Nothing Special   »   [go: up one dir, main page]

JP2002025924A - Blank baking method of heat treatment furnace - Google Patents

Blank baking method of heat treatment furnace

Info

Publication number
JP2002025924A
JP2002025924A JP2000204697A JP2000204697A JP2002025924A JP 2002025924 A JP2002025924 A JP 2002025924A JP 2000204697 A JP2000204697 A JP 2000204697A JP 2000204697 A JP2000204697 A JP 2000204697A JP 2002025924 A JP2002025924 A JP 2002025924A
Authority
JP
Japan
Prior art keywords
heat treatment
treatment furnace
reaction tube
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000204697A
Other languages
Japanese (ja)
Inventor
Shoji Akiyama
昌次 秋山
Norihiro Kobayashi
徳弘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000204697A priority Critical patent/JP2002025924A/en
Publication of JP2002025924A publication Critical patent/JP2002025924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blank baking method of a heat treatment furnace whereby metallic contamination in a reaction tube of a heat treatment furnace can be reduced in an efficient and sufficient manner. SOLUTION: In this blank baking method of the heat treatment furnace having a reaction tube, oxidizing gas is supplied to the reaction tube of the heat treatment furnace to perform first heat treatment at 900 to 1350 deg.C, and then, non-oxidized gas is supplied thereto to perform second heat treatment at 900 to 1350 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にシリコンウェ
ーハを熱処理するための反応管を有する熱処理炉の空焼
き方法に関し、従来に比べ短時間で金属汚染を低減する
ことのできる熱処理炉の空焼き方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for baking a heat treatment furnace having a reaction tube for heat treating a silicon wafer, and more particularly to a method for baking a heat treatment furnace capable of reducing metal contamination in a shorter time than conventional methods. Regarding the baking method.

【0002】[0002]

【関連技術】一般的に、シリコンウェーハの熱処理に用
いられる熱処理炉(拡散炉)では、ウェーハが投入され
る反応管(石英チューブやSiCチューブなど)の交
換、その他部材の交換、汚染ウェーハの投入、又は改造
工事、それに伴う停電などの非定常作業などで炉の金属
汚染レベルが悪化することが知られている。金属汚染レ
ベルが悪化した熱処理炉を用いて製品ウェーハを熱処理
するとウェーハが金属により汚染されてしまい、作製さ
れるデバイス特性を劣化させてしまうという問題があ
る。
[Related Art] Generally, in a heat treatment furnace (diffusion furnace) used for heat treatment of a silicon wafer, a reaction tube (a quartz tube, a SiC tube, etc.) into which the wafer is introduced is exchanged, other members are exchanged, and a contaminated wafer is introduced. It is known that the level of metal contamination of the furnace deteriorates due to, for example, remodeling work and an irregular work such as a power failure. When a product wafer is heat-treated using a heat treatment furnace having a deteriorated level of metal contamination, the wafer is contaminated with metal, which causes a problem of deteriorating device characteristics to be manufactured.

【0003】従来、熱処理炉の金属汚染を低減する方法
として、HF系の薬液を用いて反応管の表面を軽くエッ
チングした後、あるいはエッチングせずに直接、N2
2、Ar、O2等のガスを流しながら高温で空焼き(ウ
ェーハを投入せずに熱処理すること)を繰り返すという
方法が取られてきた。しかしこの方法ではウェーハの金
属汚染レベルが回復するのに多大な時間を要することが
経験的に知られている。
Conventionally, as a method of reducing metal contamination in a heat treatment furnace, N 2 , N 2 , and N 2 , after etching the surface of a reaction tube lightly using an HF-based chemical solution or without etching.
A method has been adopted in which baking (heat treatment without loading a wafer) is repeated at a high temperature while flowing a gas such as H 2 , Ar, or O 2 . However, it is empirically known that this method requires a great deal of time to recover the metal contamination level of the wafer.

