the phase induced voltage is considered in consideration of the effect of the armature reaction depending on the current amount.
, It is possible to perform phase control that eliminates a position detection error due to the amount of current.
【0036】つぎに、PWM信号のパルス幅の増減制御
および弱め界磁制御を、モータ駆動に作用するまでの遅
延を考慮して行うことについて説明する。これらの制御
は整流回路2の出力端子間に接続されたコンデンサ7の
小容量化またはコンデンサ7をなくしたことにより生じ
る電源リプルに起因する回転数変動を抑制している。Next, a description will be given of how the control for increasing / decreasing the pulse width of the PWM signal and the field-weakening control are performed in consideration of a delay until the signal acts on the motor drive. These controls suppress fluctuations in the number of revolutions caused by power supply ripple caused by reducing the capacity of the capacitor 7 connected between the output terminals of the rectifier circuit 2 or eliminating the capacitor 7.
【0037】ここで、前記電源リプルの周期は、図3に
示したように、単相交流電源1の周期の半分となる。し
たがって、図3に示した期間t1において単相交流電源
1の半周期がわかれば補正すべき電源リプルの周期が明
確になる。さらに、図3の期間t1に電源リプルをA/
Dサンプリングし、このサンプリング値をもとに期間t
2においてパルス幅の増減制御および弱め界磁制御を行
うことで、前記パルス幅増減制御および弱め界磁制御の
タイミングと三相モータ3への作用のタイミングの遅延
を考慮した補正制御を行うことができる。このように、
単相交流電源1の半周期前に対応する電源リプルのA/
Dサンプリング値をもとに電源リプル補正を行うことで
リアルタイムに補正制御を行った場合より確実に回転数
変動を抑制することができる。Here, the cycle of the power supply ripple is half of the cycle of the single-phase AC power supply 1, as shown in FIG. Therefore, if the half cycle of the single-phase AC power supply 1 is known in the period t1 shown in FIG. 3, the cycle of the power supply ripple to be corrected becomes clear. Further, during the period t1 in FIG.
D sampling is performed, and a period t
By performing the increase / decrease control of the pulse width and the field weakening control in 2, it is possible to perform the correction control in consideration of the delay of the timing of the pulse width increase / decrease control and the field weakening control and the timing of the action on the three-phase motor 3. in this way,
A / of the power supply ripple corresponding to a half cycle before the single-phase AC power supply 1
By performing power supply ripple correction based on the D sampling value, fluctuations in the rotational speed can be suppressed more reliably than when correction control is performed in real time.
【0038】なお、上記遅延時間はステップ応答などに
よりあらかじめ測定した値を用いてもよい。The delay time may be a value measured in advance by a step response or the like.
【0039】つぎに、電源投入時の突入電流から周辺機
器の誤動作を防止するための突入電流防止回路が不要に
なった理由について説明する。本実施例のモータ制御装
置において、整流回路2の出力端子間に接続するコンデ
ンサ7の容量を小さくする、またはコンデンサ7を不要
にした場合、電源投入時にコンデンサ7を充電する電流
は微小なものになる。このため、突入電流防止回路を設
けなくても周辺機器が誤動作を起こすと言うことはなく
なる。Next, the reason why an inrush current prevention circuit for preventing malfunction of peripheral equipment from inrush current when the power is turned on is no longer necessary will be described. In the motor control device of the present embodiment, when the capacitance of the capacitor 7 connected between the output terminals of the rectifier circuit 2 is reduced or the capacitor 7 is unnecessary, the current for charging the capacitor 7 when the power is turned on becomes very small. Become. For this reason, even if the inrush current prevention circuit is not provided, it does not happen that the peripheral device malfunctions.
【0040】以上のように本実施例によれば、位置セン
サを用いないため、圧縮機などのような密閉状態となる
過酷な温度・圧力条件のもとでの駆動を実現させること
ができる。As described above, according to this embodiment, since a position sensor is not used, it is possible to realize driving under severe temperature and pressure conditions such as a compressor in a closed state.
