Nothing Special   »   [go: up one dir, main page]

JP2002028799A - Method of fine machining by laser beam - Google Patents

Method of fine machining by laser beam

Info

Publication number
JP2002028799A
JP2002028799A JP2000207871A JP2000207871A JP2002028799A JP 2002028799 A JP2002028799 A JP 2002028799A JP 2000207871 A JP2000207871 A JP 2000207871A JP 2000207871 A JP2000207871 A JP 2000207871A JP 2002028799 A JP2002028799 A JP 2002028799A
Authority
JP
Japan
Prior art keywords
laser
workpiece
processing
hole
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000207871A
Other languages
Japanese (ja)
Other versions
JP3797068B2 (en
Inventor
Kazunari Umetsu
一成 梅津
Atsushi Amako
淳 尼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2000207871A priority Critical patent/JP3797068B2/en
Publication of JP2002028799A publication Critical patent/JP2002028799A/en
Application granted granted Critical
Publication of JP3797068B2 publication Critical patent/JP3797068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B29/00Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins
    • C03B29/02Reheating glass products for softening or fusing their surfaces; Fire-polishing; Fusing of margins in a discontinuous way
    • C03B29/025Glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/08Severing cooled glass by fusing, i.e. by melting through the glass
    • C03B33/082Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of a laser beam machining, by which method a fine machining is performed at high speed, at a low cost, with a high quality and a high precision for a material which is hardly machined with a conventional low output laser beam. SOLUTION: In a method of machining for a work of a transparent material, by which method a light absorbing material is adhered on the surface of a work to be machined and the surface of the work to be machined on which the light absorbing material is adhered is irradiated with a laser beam, the machining is performed by making a plasma generated by the machining absorb the laser beam.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レーザ光を用いて
被加工物を微細加工する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for finely processing a workpiece using a laser beam.

【0002】[0002]

【従来の技術】近年、ガラスの微細加工に対するニーズ
が高まってきているが、安価、高品質および高速性を備
えた微細加工法は、まだ確立されていない。そして、こ
のための手法として、レーザによるガラスの微細加工が
注目されてきている。ガラスなどの透明材料は、紫外光
であるエキシマレーザや、遠赤外光であるCO2レーザ
をある程度吸収できるので、これらのレーザを用いたガ
ラス加工は実施可能であっても、可視光〜近赤外光の範
囲にあるYAGレーザなどに対しては吸収性がほとんど
なく、可視光〜近赤外光の範囲にあるレーザでの加工は
不可能とされてきた。なお、ジャイアントパルスとばれ
る高ピーク出力のレーザを用いると、可視光や近赤外光
による加工が可能であるとの研究報告もある。
2. Description of the Related Art In recent years, needs for fine processing of glass have been increasing, but a fine processing method having low cost, high quality and high speed has not yet been established. As a technique for this, attention has been paid to fine processing of glass by laser. Transparent materials such as glass can absorb an excimer laser, which is ultraviolet light, and a CO 2 laser, which is far infrared light, to a certain extent. YAG lasers in the range of infrared light have almost no absorptivity, and processing with lasers in the range of visible light to near infrared light has been considered impossible. In addition, there is a research report that processing with visible light or near-infrared light is possible by using a laser having a high peak output called a giant pulse.

【0003】これに対して、YAGレーザに関する池野
順一氏らの論文「溶液を用いた石英ガラスのYAGレー
ザ加工」(精密工学会誌 55/2/1989、第93〜98頁)に
よれば、金属イオン含有溶液を厚さ1.5mmの透明石
英ガラス板の表面に滴下し、又はその表面に接触させて
パルス発振YAGレーザを照射すると、該溶液がレーザ
を吸収して高熱を発生し、石英ガラスを溶融させて貫通
穴を形成できることが報告されている。また、同論文に
は、不純物を含む一般のガラスの場合、その表面にマジ
ックインキ(登録商標)を塗布するだけで、上述した溶
液無しで、同様に貫通穴をレーザ加工できることも記載
されている。
On the other hand, according to a paper by Junichi Ikeno et al. Concerning YAG laser, "YAG laser processing of quartz glass using solution" (Journal of the Japan Society of Precision Engineering, 55/2/1989, pp. 93-98), When the ion-containing solution is dropped on a surface of a transparent quartz glass plate having a thickness of 1.5 mm or is irradiated with a pulsed YAG laser while being in contact with the surface, the solution absorbs the laser and generates high heat, and the quartz glass is heated. Is reported to be able to form through-holes by fusing. The same paper also describes that, in the case of general glass containing impurities, the through-hole can be similarly laser-processed without the above-mentioned solution only by applying Magic Ink (registered trademark) to the surface. .

【0004】また、池野氏らは、ガラス表面に顔料を塗
布し、これにパルス発振YAGレーザを照射してガラス
表面に溶融部を形成し、外部に飛散除去することによ
り、クラックを発生させることなく、厚さ4mmの結晶
化ガラスに貫通穴を形成できることも報告している(19
97年度精密工学会秋期大会学術講演論文集、第232
頁)。そして、池野氏は、その加工メカニズムを、加工
穴に加工変質層が観察されることから、顔料がYAGレ
ーザを吸収してガラスが溶融することにより加工変質層
が形成され、この加工変質層が次のレーザを吸収して加
工が進行すると分析している(論文「YAGレーザを用
いたガラスの3次元穴あけ加工」(レーザ学会研究会報
告、No. RTM-98-4、社団法人レーザ学会、1998年1月30
日発行、第23〜27頁)。
Also, Ikeno et al. Applied a pigment to a glass surface, irradiated it with a pulsed YAG laser to form a molten portion on the glass surface, and scattered out to remove cracks. It was also reported that a through-hole can be formed in crystallized glass with a thickness of 4 mm (19)
Proc. Of the 1997 Japan Society for Precision Engineering Fall Meeting, No. 232
page). Mr. Ikeno explains that the processing mechanism is that the deteriorated layer is formed by the absorption of the YAG laser by the pigment and the melting of the glass, because the deteriorated layer is observed in the processing hole. Analyzes that the processing proceeds by absorbing the following laser (Paper "Three-dimensional drilling of glass using YAG laser" (Report of the Laser Society of Japan, No. RTM-98-4, Laser Society of Japan, January 30, 1998
Published on pages 23-27).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た透明材料に対する従来のレーザ加工方法には、次のよ
うな課題がある。まず、エキシマレーザは微細加工可能
であるが、装置が高額でランニングコストが高く、かつ
装置のメンテナンス性が悪いなどの問題がある。また、
CO2レーザは熱的な加工であるために、加工部周辺の
広範囲に亘って熱歪みによるクラックを発生させやすく
品質を損なう虞があり、また、波長が長いために集光性
が低く、微細加工には不向きである。また、ジャイアン
トパルスレーザの場合は、レーザ装置が比較的高額であ
ることと、パルスエネルギーが大きいために加工時の衝
撃が大きくクラックが発生しやすいという問題がある。
更に、上記のマジックインキや顔料などの光吸収物質と
ともにYAGレーザを利用した方法では、加工変質層を
得るために、加工しようとする透明材料にAl 23など
の不純物が適当に含まれいなければならず、高純度の石
英ガラスや水晶などを加工することは依然として不可能
となっていた。
However, as described above,
Conventional laser processing methods for transparent materials are as follows.
There is a problem. First, excimer lasers can be fine-processed
However, the equipment is expensive, running cost is high, and
There are problems such as poor maintainability of the device. Also,
COTwoBecause laser is thermal processing,
Cracks easily occur due to thermal strain over a wide range
There is a risk that the quality will be impaired.
And is not suitable for fine processing. Also Giant
In the case of a pulsed laser, the laser device is relatively expensive.
And the pulse energy is large,
There is a problem that the hit is large and a crack is easily generated.
In addition, light absorbing substances such as the above-mentioned magic inks and pigments
Both methods use a YAG laser to remove the affected layer
In order to obtain, the transparent material to be processed has Al TwoOThreeSuch
High purity stones must be properly contained
It is still impossible to process English glass or quartz
Had become.