【0004】また、特開平5−144802号に記載さ
れている空焼き方法は、プロセスガスと同じ種類のクリ
ーニングガスを用いて空焼きすることにより、プロセス
中にのみ発生しやすいとされる種類の金属汚染物を空焼
き中に出し尽くすという技術である。しかしながら、こ
の技術を用いたとしても、反応管内の金属汚染が許容レ
ベル以下(例えば、熱処理したウェーハの汚染濃度が2
×1010atoms/cm3以下)になるためには、多大な時
間を要することには変わりがなかった。
[0004] In addition, the dry baking method described in Japanese Patent Application Laid-Open No. 5-144802 discloses a baking method using a cleaning gas of the same type as the process gas. This is a technique to discharge metal contaminants during baking. However, even if this technique is used, the metal contamination in the reaction tube is below an allowable level (for example, the contamination concentration of the heat-treated wafer is 2%).
(× 10 10 atoms / cm 3 or less) still required a great deal of time.

【0005】[0005]

【発明が解決しようとする課題】将来のウェーハに要求
される金属汚染の許容レベルがますます厳しくなる中、
従来の空焼き方法では空焼きに掛かる時間が長すぎて生
産のスループットが低下しそれによるコストアップが避
けられないという問題に加えて、金属汚染レベルが十分
に下がらないといった問題点が存在していた。
[Problems to be Solved by the Invention] As the allowable level of metal contamination required for future wafers becomes more and more severe,
In the conventional empty baking method, in addition to the problem that the time required for the empty baking is too long, the production throughput is reduced and the cost is inevitably increased, and in addition, there is a problem that the metal contamination level is not sufficiently reduced. Was.

【0006】本発明は、この様な問題点に鑑みなされた
もので、熱処理炉の反応管の金属汚染を効率良く、かつ
十分に低減することのできる熱処理炉の空焼き方法を提
供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of baking a heat treatment furnace that can efficiently and sufficiently reduce metal contamination of a reaction tube of the heat treatment furnace. Aim.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、空焼きの熱処理プロセスを二段で構成
し、第1ステップとして高温(900〜1350℃)で
酸化性雰囲気空焼きを行ない、続けて第2ステップとし
て高温(900〜1350℃)で非酸化性ガス雰囲気で
空焼きを実行することを特徴とする。これにより、従来
に比べ短時間で金属汚染を低減することができる。これ
は、第1ステップで炉内を酸化性雰囲気としてアニール
することによりチューブやボートなどの部材表面に酸素
化合物を形成し、金属をその酸素化合物の中に取りこま
れ、その後の非酸化性ガス雰囲気によるアニールでその
酸素化合物を取り除く(エッチング)ことにより、短時
間で金属汚染量が低減するものと考えられる。熱処理温
度が900℃未満であると金属汚染を低減することがで
きず、1350℃を超えると装置への負荷が大きくな
り、逆に金属汚染を増加させる可能性がある。
In order to solve the above-mentioned problems, the present invention comprises a two-stage heat treatment process for baking, and as a first step, baking in an oxidizing atmosphere at a high temperature (900 to 1350 ° C.). Then, as a second step, baking is performed in a non-oxidizing gas atmosphere at a high temperature (900 to 1350 ° C.). As a result, metal contamination can be reduced in a shorter time than before. This is because, in the first step, the furnace is annealed in an oxidizing atmosphere to form an oxygen compound on the surface of a member such as a tube or a boat, the metal is taken into the oxygen compound, and then the non-oxidizing gas is used. It is considered that the amount of metal contamination is reduced in a short time by removing (etching) the oxygen compound by annealing in an atmosphere. If the heat treatment temperature is lower than 900 ° C., metal contamination cannot be reduced. If the heat treatment temperature exceeds 1350 ° C., the load on the apparatus increases, and conversely, metal contamination may increase.

