JP2002161318A - Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the method - Google Patents
Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the methodInfo
- Publication number
- JP2002161318A JP2002161318A JP2001278453A JP2001278453A JP2002161318A JP 2002161318 A JP2002161318 A JP 2002161318A JP 2001278453 A JP2001278453 A JP 2001278453A JP 2001278453 A JP2001278453 A JP 2001278453A JP 2002161318 A JP2002161318 A JP 2002161318A
- Authority
- JP
- Japan
- Prior art keywords
- hearth furnace
- rotary hearth
- metal oxide
- resin
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 28
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 28
- 238000005054 agglomeration Methods 0.000 title claims description 6
- 230000002776 aggregation Effects 0.000 title claims description 6
- 229920003023 plastic Polymers 0.000 claims abstract description 42
- 239000004033 plastic Substances 0.000 claims abstract description 42
- 239000002699 waste material Substances 0.000 claims abstract description 38
- 239000011230 binding agent Substances 0.000 claims abstract description 24
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims description 32
- 239000011347 resin Substances 0.000 claims description 32
- -1 Polypropylene Polymers 0.000 claims description 10
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 239000004814 polyurethane Substances 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 5
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 5
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 229920006324 polyoxymethylene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 229930182556 Polyacetal Natural products 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- 239000000446 fuel Substances 0.000 abstract description 5
- 239000000428 dust Substances 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000008188 pellet Substances 0.000 description 13
- 238000000465 moulding Methods 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- 238000009628 steelmaking Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 8
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 7
- 239000003830 anthracite Substances 0.000 description 7
- 238000004880 explosion Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003245 coal Substances 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004484 Briquette Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 101100325793 Arabidopsis thaliana BCA2 gene Proteins 0.000 description 1
- 102100033007 Carbonic anhydrase 14 Human genes 0.000 description 1
- 101000867862 Homo sapiens Carbonic anhydrase 14 Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/10—Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
- C21B13/105—Rotary hearth-type furnaces
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
(57)【要約】
【課題】 回転炉床炉の炉床に形成される堆積層の成長
を抑制する方法を開発することにより、回転炉床炉の操
業が安定化するとともに、還元材および燃料の低コスト
化も達成する。
【解決手段】 金属酸化物に炭材を内装させて或いは炭
材を用いずにバインダーで塊成化し、高温の回転炉床炉
により還元する方法において、塊成化する際に廃棄プラ
スチックを還元材および/またはバインダーとして用い
ることにより、回転炉床炉の炉床に形成される堆積層の
成長を抑制する。
PROBLEM TO BE SOLVED: To stabilize the operation of a rotary hearth furnace by developing a method for suppressing the growth of a sedimentary layer formed on the hearth of a rotary hearth furnace, and to reduce the reducing agent and fuel. It also achieves low cost. SOLUTION: In a method of agglomerating a metal oxide with a carbon material inside or using a binder without using a carbon material and reducing it with a high-temperature rotary hearth furnace, a waste plastic is reduced when agglomerating. And / or by using it as a binder, the growth of the deposited layer formed on the hearth of the rotary hearth furnace is suppressed.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば製鉄所など
で発生するダスト等の金属酸化物に炭材を内装させてバ
インダーで塊成化し、高温の回転炉床炉により還元する
際に、回転炉床炉の炉床に形成される堆積層の成長を抑
制する方法およびそれに使用する金属酸化物の塊成化物
に関するものである。BACKGROUND OF THE INVENTION The present invention relates to a method for rotating a metal oxide such as dust generated in an ironworks, for example, in which a carbon material is provided inside, and agglomerated with a binder, and reduced by a high-temperature rotary hearth furnace. The present invention relates to a method for suppressing the growth of a sedimentary layer formed on a hearth of a hearth furnace, and to a metal oxide agglomerate used for the method.
【0002】[0002]
【従来の技術】製鉄所で発生するダスト等の金属酸化物
と還元材である石炭、コークスなどおよびバインダーを
混合し造粒してペレットを製造し、そのペレットを12
00℃前後の高温の回転炉床炉に装入して、ペレットの
金属酸化物を還元処理して回収する方法が広く知られて
いる。この回転炉床炉の操業において、造粒したペレッ
トを回転炉床炉の装入口から炉内に装入した際に、炉内
においてペレットが加熱されペレットが爆裂粉化するこ
とがある。このペレットの粉化物は炉床に堆積し、炉内
で加熱されて還元が進行し、融着して堆積層を形成す
る。2. Description of the Related Art Pellets are produced by mixing and granulating a metal oxide such as dust generated in an ironworks, a reducing agent such as coal, coke and the like, and a binder.
2. Description of the Related Art There is widely known a method of charging a rotary hearth furnace at a high temperature of about 00 ° C. and reducing and recovering metal oxides in pellets. In the operation of the rotary hearth furnace, when the granulated pellets are charged into the furnace from the inlet of the rotary hearth furnace, the pellets are heated in the furnace, and the pellets may explode into powder. The powdery material of the pellets is deposited on the hearth, heated in the furnace to reduce, and fused to form a deposited layer.