【0006】本発明は、上述した従来の問題に鑑みてな
されたもので、その目的は、比較的安価で取り扱いも容
易なレーザを用いて、従来レーザ加工が困難であるとさ
れていた材料、特に石英ガラスや水晶などの透明材料に
対して、深穴などの微細加工を高速かつ安価に、しかも
高品質、高精度に形成できる、レーザ加工方法を提供す
ることにある。
The present invention has been made in view of the above-described conventional problems, and has as its object to use a laser which is relatively inexpensive and easy to handle, and which is conventionally made of a material which has been considered difficult to laser-process. In particular, it is an object of the present invention to provide a laser processing method capable of forming fine holes such as deep holes at high speed and at low cost, and with high quality and high precision, on transparent materials such as quartz glass and quartz.

【0007】[0007]

【課題を解決するための手段】本発明の方法は、被加工
物の表面に吸光物質を付着させ、該吸光物質を付着させ
た被加工物表面に向けてレーザを照射して、被加工物を
微細加工する方法において、その加工により発生したプ
ラズマにレーザを吸収させながら加工を行うことを特徴
とする。そして、そのための一つの手段は、レーザの照
射間隔を加工により発生したプラズマの発生から消滅ま
での間隔より短くすることである。
According to a method of the present invention, a light-absorbing substance is adhered to the surface of a workpiece, and a laser is irradiated toward the surface of the workpiece to which the light-absorbing substance is adhered, whereby the workpiece is irradiated. Is characterized in that the processing is performed while a laser is absorbed by the plasma generated by the processing. One means for that is to make the laser irradiation interval shorter than the interval from generation to extinction of plasma generated by processing.

【0008】これによれば、加工部分に発生したプラズ
マにレーザのエネルギーが吸収されて熱として加工部に
保持され、そのプラズマからの熱伝達により加熱された
被加工物を更に加工して行くことができ、従来加工が困
難とされていた透明材料などに貫通穴などの深穴を形成
することが可能となる。また、レーザの照射間隔を加工
により発生したプラズマの発生から消滅までの間隔より
短くすることで、加工中、常にプラズマを存続させてお
くことができる。
According to this, the energy of the laser is absorbed by the plasma generated in the processing portion and is held as heat in the processing portion, and the workpiece heated by the heat transfer from the plasma is further processed. This makes it possible to form a deep hole such as a through hole in a transparent material or the like, which has been conventionally difficult to process. In addition, by making the laser irradiation interval shorter than the interval from generation to extinction of the plasma generated by the processing, the plasma can always be maintained during the processing.

【0009】また、レーザのビームをシングルモードと
すると、光の回折限度までレーザ光を絞ることができる
ことから、低出力でもレーザビームの集光径を10μm
以下にしてパワー密度を大きくすることができ、微細穴
などをより容易にかつ高精度に加工できる。
When the laser beam is of a single mode, the laser beam can be narrowed down to the diffraction limit of the light.
In the following, the power density can be increased, and fine holes and the like can be easily and accurately processed.

【0010】また、レーザには、レーザの基本波、第二
高調波、第三高調波、第四高調波あるいは第五高調波の
いずれかを使用する。例えば、高純度の石英ガラスは、
YAGレーザの基本波、第二高調波、第三高調波、第四
高調波あるいは第五高調波のいずれもほとんど吸収しな
いため、これらのレーザに対して本発明が有効に作用す
る。
Further, any one of a fundamental wave, a second harmonic, a third harmonic, a fourth harmonic and a fifth harmonic of the laser is used for the laser. For example, high-purity quartz glass is
Since the fundamental wave, the second harmonic, the third harmonic, the fourth harmonic or the fifth harmonic of the YAG laser is hardly absorbed, the present invention works effectively on these lasers.

【0011】なお、レーザ光が直線偏光の場合、特に入
射部付近にクラックが発生し易い。実験では、偏光方向
に対して直角方向にクラックが入ることがわかってい
る。また、加工穴は磁場の振動面方向に曲がり易い性質
があるため、いずれかの方向に偏って加工が促進されて
穴が曲がったり、穴径が拡大する虞がある。そこで、レ
ーザを円偏光又はランダム偏光して被加工物に照射する
と、入射部付近でのクラックの発生、および加工穴の曲
がりや穴径の拡大が抑制されて、加工精度および品質が
向上する。
When the laser beam is linearly polarized, cracks tend to occur particularly near the incident portion. Experiments have shown that cracks occur in the direction perpendicular to the polarization direction. Further, since the machined hole has a property of being easily bent in the direction of the vibration plane of the magnetic field, there is a possibility that the machined hole is bent in any direction and the hole is bent or the hole diameter is increased. Therefore, when the workpiece is irradiated with a circularly or randomly polarized laser beam, the generation of cracks near the incident portion, the bending of the processing hole and the expansion of the hole diameter are suppressed, and the processing accuracy and quality are improved.

【0012】また、レーザを位相格子により分岐させて
被加工物に照射すると、複数の穴を同時に加工すること
ができるので、生産性の向上が図れる。
Further, when the laser beam is branched by the phase grating and irradiated on the workpiece, a plurality of holes can be processed at the same time, so that the productivity can be improved.

【0013】更に、吸光物質を顔料あるいは塗料とした
ものである。なお、吸光物質は被加工物の加工部周辺に
のみ付着すれば良く、これにより吸光物質の使用量およ
び吸光物質を取り除くための洗浄液の使用量を節約でき
ることに加えて、必要最小限の吸光物質塗布であれば、
レーザ加工時にそれらの全てがなくなることも考えら
れ、洗浄そのものを不要にできる可能性もある。
Further, the light-absorbing substance is a pigment or a paint. The light-absorbing substance only needs to adhere to the periphery of the processed part of the workpiece, which not only saves the amount of light-absorbing substance used and the amount of cleaning solution used to remove the light-absorbing substance, but also minimizes the necessary light-absorbing substance. For application,
It is conceivable that all of them will be lost during laser processing, and there is a possibility that the cleaning itself may become unnecessary.

【0014】また、被加工物に貫通穴を形成する際、被
加工物のレーザー入射面と対向する面にダミー領域を設
けた状態で該被加工物に対して穴加工を進め、被加工物
の貫通穴形成域に貫通穴が形成された後も、継続してダ
ミー領域に対して穴加工を行うことを特徴とする。実験
によれば、ダミー領域なしで貫通穴を加工すると、レー
ザ出射側の穴径が入射側の穴径より狭くなってしまう。
これは、加工の終わり近くにプラズマがレーザ光出射側
の穴から放出されてしまい、加工に必要な熱量が充分供
給されなかった為と考えられる。しかしながら、上記の
ようにすることで、被加工物のレーザ出射側付近でもプ
ラズマが加工部に保持されて、それ以前の加工部分と同
様の条件で加工が行われることになり、その穴径が貫通
穴全長を通してほぼ同一となる。この具体的な方法に
は、被加工物の加工部の厚さを最終的に得ようとする厚
さより余分に厚くしその余分な厚み部分をダミー領域と
して加工を行い、加工後その余分な厚み部分を研磨など
して所定の厚さにする方法や、被加工物面にダミー部材
を密着させて加工を行い、加工後そのダミー部材を取り
除く方法などがある。なお、被加工物およびダミー領域
はその加工条件を同じくするのがよく、従って、ダミー
領域は被加工物と同じ材質とすることが望ましい。
When forming a through hole in a workpiece, drilling is performed on the workpiece in a state where a dummy area is provided on a surface of the workpiece opposite to a laser incidence surface, and the workpiece is processed. After the through hole is formed in the through hole forming area, the hole processing is continuously performed on the dummy area. According to the experiment, if the through hole is processed without the dummy region, the hole diameter on the laser emission side becomes smaller than the hole diameter on the incident side.
This is considered to be because the plasma was emitted from the hole on the laser beam emission side near the end of the processing, and the amount of heat required for the processing was not sufficiently supplied. However, by performing the above, the plasma is held in the processing part also in the vicinity of the laser emission side of the workpiece, and the processing is performed under the same conditions as the previous processing part, and the hole diameter is reduced. It becomes almost the same throughout the entire length of the through hole. In this specific method, the thickness of the processed portion of the workpiece is made extra thick than the thickness that is to be finally obtained, and the extra thickness portion is processed as a dummy region, and after processing, the extra thickness is processed. There are a method in which a portion is polished or the like to a predetermined thickness, a method in which a dummy member is brought into close contact with the surface of a workpiece, processing is performed, and the dummy member is removed after processing. It is preferable that the workpiece and the dummy region have the same processing conditions. Therefore, it is desirable that the dummy region be made of the same material as the workpiece.