【0008】また、本発明の好適な熱処理条件として
は、第1及び第2の熱処理温度を1150〜1250℃
とし、その熱処理温度における熱処理時間を、少なくと
も各4時間ずつ、合計で20〜40時間とすることを特
徴とする。これにより、金属汚染レベルを確実に2×1
10atoms/cm3以下とすることができる。第2の熱処
理における非酸化性ガスとしてはArが好適である。
The preferred heat treatment conditions of the present invention are as follows: the first and second heat treatment temperatures are 1150-1250 ° C.
The heat treatment time at the heat treatment temperature is at least 4 hours each, for a total of 20 to 40 hours. This ensures that the metal contamination level is 2 × 1
It can be set to 0 10 atoms / cm 3 or less. Ar is suitable as the non-oxidizing gas in the second heat treatment.

【0009】[0009]

【発明の実施の形態】以下に本発明の実施の形態を図1
とともに説明するが、この実施の形態は本発明の技術思
想から逸脱しない限り種々の変形が可能なことは勿論で
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.
As will be described, it is needless to say that this embodiment can be variously modified without departing from the technical idea of the present invention.

【0010】本発明に好適に使用される熱処理炉は抵抗
加熱式の熱処理炉で一度に多数枚のウェーハを処理する
ことができるバッチ炉であり、一般的には縦型炉と横型
炉が知られている。この様な熱処理炉は熱処理するウェ
ーハが投入される反応管を有し、この反応管は石英また
は炭化珪素(SiC)からなるものが用いられるのが一
般的である。
The heat treatment furnace preferably used in the present invention is a resistance heating type heat treatment furnace, which is a batch furnace capable of processing a large number of wafers at a time. Generally, a vertical furnace and a horizontal furnace are known. Have been. Such a heat treatment furnace has a reaction tube into which a wafer to be heat-treated is introduced, and this reaction tube is generally made of quartz or silicon carbide (SiC).

【0011】図1に示したように、本発明においては、
第1ステップとして、この反応管内に酸化性ガスを導入
しながら900℃〜1350℃の温度に昇温し、所定時
間の第1の熱処理を行う。酸化性ガスとしては、100
%O2ガスや、O2ガスまたは水蒸気を含有したN2ガス
や不活性ガス、あるいはH2とO2の混合ガス(いわゆる
パイロジェニック酸化)などを用いることができる。目
標温度に到達してから酸化性ガスを導入することもでき
る。
As shown in FIG. 1, in the present invention,
As a first step, the temperature is raised to a temperature of 900 ° C. to 1350 ° C. while introducing an oxidizing gas into the reaction tube, and a first heat treatment is performed for a predetermined time. As the oxidizing gas, 100
% O 2 gas, N 2 gas containing O 2 gas or water vapor, an inert gas, or a mixed gas of H 2 and O 2 (so-called pyrogenic oxidation) can be used. After reaching the target temperature, the oxidizing gas can be introduced.

【0012】次に第2ステップとして、反応管内への導
入ガスを酸化性ガスから非酸化性ガスに切り替えて90
0℃〜1350℃の温度で所定時間の第2の熱処理を行
う。非酸化性ガスとしてはAr、He等の不活性ガス、
2ガス、H2ガスあるいはこれらの混合ガスを用いるこ
とができるが、Arを用いれば金属酸化物のエッチング
作用が高く、安全かつ安価なガスであるため好適であ
る。
Next, as a second step, the gas introduced into the reaction tube is switched from an oxidizing gas to a non-oxidizing gas, and the
A second heat treatment is performed at a temperature of 0 ° C. to 1350 ° C. for a predetermined time. As a non-oxidizing gas, an inert gas such as Ar or He;
Although N 2 gas, H 2 gas or a mixed gas thereof can be used, Ar is preferable since it is a safe and inexpensive gas which has a high metal oxide etching action and is safe.