【0003】この課題に対して、たとえば、特開200
0−111264号公報に開示されているように、回転
炉床炉から還元されたペレットを排出するスクリューコ
ンベアを昇降移動自在に配設し、炉床とスクリューコン
ベアとの間隔を調節し得る構成手段が開示されている。To solve this problem, for example, Japanese Patent Application Laid-Open
As disclosed in Japanese Patent Application Publication No. 0-111264, a screw conveyor for discharging reduced pellets from a rotary hearth furnace is provided so as to be able to move up and down, and a space between the hearth and the screw conveyor can be adjusted. Is disclosed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、この特
開2000−111264号公報の方法は、堆積層の上
昇に応じた装置構成ならびに操業方法を開示しているの
みであり、堆積層がスクリューコンベアの昇降上限まで
成長した場合には、炉の操業を停止して堆積層を破壊し
て掻き出すことが必須であり、炉の生産性を最大限に発
揮できないという問題がある。However, the method disclosed in Japanese Patent Application Laid-Open No. 2000-111264 only discloses an apparatus configuration and an operation method according to the rise of the deposited layer. When the growth reaches the upper limit, it is necessary to stop the operation of the furnace to destroy and scrape off the sedimentary layer, and there is a problem that the productivity of the furnace cannot be maximized.
【0005】以上のことから、回転炉床炉の操業におい
て、堆積層を形成させない根本的な手段は、炉内におい
てペレットが爆裂粉化することを解消することである。
従来より、揮発分の量が最適範囲の炭材を使用したペレ
ットを使用することでペレットの破裂を抑制する方法
(特開平9−310111号公報、特表平11−511
511号公報)が開示されているが、これらの方法も炭
材の選択のみであり、自由度ならびに製造コストの面で
有利にはならない。[0005] From the above, in the operation of a rotary hearth furnace, a fundamental means for preventing formation of a sedimentary layer is to eliminate explosion of pellets in the furnace.
Conventionally, a method of suppressing the burst of a pellet by using a pellet using a carbon material having a volatile content in an optimum range (Japanese Patent Application Laid-Open No. 9-310111, Japanese Patent Application Laid-Open No. 11-511).
No. 511) is disclosed, but these methods also involve only the selection of the carbonaceous material, and are not advantageous in terms of flexibility and production cost.
【0006】一方、回転炉床炉に限定せず、広い意味で
の粉粒状鉱石あるいは金属の塊成化方法については、古
くから、セメントやベントナイト等の無機バインダー、
ポリウレタン系の熱硬化樹脂、フェノール系樹脂などの
樹脂バインダーが開発されている。On the other hand, a method of agglomerating fine ore or metal in a broad sense, not limited to a rotary hearth furnace, has been used for a long time since inorganic binders such as cement and bentonite have been used.
Resin binders such as polyurethane thermosetting resins and phenolic resins have been developed.
【0007】上記の無機バインダーの場合、水和反応で
固まっているために、乾燥に配慮し、かつ強度も低く、
前述のように炉内での爆裂の現象を回避できない。ま
た、樹脂バインダーの場合には、接着作用のある樹脂系
のバインダーが高価であることが難点であり、かつ、回
転炉床炉法に適した配合条件等は何ら開示されていな
い。例えば、特開平3−6334号公報には、粉粒状金
属に対して有機系天然物を0.1〜10重量%、もしく
は熱硬化性樹脂を0.1〜5%添加し、混合して加圧成
型する。次いで50〜200℃程度で加熱処理する。有
機系天然物として、小麦粉、大麦粉、ライ麦粉、飛粉、
デンプン粉等を用いる。熱硬化性樹脂は尿素樹脂、メラ
ミン樹脂、フエノ−ル樹脂、これらの共縮合樹脂より選
ぶ。これにより、成型物に高度の耐水性が得られ、屋外
貯蔵が可能になる。また、成型直後の常態強度が向上
し、あと工程での歩留りの向上を期待できる、との記載
がある。In the case of the above-mentioned inorganic binder, since it is solidified by a hydration reaction, consideration is given to drying and the strength is low.
As described above, the explosion phenomenon in the furnace cannot be avoided. Further, in the case of a resin binder, it is a disadvantage that a resin binder having an adhesive action is expensive, and there is no disclosure of compounding conditions and the like suitable for a rotary hearth furnace method. For example, JP-A-3-6334 discloses that an organic natural product is added in an amount of 0.1 to 10% by weight or a thermosetting resin is added in an amount of 0.1 to 5% with respect to a granular metal, and then mixed and added. Press molding. Next, heat treatment is performed at about 50 to 200 ° C. As organic natural products, flour, barley flour, rye flour, flying flour,
Use starch powder or the like. The thermosetting resin is selected from a urea resin, a melamine resin, a phenol resin, and a co-condensation resin thereof. As a result, a high degree of water resistance is obtained in the molded product, and the molded product can be stored outdoors. In addition, there is a description that the normal strength immediately after molding is improved, and an improvement in the yield in a later process can be expected.
【0008】しかしながら、回転炉床炉法に供する、製
鉄所において発生するダスト等の金属酸化物に炭材を内
装させてバインダーで塊成化するに際して、上記公報に
は金属酸化物の還元材としての配合や作用について記載
はない。以上の様に、回転炉床炉の操業において、塊成
化物の条件を規定し、炉内での爆裂粉化を抑制して堆積
層を形成させない方法については、何ら開示されていな
いといえる。However, when a carbon material is provided inside a metal oxide such as dust generated in an ironworks and subjected to agglomeration with a binder in the rotary hearth furnace method, the above publication discloses that the metal oxide is used as a reducing agent for the metal oxide. There is no description of the composition or action of. As described above, in the operation of the rotary hearth furnace, it can be said that there is no disclosure of a method of defining the conditions of agglomerates and suppressing explosive powdering in the furnace to prevent formation of a sedimentary layer.
【0009】本発明では、回転炉床炉の炉床に形成され
る堆積層の成長を抑制する方法を開発することを課題
に、廃棄プラスチックのバインダーおよび/または還元
材による塊成化物を使用する方法に取り組んできた。こ
れにより、回転炉床炉の操業が安定化するとともに、還
元材および燃料の低コスト化も期待できる。The object of the present invention is to develop a method for suppressing the growth of a sedimentary layer formed on the hearth of a rotary hearth furnace, using agglomerates of a waste plastic binder and / or a reducing agent. Have been working on the method. This stabilizes the operation of the rotary hearth furnace, and can be expected to reduce the cost of reducing materials and fuel.
【0010】[0010]
【課題を解決するための手段】本発明の要旨は以下の通
りである。 (1)金属酸化物をバインダーで塊成化し、高温の回転
炉床炉により還元する方法において、廃棄プラスチック
を含有させて塊成化することを特徴とする回転炉床炉に
おける堆積層の成長抑制方法。 (2)金属酸化物に炭材を内装させて塊成化することを
特徴とする、(1)記載の回転炉床炉における堆積層の
成長抑制方法。 (3)金属酸化物を塊成化する際に、廃棄プラスチック
を還元材および/またはバインダーとして用いることを
特徴とする、(1)または(2)記載の回転炉床炉にお
ける堆積層の成長抑制方法。 (4)廃棄プラスチックの種類として、下記のプラスチ
ックを少なくとも1以上使用することを特徴とする、
(1)〜(3)のいずれか1項に記載の回転炉床炉にお
ける堆積層の成長抑制方法。 ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニ
ル樹脂、ポリウレタン、ポリエチレン、AS樹脂、AS
A樹脂、ポリアセタール、ポリアミド、PET樹脂、ポ
リエステル (5)廃棄プラスチックの添加量が体積比率にして50
%未満とすることを特徴とする、(1)〜(4)のいず
れか1項に記載の回転炉床炉における堆積層の成長抑制
方法。 (6)廃棄プラスチックの粒度が2mm以下とすることを
特徴とする、(1)〜(5)のいずれか1項に記載の回
転炉床炉における堆積層の成長抑制方法。 (7)金属酸化物をバインダーで塊成化し、高温の回転
炉床炉により還元して得る金属酸化物の塊成化物におい
て、回転炉床炉の炉床に形成される堆積層の成長を抑制
するために、廃棄プラスチックをバインダーおよび/ま
たは還元材として含有せしめることを特徴とする金属酸
化物の塊成化物。 (8)廃棄プラスチックの種類として、下記のプラスチ
ックを少なくとも1以上使用することを特徴とする、
(7)に記載の金属酸化物の塊成化物。 ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニ
ル樹脂、ポリウレタン、ポリエチレン、AS樹脂、AS
A樹脂、ポリアセタール、ポリアミド、PET樹脂、ポ
リエステルThe gist of the present invention is as follows. (1) A method for agglomerating a metal oxide with a binder and reducing it with a high-temperature rotary hearth furnace, wherein waste plastics are contained and agglomeration is performed. Method. (2) The method for suppressing the growth of a sedimentary layer in a rotary hearth furnace according to (1), wherein agglomeration is performed by incorporating a carbon material into the metal oxide. (3) When the metal oxide is agglomerated, waste plastic is used as a reducing agent and / or a binder, and the growth of the deposited layer is suppressed in the rotary hearth furnace according to (1) or (2). Method. (4) As a type of waste plastic, at least one of the following plastics is used,
The method for suppressing the growth of a deposited layer in a rotary hearth furnace according to any one of (1) to (3). Polypropylene, polystyrene, ABS resin, vinyl chloride resin, polyurethane, polyethylene, AS resin, AS
A resin, polyacetal, polyamide, PET resin, polyester (5) The amount of waste plastic to be added is 50 by volume.
%, Wherein the method for suppressing the growth of a deposited layer in a rotary hearth furnace according to any one of (1) to (4), wherein: (6) The method for suppressing growth of a deposited layer in a rotary hearth furnace according to any one of (1) to (5), wherein the particle size of the waste plastic is 2 mm or less. (7) In the agglomeration of metal oxide obtained by agglomerating metal oxide with a binder and reducing it with a high-temperature rotary hearth furnace, the growth of a deposited layer formed on the hearth of the rotary hearth furnace is suppressed. A metal oxide agglomerate characterized in that waste plastics are contained as a binder and / or a reducing agent in order to achieve this. (8) As a type of waste plastic, at least one of the following plastics is used,
An agglomerate of the metal oxide according to (7). Polypropylene, polystyrene, ABS resin, vinyl chloride resin, polyurethane, polyethylene, AS resin, AS
A resin, polyacetal, polyamide, PET resin, polyester
【0011】[0011]
【発明の実施の形態】本発明者らは、回転炉床炉の操業
において、堆積層を形成させない根本的な手段は、炉内
においてペレットが爆裂粉化することを解消することと
考え、まず、炉内に供給する塊成化物の爆裂粉化防止策
としての、塊成化物の高強度化を検討した。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have considered that the fundamental means of preventing the formation of a sedimentary layer in the operation of a rotary hearth furnace is to eliminate explosion of pellets in the furnace. In order to prevent explosion of the agglomerates supplied to the furnace, explosion of the agglomerates was studied.
【0012】具体的な塊成化物の強度向上策は、有機樹
脂のバインダーによる高強度化、耐水性といった特徴に
着目し、種々の有機樹脂類の配合について検討を重ね
た。その結果、リサイクルが必要な産業廃棄プラスチッ
ク、廃家電リサイクル工程で発生する廃棄プラスチッ
ク、さらには廃自動車解体処理工程などで発生するプラ
スチック主体の副産物など、最近安価に(あるいは逆有
償で)入手できる物質をバインダーとし、製鉄所におい
て発生するダスト等の金属酸化物に炭材を内装させた混
合物とともに110〜400℃で加圧成形すること(例
えば、ブリケット状にすること)で、高い強度を発現す
ることを知見した。As a specific measure for improving the strength of agglomerates, attention was paid to features such as high strength and water resistance by a binder of an organic resin, and the mixing of various organic resins was repeatedly examined. As a result, substances that are recently available at low cost (or at a reverse price), such as industrial waste plastic that needs to be recycled, waste plastic generated in the recycling process of waste home appliances, and plastic-based by-products generated in the waste car dismantling process Is used as a binder and press-formed at 110 to 400 ° C. (for example, into a briquette shape) together with a mixture of a metal oxide such as dust generated in an ironworks and a carbon material, thereby exhibiting high strength. I found that.
【0013】具体的には、前述の特開平3−6334号
報に記載の熱硬化性樹脂にとらわれず、熱可塑性樹脂に
も着目し、ポリプロピレンおよび、またはポリスチレン
を主に含有し、その他として、ABS樹脂、塩化ビニル
樹脂、ポリウレタン、ポリエチレン、AS樹脂、ASA
樹脂、ポリアセタール、ポリアミド、PET樹脂、ポリ
エステル等を含有した場合も含めて、種々の組成範囲で
調査し、かつ20mm以下のチップ状で配合して加圧成型
した。More specifically, the present invention is not limited to the thermosetting resin described in JP-A-3-6334, but also focuses on a thermoplastic resin, and mainly contains polypropylene and / or polystyrene. ABS resin, vinyl chloride resin, polyurethane, polyethylene, AS resin, ASA
Investigations were conducted in various composition ranges, including those containing resins, polyacetals, polyamides, PET resins, polyesters, and the like, and were compounded in chips of 20 mm or less and pressure-molded.
【0014】さらに、これを用いて回転炉床炉の操業を
実施したところ、数百℃程度で揮発する特性のある有機
樹脂が金属酸化物の還元材としても作用すること、強度
が高く爆裂粉化量が低減して堆積層の形成が大幅に抑制
されること、仮に、回転炉床炉に装入する金属酸化物の
加圧成型物が水に濡れて水分を数%含んでも水の蒸発に
よる爆裂粉化が無いこと、さらには乾燥工程も省略でき
ることが明らかとなった。[0014] Furthermore, when the rotary hearth furnace was operated using this, it was found that the organic resin having the property of volatilizing at about several hundred degrees Celsius also acts as a reducing agent for metal oxides, and that it has high strength and explosive powder. The formation of sedimentary layers is greatly suppressed by reducing the amount of metallization. Even if the metal oxide press-molded product charged into the rotary hearth furnace is wetted by water and contains a few percent of water, water evaporates It was found that there was no explosion powdering due to the above, and that the drying step could be omitted.
【0015】本発明の方法で成型したブリケットは、圧
潰強度が5kg以上となりハンドリング時の粉化を抑制
し、さらに加熱された時に樹脂が収縮して爆裂を抑制し
ていると考えられる。また、廃棄プラスチックの配合比
率を増して、炭材を内装しなくても構わないことが判明
した。また、設備構造上等の理由で、湿式成型が必要な
場合には成型温度を100℃以下(水が蒸発しない条
件)にする必要があり、この場合には、コーンスターチ
などのバインダーを適宜量添加し、成型すれば、上記と
同様の作用が現れた。It is considered that the briquettes molded by the method of the present invention have a crushing strength of 5 kg or more, which suppresses powdering during handling, and further suppresses explosion due to shrinkage of the resin when heated. Also, it was found that it was not necessary to increase the compounding ratio of the waste plastic and to install the carbon material inside. When wet molding is required for reasons such as equipment structure, the molding temperature must be 100 ° C. or less (conditions under which water does not evaporate). In this case, an appropriate amount of a binder such as corn starch is added. Then, when molded, the same effect as described above appeared.
【0016】なお、廃棄プラスチックの添加量が体積比
率にして50%未満とすることにより、製品である還元
鉄の強度を維持可能である。これは、50%を超えると
空隙が多くなって還元後の金属鉄のネットワークが形成
しにくくなり、強度が低下するためである。また、廃棄
プラスチックの粒度が、好ましくは2mm以下、より好ま
しくは1mm以下とすることで成型中の歩留を高位に維持
できることが判明した。By setting the amount of waste plastic to be less than 50% by volume, the strength of the reduced iron product can be maintained. This is because if it exceeds 50%, voids increase and a network of metallic iron after reduction becomes difficult to form, and the strength decreases. It was also found that the yield during molding can be maintained at a high level by setting the particle size of the waste plastic to preferably 2 mm or less, more preferably 1 mm or less.
【0017】以下、本発明の実施の形態を、作業フロー
に沿って説明する。図1には、本発明の実施形態の一例
を示している。金属酸化鉄原料として製鋼ダスト1、還
元材の一部として石炭粉2を用い、さらにバインダーと
して廃棄プラスチック3を用いる。ここで製鋼ダストが
乾燥されていない場合には、適宜、乾燥工程を組み入れ
ることもできる。これら製鋼ダスト1、石炭粉2、廃棄
プラスチック3の原料は、混練機4にて混合され、さら
に成型機(ここではブリケット機)5によって加圧成形
される。ここで、成型部分を加熱して、適切な温度に制
御可能とする。成型機5から排出された塊成化物は、直
送または一旦ヤード保管後に、回転炉床炉6に供給され
る。回転炉床炉6は、補助燃料としてLNG8ならびに
支燃性ガスとして空気7等の組み合わせで供給し、還元
中に発生するCOガス等も活用して1000〜1350
℃程度の雰囲気を形成せしめて金属酸化物(ここでは製
鋼ダスト)の塊成化物を還元し、還元金属塊(ここでは
還元鉄)9を得る。An embodiment of the present invention will be described below along a work flow. FIG. 1 shows an example of an embodiment of the present invention. Steelmaking dust 1 is used as a metal iron oxide raw material, coal powder 2 is used as a part of a reducing agent, and waste plastic 3 is used as a binder. If the steelmaking dust has not been dried, a drying step may be incorporated as appropriate. The raw materials of the steelmaking dust 1, the coal powder 2, and the waste plastic 3 are mixed in a kneading machine 4 and further pressed by a molding machine (here, a briquetting machine) 5. Here, the molded part is heated so that it can be controlled to an appropriate temperature. The agglomerate discharged from the molding machine 5 is supplied directly to the rotary hearth furnace 6 after being directly sent or once stored in a yard. The rotary hearth furnace 6 supplies LNG 8 as an auxiliary fuel and air 7 as a combustion-supporting gas in combination, and also utilizes CO gas and the like generated during the reduction to 1000 to 1350.
By forming an atmosphere of about ° C, agglomerates of metal oxides (here, steelmaking dust) are reduced, and reduced metal lumps (here, reduced iron) 9 are obtained.
【0018】[0018]
【実施例】[実施例1]製鋼ダスト93%、1mm以下の
無煙炭粉7%の配合物を乾燥処置後に、外数として16
〜31%(重量%で6〜15%)の廃棄プラスチック
(廃家電を分解分別後に発生したプラスチック品)を配
合し混練して成型前の原料を得た。廃棄プラスチックは
5mm前後の粉砕品を用いた。成型は130〜150℃で
行い、20mm大のブリケットを得た。回転炉床炉では最
高温度にして1350℃程度の雰囲気下で、1時間当た
り19ton の成型ブリケットを供給し、時間当たり14
ton の還元鉄を得た。廃プラスチック7%配合の場合、
還元鉄の金属化率は90%であり、強度も高く、高温の
まま溶解専用転炉に装入して溶銑を製造した。EXAMPLES Example 1 A mixture of 93% steelmaking dust and 7% anthracite powder of 1 mm or less in anthracite was subjected to a drying treatment to obtain an external number of 16%.
A raw plastic before molding was obtained by blending and kneading up to 31% (6 to 15% by weight) of waste plastic (plastic product generated after decomposing and separating waste home appliances). As the waste plastic, a crushed product of about 5 mm was used. The molding was performed at 130 to 150 ° C. to obtain a briquette 20 mm in size. In a rotary hearth furnace, at a maximum temperature of about 1350 ° C., 19 tons of molded briquettes are supplied per hour, and 14 hours per hour.
ton reduced iron was obtained. In the case of 7% waste plastic,
The metallization ratio of the reduced iron was 90%, the strength was high, and the molten iron was charged into a converter exclusively for melting at a high temperature to produce hot metal.
【0019】なお、配合条件の製鋼ダスト93%、無煙
炭粉7%では、製鋼ダストの酸化鉄分を還元するに十分
な炭素量は、無煙炭のみでは不十分であり、廃棄プラス
チックの炭素が還元にも寄与していること、さらに付け
加えて言うと、還元に使用された廃棄プラスチックの炭
素から生成されたCOガスは炉内の燃料ガスとして利用
されており、補助燃料のLNGの使用量を低減できるこ
とが判明した。また、この操業を継続しても炉床の堆積
層は形成されなかった。With 93% of steelmaking dust and 7% of anthracite powder under the blending conditions, the amount of carbon sufficient to reduce the iron oxide content of the steelmaking dust is not sufficient with anthracite alone, and the carbon of waste plastic is also reduced. In addition, the CO gas generated from the carbon of the waste plastic used for reduction is used as fuel gas in the furnace, and the amount of LNG used as auxiliary fuel can be reduced. found. Further, even when this operation was continued, no sedimentary layer was formed on the hearth.
【0020】[実施例2]製鋼ダスト93%、1mm以下
の無煙炭粉7%の配合物を乾燥処置後に、外数として2
4%(重量%で10%)の廃棄プラスチック(廃家電を
分解分別後に発生したプラスチック品)、1%のコーン
スターチおよび水分8%を配合し混練して成型前の原料
を得た。廃棄プラスチックは1mm前後の粉砕品を用い
た。成型は80℃で行い、20mm大のブリケットを得
た。回転炉床炉では最高温度にして1350℃程度の雰
囲気下で、1時間当たり19ton の成型ブリケットを供
給し、時間当たり14ton の還元鉄を得た。廃プラスチ
ック7%配合の場合、還元鉄の金属化率は93%であ
り、強度も高く、高温のまま溶解専用転炉に装入して溶
銑を製造した。なお、この操業を継続しても炉床の堆積
層は形成されなかった。Example 2 A mixture of 93% of steelmaking dust, 7% of anthracite powder of 1 mm or less in anthracite was subjected to a drying treatment, and then, as an external number of 2%.
4% (10% by weight) of waste plastic (plastic product generated after decomposition and separation of waste home appliances), 1% of corn starch and 8% of water were mixed and kneaded to obtain a raw material before molding. The waste plastic used was a crushed product of about 1 mm. The molding was performed at 80 ° C. to obtain a 20 mm-sized briquette. In a rotary hearth furnace, 19 tons of molded briquettes were supplied per hour in an atmosphere at a maximum temperature of about 1350 ° C. to obtain 14 tons of reduced iron per hour. When 7% of waste plastic was mixed, the metallization ratio of reduced iron was 93%, the strength was high, and the molten iron was charged at high temperature into a converter exclusively for melting to produce hot metal. In addition, even if this operation was continued, no deposit layer was formed on the hearth.
【0021】比較例として、製鋼ダスト86%、1mm以
下の無煙炭粉14%の配合物を乾燥処置後に、外数とし
て8%のセメントを配合し混練してペレットを製造し、
上記と同様の回転炉床炉の操業を行った。しかしなが
ら、炉装入前のペレットの水分が1%の条件では、炉床
の堆積層の成長速度が毎時2mmとなり、安定した操業は
達成されず、稼働率が20%低下した。As a comparative example, a blend of 86% of steelmaking dust, 14% of anthracite powder of 1 mm or less was dried, then 8% of cement as an external number was blended and kneaded to produce pellets.
The rotary hearth furnace was operated in the same manner as described above. However, under the condition that the moisture content of the pellets before charging the furnace was 1%, the growth rate of the sedimentary layer on the hearth was 2 mm / h, stable operation was not achieved, and the operation rate was reduced by 20%.
【0022】[0022]
【発明の効果】以上説明したように本発明の廃棄プラス
チックのバインダーによる塊成化物を使用することによ
り、回転炉床炉の炉床に形成される堆積層の成長を抑制
することができ、回転炉床炉の操業が安定化するように
なった。また、安価な廃棄プラスチックが還元材の代替
となり、製造コストを低減できる。As described above, the use of the agglomerate of the waste plastic binder of the present invention makes it possible to suppress the growth of the sedimentary layer formed on the hearth of the rotary hearth furnace. Hearth furnace operation has become more stable. In addition, inexpensive waste plastic can be used as a substitute for the reducing material, and the manufacturing cost can be reduced.
【図1】本発明における製造フローを示す。FIG. 1 shows a manufacturing flow in the present invention.
1 製鋼ダスト 2 石炭粉 3 廃棄プラスチック小片 4 混練機 5 成型機 6 回転炉床炉 7 空気 8 補助燃料(例えばLNG) 9 還元鉄 10 ボイラー REFERENCE SIGNS LIST 1 steelmaking dust 2 coal powder 3 waste plastic pieces 4 kneader 5 molding machine 6 rotary hearth furnace 7 air 8 auxiliary fuel (for example, LNG) 9 reduced iron 10 boiler
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21B 11/08 C22B 1/216 13/10 1/245 C22B 1/216 B09B 3/00 303L 1/245 ZAB (72)発明者 中尾 安幸 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 仲 広徳 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 大貫 一雄 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 Fターム(参考) 4D004 AA36 AA37 BA05 CA14 CA22 CA37 CA42 CA45 CB09 CC11 CC17 DA03 DA10 DA20 4K001 AA10 BA14 CA18 CA21 CA23 CA29 GA07 GA12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21B 11/08 C22B 1/216 13/10 1/245 C22B 1/216 B09B 3/00 303L 1/245 ZAB (72) Inventor Yasuyuki Nakao 1 Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Hirohata Works (72) Inventor Hironori Naka 1-Fujimachi, Hirohata-ku, Himeji-shi, Hyogo Nippon Steel Corporation Inside Hirohata Works (72) Inventor Kazuo Onuki 1Fuji-cho, Hirohata-ku, Himeji-shi, Hyogo F-term in Nippon Steel Corporation Hirohata Works (reference) 4D004 AA36 AA37 BA05 CA14 CA22 CA37 CA42 CA45 CB09 CC11 CC17 DA03 DA10 DA20 4K001 AA10 BA14 CA18 CA21 CA23 CA29 GA07 GA12
Claims (8)
温の回転炉床炉により還元する方法において、廃棄プラ
スチックを含有させて塊成化することを特徴とする回転
炉床炉における堆積層の成長抑制方法。1. A method for agglomerating a metal oxide with a binder and reducing it with a high-temperature rotary hearth furnace, wherein the agglomeration is performed by containing waste plastics. Growth control method.
ることを特徴とする、請求項1記載の回転炉床炉におけ
る堆積層の成長抑制方法。2. The method for suppressing the growth of a sedimentary layer in a rotary hearth furnace according to claim 1, wherein a carbon material is provided inside the metal oxide to agglomerate.
スチックを還元材および/またはバインダーとして用い
ることを特徴とする、請求項1または2記載の回転炉床
炉における堆積層の成長抑制方法。3. The method according to claim 1, wherein the waste plastic is used as a reducing agent and / or a binder when agglomerating the metal oxide. Method.
プラスチックを少なくとも1以上使用することを特徴と
する、請求項1〜3のいずれか1項に記載の回転炉床炉
における堆積層の成長抑制方法。ポリプロピレン、ポリ
スチレン、ABS樹脂、塩化ビニル樹脂、ポリウレタ
ン、ポリエチレン、AS樹脂、ASA樹脂、ポリアセタ
ール、ポリアミド、PET樹脂、ポリエステル4. The method for suppressing the growth of a deposited layer in a rotary hearth furnace according to claim 1, wherein at least one of the following plastics is used as a type of waste plastic. . Polypropylene, polystyrene, ABS resin, vinyl chloride resin, polyurethane, polyethylene, AS resin, ASA resin, polyacetal, polyamide, PET resin, polyester
して50%未満とすることを特徴とする、請求項1〜4
のいずれか1項に記載の回転炉床炉における堆積層の成
長抑制方法。5. The method according to claim 1, wherein the amount of waste plastic added is less than 50% by volume.
The method for suppressing growth of a deposited layer in the rotary hearth furnace according to any one of the above.
ることを特徴とする、請求項1〜5のいずれか1項に記
載の回転炉床炉における堆積層の成長抑制方法。6. The method for suppressing the growth of a deposited layer in a rotary hearth furnace according to claim 1, wherein the particle size of the waste plastic is 2 mm or less.
温の回転炉床炉により還元して得る金属酸化物の塊成化
物において、回転炉床炉の炉床に形成される堆積層の成
長を抑制するために、廃棄プラスチックをバインダーお
よび/または還元材として含有せしめることを特徴とす
る金属酸化物の塊成化物。7. Growth of a sedimentary layer formed on a hearth of a rotary hearth furnace in a metal oxide agglomerate obtained by agglomerating a metal oxide with a binder and reducing the metal oxide with a high-temperature rotary hearth furnace. A metal oxide agglomerate characterized by containing waste plastics as a binder and / or a reducing agent in order to suppress the occurrence of waste.
プラスチックを少なくとも1以上使用することを特徴と
する、請求項7に記載の金属酸化物の塊成化物。ポリプ
ロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹
脂、ポリウレタン、ポリエチレン、AS樹脂、ASA樹
脂、ポリアセタール、ポリアミド、PET樹脂、ポリエ
ステル8. The metal oxide agglomerate according to claim 7, wherein at least one of the following plastics is used as a waste plastic. Polypropylene, polystyrene, ABS resin, vinyl chloride resin, polyurethane, polyethylene, AS resin, ASA resin, polyacetal, polyamide, PET resin, polyester
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001278453A JP2002161318A (en) | 2000-09-14 | 2001-09-13 | Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000279625 | 2000-09-14 | ||
JP2000-279625 | 2000-09-14 | ||
JP2001278453A JP2002161318A (en) | 2000-09-14 | 2001-09-13 | Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002161318A true JP2002161318A (en) | 2002-06-04 |
Family
ID=26599977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001278453A Pending JP2002161318A (en) | 2000-09-14 | 2001-09-13 | Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002161318A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1266971A2 (en) * | 2001-06-11 | 2002-12-18 | Kabushiki Kaisha Kobe Seiko Sho | Operation method of moving hearth furnace |
JP2009530492A (en) * | 2006-03-13 | 2009-08-27 | ミシガン テクノロジカル ユニバーシティ | Production of iron using environmentally friendly renewable reducing agents or regenerative reducing agents |
JP2013533366A (en) * | 2010-08-09 | 2013-08-22 | ワンスティール、ニューサウスウェールズ、プロプライエタリー、リミテッド | Composite product and manufacturing method |
-
2001
- 2001-09-13 JP JP2001278453A patent/JP2002161318A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1266971A2 (en) * | 2001-06-11 | 2002-12-18 | Kabushiki Kaisha Kobe Seiko Sho | Operation method of moving hearth furnace |
EP1266971A3 (en) * | 2001-06-11 | 2003-01-15 | Kabushiki Kaisha Kobe Seiko Sho | Operation method of moving hearth furnace |
JP2009530492A (en) * | 2006-03-13 | 2009-08-27 | ミシガン テクノロジカル ユニバーシティ | Production of iron using environmentally friendly renewable reducing agents or regenerative reducing agents |
JP2013533366A (en) * | 2010-08-09 | 2013-08-22 | ワンスティール、ニューサウスウェールズ、プロプライエタリー、リミテッド | Composite product and manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009291046B2 (en) | Process for producing agglomerates of finely particulate iron carriers | |
KR100730820B1 (en) | Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal | |
TWI412602B (en) | The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead | |
AU2009270230B2 (en) | Briquette manufacturing method, reductive metal manufacturing method, and zinc or lead separation method | |
RU2455370C1 (en) | Agglomerate containing titanium oxide for production of granulated metallic iron | |
JP2003129142A (en) | Method for manufacturing agglomerated product of oxidized metal | |
JP4113820B2 (en) | Method for producing reduced metal raw material agglomerate and method for producing reduced metal | |
CN104364399A (en) | Process for producing hardened granules from iron-containing particles | |
JP2002161318A (en) | Method of controlling sedimentary layer growth in rotary hearth furnace and agglomeration of metal oxide used for the method | |
JP2003213312A (en) | Method for manufacturing metallic iron | |
JP3502008B2 (en) | Manufacturing method of carbonized interior agglomerates | |
JP2003293019A (en) | Method for producing reduced iron using wet dust of blast furnace and method for producing crude zinc oxide | |
JP2006152432A (en) | Method for producing molten iron | |
JP3723521B2 (en) | Reduced iron manufacturing method and crude zinc oxide manufacturing method using blast furnace wet dust | |
JP3856943B2 (en) | Method for producing reduced iron | |
JP2004250780A (en) | Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material | |
JPH0364571B2 (en) | ||
JPH0742519B2 (en) | Pretreatment method for raw material for blast furnace | |
JP5554481B2 (en) | Method for producing briquette, method for producing reduced iron, and method for separating zinc or lead | |
JP5554478B2 (en) | Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead | |
JPS6123726A (en) | Method for manufacturing non-calcined agglomerate ore | |
JP2001303144A (en) | Method for forming and drying powdery iron ore, and the like | |
JPS627823A (en) | Sintering method for difficult-to-granulate ore powder | |
JP2000282114A (en) | Operation of blast furnace using synthetic resin material and synthetic resin formed body used for this | |
JPH01188635A (en) | Mixed agglomeration method of fine ore or prereduced ore and coal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050412 |