【0015】また、被加工物に穴を形成した後、該穴の
開口周辺部分を研磨すると、被加工物の表面に焼き付い
た吸光物質や、加工穴から飛散して表面に付着した溶融
物を除去することができる。
When a hole is formed in the workpiece and the periphery of the opening of the hole is polished, light-absorbing substances sticking to the surface of the workpiece and melted substances scattered from the processed hole and adhered to the surface are removed. Can be removed.

【0016】更に、本加工には、YAGレーザ、YLF
レーザ、YVOレーザなどのレーザが使用できる。これ
らのレーザは、微細加工が可能である上に、比較的安価
で操作性が良く、取扱いも簡単であるという特徴があ
る。更に、これらのレーザのQスイッチパルス発振タイ
プを用いると、レーザの蓄積エネルギーを一旦ためて一
気に出力させるので、数W程度のより低い出力でも、数
百kW程度の高いピーク出力を得ることができるという
利点がある。なお、本発明における被加工物は、材料の
種類にかかわらず利用できるが、特に従来加工が困難と
されていた石英ガラスや水晶などの透明材料に対して効
果を発揮する。
Further, in this processing, a YAG laser, a YLF
Lasers such as a laser and a YVO laser can be used. These lasers are characterized by being capable of fine processing, being relatively inexpensive, having good operability, and being easy to handle. Further, when the Q-switch pulse oscillation type of these lasers is used, the stored energy of the laser is temporarily stored and output at once, so that even a lower output of about several W, a high peak output of about several hundred kW can be obtained. There is an advantage. The workpiece in the present invention can be used irrespective of the type of material, but is particularly effective for transparent materials such as quartz glass and quartz, which were conventionally difficult to process.

【0017】[0017]

【発明の実施の形態】以下に、添付図面を参照しつつ本
発明をその好適な実施例を用いて詳細に説明する。図1
は、本発明のレーザ加工方法を用いてガラスに微細穴を
形成するのに適したレーザ加工装置の一例を概略的に示
している。このレーザ加工装置は、Qスイッチパルス発
振のYAGレーザを発生させるためのQスイッチユニッ
トを内蔵したレーザ発振器1と、ミラー2と、集光レン
ズ3と、レーザ発振器1とミラー2間のレーザ光の光路
内に配置された機械的シャッタ手段4とを備える。ま
た、レーザ発振器1とシャッタ手段4とは、これらの動
作を制御するコンピュータ5に電気的に接続されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings using preferred embodiments. Figure 1
1 schematically illustrates an example of a laser processing apparatus suitable for forming micro holes in glass using the laser processing method of the present invention. This laser processing apparatus includes a laser oscillator 1 having a built-in Q switch unit for generating a Q-switch pulse oscillation YAG laser, a mirror 2, a condenser lens 3, and a laser beam between the laser oscillator 1 and the mirror 2. Mechanical shutter means 4 disposed in the optical path. Further, the laser oscillator 1 and the shutter means 4 are electrically connected to a computer 5 for controlling these operations.

【0018】なお、上記Qスイッチパルス発振のYAG
レーザの代わりに、Qスイッチパルス発振のYLFレー
ザおよびYVOレーザ、更に、Qスイッチを利用しない
YAGレーザ、YLFレーザおよびYVOレーザなどを
用いることもできる。
Note that the Q switch pulse oscillation YAG
Instead of the laser, a Q-switch pulse oscillation YLF laser and a YVO laser, and a YAG laser, a YLF laser, and a YVO laser that do not use the Q switch can be used.

【0019】レーザ発振器1から発振されたレーザ光B
は、シャッタ手段4を通過してミラー2で反射され、集
光レンズ3で集光して被加工物6に照射される。被加工
物6は、石英ガラス、ソーダガラス、パイレックス(商
標)などの硬質ガラス、鉛又はクリスタルガラス、結晶
化ガラス、無アルカリガラス、水晶など、従来はレーザ
加工が困難であったものを含み、その純度などにかかわ
らずほとんど全ての透明材料を対象とする。
Laser light B oscillated from laser oscillator 1
Is reflected by the mirror 2 after passing through the shutter means 4, is condensed by the condenser lens 3, and is irradiated on the workpiece 6. The workpiece 6 includes hard glass such as quartz glass, soda glass, and Pyrex (trademark), lead or crystal glass, crystallized glass, alkali-free glass, crystal, and the like, which were conventionally difficult to laser process. It covers almost all transparent materials regardless of their purity.

【0020】本発明によれば、レーザ発振器1はシング
ルモードのビームを出力する。シングルモードビームは
集光性に優れ、そのビームスポット径を10μm以下に
絞ることができ、ビーム形状が円形でその中心にパワー
密度が集中するので、低出力で大きいパワー密度が得ら
れ、微細加工に適している。
According to the present invention, the laser oscillator 1 outputs a single-mode beam. The single mode beam is excellent in condensing property, the beam spot diameter can be narrowed to 10μm or less, the beam shape is circular, and the power density is concentrated at the center, so a large power density can be obtained with low output, and fine processing Suitable for.

【0021】また、YAGレーザのレーザ光Bには、そ
の基本波(1064nm)が使用できるほか、非線形結
晶7(例えば、LBO)をレーザ発振器1とシャッタ手
段4間の光路内に又はレーザ発振器内部に配置して、第
二高調波(532nm)、第三高調波(355nm)、
第四高調波(266nm)、あるいは第五高調波(21
3nm)を取り出してそれぞれ使用することもでき、こ
れらの場合にも比較的低い出力で高いパワー密度が得ら
れる。以下に紹介する各実施例は、このうちの第二高調
波(532nm)を利用して行ったものである。なお、
石英ガラスは上記の各波長に対して90%以上の光透過
率を示し、従って、石英ガラスについては、上記のいず
れの波長のレーザを利用するにしても、本実施例のよう
な方法を利用しないと、レーザによる微細加工は困難で
あると推測される。
As the laser beam B of the YAG laser, the fundamental wave (1064 nm) can be used, and a nonlinear crystal 7 (for example, LBO) can be placed in the optical path between the laser oscillator 1 and the shutter means 4 or inside the laser oscillator. , The second harmonic (532 nm), the third harmonic (355 nm),
The fourth harmonic (266 nm) or the fifth harmonic (21 nm)
3 nm) can be taken out and used respectively, and in these cases, a high power density can be obtained with a relatively low output. In each of the embodiments described below, the second harmonic (532 nm) is used. In addition,
Quartz glass shows a light transmittance of 90% or more for each of the above wavelengths. Therefore, for quartz glass, the method of this embodiment is used regardless of which laser of any of the above wavelengths is used. Otherwise, it is presumed that fine processing by laser is difficult.

【0022】コンピュータ5は、所定のパルス間隔のレ
ーザ発振信号をレーザ発振器1に出力し、レーザ発振器
1は、そのレーザ発振信号に対応したパルス間隔のレー
ザ光をパルス発振する。この時、発振が再開されるまで
の待機時間がその後のパルス列のパルス間隔よりも長く
なると、パルス列の最初のパルスのピーク出力が過大に
なり易い。そこで、コンピュータ5は、レーザ発振信号
に同期させてそのレーザ光のパルス列の最初のパルスに
タイミングを合わせて、シャッタ信号をシャッタ手段4
に出力し、そのオンオフ動作によりレーザ光Bを選択的
に遮断又は通過させて、レーザ光のパルス列の最初のパ
ルスをカットし、一定のピーク出力に制御されたレーザ
光を被加工物6に連続的に照射させるようにしている。
The computer 5 outputs a laser oscillation signal having a predetermined pulse interval to the laser oscillator 1, and the laser oscillator 1 oscillates a laser beam having a pulse interval corresponding to the laser oscillation signal. At this time, if the waiting time until the oscillation is restarted becomes longer than the pulse interval of the subsequent pulse train, the peak output of the first pulse of the pulse train tends to be excessive. Then, the computer 5 synchronizes the timing with the first pulse of the pulse train of the laser light in synchronization with the laser oscillation signal, and outputs the shutter signal to the shutter means 4.
The laser beam B is selectively cut off or passed by the on / off operation, the first pulse of the pulse train of the laser beam is cut, and the laser beam controlled to a constant peak output is continuously output to the workpiece 6. Irradiation is performed.