【0013】第1ステップと第2ステップは、単に導入
ガスを切り替えるだけで連続的に行えば時間的に最も効
率的であるが、製品ウェーハを投入して行う熱処理では
ないので、この間に温度の上げ下げを行っても別段問題
はない。また、製品ウェーハを載置するウェーハボート
のみを反応管内に投入することにより、反応管と同時に
ウェーハボートも熱処理(空焼き)することもできる。
The first step and the second step are the most efficient in terms of time if they are continuously performed only by switching the introduced gas. However, since this is not a heat treatment performed by charging a product wafer, the temperature is not changed during this time. There is no problem with raising and lowering. In addition, by putting only the wafer boat on which the product wafer is placed into the reaction tube, the wafer boat can be heat-treated (empty-baked) simultaneously with the reaction tube.

【0014】尚、熱処理時間については目標とする汚染
レベルに応じて適宜設定すればよいが、確実に2×10
10atoms/cm3以下にするためには、第1及び第2の熱
処理とも1150℃以上の温度とし、その熱処理温度に
おける熱処理時間を、それぞれ少なくとも4時間ずつ、
合計で20時間以上にすればよい。この場合、石英チュ
ーブやSiCチューブの耐久性や昇降温に要する時間を
考慮すると、熱処理温度としては1250℃以下が好ま
しく、また、熱処理の合計時間が40時間程度で汚染レ
ベルがほぼ一定となるので、それ以上の熱処理を行った
としてもあまり効果が得られない。
The heat treatment time may be appropriately set in accordance with the target contamination level, but it must be 2 × 10
In order to reduce the pressure to 10 atoms / cm 3 or less, both the first and second heat treatments are performed at a temperature of 1150 ° C. or more, and the heat treatment time at the heat treatment temperature is set to at least 4 hours each.
What is necessary is just to make it 20 hours or more in total. In this case, considering the durability of the quartz tube and the SiC tube and the time required for raising and lowering the temperature, the heat treatment temperature is preferably 1250 ° C. or less, and the total heat treatment time is about 40 hours, so that the contamination level becomes almost constant. However, even if the heat treatment is performed further, the effect is not so much obtained.

【0015】[0015]

【実施例】以下に実施例をあげて本発明を説明するが、
これらの実施例は例示的に示されるもので限定的に解釈
されるべきものでないことはいうまでもない。
The present invention will be described below with reference to examples.
It goes without saying that these examples are shown by way of illustration and should not be construed as limiting.

【0016】(実施例1及び比較例1)熱処理炉として
東京エレクトロン社製のUL−260−10H(反応管
は石英製)を用い、第1のステップとして100%O2
雰囲気、1150℃、4時間の熱処理を行った後、導入
ガスを100%Arに切り換え、第2ステップとして1
150℃、4時間の熱処理を行った。その際、反応管内
には金属汚染レベルをモニターするためのモニターウェ
ーハを投入しておき、熱処理終了後にそのウェーハを取
り出し、SDI(Semiconductor Diagnostics Inc.)社
製のSPV (Surface Photon Voltage、商品名:ウェ
ハ汚染モニターシステム)で金属汚染(ここではFe)
レベルを測定した。
Example 1 and Comparative Example 1 UL-260-10H manufactured by Tokyo Electron Co., Ltd. (reaction tube made of quartz) was used as a heat treatment furnace, and 100% O 2 was used as a first step.
After the heat treatment in an atmosphere at 1150 ° C. for 4 hours, the introduced gas was switched to 100% Ar,
Heat treatment was performed at 150 ° C. for 4 hours. At this time, a monitor wafer for monitoring the level of metal contamination is put into the reaction tube, and after the heat treatment is completed, the wafer is taken out. Metal contamination (here Fe) by wafer contamination monitoring system)
The level was measured.

【0017】その後、別のモニターウェーハを投入し、
さらに第2ステップの熱処理(100%Ar雰囲気、1
150℃、4時間)を追加した後、同様に汚染レベルを
測定する実験を繰り返し、追加熱処理4時間毎の反応管
内の汚染レベルの推移を観察した。その結果を図2に実
施例1として示した。また、比較として、第1ステップ
の熱処理も100%Ar雰囲気、1150℃、4時間と
した以外は上記と同一の条件で実験を行って汚染レベル
の推移を観察し、その結果を図2に比較例1として示し
た。
After that, another monitor wafer is loaded,
Furthermore, a second step heat treatment (100% Ar atmosphere, 1
After the addition of (150 ° C., 4 hours), the experiment for measuring the contamination level was repeated in the same manner, and the transition of the contamination level in the reaction tube every 4 hours of the additional heat treatment was observed. The results are shown in FIG. 2 as Example 1. As a comparison, an experiment was performed under the same conditions as above except that the heat treatment in the first step was also performed in a 100% Ar atmosphere at 1150 ° C. for 4 hours, and the transition of the contamination level was observed. This is shown as Example 1.

【0018】図1の結果から、従来の空焼き方法に相当
する比較例1の場合、金属汚染の低減は緩やかであり、
アニールの回数を繰り返しても5×1010(atoms/c
3)程度の値に収束している。一方、本発明の空焼き
方法に相当する実施例1の場合、酸化熱処理後に一旦金
属汚染レベルが極端に上昇するが、その後は急速に減少
に向かい総アニール時間20時間の時点では金属汚染レ
ベルは検出下限(データの信頼性が保証されている下限
値)である1×1010(atoms/cm3)以下まで減少し
ている。
From the results shown in FIG. 1, in the case of Comparative Example 1, which corresponds to the conventional baking method, the reduction of metal contamination is moderate.
Even if the number of times of annealing is repeated, 5 × 10 10 (atoms / c
m 3 ). On the other hand, in the case of Example 1 corresponding to the dry baking method of the present invention, the metal contamination level rises extremely once after the oxidizing heat treatment, but then rapidly decreases, and at the time of the total annealing time of 20 hours, the metal contamination level is reduced. It is reduced to 1 × 10 10 (atoms / cm 3 ) or less, which is the lower limit of detection (the lower limit at which the reliability of data is guaranteed).

【0019】このとき一旦金属汚染レベルが上昇する理
由は炉内に形成された酸素化合物内に取りこまれた金属
がArアニールによりエッチングされ、雰囲気中に放出
されている過程と考えることが出来る。そして、その酸
素化合物が尽きてから金属汚染が大幅に減少するものと
考えられる。
At this time, the reason why the metal contamination level once rises can be considered to be a process in which the metal taken in the oxygen compound formed in the furnace is etched by Ar annealing and released into the atmosphere. Then, it is considered that metal contamination is greatly reduced after the oxygen compound is exhausted.

【0020】(実施例2〜5及び比較例2)本発明の空
焼き方法おける有効な温度域を調査するために、実施例
1と同様な実験(酸素雰囲気の熱処理+Ar雰囲気の熱
処理の繰り返し)を、第1及び第2の熱処理温度を5水
準、即ち850℃(比較例2)、900℃(実施例
2)、1000℃(実施例3)、1100℃(実施例
4)、1150℃(実施例5)に振って行なって、汚染
レベルの推移を観察した(図3)。この結果、850℃
では効果が殆ど無いのに対して、900℃以上において
は、炉内のFe濃度が減少する傾向が観察される。よっ
て、本方法の有効温度としては900℃以上が適当と考
えられる。
(Examples 2 to 5 and Comparative Example 2) In order to investigate the effective temperature range in the baking method of the present invention, an experiment similar to that in Example 1 (repetition of heat treatment in an oxygen atmosphere + heat treatment in an Ar atmosphere) was conducted. The first and second heat treatment temperatures were set at five levels, namely, 850 ° C. (Comparative Example 2), 900 ° C. (Example 2), 1000 ° C. (Example 3), 1100 ° C. (Example 4), and 1150 ° C. Example 5) was carried out, and the transition of the contamination level was observed (FIG. 3). As a result, 850 ° C.
Although there is almost no effect, at 900 ° C. or higher, a tendency is observed that the Fe concentration in the furnace decreases. Therefore, it is considered that the effective temperature of the present method is 900 ° C. or more.

【0021】[0021]

【発明の効果】以上述べたごとく、本発明の熱処理炉の
空焼き方法によれば、熱処理炉の金属汚染レベルを短時
間で、かつ大幅に低減することが可能となるものであ
る。
As described above, according to the method for baking a heat treatment furnace according to the present invention, the level of metal contamination in the heat treatment furnace can be significantly reduced in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法の工程を原理的に示す工程図であ
る。
FIG. 1 is a process chart showing the steps of the method of the present invention in principle.

【図2】 実施例1及び比較例1における熱処理時間と
Fe濃度の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between heat treatment time and Fe concentration in Example 1 and Comparative Example 1.

【図3】 実施例2〜5及び比較例2における熱処理時
間とFe濃度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the heat treatment time and the Fe concentration in Examples 2 to 5 and Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 AA15 BA02 BA19 BB19 DA00 DA22 DA23 DA24 DA25 DA26 DB00 EA34 5F045 AA20 AC11 AC15 AC16 AC17 AD13 AD14 AD15 AD16 AD17 BB14 EB06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F004 AA15 BA02 BA19 BB19 DA00 DA22 DA23 DA24 DA25 DA26 DB00 EA34 5F045 AA20 AC11 AC15 AC16 AC17 AD13 AD14 AD15 AD16 AD17 BB14 EB06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応管を有する熱処理炉の空焼き方法で
あって、熱処理炉の反応管内に酸化性ガスを導入して9
00〜1350℃の温度で第1の熱処理をした後、非酸
化性ガスを導入して900〜1350℃の温度で第2の
熱処理をすることを特徴とする熱処理炉の空焼き方法。
1. A method for baking a heat treatment furnace having a reaction tube, wherein an oxidizing gas is introduced into the reaction tube of the heat treatment furnace.
A baking method for a heat treatment furnace, comprising: performing a first heat treatment at a temperature of 00 to 1350 ° C, and then introducing a non-oxidizing gas to perform a second heat treatment at a temperature of 900 to 1350 ° C.
【請求項2】 前記第1及び第2の熱処理温度を115
0〜1250℃とし、該熱処理温度における熱処理時間
を、少なくとも各4時間ずつ、合計で20〜40時間と
することを特徴とする請求項1に記載された熱処理炉の
空焼き方法。
2. The method according to claim 1, wherein the first and second heat treatment temperatures are set to 115.
The method according to claim 1, wherein the heat treatment is performed at a temperature of 0 to 1250C and the heat treatment time at the heat treatment temperature is at least 4 hours each, for a total of 20 to 40 hours.
【請求項3】 前記非酸化性ガスをArとすることを特
徴とする請求項1または請求項2に記載された熱処理炉
の空焼き方法。
3. The method according to claim 1, wherein the non-oxidizing gas is Ar.
JP2000204697A 2000-07-06 2000-07-06 Blank baking method of heat treatment furnace Pending JP2002025924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000204697A JP2002025924A (en) 2000-07-06 2000-07-06 Blank baking method of heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000204697A JP2002025924A (en) 2000-07-06 2000-07-06 Blank baking method of heat treatment furnace

Publications (1)

Publication Number Publication Date
JP2002025924A true JP2002025924A (en) 2002-01-25