【0041】さらに、コンデンサ7の小容量化に伴うイ
ンバータ主回路4の出力補正にモータ電流を増加させる
弱め界磁制御を用いるモータ制御装置において、モータ
電流量に依存する電機子反作用の影響を考慮した回転子
位置検出を行うことで、位置検出誤差をなくした安定な
駆動を実現できる。このとき、三相モータ3の回転数、
PWM信号パルス幅、および整流回路2の出力端子間電
圧からモータ電流量を推定することで電流センサを用い
ることなく位置検出誤差を補正することができる。 ま
た、電源リプルの影響の補正に必要なA/Dサンプリン
グデータについては、単相交流電源周期ごとに半周期前
のA/Dサンプリングデータを用いることにより、A/
Dサンプリング速度が高速、かつ処理能力の速い高性能
マイコンを使用することなく電源リプルを予測して制御
することができる。Further, in a motor control device using field-weakening control for increasing the motor current for correcting the output of the inverter main circuit 4 due to the reduction in the capacity of the capacitor 7, the rotation taking into account the effect of the armature reaction depending on the motor current amount. By performing the child position detection, stable driving with no position detection error can be realized. At this time, the rotation speed of the three-phase motor 3
By estimating the motor current amount from the PWM signal pulse width and the voltage between the output terminals of the rectifier circuit 2, the position detection error can be corrected without using a current sensor. As for the A / D sampling data necessary for correcting the influence of the power supply ripple, the A / D sampling data half a cycle before each single-phase AC power supply cycle is used, so that the A / D sampling data is used.
The power ripple can be predicted and controlled without using a high-performance microcomputer having a high D sampling rate and a high processing capability.
【0042】さらに、コンデンサ7を小容量化すること
により、従来必要とされていた突入電流防止回路が不要
となり、部品点数を削減することができる。Further, by reducing the capacity of the capacitor 7, the inrush current prevention circuit which has been required conventionally becomes unnecessary, and the number of parts can be reduced.
【0043】[0043]
【発明の効果】請求項1に係わる本発明は、単相交流電
源の出力を全波整流する整流回路と、前記整流回路の出
力端子間に接続されて駆動対象であるモータからの回生
電流を流すための小容量のコンデンサと、前記コンデン
サに印加される電圧をスイッチングして得た可変電圧・
可変周波数の交流出力により前記モータを駆動するイン
バータ主回路と、全体の動作を制御する制御手段とを備
え、前記制御手段は、電圧指令値に基づいて前記インバ
ータ主回路内のスイッチング素子をオンオフするPWM
信号のパルス幅増減制御と、前記PWM信号のパルス幅
の増大制御で前記電圧指令値に相当したインバータ出力
電圧が得られない飽和状態となったときには前記PWM
信号の出力タイミングを早めてインバータ出力電圧の位
相を進ませる弱め界磁制御とを行う制御において、前記
モータの電流量に依存する電機子反作用を考慮した相誘
起電圧に基づいて回転子位置を推定して位置センサレス
駆動を行うようにしたモータ制御装置とすることによ
り、モータ電流に依存した電機子反作用の相誘起電圧に
対する影響を補正し、補正した相誘起電圧に基づいて回
転子位置を推定して、位置センサレスの構成としながら
安定な駆動を実現することができる。According to a first aspect of the present invention, there is provided a rectifier circuit for full-wave rectifying an output of a single-phase AC power supply, and a regenerative current from a motor to be driven which is connected between output terminals of the rectifier circuit. A small-capacity capacitor for flowing, and a variable voltage obtained by switching the voltage applied to the capacitor.
An inverter main circuit that drives the motor with a variable frequency AC output; and a control unit that controls the entire operation, wherein the control unit turns on and off a switching element in the inverter main circuit based on a voltage command value. PWM
When the inverter becomes saturated so that an inverter output voltage corresponding to the voltage command value cannot be obtained by the pulse width increase / decrease control of the signal and the pulse width increase control of the PWM signal, the PWM is output.
In the control to perform the field weakening control to advance the phase of the inverter output voltage by advancing the output timing of the signal, the rotor position is estimated based on the phase induced voltage in consideration of the armature reaction depending on the current amount of the motor. By using a motor control device configured to perform position sensorless driving, the effect of the armature reaction depending on the motor current on the phase induced voltage is corrected, and the rotor position is estimated based on the corrected phase induced voltage, Stable driving can be realized while having a configuration without a position sensor.
【0044】請求項2に係わる本発明は、整流回路の出
力端子間電圧とPWM信号のパルス幅とモータ回転数と
からモータの電流量を推定し、電機子反作用による相誘
起電圧の進み位相角を前記推定した電流量により補正
し、補正した相誘起電圧に基づいて回転子位置を推定す
るようにした請求項1に係わるモータ制御装置とするこ
とにより、電流センサを用いずに、モータ電流に依存す
る電機子反作用の相誘起電圧への影饗を補正することが
できる。According to a second aspect of the present invention, the amount of current of the motor is estimated from the voltage between the output terminals of the rectifier circuit, the pulse width of the PWM signal, and the number of revolutions of the motor, and the leading phase angle of the phase induced voltage due to the armature reaction. Is corrected by the estimated current amount, and the rotor position is estimated based on the corrected phase induced voltage, so that the motor current can be reduced without using a current sensor. The effect of the dependent armature reaction on the phase induced voltage can be corrected.
【0045】請求項3に係わる本発明は、PWM信号の
パルス幅の増減制御および弱め界磁制御を、モータ駆動
に作用するまでの遅延を考慮して行うようにした請求項
1に係わるモータ制御装置とすることにより、整流回路
の出力端子間に接続されるコンデンサの小容量化に伴う
電源リプルに起因する回転数変動、振動、および騒音を
抑制することができる。According to a third aspect of the present invention, there is provided a motor control apparatus according to the first aspect, wherein the control for increasing / decreasing the pulse width of the PWM signal and the field-weakening control are performed in consideration of a delay until the operation is applied to the motor drive. By doing so, it is possible to suppress fluctuations in rotation speed, vibration, and noise caused by power supply ripple due to reduction in the capacity of the capacitor connected between the output terminals of the rectifier circuit.
【0046】請求項4に係わる本発明は、電源投入時に
整流回路のコンデンサを充電するために流れる突入電流
から周辺機器の回路を保護する突入電流防止回路を備え
ない構成とした請求項1に係わるモータ制御装置とする
ことにより、従来必要とされた突入電流防止回路が不要
となるため、全体の構成を簡略にし、部品点数を削減す
ることができる。According to a fourth aspect of the present invention, there is provided the configuration according to the first aspect, wherein an inrush current preventing circuit for protecting a peripheral device circuit from an inrush current flowing to charge a capacitor of the rectifier circuit when the power is turned on is not provided. Since the motor control device eliminates the need for a rush current prevention circuit conventionally required, the overall configuration can be simplified and the number of components can be reduced.
【図1】本発明のモータ制御装置の一実施例の構成を示
すブロック図FIG. 1 is a block diagram showing a configuration of an embodiment of a motor control device of the present invention.
【図2】電機子反作用による相誘起電圧の進み位相角を
示す波形図FIG. 2 is a waveform diagram showing a leading phase angle of a phase induced voltage due to an armature reaction.
【図3】電源リプルと補正のタイミングとを示す波形図FIG. 3 is a waveform chart showing power supply ripple and correction timing.
【図4】従来の電源リプル補正制御を行うモータ制御装
置の構成を示すブロック図FIG. 4 is a block diagram showing a configuration of a conventional motor control device for performing power supply ripple correction control;
【図5】従来の位置センサレス駆動を行うモータ制御装
置の構成を示すブロック図FIG. 5 is a block diagram illustrating a configuration of a conventional motor control device that performs position sensorless driving.
【図6】従来例における突入電流防止回路の構成を示す
回路図FIG. 6 is a circuit diagram showing a configuration of a rush current prevention circuit in a conventional example.
1 単相交流電源 2 整流回路 3 三相モータ(モータ) 4 インバータ主回路 5 制御手段 5a 相電圧検出手段 5b 相電流符号変化検出手段 5c スイッチング素子変調手段 5d 電流値推定手段 5e 電源周波数検出手段 6 位置センサ 7 コンデンサ 8 突入電流防止回路 8a 抵抗 8b リレー REFERENCE SIGNS LIST 1 single-phase AC power supply 2 rectifier circuit 3 three-phase motor (motor) 4 inverter main circuit 5 control means 5 a phase voltage detection means 5 b phase current sign change detection means 5 c switching element modulation means 5 d current value estimation means 5 e power supply frequency detection means 6 Position sensor 7 Capacitor 8 Inrush current prevention circuit 8a Resistance 8b Relay
Claims (4)
回路と、前記整流回路の出力端子間に接続されて駆動対
象であるモータからの回生電流を流すための小容量のコ
ンデンサと、前記コンデンサに印加される電圧をスイッ
チングして得た可変電圧・可変周波数の交流出力により
前記モータを駆動するインバータ主回路と、全体の動作
を制御する制御手段とを備え、前記制御手段は、電圧指
令値に基づいて前記インバータ主回路内のスイッチング
素子をオンオフするPWM信号のパルス幅増減制御と、
前記PWM信号のパルス幅の増大制御で前記電圧指令値
に相当したインバータ出力電圧が得られない飽和状態と
なったときには前記PWM信号の出力タイミングを早め
てインバータ出力電圧の位相を進ませる弱め界磁制御と
を行う制御において、前記モータの電流量に依存する電
機子反作用を考慮した相誘起電圧に基づいて回転子位置
を推定して位置センサレス駆動を行うようにしたモータ
制御装置。A rectifier circuit for full-wave rectifying an output of a single-phase AC power supply; a small-capacitance capacitor connected between output terminals of the rectifier circuit for flowing regenerative current from a motor to be driven; An inverter main circuit that drives the motor with a variable voltage / variable frequency AC output obtained by switching the voltage applied to the capacitor, and control means for controlling the entire operation, the control means comprising: Pulse width increase / decrease control of a PWM signal for turning on / off a switching element in the inverter main circuit based on a command value;
Field weakening control for advancing the output signal timing of the PWM signal to advance the phase of the inverter output voltage when a saturation state occurs in which the inverter output voltage corresponding to the voltage command value cannot be obtained by the increase control of the pulse width of the PWM signal. A motor control device for performing position sensorless drive by estimating a rotor position based on a phase induced voltage in consideration of an armature reaction dependent on the amount of current of the motor in the control of performing the motor control.
のパルス幅とモータ回転数とからモータの電流量を推定
し、電機子反作用による相誘起電圧の進み位相角を前記
推定した電流量により補正し、補正した相誘起電圧に基
づいて回転子位置を推定するようにした請求項1記載の
モータ制御装置。2. A motor current amount is estimated from a voltage between output terminals of a rectifier circuit, a pulse width of a PWM signal, and a motor rotation speed, and a leading phase angle of a phase induced voltage due to an armature reaction is calculated based on the estimated current amount. The motor control device according to claim 1, wherein the rotor position is estimated based on the corrected phase induced voltage.
弱め界磁制御を、モータ駆動に作用するまでの遅延を考
慮して行うようにした請求項1記載のモータ制御装置。3. The motor control device according to claim 1, wherein the control for increasing / decreasing the pulse width of the PWM signal and the field weakening control are performed in consideration of a delay until the pulse width acts on the motor drive.
続されたコンデンサを充電するために流れる突入電流か
ら周辺機器の回路を保護する突入電流防止回路を備えな
い構成とした請求項1記載のモータ制御装置。4. The circuit according to claim 1, wherein an inrush current preventing circuit for protecting a peripheral device circuit from an inrush current flowing to charge a capacitor connected between output terminals of the rectifier circuit when the power is turned on is not provided. Motor control device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000357281A JP3700576B2 (en) | 2000-11-24 | 2000-11-24 | Motor control device |
CN011394668A CN1216453C (en) | 2000-11-24 | 2001-11-23 | Motor controller |
KR1020010073167A KR100800901B1 (en) | 2000-11-24 | 2001-11-23 | Motor control unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000357281A JP3700576B2 (en) | 2000-11-24 | 2000-11-24 | Motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002165482A true JP2002165482A (en) | 2002-06-07 |
JP3700576B2 JP3700576B2 (en) | 2005-09-28 |
Family
ID=18829375
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000357281A Expired - Fee Related JP3700576B2 (en) | 2000-11-24 | 2000-11-24 | Motor control device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3700576B2 (en) |
KR (1) | KR100800901B1 (en) |
CN (1) | CN1216453C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005067131A1 (en) * | 2004-01-05 | 2005-07-21 | Matsushita Electric Industrial Co., Ltd. | Driving method and driver of brushless dc motor |
WO2008067769A1 (en) * | 2006-12-05 | 2008-06-12 | Byd Company Limited | Control device and method for determining the motor rotor position |
JP2009044846A (en) * | 2007-08-08 | 2009-02-26 | Nsk Ltd | Motor drive control device and electric power steering device using motor drive control device |
WO2010149656A3 (en) * | 2009-06-23 | 2012-06-28 | Gärtner-Electronic-Design Gmbh | Method and device for compensating for load factors in permanently excited motors |
CN112787552A (en) * | 2019-11-04 | 2021-05-11 | Lg电子株式会社 | Device for driving a plurality of electric motors and electric apparatus comprising the device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3711102B2 (en) * | 2002-10-30 | 2005-10-26 | 三洋電機株式会社 | Single-phase motor driving device, single-phase motor driving method, and integrated circuit |
JP2004208450A (en) * | 2002-12-26 | 2004-07-22 | Sanden Corp | Motor controller |
KR100695581B1 (en) * | 2003-04-30 | 2007-03-14 | 마츠시타 덴끼 산교 가부시키가이샤 | Motor-drive unit, compressor, air conditioner, refrigerator, blower, electric cleaner, electric dryer, heat pump water heater and hybrid car |
JP3829838B2 (en) * | 2003-11-05 | 2006-10-04 | ソニー株式会社 | Sensorless brushless motor |
JP4218572B2 (en) * | 2004-04-07 | 2009-02-04 | パナソニック株式会社 | Dishwasher motor drive |
JP4116595B2 (en) * | 2004-06-30 | 2008-07-09 | ファナック株式会社 | Motor control device |
JP4425091B2 (en) * | 2004-08-25 | 2010-03-03 | 三洋電機株式会社 | Motor position sensorless control circuit |
JP4261523B2 (en) * | 2004-09-03 | 2009-04-30 | パナソニック株式会社 | Motor driving apparatus and driving method |
US8049455B2 (en) * | 2006-10-19 | 2011-11-01 | Mitsubishi Electric Corporation | Electric power converter |
JP5051226B2 (en) * | 2007-06-27 | 2012-10-17 | 株式会社明電舎 | Pseudo current type 120 degree conduction inverter |
JP2010029044A (en) * | 2008-07-24 | 2010-02-04 | Panasonic Corp | Motor controller |
JP5195444B2 (en) * | 2009-01-14 | 2013-05-08 | パナソニック株式会社 | Brushless DC motor driving apparatus, refrigerator and air conditioner using the same |
JP5363352B2 (en) * | 2010-01-06 | 2013-12-11 | 株式会社日立産機システム | Drive control device for hoisting machine |
KR101852430B1 (en) * | 2012-01-30 | 2018-04-26 | 엘지전자 주식회사 | Apparatus and method for controlling compressor |
KR101401474B1 (en) * | 2012-12-20 | 2014-06-03 | 서울대학교산학협력단 | Circuit and method for controlling motor without any position or speed sensor |
CN103887992A (en) * | 2014-04-10 | 2014-06-25 | 重庆瑜欣平瑞电子有限公司 | Frequency converter of generator |
CN108270382B (en) * | 2016-12-30 | 2021-01-22 | 杭州三花研究院有限公司 | Control method and device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07118944B2 (en) * | 1986-03-17 | 1995-12-18 | 株式会社日立製作所 | Brushless DC motor |
US5486743A (en) * | 1992-11-19 | 1996-01-23 | Kabushiki Kaisha Toshiba | Inverter and air conditioner controlled by the same |
JP3935543B2 (en) * | 1996-02-01 | 2007-06-27 | 株式会社日本自動車部品総合研究所 | PM motor control device |
JPH10150795A (en) * | 1996-11-15 | 1998-06-02 | Toshiba Corp | Inverter device |
KR100308006B1 (en) * | 1998-04-27 | 2001-11-30 | 구자홍 | compensation method of a position detecting error for BLDC motor |
JP2000083397A (en) * | 1998-07-10 | 2000-03-21 | Matsushita Electric Ind Co Ltd | Control device for motor and motor unit having the same |
JP2000278984A (en) * | 1999-01-18 | 2000-10-06 | Nsk Ltd | Brushless dc motor drive-controlling device |
-
2000
- 2000-11-24 JP JP2000357281A patent/JP3700576B2/en not_active Expired - Fee Related
-
2001
- 2001-11-23 KR KR1020010073167A patent/KR100800901B1/en not_active IP Right Cessation
- 2001-11-23 CN CN011394668A patent/CN1216453C/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005067131A1 (en) * | 2004-01-05 | 2005-07-21 | Matsushita Electric Industrial Co., Ltd. | Driving method and driver of brushless dc motor |
US7427841B2 (en) | 2004-01-05 | 2008-09-23 | Matsushita Electric Industrial Co., Ltd. | Driving method and driver of brushless DC motor |
WO2008067769A1 (en) * | 2006-12-05 | 2008-06-12 | Byd Company Limited | Control device and method for determining the motor rotor position |
JP2009044846A (en) * | 2007-08-08 | 2009-02-26 | Nsk Ltd | Motor drive control device and electric power steering device using motor drive control device |
WO2010149656A3 (en) * | 2009-06-23 | 2012-06-28 | Gärtner-Electronic-Design Gmbh | Method and device for compensating for load factors in permanently excited motors |
US9270215B2 (en) | 2009-06-23 | 2016-02-23 | Elmos Semiconductor Ag | Method and device for compensating for load factors in permanently excited motors |
CN112787552A (en) * | 2019-11-04 | 2021-05-11 | Lg电子株式会社 | Device for driving a plurality of electric motors and electric apparatus comprising the device |
CN112787552B (en) * | 2019-11-04 | 2023-10-03 | Lg电子株式会社 | Device for driving a plurality of motors and electrical apparatus comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR20020040615A (en) | 2002-05-30 |
CN1216453C (en) | 2005-08-24 |
KR100800901B1 (en) | 2008-02-04 |
CN1356767A (en) | 2002-07-03 |
JP3700576B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3700576B2 (en) | Motor control device | |
US7141943B2 (en) | Brushless DC motor system and method of controlling the same | |
EP1793486B1 (en) | Method for controlling ac motors | |
JP4807325B2 (en) | Motor driving apparatus and motor driving method | |
JP6330057B2 (en) | Power conversion device and electric power steering device using the same | |
KR100791814B1 (en) | Sensorless BCD Motor Control Method | |
JP2002369572A (en) | Motor apparatus and control method therefor | |
US20120181959A1 (en) | Driving apparatus of sensorless brushless motor | |
WO2004049552A1 (en) | Method and apparatus for estimating rotor position and for sensorless control of a switched reluctance motor | |
JP2007267576A (en) | Brushless dc motor controller | |
JP2008172948A (en) | Controller for brushless motors | |
JP4242679B2 (en) | Apparatus and method for controlling brushless DC motor | |
JP2008193774A (en) | Motor rotor temperature estimation device and temperature estimation method | |
JP2007282367A (en) | Motor driving controller | |
JPH11164580A (en) | Brushless motor driving equipment | |
JP2005237172A (en) | Control device for synchronous machine | |
JPH04364384A (en) | Resistance estimation starting system for induction motor | |
JP2012090429A (en) | Motor drive device | |
JP2005176453A (en) | Driver of brushless motor | |
US20240291417A1 (en) | Inverter control device and inverter control method | |
US11196378B2 (en) | Motor control device | |
KR100575669B1 (en) | PMS weak field control method | |
JP3815584B2 (en) | Sensorless synchronous motor drive device | |
JP2004180494A (en) | Device for controlling motor | |
JP2018121501A (en) | Motor control device and motor control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050322 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |