Nothing Special   »   [go: up one dir, main page]

JP2002161918A - Magnetic bearing unit - Google Patents

Magnetic bearing unit

Info

Publication number
JP2002161918A
JP2002161918A JP2000357838A JP2000357838A JP2002161918A JP 2002161918 A JP2002161918 A JP 2002161918A JP 2000357838 A JP2000357838 A JP 2000357838A JP 2000357838 A JP2000357838 A JP 2000357838A JP 2002161918 A JP2002161918 A JP 2002161918A
Authority
JP
Japan
Prior art keywords
magnetic
bearing
thrust
radial
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000357838A
Other languages
Japanese (ja)
Inventor
Yoichi Igarashi
洋一 五十嵐
Hiromasa Fukuyama
寛正 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2000357838A priority Critical patent/JP2002161918A/en
Publication of JP2002161918A publication Critical patent/JP2002161918A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic bearing unit well controllable and suppressible of energy consumption as much as possible by utilizing a permanent magnet efficiently. SOLUTION: Under the condition of the bearing gaps S1 and S2 arranged between a rotator 1 and a bearing, the magnetic bearing unit is provided with magnetic cores 10 and 40 using plate- or ring-shape permanent magnets 20 and 50, a rotator 1 is lifted up by magnetic force, and the thicknesses t2 and t1 of the permanent magnets 20 and 50 are not less than the bearing gaps S2 and S1 but not greater than 4 times of them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気力を発生・制
御する磁気回路の一部に永久磁石を介在させる制御性の
良い磁気軸受装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device having good controllability in which a permanent magnet is interposed in a part of a magnetic circuit for generating and controlling a magnetic force.

【0002】[0002]

【従来の技術】従来の磁気軸受装置として、例えば、図
6に示すようなもの(実公平3−43467号公報)が
ある。同図中、7a,7bは励磁コイルで、上下に配置
した、永久磁石5a,5b、固定体3側の固定体ヨーク
6a,6b及び回転体2に接続された回転体ヨーク4
a、4bにより各々磁気回路を形成している。回転体2
は回転ヨーク4a,4bを介して永久磁石5a,5bに
よって発生する吸引力のため、図中上、若しくは下に引
き付けられる。この不平衡力を消去するため、位置検出
器8によって回転体2の位置を知り、その位置に応じて
励磁コイル7a,7bに制御電流を流すことにより、回
転体2はスラスト方向で一定位置に保持される。又回転
体ヨーク4a,4bの形状を互いに同心な環状歯型にす
ることにより、回転体2がラジアル方向に移動した場合
に、固定体ヨーク6a,6bと同心の原位置に復帰させ
ようとする磁気の復元力が働く。このようにして、回転
体2のスラスト方向及びラジアル方向の位置決め作用が
生じる。
2. Description of the Related Art As a conventional magnetic bearing device, for example, there is one as shown in FIG. 6 (Japanese Utility Model Publication No. 3-43467). In the figure, reference numerals 7a and 7b denote excitation coils, and permanent magnets 5a and 5b, fixed body yokes 6a and 6b on the fixed body 3 side, and a rotating body yoke 4 connected to the rotating body 2, which are arranged vertically.
a, 4b form a magnetic circuit. Rotating body 2
Is attracted upward or downward in the figure due to the attraction generated by the permanent magnets 5a, 5b via the rotating yokes 4a, 4b. In order to eliminate this unbalanced force, the position of the rotating body 2 is known by the position detector 8, and a control current is applied to the exciting coils 7a and 7b according to the position, so that the rotating body 2 is kept at a fixed position in the thrust direction. Will be retained. In addition, by making the shapes of the rotating bodies yokes 4a and 4b concentric with each other in an annular shape, when the rotating body 2 moves in the radial direction, it is intended to return to the original position concentric with the fixed bodies yokes 6a and 6b. Magnetic restoring force works. In this way, the positioning operation of the rotating body 2 in the thrust direction and the radial direction occurs.

【0003】また、磁気軸受装置に係る従来技術とし
て、特開昭63−2774309号公報に開示されてい
る磁気浮上式搬送装置、等がある。
Further, as a prior art relating to a magnetic bearing device, there is a magnetic levitation type transfer device disclosed in Japanese Patent Application Laid-Open No. 63-2774309.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
上記磁気軸受装置においては、上下永久磁石5a,5b
の起磁力は磁気回路を形成して強力な磁気吸引力を発揮
し、この磁気吸引力が回転体2の自重と釣り合うよう
に、対をなす前記磁気回路の励磁コイル7a,7bに流
す電流ができるだけ極小になるように制御する。しかし
ながら、永久磁石5a,5bのスラスト方向の厚みt
が、回転体ヨーク4a,4bと固定体ヨーク6a,6bと
の間隔である軸受隙間sに比べてかなり大きいため、釣
り合う位置からずれた時に流す制御電流は極めて大きく
なる。これは、永久磁石5a,5bの厚さ分だけ空隙と
して作用するので、磁気抵抗分が増大し、励磁コイル7
a,7bによって発生する制御磁気力が減少してしまう
ためである。したがって、励磁コイル7a,7bの制御
性が悪化して良好な制御を行うことが難しくなるという
問題点があった。
However, in the above-mentioned conventional magnetic bearing device, the upper and lower permanent magnets 5a, 5b
The magnetomotive force forms a magnetic circuit and exerts a strong magnetic attraction force. The current flowing through the pair of excitation coils 7a and 7b of the magnetic circuit is adjusted so that the magnetic attraction force balances the own weight of the rotating body 2. Control to minimize as much as possible. However, the thickness t of the permanent magnets 5a, 5b in the thrust direction is
However, since the distance between the rotor yokes 4a and 4b and the fixed yokes 6a and 6b is considerably larger than the bearing gap s, the control current flowing when the position deviates from the balanced position becomes extremely large. This acts as a gap by the thickness of the permanent magnets 5a and 5b, so that the magnetic resistance increases and the exciting coil 7
This is because the control magnetic force generated by a and 7b decreases. Therefore, there is a problem that the controllability of the exciting coils 7a and 7b is deteriorated and it is difficult to perform good control.

【0005】本発明は、かかる従来例の有する不都合を
改善し、永久磁石を有効に利用して、エネルギー消費を
極力抑えることができると共に、制御性の良好な磁気軸
受装置を提供することを課題としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic bearing device which can solve the disadvantages of the prior art, effectively use permanent magnets, suppress energy consumption as much as possible, and have good controllability. And

【0006】[0006]

【課題を解決するための手段】上記課題を達成するため
に、本発明では回転体と、前記回転体を支持する軸受
と、前記回転体を、前記回転体と前記軸受との間に隙間
を介して磁気回路を形成する磁気回路形成手段とからな
り、該磁気回路が形成する磁気力により前記回転体を浮
上させる磁気軸受装置において、前記磁気回路内に設置
された永久磁石の厚みを、前記隙間の等倍以上4倍以下
としたことを特徴とする磁気軸受装置を提供する。
In order to achieve the above object, according to the present invention, there is provided a rotating body, a bearing for supporting the rotating body, and a gap between the rotating body and the bearing. A magnetic circuit forming means for forming a magnetic circuit through the magnetic circuit, wherein the magnetic bearing device lifts the rotating body by a magnetic force formed by the magnetic circuit. Provided is a magnetic bearing device characterized in that the gap is equal to or more than four times as large as the gap.

【0007】以上のように構成されたことで、永久磁石
は回転体の浮上に必要な磁気力を供給するのに適度な大
きさであると共に、制御に必要なバイアス磁気力を供給
することができ、且つ、制御にあたって永久磁石の厚み
が空隙として適度に作用するため、磁気回路に必要な磁
気力を供給するのに過大な電流を流す必要がなくなる。
[0007] With the above configuration, the permanent magnet has an appropriate size to supply a magnetic force required for floating the rotating body, and can supply a bias magnetic force required for control. In addition, since the thickness of the permanent magnet acts appropriately as a gap in the control, it is not necessary to supply an excessive current to supply a magnetic force required for the magnetic circuit.

【0008】[0008]

【発明の実施の形態】本発明の一実施形態を図面に基づ
いて説明する。図1は本発明の実施形態を示すスラスト
磁気軸受とホモポール型ラジアル磁気軸受を備えた磁気
軸受装置の軸心に沿った縦断面図、図2は図1のA−A
断面を示す断面図、図3はスラスト磁気軸受の磁石厚み
と軸受隙間の関係を示す配置図、図4は制御電流比及び
磁気吸引力比の磁石厚みとの関係を示す特性線図、図5
はヘテロポール型のラジアル磁気軸受を示す図2に対応
する断面図である。
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view taken along the axis of a magnetic bearing device having a thrust magnetic bearing and a homopole-type radial magnetic bearing according to an embodiment of the present invention, and FIG.
FIG. 3 is a layout view showing the relationship between the magnet thickness and the bearing gap of the thrust magnetic bearing, FIG. 4 is a characteristic diagram showing the relationship between the control current ratio and the magnet attraction ratio, and FIG.
FIG. 3 is a sectional view corresponding to FIG. 2 and showing a heteropole type radial magnetic bearing.

【0009】図1及び図2において、回転体である軸1
は、ハウジング100の両端のタッチダウン軸受部10
0a、2つのラジアル磁気軸受110、110、及びス
ラスト磁気軸受120によって、回転時非接触状態で軸
支されている。スラスト磁気軸受部120は、軸1の中
央部に外嵌・固定された円板状のスラストフランジ80
(図1では部分断面を示す)を両面側から近接包囲する
形で配置されている。
In FIG. 1 and FIG. 2, a shaft 1 which is a rotating body is shown.
The touch-down bearings 10 at both ends of the housing 100
0a, the two radial magnetic bearings 110, 110 and the thrust magnetic bearing 120 support the shaft in a non-contact state during rotation. The thrust magnetic bearing portion 120 is a disk-shaped thrust flange 80 fitted and fixed to the center of the shaft 1.
(A partial cross section is shown in FIG. 1) in such a manner as to closely surround both sides.

【0010】スラスト磁気軸受120は、図3にも示す
ように、スラストフランジ80と、スラストフランジ8
0に対向するスラストコイル60と、スラスト磁気コア
40から磁気回路が構成されている。スラスト磁気コア
40は、リング状の永久磁石50と、スラストフランジ
80に対向し、スラストコイル60や永久磁石50を保
持するヨーク40c,40dとから成っている。このス
ラスト磁気軸受120はスラストフランジ80を引き付
け、スラストフランジ80との間にスラスト隙間s1を
もってスラスト浮上させる。
As shown in FIG. 3, the thrust magnetic bearing 120 includes a thrust flange 80 and a thrust flange 8.
A magnetic circuit is formed by the thrust coil 60 facing the zero and the thrust magnetic core 40. The thrust magnetic core 40 includes a ring-shaped permanent magnet 50 and yokes 40c and 40d that face the thrust flange 80 and hold the thrust coil 60 and the permanent magnet 50. The thrust magnetic bearing 120 attracts the thrust flange 80, and causes the thrust flange 80 to float with a thrust gap s1 between the thrust flange 80 and the thrust flange 80.

【0011】一方、ラジアル磁気軸受110は、ロータ
12と、ラジアルコイル30と、ラジアル磁気コア10
で磁気回路が構成されている。ラジアル磁気コア10は
板状の永久磁石20とラジアルコイル30を取り付けた
ヨーク10c,10dから成っている。ラジアル磁気軸
受110は軸1に取り付けた円周方向に積層した円筒体
のロータ12を引き付け、軸1をラジアル隙間s2をも
ってラジアル浮上させる。
On the other hand, the radial magnetic bearing 110 includes the rotor 12, the radial coil 30, and the radial magnetic core 10
Constitutes a magnetic circuit. The radial magnetic core 10 is composed of yokes 10c and 10d to which a plate-shaped permanent magnet 20 and a radial coil 30 are attached. The radial magnetic bearing 110 attracts the circumferentially laminated cylindrical rotor 12 attached to the shaft 1, and causes the shaft 1 to radially float with a radial gap s2.

【0012】この永久磁石50,20(以後、単に磁石
50等と言う)の厚みt1,t2は、磁石の起磁力と直
接関係があり、軸1の浮上に必要な磁気力の供給源であ
ると共に制御に必要なバイアス磁気力の供給源でもある
ため、必要とされる適切な大きさがある。スラスト磁気
コア40の一部である磁石50の軸1側の面の厚さt
1、及びラジアル磁気コア10の一部である磁石20の
軸1に直交する面の厚さt2は、図3にも示すように、
スラストフランジ80(又は軸1)とスラスト磁気軸受1
20(又はラジアル磁気軸受110)との隙間(軸受隙
間)s1、(又はs2)の等倍以上、且つ4倍以下に設
定されている。
The thicknesses t1 and t2 of the permanent magnets 50 and 20 (hereinafter simply referred to as the magnets 50 and the like) are directly related to the magnetomotive force of the magnets and are sources of magnetic force necessary for floating the shaft 1. In addition, since it is a source of the bias magnetic force necessary for the control, there is an appropriate magnitude required. Thickness t of the surface on the axis 1 side of magnet 50 which is a part of thrust magnetic core 40
1, and a thickness t2 of a surface of the magnet 20 which is a part of the radial magnetic core 10 and is orthogonal to the axis 1, as shown in FIG.
Thrust flange 80 (or shaft 1) and thrust magnetic bearing 1
The gap (bearing gap) s1 (or s2) with the gap 20 (or the radial magnetic bearing 110) is set to be equal to or more than four times and equal to or less than four times.

【0013】この構成において、スラストセンサ70に
より軸1の軸方向位置信号が検出され、この信号に基づ
いて、制御装置(図示しない)を用いて前記スラスト浮上
を制御する。また、ラジアルセンサ90により軸1の半
径方向位置信号が検出され、この信号に基づいて制御装
置(図示しない)を用いてラジアル浮上を制御する。
In this configuration, the axial position signal of the shaft 1 is detected by the thrust sensor 70, and based on this signal, the floating of the thrust is controlled using a control device (not shown). In addition, a radial position signal of the shaft 1 is detected by the radial sensor 90, and based on the signal, a control device (not shown) controls radial levitation.

【0014】また、上記の如く、磁石50の厚さt1、
及び磁石20の厚さt2は、それぞれ軸受隙間s1、s
2の等倍以上4倍以下に設定されているため、磁石5
0,20は軸1のスラスト及びラジアル浮上に必要な大
きさである共に、制御に必要なバイアス磁気力を供給す
ることができ、且つ、制御にあたって磁石厚みt1,t
2が空隙として適度に作用するため、必要な制御磁気力
を供給するのに従来のように過大な電流をスラストコイ
ル60及びラジアルコイル30に流す必要がない。
Further, as described above, the thickness t1 of the magnet 50,
And the thickness t2 of the magnet 20 are the bearing gaps s1 and s, respectively.
Since it is set to be equal to or larger than 2 and equal to or smaller than 4 times, magnet 5
0,20 is a size necessary for the thrust and radial floating of the shaft 1 and can supply a bias magnetic force required for control, and a magnet thickness t1, t for control.
2 acts as an air gap moderately, so that it is not necessary to supply an excessive current to the thrust coil 60 and the radial coil 30 to supply a necessary control magnetic force as in the related art.

【0015】このことは、図4に示す特性線に表わされ
ている。同図は、スラスト磁気軸受120において、ス
ラストコイル60の制御電流と磁気吸引力が、磁気吸引
力と軸1の自重とが釣り合うように制御した際に、磁石
厚みt1と軸受隙間s1の比によってどう変化するかを
示すものである。但し、前記制御電流と磁気吸引力は、
軸受隙間s1と磁石厚みt1が(s1=t1)の時をそ
れぞれ1とし、これに対する相対比で表した制御電流比
Cと磁気吸引力比Fとし、これらを縦軸に取っている。
This is represented by a characteristic line shown in FIG. The figure shows that, in the thrust magnetic bearing 120, when the control current of the thrust coil 60 and the magnetic attraction force are controlled so that the magnetic attraction force and the own weight of the shaft 1 are balanced, the ratio of the magnet thickness t1 to the bearing clearance s1 is obtained. It shows how it changes. However, the control current and the magnetic attraction force are:
When the bearing gap s1 and the magnet thickness t1 are (s1 = t1), each is set to 1, and the control current ratio C and the magnetic attraction force ratio F, which are represented by relative ratios, are plotted on the vertical axis.

【0016】磁気吸引力比Fは、横軸の(t1/s1)が
1を越えるあたりから所定の大きさに安定してくるの
で、磁石厚みt1を軸受隙間s1の等倍以上とした理由
がここにある。一方、制御電流比Cは(t1/s1)が4
を越えるあたりから急激に増大しているので、この電流
増加を回避するために、磁石厚みt1を軸受隙間s1の
4倍以下とした理由がここにある。ラジアル磁気軸受に
おける同様の特性は、図4の横軸を(t2/s2)とす
る事によって得られるので説明は省略する。
The magnetic attraction force ratio F stabilizes to a predetermined value when (t1 / s1) on the abscissa exceeds 1, which is why the magnet thickness t1 is equal to or more than the same as the bearing gap s1. It is here. On the other hand, the control current ratio C is (t1 / s1) is 4
The reason is that the magnet thickness t1 is set to four times or less the bearing gap s1 in order to avoid this increase in current. Similar characteristics in the radial magnetic bearing can be obtained by setting the horizontal axis of FIG. 4 to (t2 / s2), and thus the description is omitted.

【0017】尚、本発明の実施形態では、ラジアル磁気
軸受110としてスラスト方向分離型のラジアル磁気コ
ア10を示したが、図5に示すような、ヘテロポール型
のラジアル磁気コア11を用いる場合にも本発明は適用
することができる。
In the embodiment of the present invention, the radial magnetic core 110 of the separation type in the thrust direction is shown as the radial magnetic bearing 110. However, when the radial magnetic core 11 of the heteropole type is used as shown in FIG. The present invention can also be applied.

【0018】[0018]

【発明の効果】以上説明したように、磁気回路に介在さ
せる永久磁石の厚みを軸受隙間の等倍以上4倍以下とし
たので、永久磁石は回転体の浮上に必要な磁気力を供給
できる大きさであると共に、制御に必要なバイアス磁気
力を供給することができる。そして、バイアス電流によ
る制御磁気力の減少を永久磁石の厚みの作用により極力
抑えることができるため、磁気コイルに過大なバイアス
電流を流すことなく回転体の浮上を制御することが可能
となる。したがって、最少のエネルギー損失にて、制御
性の良好な磁気軸受装置を実現することができる。
As described above, since the thickness of the permanent magnet interposed in the magnetic circuit is made equal to or more than four times the bearing gap, the permanent magnet is large enough to supply the magnetic force required for floating the rotating body. In addition, a bias magnetic force required for control can be supplied. Since the reduction of the control magnetic force due to the bias current can be suppressed as much as possible by the action of the thickness of the permanent magnet, the floating of the rotating body can be controlled without flowing an excessive bias current to the magnetic coil. Therefore, a magnetic bearing device with good controllability can be realized with minimum energy loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すスラスト磁気軸受とホ
モポール型ラジアル磁気軸受を備えた磁気軸受装置の軸
心に沿った縦断面図。
FIG. 1 is a longitudinal sectional view along an axis of a magnetic bearing device including a thrust magnetic bearing and a homopole-type radial magnetic bearing according to an embodiment of the present invention.

【図2】図1のA−A断面を示す断面図。FIG. 2 is a sectional view showing an AA section in FIG. 1;

【図3】スラスト磁気軸受の磁石厚みと軸受隙間の関係
を示す配置図。
FIG. 3 is a layout diagram showing a relationship between a magnet thickness and a bearing gap of a thrust magnetic bearing.

【図4】制御電流比及び磁気吸引力比の磁石厚みとの関
係を示す特性線図。
FIG. 4 is a characteristic diagram showing a relationship between a control current ratio and a magnetic attraction force ratio and a magnet thickness.

【図5】円周方向分解型のラジアル軸受を示す図2に対
応する断面図。
FIG. 5 is a sectional view corresponding to FIG. 2 and showing a radial bearing of a circumferentially disassembled type.

【図6】従来の磁気軸受を示す回転体の軸心に沿った縦
断面図。
FIG. 6 is a longitudinal sectional view along the axis of a rotating body showing a conventional magnetic bearing.

【符号の説明】[Explanation of symbols]

1 … 軸(回転体) 10、11 … ラジアル磁気コア 10c,10d、11c、11d … ラジアル磁
気コアのヨーク 12 … ロータ 20,50 … 永久磁石 30 … ラジアルコイル 40 … スラスト磁気コア 40c,40d … スラスト磁気コアのヨーク 60 … スラストコイル 70 … スラストセンサ 80 … スラストフランジ 90 … ラジアルセンサ 100 … ハウジング 100a … 軸受部 110 … ラジアル磁気軸受 120 … スラスト磁気軸受 s、s1、s2 … 隙間(軸受隙間) t、t1、t2 … 磁石厚み
DESCRIPTION OF SYMBOLS 1 ... Shaft (rotating body) 10, 11 ... Radial magnetic core 10c, 10d, 11c, 11d ... Yoke of radial magnetic core 12 ... Rotor 20, 50 ... Permanent magnet 30 ... Radial coil 40 ... Thrust magnetic core 40c, 40d ... Thrust Magnetic core yoke 60 Thrust coil 70 Thrust sensor 80 Thrust flange 90 Radial sensor 100 Housing 100a Bearing part 110 Radial magnetic bearing 120 Thrust magnetic bearing s, s1, s2 Gap (bearing gap) t, t1, t2 ... magnet thickness

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転体と、 前記回転体を支持する軸受と、 前記回転体を、前記回転体と前記軸受との間に隙間を介
して磁気回路を形成する磁気回路形成手段とからなり、
該磁気回路が形成する磁気力により前記回転体を浮上さ
せる磁気軸受装置において、 前記磁気回路内に設置された永久磁石の厚みを、前記隙
間の等倍以上4倍以下としたことを特徴とする磁気軸受
装置。
1. A rotating body, a bearing for supporting the rotating body, and magnetic circuit forming means for forming the rotating body with a magnetic circuit via a gap between the rotating body and the bearing,
A magnetic bearing device for levitating the rotating body by a magnetic force formed by the magnetic circuit, wherein a thickness of a permanent magnet installed in the magnetic circuit is equal to or more than equal to and equal to or less than four times the gap. Magnetic bearing device.
JP2000357838A 2000-11-24 2000-11-24 Magnetic bearing unit Withdrawn JP2002161918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357838A JP2002161918A (en) 2000-11-24 2000-11-24 Magnetic bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357838A JP2002161918A (en) 2000-11-24 2000-11-24 Magnetic bearing unit

Publications (1)

Publication Number Publication Date
JP2002161918A true JP2002161918A (en) 2002-06-07

Family

ID=18829839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357838A Withdrawn JP2002161918A (en) 2000-11-24 2000-11-24 Magnetic bearing unit

Country Status (1)

Country Link
JP (1) JP2002161918A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187317A (en) * 2006-01-13 2007-07-26 Soc De Mecanique Magnetique Device for magnetically levitating rotor
CN105299046A (en) * 2015-11-20 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Axial magnetic bearing centering device, axial magnetic bearing and assembling method
CN107257889A (en) * 2015-02-26 2017-10-17 开利公司 Magnetic bearing
US11028877B2 (en) 2017-04-01 2021-06-08 Carrier Corporation Magnetic radial bearing with flux boost
US11035406B2 (en) 2017-04-01 2021-06-15 Carrier Corporation Magnetic radial bearing with flux boost
US11047421B2 (en) 2017-04-01 2021-06-29 Carrier Corporation Magnetic radial bearing with flux boost
WO2023226401A1 (en) * 2022-05-26 2023-11-30 珠海格力电器股份有限公司 Magnetic bearing and compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187317A (en) * 2006-01-13 2007-07-26 Soc De Mecanique Magnetique Device for magnetically levitating rotor
CN107257889A (en) * 2015-02-26 2017-10-17 开利公司 Magnetic bearing
US10767691B2 (en) 2015-02-26 2020-09-08 Carrier Corporation Magnetic bearing
CN107257889B (en) * 2015-02-26 2020-11-06 开利公司 Magnetic bearing
CN105299046A (en) * 2015-11-20 2016-02-03 珠海格力节能环保制冷技术研究中心有限公司 Axial magnetic bearing centering device, axial magnetic bearing and assembling method
US11028877B2 (en) 2017-04-01 2021-06-08 Carrier Corporation Magnetic radial bearing with flux boost
US11035406B2 (en) 2017-04-01 2021-06-15 Carrier Corporation Magnetic radial bearing with flux boost
US11047421B2 (en) 2017-04-01 2021-06-29 Carrier Corporation Magnetic radial bearing with flux boost
WO2023226401A1 (en) * 2022-05-26 2023-11-30 珠海格力电器股份有限公司 Magnetic bearing and compressor

Similar Documents

Publication Publication Date Title
US6121704A (en) Magnetic bearing
US6359357B1 (en) Combination radial and thrust magnetic bearing
US6259179B1 (en) Magnetic bearing system
US4983869A (en) Magnetic bearing
JP2003102145A (en) Magnetically levitated motor and magnet bearing device
US6703735B1 (en) Active magnetic thrust bearing
JPH07256503A (en) Spindle apparatus
JP2005061578A (en) Magnetic bearing
SG175713A1 (en) A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JP2886891B2 (en) Axial magnetic bearing assembly
JP2002161918A (en) Magnetic bearing unit
WO2001084693A1 (en) Full levitation bearing system with improved passive radial magnetic bearings
US20040174080A1 (en) Magnetic bearing
JP2002257136A (en) Magnetic bearing
JP2001074050A (en) Radial magnetic bearing
JPH11101233A (en) Magnetic bearing device
JPH0226310A (en) Magnetic thrust bearing
JP2000283158A (en) Radial magnetic bearing
JPS6211218B2 (en)
JPS58137618A (en) Magnetic bearing
JP2004316756A (en) Five-axis control magnetic bearing
JP2004293598A (en) Magnetic bearing
JPS63213453A (en) Rotating noise attenuating mechanism for dc motor of magnet rotor type
JPS63111311A (en) Magnetic bearing device
JP2002257135A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205