Family

ID=18701921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000204697A Pending JP2002025924A (en) 2000-07-06 2000-07-06 Blank baking method of heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2002025924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146486A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Preparatory burning method for heat treatment furnace
WO2007026762A1 (en) * 2005-08-31 2007-03-08 Tokyo Electron Limited Cleaning method
JP2007335901A (en) * 2007-09-07 2007-12-27 Hitachi Kokusai Electric Inc Method of manufacturing heat treatment apparatus, heater unit, heat insulation tank, and semiconductor integrated circuit device
JP2018170307A (en) * 2017-03-29 2018-11-01 東京エレクトロン株式会社 Metal contamination prevention method and film formation apparatus
KR20210100190A (en) 2018-12-27 2021-08-13 가부시키가이샤 사무코 A method for determining pretreatment conditions of a heat treatment furnace, a pretreatment method for a heat treatment furnace, a heat treatment apparatus, and a method and apparatus for manufacturing a heat-treated semiconductor wafer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146486A (en) * 2002-10-23 2004-05-20 Shin Etsu Handotai Co Ltd Preparatory burning method for heat treatment furnace
WO2007026762A1 (en) * 2005-08-31 2007-03-08 Tokyo Electron Limited Cleaning method
JPWO2007026762A1 (en) * 2005-08-31 2009-03-12 東京エレクトロン株式会社 Cleaning method
KR100915716B1 (en) * 2005-08-31 2009-09-04 도쿄엘렉트론가부시키가이샤 Cleaning method
US7691208B2 (en) 2005-08-31 2010-04-06 Tokyo Electron Limited Cleaning method
JP5084508B2 (en) * 2005-08-31 2012-11-28 東京エレクトロン株式会社 Cleaning method
JP2007335901A (en) * 2007-09-07 2007-12-27 Hitachi Kokusai Electric Inc Method of manufacturing heat treatment apparatus, heater unit, heat insulation tank, and semiconductor integrated circuit device
JP2018170307A (en) * 2017-03-29 2018-11-01 東京エレクトロン株式会社 Metal contamination prevention method and film formation apparatus
KR20210100190A (en) 2018-12-27 2021-08-13 가부시키가이샤 사무코 A method for determining pretreatment conditions of a heat treatment furnace, a pretreatment method for a heat treatment furnace, a heat treatment apparatus, and a method and apparatus for manufacturing a heat-treated semiconductor wafer

Similar Documents

Publication Publication Date Title
US4231809A (en) Method of removing impurity metals from semiconductor devices
JP2002025924A (en) Blank baking method of heat treatment furnace
EP1251553A1 (en) Method of recycling a dummy silicon wafer
JP3207402B2 (en) Semiconductor heat treatment apparatus and semiconductor substrate heat treatment method
Murarka et al. Oxidation of silicon without the formation of stacking faults
JP2907095B2 (en) Method for manufacturing semiconductor device
JP4131105B2 (en) Silicon boat manufacturing method
US6495099B1 (en) Wet processing methods for the manufacture of electronic components
JPH09153489A (en) Manufacture of semiconductor device
JP3534001B2 (en) Method for forming silicon oxide film and silicon oxynitride film, and silicon wafer
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JP3997310B2 (en) Silicon product purification method
JPH10144580A (en) Dummy wafer for semiconductor heat treatment and its regenerating method
EP1178527A2 (en) Method for removing silicon carbide from a substrate surface after oxidation
JP3264909B2 (en) Heat treatment apparatus, heat treatment method, and semiconductor device manufacturing method
JP2000100884A (en) Pretreatment method of recombination life time measurement of silicon wafer
JPH11186257A (en) Manufacture of semiconductor device
EP1082271A1 (en) Wet processing methods for the manufacture of electronic components using liquids of varying temperature
JP4585178B2 (en) Manufacturing method of semiconductor device
JP5037988B2 (en) Method for manufacturing SiC semiconductor device
JP4585178B6 (en) Manufacturing method of semiconductor device
JP4522569B2 (en) Heat treatment method
KR100588217B1 (en) Method for forming gate oxide in semiconductor device
JP2011009597A (en) Method of cleaning jig for heat treatment
JP2010114321A (en) Wafer evaluation method