【0023】また、コンピュータ5は、レーザ光が照射
されて被加工物6が加工されることにより生じたプラズ
マの発生から消滅までの間隔よりも短いパルス(発振)
間隔で、連続してレーザ光が被加工物6に照射されるよ
うにレーザ発振器1を制御する。
The computer 5 generates a pulse (oscillation) shorter than an interval from generation to extinction of plasma generated by processing the workpiece 6 by irradiating a laser beam.
The laser oscillator 1 is controlled so that the workpiece 6 is continuously irradiated with laser light at intervals.

【0024】次に、1mmの板厚の石英ガラス基板に貫
通穴を形成する例を説明する。ここでは、レーザ発振器
1から発振されるレーザ光のパルス幅(照射時間)を
0.06μs、そしてパルス(発振)間隔を100μs
(繰り返し周波数10kHz)となるように、コンピュ
ータ5でレーザ発振器1を制御した。すなわち、図2に
示すように、パルス幅(照射時間)0.06μsのレー
ザ光の照射により発生するプラズマの発光時間(発生か
ら消滅までの間隔)が約100μsであったので、加工
により発生したプラズマを加工部に常に留めてそれにレ
ーザ光を吸収させるようにしておくために、レーザ光の
パルス(発振)間隔を、プラズマの発生から消滅までの
間隔より小さい100μs以内に設定したものである。
Next, an example in which a through hole is formed in a quartz glass substrate having a thickness of 1 mm will be described. Here, the pulse width (irradiation time) of the laser light oscillated from the laser oscillator 1 is 0.06 μs, and the pulse (oscillation) interval is 100 μs.
(Repetition frequency 10 kHz) The laser oscillator 1 was controlled by the computer 5. That is, as shown in FIG. 2, since the light emission time (interval from generation to extinction) of the plasma generated by the irradiation of the laser beam having the pulse width (irradiation time) of 0.06 μs was about 100 μs, it was generated by processing. The pulse (oscillation) interval of the laser light is set within 100 μs, which is smaller than the interval from generation to extinction of the plasma, so that the plasma is always retained in the processing portion and the laser light is absorbed therein.

【0025】ところで、このように1台のレーザを使用
し、そのレーザ発振周波数を比較的大きく設定して被加
工物へのレーザ照射間隔を短くする代わりに、複数のレ
ーザを用いそれらを交互に発振させることにより、被加
工物へのレーザ照射間隔を、加工により発生したプラズ
マの発生から消滅までの間隔より短くすることもでき
る。例えば、5kHzの発振周波数のレーザを2台使用
して、それらを交互に発振させることで、上記と同様に
10kHzの発振周波数でレーザ光を被加工物へ照射さ
せることができる。レーザのパルスエネルギー(あるい
はピークパワー)は発振周波数が大きくなるほど極端に
小さくなり作業効率が低下する。この点、複数のレーザ
を用いれば、1クラス出力の小さいレーザでもこの加工
に使用でき、また、同じパワーのレーザであれば、位相
格子で分岐できる数も増えるので、加工効率を上げるこ
とが可能になる。
By the way, instead of using one laser and setting the laser oscillation frequency relatively high to shorten the laser irradiation interval to the workpiece, a plurality of lasers are used alternately. By oscillating, the laser irradiation interval to the workpiece can be made shorter than the interval from generation to extinction of plasma generated by processing. For example, by using two lasers having an oscillation frequency of 5 kHz and oscillating them alternately, the workpiece can be irradiated with the laser beam at an oscillation frequency of 10 kHz in the same manner as described above. The pulse energy (or peak power) of the laser becomes extremely small as the oscillation frequency increases, and the work efficiency decreases. In this regard, if a plurality of lasers are used, even a laser with a small output of one class can be used for this processing, and if the laser has the same power, the number of branches that can be branched by the phase grating increases, so that the processing efficiency can be increased. become.

【0026】図3(a)〜(d)は、図1のレーザ加工
装置を用い、上記の条件の下で石英ガラス基板16に微
細穴を形成する過程を示したものである。先ず、図3
(a)に示すように、石英ガラス基板16の表面に吸光
物質として、マジックインキなどに使用される合成樹脂
インクなどの顔料8を、加工閾値を超える熱量を吸収す
る厚さに均一に塗布する(ここでは、その厚さを70〜
80μmとした)。顔料8の厚さを均一にすることによ
り、石英ガラス基板16に複数の穴を加工する場合にそ
れらの加工のばらつきを抑制することができる。そのた
め、顔料8はより均質で高純度な材料であることが好ま
しい。
FIGS. 3A to 3D show a process of forming fine holes in the quartz glass substrate 16 under the above-described conditions using the laser processing apparatus of FIG. First, FIG.
As shown in FIG. 1A, a pigment 8 such as a synthetic resin ink used as a magic ink or the like as a light absorbing material is uniformly applied to the surface of a quartz glass substrate 16 to a thickness that absorbs a heat amount exceeding a processing threshold value. (Here, the thickness is 70-
80 μm). By making the thickness of the pigment 8 uniform, when a plurality of holes are formed in the quartz glass substrate 16, variations in the processing can be suppressed. Therefore, it is preferable that the pigment 8 is a more homogeneous and high-purity material.

【0027】顔料8は、石英ガラス基板16の表面全体
に塗布しても、また加工部周辺にのみ塗布してもよい。
加工部周辺にのみ塗布する場合、例えば加工穴径が30
〜50μmであれば、直径100μmの範囲ぐらいまで
塗布すればよい。特に、顔料8を加工部周辺にのみ塗布
して加工することで、顔料の使用量および後から顔料を
落とすための洗浄液の使用量が低減できるなどの利点を
有する。顔料8の塗布方法としては、ディスペンサを利
用する方法、スクリーン印刷法、インクジェット印刷法
などが利用できる。なお、顔料以外の吸光物質として、
照射するレーザ光を吸収し易い塗料などが使用でき、更
にコピー機やレーザプリンタに使われているトナーを加
熱して被加工物(ガラス基板など)に定着させてもよ
い。
The pigment 8 may be applied to the entire surface of the quartz glass substrate 16 or may be applied only around the processed portion.
When applying only around the processing portion, for example, the processing hole diameter is 30
If it is 50 μm, it may be applied to a range of about 100 μm in diameter. In particular, by applying and processing the pigment 8 only around the processing portion, there is an advantage that the amount of the pigment used and the amount of the cleaning liquid used for removing the pigment later can be reduced. As a method for applying the pigment 8, a method using a dispenser, a screen printing method, an inkjet printing method, or the like can be used. In addition, as a light-absorbing substance other than the pigment,
It is possible to use a paint or the like that easily absorbs the laser light to be irradiated, and further heat the toner used in a copying machine or a laser printer to fix it on a workpiece (a glass substrate or the like).

【0028】次に、図3(b)に示すように、石英ガラ
ス基板16の表面に焦点を合わせてレーザ光Bを照射す
るのであるが、レーザ発振器1から発振されるパルス列
の最初のパルスはピークが過大になるので、上述したよ
うにコンピュータ5からのシャッタ信号によりシャッタ
手段4をオンオフ動作させて過大ピークを持つレーザ光
をカットし、各パルスのピーク出力を一定にしてそれら
を石英ガラス基板16に照射する。最初のパルスあるい
は最初の複数パルスが照射されると、その部分の顔料8
がレーザエネルギを吸収して、高温・高圧のプラズマ状
態をガラス基板表面に生成する。このプラズマにより石
英ガラス基板16は、図3(c)に示すように、その表
面層が部分的に溶融し、蒸発又は飛散して凹所9が形成
される。
Next, as shown in FIG. 3B, the surface of the quartz glass substrate 16 is irradiated with the laser beam B while being focused. The first pulse of the pulse train oscillated from the laser oscillator 1 is Since the peak becomes excessive, as described above, the shutter means 4 is turned on and off by the shutter signal from the computer 5 to cut off the laser light having an excessive peak, and the peak output of each pulse is made constant to convert them into a quartz glass substrate. Irradiate 16. When the first pulse or the first plurality of pulses are irradiated, the pigment 8 in that portion is irradiated.
Absorbs the laser energy and generates a high-temperature, high-pressure plasma state on the surface of the glass substrate. As shown in FIG. 3C, the surface layer of the quartz glass substrate 16 is partially melted by the plasma, and the recess 9 is formed by evaporation or scattering.

【0029】この場合、最初の部分の照射エネルギをそ
の後の照射エネルギより小さくして、加工開始時に被加
工物表面に作用する熱応力を軽減することにより、クラ
ックの発生を抑制するようにすることもできる。ただ
し、その場合でも、加工により発生したプラズマが消滅
する前に次のレーザが照射されるようにすることが必要
となる。また、レーザ光の照射以前に石英ガラス基板1
6を、例えば200〜300℃程度の温度に予め加熱し
ておくと、レーザ光の照射時に、ガラス基板内部におけ
る急激な温度上昇が回避されるので、クラックの発生を
有効に抑制することができる。
In this case, the irradiation energy of the first part is made smaller than the irradiation energy of the subsequent part, so that the thermal stress acting on the surface of the workpiece at the start of processing is reduced, thereby suppressing the occurrence of cracks. Can also. However, even in that case, it is necessary to irradiate the next laser before the plasma generated by the processing is extinguished. Before the laser light irradiation, the quartz glass substrate 1
For example, if 6 is previously heated to a temperature of, for example, about 200 to 300 ° C., a rapid rise in temperature inside the glass substrate during laser light irradiation can be avoided, so that the occurrence of cracks can be effectively suppressed. .

【0030】更に、先に設定したパルス間隔でレーザを
照射し続けることにより、それぞれのレーザ照射によっ
て発生したプラズマにレーザが吸収され、そのプラズマ
からの熱伝達により被加工物が連続的に加熱されて、最
終的に図3(d)に示すような貫通穴が形成される。レ
ーザの照射間隔を加工により発生したプラズマの発生か
ら消滅までの間隔より短くしているので、加工中は常に
プラズマが生じていてそれにより加工熱が加工部に供給
され、加工が中断することはない。
Further, by continuously irradiating the laser at the previously set pulse interval, the laser is absorbed by the plasma generated by each laser irradiation, and the workpiece is continuously heated by the heat transfer from the plasma. Finally, a through hole as shown in FIG. 3D is formed. Since the laser irradiation interval is shorter than the interval between the generation and extinction of the plasma generated by the processing, the plasma is always generated during the processing, so that the processing heat is supplied to the processing section and the processing is interrupted. Absent.

【0031】以上のように、レーザ加工によって石英ガ
ラス基板16に貫通穴が形成できたが、その穴径は、図
3(d)に示すように、レーザ光入射面側がレーザ光出
射面側より大きい形状となる。これは、加工が進んで石
英ガラス基板16のレーザ光出射面側に穴が形成される
と、そこからプラズマが逃げ出し、そのために充分な加
工熱が加工部に供給されなかった為と考えられる。
As described above, a through hole was formed in the quartz glass substrate 16 by laser processing, and the diameter of the hole was such that the laser light incident surface side was larger than the laser light emission surface side as shown in FIG. It becomes a large shape. This is presumably because when processing progressed and a hole was formed on the laser light emitting surface side of the quartz glass substrate 16, plasma escaped from the hole and sufficient processing heat was not supplied to the processing portion.

【0032】しかし、上記の加工穴径が相違する問題
は、次の加工方法を用いることで解決できる。すなわ
ち、図4に示すように、被加工物6のレーザ光出射面側
に被加工物6と同じ材料かならなるダミー部材6aを密
着させるように張り付け、被加工物6に貫通穴が形成さ
れた後も、そのダミー部材6aに対して加工を続行し、
その後ダミー部材6aを被加工物6から取り外す。これ
によって、被加工物6の貫通孔の穴径を、その全体を通
してだいたい等しくできることがわかった。これは、被
加工物6の貫通穴形成後も、ダミー部材6aによってプ
ラズマの逃げが防止されて加工が進行し、レーザ光出射
面側でもレーザ光入射面側とほぼ同じ条件で加工が行わ
れたためと考えられる。なお、ダミー部材6aに対して
続行する穴加工の加工深さは、被加工物6の貫通穴がそ
の全長を通してほぼ同じ穴径となるまでに対応する深さ
であり、適宜決定するものとする。
However, the above-mentioned problem that the processing hole diameters are different can be solved by using the following processing method. That is, as shown in FIG. 4, a dummy member 6 a made of the same material as the workpiece 6 is adhered to the laser light emitting surface side of the workpiece 6 so as to be in close contact therewith, and a through hole is formed in the workpiece 6. After that, processing is continued on the dummy member 6a,
Thereafter, the dummy member 6a is removed from the workpiece 6. As a result, it has been found that the diameter of the through-hole of the workpiece 6 can be made substantially equal throughout the whole. This is because even after the through-hole is formed in the workpiece 6, the plasma is prevented from escaping by the dummy member 6a and the processing proceeds, and the processing is performed on the laser light emitting surface side under substantially the same conditions as the laser light incident surface side. It is considered that The processing depth of the hole processing to be performed on the dummy member 6a is a depth corresponding to the through hole of the workpiece 6 until the through hole has substantially the same diameter throughout the entire length thereof, and is appropriately determined. .

【0033】ところで、貫通穴形成後、被加工物表面に
残存する顔料の大部分は、適当な溶剤により洗浄するこ
とができる。しかし、一部の顔料は、照射レーザの高熱
によって基板表面に焼き付き、溶剤では容易に除去でき
ない。また、加工穴から飛散した溶融物の一部は、加工
穴の入射側および出射側開口周辺に再付着してドロスと
なる。このような顔料の焼き付きおよびドロスは、加工
穴の形成後に被加工物の両面を公知の方法で研磨加工す
ることにより除去することができる。同時に、この研磨
加工によって、被加工物表面に形成された加工変質層を
除去することができる。
By the way, most of the pigment remaining on the surface of the workpiece after the formation of the through hole can be washed with a suitable solvent. However, some pigments burn on the substrate surface due to the high heat of the irradiation laser and cannot be easily removed with a solvent. In addition, a part of the melt scattered from the processing hole is re-attached to the vicinity of the entrance side and the exit side opening of the processing hole to become dross. Such burn-in and dross of the pigment can be removed by polishing both surfaces of the workpiece by a known method after forming the processing hole. At the same time, the affected layer formed on the surface of the workpiece can be removed by this polishing.

【0034】上記のようなガラス材料に対するレーザ加
工においては、レーザ光を直線偏光ではなく、ランダム
偏光又は円偏光に変換して照射することもできる。直線
偏光では、加工穴内壁に対して、p偏光とs偏光で入射
する場合に吸収特性がそれぞれ異なると加工特性が異な
るため、入射部付近では偏光面に依存する方向にクラッ
クが発生し易く、かつ加工穴が実っ直ぐ形成されずに曲
がってしまう虞がある。これに対し、ランダム偏光およ
び円偏光では、s偏光・p偏光がランダムに照射され、
s偏光・p偏光の偏りがないので、図5(a),(b)
に示すように、加工穴が真っ直ぐに形成されるととも
に、入射部付近でのクラック発生が抑制される。
In the above-described laser processing for a glass material, the laser beam may be converted to random polarized light or circularly polarized light instead of linearly polarized light before irradiation. In the case of linearly polarized light, when the p-polarized light and the s-polarized light are incident on the inner wall of the processing hole, the processing characteristics are different if the absorption characteristics are different from each other. In addition, there is a possibility that the processing hole is bent without being formed immediately. On the other hand, in the case of random polarized light and circularly polarized light, s-polarized light and p-polarized light are randomly irradiated,
5 (a) and 5 (b) since there is no deviation between s-polarized light and p-polarized light.
As shown in (1), the machined hole is formed straight, and the occurrence of cracks near the incident part is suppressed.

【0035】更に、図1のレーザ加工装置において、図
6に示すように、集光レンズ3の手前の光路内に公知の
位相格子12を追加し、レーザ光Bを該位相格子を通過
した後に集光レンズ3に入射させることができる。レー
ザ光Bは、位相格子12を通過すると、元の1本のビー
ムが複数のビームに分岐され、各分岐ビームがそれぞれ
集光レンズ3により集光されて被加工物6表面に照射さ
れる。従って、被加工物6表面の分岐ビームに対応する
複数の集光位置に微細穴を同時に加工することができ、
加工時間が短縮されて生産性が向上する。
Further, in the laser processing apparatus of FIG. 1, as shown in FIG. 6, a known phase grating 12 is added in the optical path before the condenser lens 3, and after the laser beam B passes through the phase grating, The light can be incident on the condenser lens 3. When the laser beam B passes through the phase grating 12, one original beam is split into a plurality of beams, and each split beam is condensed by the condensing lens 3 and irradiated on the surface of the workpiece 6. Therefore, micro holes can be simultaneously formed at a plurality of converging positions corresponding to the branched beams on the surface of the workpiece 6, and
The processing time is shortened and the productivity is improved.

【0036】[0036]

【実施例】以下、本発明の方法を用いて、各種の透明材
料に穴加工を実施した結果を写真とともに提示する。 (実施例1)図7は、下記の条件の下、板厚1mmの石
英ガラスに対して行った穴加工の結果を示す写真で、
(a)が加工表面の写真(a)、そして(b)が穴断面
の写真である。 レーザ条件 ・レーザの種類:SHG−YAGレーザ ・レーザ波長 :532nm ・発振周波数 :10kHz ・照射パワー :3.8W(380μJ) ・ショット数 :400
EXAMPLES The results of drilling holes in various transparent materials using the method of the present invention will be presented together with photographs. (Example 1) FIG. 7 is a photograph showing a result of drilling a 1 mm-thick quartz glass under the following conditions.
(A) is a photograph (a) of the processed surface, and (b) is a photograph of the cross section of the hole. Laser conditions • Type of laser: SHG-YAG laser • Laser wavelength: 532 nm • Oscillation frequency: 10 kHz • Irradiation power: 3.8 W (380 μJ) • Number of shots: 400

【0037】(実施例2)図8は、下記の条件の下、板
厚1mmのLBO(LiB35)に対して行った穴加工
の結果を示す写真で、(a)が加工表面の写真(a)、
そして(b)が穴断面の写真である。 レーザ条件 ・レーザの種類:SHG−YAGレーザ ・レーザ波長 :532nm ・発振周波数 :10kHz ・照射パワー :3.8W(380μJ) ・ショット数 :800
Example 2 FIGS. 8A and 8B are photographs showing the results of drilling a 1 mm-thick LBO (LiB 3 O 5 ) under the following conditions. FIG. Photo (a),
(B) is a photograph of the cross section of the hole. Laser conditions • Laser type: SHG-YAG laser • Laser wavelength: 532 nm • Oscillation frequency: 10 kHz • Irradiation power: 3.8 W (380 μJ) • Number of shots: 800

【0038】(実施例3)図9は、下記の条件の下、板
厚400μmの水晶(SiO2 結晶)に対して行った穴
加工の結果を示す写真で、(a)が加工表面の写真
(a)、そして(b)が穴断面の写真である。 レーザ条件 ・レーザの種類:SHG−YAGレーザ ・レーザ波長 :532nm ・発振周波数 :10kHz ・照射パワー :3.8W(380μJ) ・ショット数 :800
Example 3 FIGS. 9A and 9B are photographs showing the results of hole drilling performed on a quartz (SiO 2 crystal) having a thickness of 400 μm under the following conditions. FIG. (A) and (b) are photographs of the hole cross section. Laser conditions • Laser type: SHG-YAG laser • Laser wavelength: 532 nm • Oscillation frequency: 10 kHz • Irradiation power: 3.8 W (380 μJ) • Number of shots: 800

【0039】(実施例4)図10は、下記の条件の下、
板厚300μmのソーダガラスを2枚貼り付けて一体と
し、それに対して行った穴加工の結果を示す穴断面の写
真である。 レーザ条件 ・レーザの種類:SHG−YAGレーザ ・レーザ波長 :532nm ・発振周波数 :1kHz ・照射パワー :400mW(400μJ) ・ショット数 :400
(Embodiment 4) FIG.
It is a photograph of a hole cross section showing a result of a hole processing performed on two pieces of soda glass having a plate thickness of 300 μm adhered together to form a single body. Laser conditions-Type of laser: SHG-YAG laser-Laser wavelength: 532 nm-Oscillation frequency: 1 kHz-Irradiation power: 400 mW (400 µJ)-Number of shots: 400

【0040】上記実施例1〜3のいずれの場合にも、被
加工物に真っ直ぐな微細穴を加工することができたこと
がわかる。また、加工後に洗浄して見た被加工物のレー
ザ光入射面の加工穴は概ね円形で、その周囲にクラック
はほとんど認められない。更に、実施例4では、上側
(レーザ光入射側)のソーダガラスの貫通穴の穴径が、
その全長でほぼ等しくなっているのが見て取れる。これ
らの結果から、本発明のレーザ加工方法により、被加工
物の種類にかかわらず、透明な材料に対して、高品質な
微細穴を加工し得ることが分かる。
It can be seen that in any of the above Examples 1 to 3, straight fine holes could be formed in the workpiece. In addition, the processed hole on the laser light incident surface of the workpiece, which was cleaned after the processing, was substantially circular, and almost no cracks were observed around the hole. Further, in the fourth embodiment, the diameter of the through hole of the upper side (laser light incident side) of the soda glass is
You can see that their lengths are almost equal. From these results, it can be seen that the laser processing method of the present invention can process high-quality fine holes in a transparent material regardless of the type of the workpiece.

【0041】上記実施例は、被加工物を全て透明材料と
した場合であるが、本発明はこれに限定されることな
く、不透明材料に適応することも可能である。
In the above embodiment, all the workpieces are made of a transparent material. However, the present invention is not limited to this, and can be applied to an opaque material.

【0042】[0042]

【発明の効果】本発明のレーザ加工方法によれば、加工
により発生したプラズマにレーザを吸収させながら加工
を行うことで、高純度の石英ガラス、水晶など従来加工
が困難とされていた材料に対して、深穴などの微細加工
を高速かつ安価に、しかも高品質、高精度に形成でき
る。また、Qスイッチパルス発振レーザのYAGレー
ザ、YLFレーザ、YVOレーザを用いることで、数ワ
ット程度の低いレーザ出力で、高純度の石英ガラス、水
晶など従来加工が困難とされていた材料に対して、深穴
などの微細加工を高速かつ高精度に形成でき、しかもレ
ーザ装置および加工コストを低減させることが可能とな
った。
According to the laser processing method of the present invention, the processing is performed while absorbing the laser beam into the plasma generated by the processing, so that high-purity quartz glass, quartz, and other materials that were conventionally difficult to process can be obtained. On the other hand, it is possible to form fine holes such as deep holes at high speed, at low cost, and with high quality and high precision. In addition, the use of Q-switched pulse oscillation lasers such as YAG laser, YLF laser, and YVO laser enables laser processing with a low laser output of about several watts and high-purity quartz glass and quartz, which were conventionally difficult to process. In addition, it is possible to form fine holes and deep holes at high speed and with high accuracy, and to reduce the laser device and the processing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に適したレーザ加工装置の一例を
示す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of a laser processing apparatus suitable for implementing the present invention.

【図2】石英ガラスの微細穴加工に利用するレーザ光の
パルス幅(照射時間)、発振パルス間隔、およびその加
工の際に発生するプラズマのタイミングチャート。
FIG. 2 is a timing chart of a pulse width (irradiation time), an oscillation pulse interval, and a plasma generated during the processing of a laser beam used for processing a fine hole in quartz glass.

【図3】本発明の実施例により石英ガラス基板に微細穴
を形成する過程を概略的に示す断面図。
FIG. 3 is a cross-sectional view schematically illustrating a process of forming fine holes in a quartz glass substrate according to an embodiment of the present invention.

【図4】ダミー部材を貼り付けた状態で被加工物に穴加
工を行う場合の例示図。
FIG. 4 is an exemplary view showing a case where a hole is formed in a workpiece in a state where a dummy member is attached.

【図5】レーザ光を円偏光(a)およびランダム偏光
(b)にした場合の加工穴の状態を示す断面図。
FIG. 5 is a sectional view showing a state of a processing hole when laser light is converted into circularly polarized light (a) and random polarized light (b).

【図6】位相格子を用いた光学系による微細穴あけ加工
を示す概略図。
FIG. 6 is a schematic view showing a fine drilling process by an optical system using a phase grating.

【図7】石英ガラスに対して行った穴加工における加工
表面と加工断面を示す写真。
FIG. 7 is a photograph showing a processed surface and a processed cross section in a hole processing performed on quartz glass.

【図8】LBO(光学結晶)に対して行った穴加工にお
ける加工表面と加工断面を示す写真。
FIG. 8 is a photograph showing a processed surface and a processed cross section in a hole processing performed on an LBO (optical crystal).

【図9】水晶に対して行った穴加工における加工表面と
加工断面を示す写真。
FIG. 9 is a photograph showing a processed surface and a processed cross section in the hole processing performed on the quartz crystal.

【図10】ソーダガラスを2枚重ねて穴加工した際の加
工断面を示す写真。
FIG. 10 is a photograph showing a processing cross section when two soda glasses are stacked and drilled.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 2 ミラー 3 集光レンズ 4 シャッタ手段 5 コンピュータ 6 被加工物 6a ダミー部材 7 非線形結晶 8 顔料 9 凹所 11 加工穴(貫通穴) 12 位相格子 16 石英ガラス基板 DESCRIPTION OF SYMBOLS 1 Laser oscillator 2 Mirror 3 Condensing lens 4 Shutter means 5 Computer 6 Workpiece 6a Dummy member 7 Nonlinear crystal 8 Pigment 9 Concave part 11 Processing hole (through hole) 12 Phase grating 16 Quartz glass substrate

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 被加工物の表面に吸光物質を付着させ、
該吸光物質を付着させた前記被加工物表面に向けてレー
ザを照射して、前記被加工物を加工する方法において、 前記加工により発生したプラズマにレーザを吸収させな
がら加工を行うことを特徴とするレーザによる微細加工
方法。
Claims: 1. A light absorbing substance is attached to a surface of a workpiece,
A method of processing the workpiece by irradiating a laser toward the surface of the workpiece to which the light-absorbing substance is attached, wherein the processing is performed while absorbing a laser beam into plasma generated by the processing. Processing method using laser.
【請求項2】 前記レーザの照射間隔を前記加工により
発生したプラズマの発生から消滅までの間隔より短くす
ることを特徴とする請求項1に記載のレーザによる微細
加工方法。
2. The method according to claim 1, wherein the laser irradiation interval is shorter than the interval from generation to extinction of the plasma generated by the processing.
【請求項3】 複数のレーザを交互に発振させることに
より、前記被加工物へのレーザ照射間隔を、前記加工に
より発生したプラズマの発生から消滅までの間隔より短
くすることを特徴とする請求項2に記載のレーザによる
微細加工方法。
3. The method according to claim 1, wherein a plurality of lasers are alternately oscillated so that a laser irradiation interval on the workpiece is shorter than an interval from generation to extinction of plasma generated by the processing. 3. A micromachining method using the laser according to 2.
【請求項4】 前記レーザのビームがシングルモードで
あることを特徴とする請求項1乃至3のいずれかに記載
のレーザによる微細加工方法。
4. The method according to claim 1, wherein a beam of the laser is a single mode.
【請求項5】 前記レーザは、レーザの基本波、第二高
調波、第三高調波、第四高調波あるいは第五高調波のい
ずれかであることを特徴とする請求項1乃至4のいずれ
かに記載のレーザによる微細加工方法。
5. The laser according to claim 1, wherein the laser is one of a fundamental wave, a second harmonic, a third harmonic, a fourth harmonic and a fifth harmonic of the laser. A micromachining method using a laser according to any of the above.
【請求項6】 前記レーザを円偏光して前記被加工物に
照射することを特徴とする請求項1乃至5のいずれかに
記載のレーザによる微細加工方法。
6. A micromachining method using a laser according to claim 1, wherein the laser beam is irradiated on the workpiece after being circularly polarized.
【請求項7】 前記レーザをランダム偏光して前記被加
工物に照射することを特徴とする請求項1乃至5のいず
れかに記載のレーザによる微細加工方法。
7. The micromachining method using a laser according to claim 1, wherein the laser is randomly polarized and irradiated onto the workpiece.
【請求項8】 前記レーザを位相格子により分岐させて
前記被加工物に照射することを特徴とする請求項1乃至
7のいずれかに記載のレーザによる微細加工方法。
8. The micromachining method using a laser according to claim 1, wherein the laser beam is branched by a phase grating and irradiated onto the workpiece.
【請求項9】 前記吸光物質が顔料あるいは塗料である
ことを特徴とする請求項1乃至8のいずれかに記載のレ
ーザによる微細加工方法。
9. The method according to claim 1, wherein the light absorbing material is a pigment or a paint.
【請求項10】 前記吸光物質を被加工物の加工部周辺
にのみ付着することを特徴とする請求項1乃至9のいず
れかに記載のレーザによる微細加工方法。
10. The micromachining method using a laser according to claim 1, wherein the light-absorbing substance is attached only to the periphery of a processed portion of the workpiece.
【請求項11】 被加工物に貫通穴を形成する際、前記
吸光物質が付着された面と対向する前記被加工物面にダ
ミー部材を密着させた状態で該被加工物に対して穴加工
を進め、該被加工物に貫通穴が形成された後も、前記ダ
ミー部材に対して加工を続行することを特徴とする請求
項1乃至10のいずれかに記載のレーザによる微細加工
方法。
11. When forming a through hole in a workpiece, a hole is formed in the workpiece in a state where a dummy member is brought into close contact with the surface of the workpiece opposite to the surface on which the light absorbing substance is attached. The method according to any one of claims 1 to 10, wherein the processing of the dummy member is continued even after a through hole is formed in the workpiece.
【請求項12】 前記ダミー部材は前記被加工物と同じ
材質の部材であることを特徴とする請求項11に記載の
レーザによる微細加工方法。
12. The method according to claim 11, wherein the dummy member is made of the same material as the workpiece.
【請求項13】 前記被加工物に穴を形成した後、該穴
の開口周辺部分を研磨する工程を含むことを特徴とする
請求項1乃至12のいずれかに記載のレーザによる微細
加工方法。
13. The micromachining method according to claim 1, further comprising, after forming a hole in the workpiece, polishing a portion around an opening of the hole.
【請求項14】 前記レーザがQスイッチパルス発振の
YAGレーザ、YLFレーザ、YVOレーザのいずれか
であることを特徴とする請求項1乃至13に記載のレー
ザによる微細加工方法。
14. The micromachining method according to claim 1, wherein the laser is any one of a YAG laser, a YLF laser, and a YVO laser of Q-switch pulse oscillation.
【請求項15】 被加工物の一つの面からレーザを照射
し該被加工物に貫通穴を形成する加工方法であって、該
被加工物のレーザ入射面と対向する面にダミー領域を設
けた状態でレーザを照射して穴加工を行い、該被加工物
に貫通穴が形成された後継続して前記ダミー領域に穴加
工を行うことを特徴とするレーザによる微細加工方法。
15. A processing method for irradiating a laser beam from one surface of a workpiece to form a through hole in the workpiece, wherein a dummy area is provided on a surface of the workpiece facing a laser incidence surface. Laser processing in a state where a hole is formed in the workpiece, and after forming a through hole in the workpiece, the hole processing is continuously performed in the dummy area.
【請求項16】 前記ダミー領域は前記被加工物と同じ
材質であることを特徴とする請求項15に記載のレーザ
による微細加工方法。
16. The method according to claim 15, wherein the dummy region is made of the same material as the workpiece.
【請求項17】 前記被加工物が透明材料であることを
特徴とする請求項1乃至16のいずれかに記載のレーザ
による微細加工方法。
17. The method according to claim 1, wherein the workpiece is a transparent material.
JP2000207871A 2000-07-10 2000-07-10 Laser microfabrication method Expired - Fee Related JP3797068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207871A JP3797068B2 (en) 2000-07-10 2000-07-10 Laser microfabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207871A JP3797068B2 (en) 2000-07-10 2000-07-10 Laser microfabrication method

Publications (2)

Publication Number Publication Date
JP2002028799A true JP2002028799A (en) 2002-01-29
JP3797068B2 JP3797068B2 (en) 2006-07-12

Family

ID=18704562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207871A Expired - Fee Related JP3797068B2 (en) 2000-07-10 2000-07-10 Laser microfabrication method

Country Status (1)

Country Link
JP (1) JP3797068B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081142A1 (en) * 2001-04-02 2002-10-17 Taiyo Yuden Co., Ltd. Method for machining translucent material by laser beam and machined translucent material
JP2010180093A (en) * 2009-02-05 2010-08-19 Osaka Univ Method of producing reinforced glass
CN102513707A (en) * 2011-12-19 2012-06-27 深圳市木森科技有限公司 Method for cutting ceramic by laser
CN102531371A (en) * 2011-12-19 2012-07-04 深圳市木森科技有限公司 Method for cutting glass by laser
CN102814591A (en) * 2012-05-23 2012-12-12 苏州德龙激光有限公司 Laser processing method and laser processing equipment
JP2013010644A (en) * 2011-06-28 2013-01-17 Mitsuboshi Diamond Industrial Co Ltd Method for scribing glass substrate
JP2013534868A (en) * 2010-07-02 2013-09-09 ショット アクチエンゲゼルシャフト Method and apparatus for making multiple holes in a workpiece
JP2013241301A (en) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp Laser beam machine for minute hole drilling in glass and minute hole drilling method in glass
KR101385742B1 (en) * 2012-11-12 2014-04-24 주식회사 포스코 Method for refining magnetic domains in grain-oriented electrical steel sheet
US20140147623A1 (en) * 2012-11-29 2014-05-29 Corning Incorporated Sacrificial Cover Layers for Laser Drilling Substrates and Methods Thereof
WO2014080822A1 (en) 2012-11-20 2014-05-30 国立大学法人九州大学 Laser machining apparatus and laser machining method
KR101521543B1 (en) * 2013-09-06 2015-05-20 주식회사 제우스 Cutting method of reinforced glass
US9346706B2 (en) 2012-11-29 2016-05-24 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
WO2016176171A1 (en) * 2015-04-28 2016-11-03 Corning Incorporated Method of laser drilling through holes in substrates using an exit sacrificial cover layer; corresponding workpiece
JP2018035067A (en) * 2015-10-01 2018-03-08 旭硝子株式会社 Method for forming hole in glass substrate using pulsed laser and method for manufacturing glass substrate having hole
US9938186B2 (en) 2012-04-13 2018-04-10 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
US10201867B2 (en) 2014-12-16 2019-02-12 AGC Inc. Through-hole forming method, through-hole forming apparatus, and method of manufacturing glass substrate provided with through-hole
CN111548023A (en) * 2020-05-12 2020-08-18 大连交通大学 Method for finely processing glass surface by using red light nanosecond laser
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11242284B2 (en) 2012-07-26 2022-02-08 Dexerials Corporation Microfabrication method
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11744015B2 (en) 2010-07-02 2023-08-29 Schott Ag Interposer and method for producing holes in an interposer
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105234561B (en) * 2015-10-13 2017-09-12 英诺激光科技股份有限公司 PI cover layers automatic laser cutting electrostatic removes carbon system and method
CN107283075B (en) * 2017-08-02 2019-01-15 武汉华星光电半导体显示技术有限公司 Improve the method for chamfered area defect in laser cutting parameter

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081142A1 (en) * 2001-04-02 2002-10-17 Taiyo Yuden Co., Ltd. Method for machining translucent material by laser beam and machined translucent material
JP2010180093A (en) * 2009-02-05 2010-08-19 Osaka Univ Method of producing reinforced glass
US11744015B2 (en) 2010-07-02 2023-08-29 Schott Ag Interposer and method for producing holes in an interposer
JP2013534868A (en) * 2010-07-02 2013-09-09 ショット アクチエンゲゼルシャフト Method and apparatus for making multiple holes in a workpiece
JP2013010644A (en) * 2011-06-28 2013-01-17 Mitsuboshi Diamond Industrial Co Ltd Method for scribing glass substrate
CN102531371A (en) * 2011-12-19 2012-07-04 深圳市木森科技有限公司 Method for cutting glass by laser
CN102513707A (en) * 2011-12-19 2012-06-27 深圳市木森科技有限公司 Method for cutting ceramic by laser
US11001523B2 (en) 2012-04-13 2021-05-11 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
US9938186B2 (en) 2012-04-13 2018-04-10 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
JP2013241301A (en) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp Laser beam machine for minute hole drilling in glass and minute hole drilling method in glass
CN102814591A (en) * 2012-05-23 2012-12-12 苏州德龙激光有限公司 Laser processing method and laser processing equipment
US11242284B2 (en) 2012-07-26 2022-02-08 Dexerials Corporation Microfabrication method
KR101385742B1 (en) * 2012-11-12 2014-04-24 주식회사 포스코 Method for refining magnetic domains in grain-oriented electrical steel sheet
WO2014080822A1 (en) 2012-11-20 2014-05-30 国立大学法人九州大学 Laser machining apparatus and laser machining method
US9758876B2 (en) 2012-11-29 2017-09-12 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
WO2014085660A1 (en) * 2012-11-29 2014-06-05 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
US20140147623A1 (en) * 2012-11-29 2014-05-29 Corning Incorporated Sacrificial Cover Layers for Laser Drilling Substrates and Methods Thereof
US9656910B2 (en) 2012-11-29 2017-05-23 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
JP2016508069A (en) * 2012-11-29 2016-03-17 コーニング インコーポレイテッド Sacrificial cover layer and method for laser drilling a substrate
US9346706B2 (en) 2012-11-29 2016-05-24 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
US10435796B2 (en) 2012-11-29 2019-10-08 Corning Incorporated Work piece including a sacrificial cover layer for laser drilling substrates
CN105228788A (en) * 2012-11-29 2016-01-06 康宁股份有限公司 For sacrifice cover layer and the method thereof of laser drill base material
KR101521543B1 (en) * 2013-09-06 2015-05-20 주식회사 제우스 Cutting method of reinforced glass
US10201867B2 (en) 2014-12-16 2019-02-12 AGC Inc. Through-hole forming method, through-hole forming apparatus, and method of manufacturing glass substrate provided with through-hole
CN107810083A (en) * 2015-04-28 2018-03-16 康宁股份有限公司 Sacrificing coating using outlet, laser drills through the workpiece and method of through hole in the substrate
US9953912B2 (en) 2015-04-28 2018-04-24 Corning Incorporated Work pieces and methods of laser drilling through holes in substrates using an exit sacrificial cover layer
WO2016176171A1 (en) * 2015-04-28 2016-11-03 Corning Incorporated Method of laser drilling through holes in substrates using an exit sacrificial cover layer; corresponding workpiece
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
JP2018035067A (en) * 2015-10-01 2018-03-08 旭硝子株式会社 Method for forming hole in glass substrate using pulsed laser and method for manufacturing glass substrate having hole
US20190359515A1 (en) * 2015-10-01 2019-11-28 AGC Inc. Method of forming hole in glass substrate by using pulsed laser, and method of producing glass substrate provided with hole
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
CN111548023B (en) * 2020-05-12 2022-06-17 大连交通大学 Method for finely processing glass surface by using red light nanosecond laser
CN111548023A (en) * 2020-05-12 2020-08-18 大连交通大学 Method for finely processing glass surface by using red light nanosecond laser

Also Published As

Publication number Publication date
JP3797068B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP2002028799A (en) Method of fine machining by laser beam
US6864459B2 (en) High precision, rapid laser hole drilling
JP2000301372A (en) Laser beam machining method for transparent material
JP3722731B2 (en) Laser processing method
JP3626442B2 (en) Laser processing method
JP4791248B2 (en) Laser processing equipment
JP4837320B2 (en) Processing object cutting method
Butkus et al. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses
TW200804023A (en) Micromachining with short-pulsed, solid-state UV laser
JP4664140B2 (en) Laser processing method
JPWO2003076119A1 (en) Processing object cutting method
JP2019123015A (en) Optical processing apparatus, optical processing method, and method for manufacturing optically processed product
JP2003088973A (en) Laser beam machining method
JP3751970B2 (en) Laser processing equipment
JP2003088976A (en) Laser beam machining method
JP3867108B2 (en) Laser processing equipment
JP2006167810A (en) Laser beam machining method
JP2003088974A (en) Laser beam machining method
JP2000061667A (en) Laser beam machining method for glass and glass formed parts
JP2006247665A (en) Method and apparatus for laser beam machining
Moorhouse et al. CO/sub 2/laser processing of alumina (Al/sub 2/O/sub 3/) printed circuit board substrates
KR20240123798A (en) Preparing the substrate for cutting and splitting
JP3867003B2 (en) Laser processing method
JP2003088982A (en) Laser beam machining method
JP2006148175A (en) Laser beam machining method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees