Nothing Special   »   [go: up one dir, main page]

JP2002015729A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002015729A
JP2002015729A JP2000199943A JP2000199943A JP2002015729A JP 2002015729 A JP2002015729 A JP 2002015729A JP 2000199943 A JP2000199943 A JP 2000199943A JP 2000199943 A JP2000199943 A JP 2000199943A JP 2002015729 A JP2002015729 A JP 2002015729A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000199943A
Other languages
Japanese (ja)
Other versions
JP3535454B2 (en
Inventor
Ryuko Kono
龍興 河野
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000199943A priority Critical patent/JP3535454B2/en
Publication of JP2002015729A publication Critical patent/JP2002015729A/en
Application granted granted Critical
Publication of JP3535454B2 publication Critical patent/JP3535454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery with good cycle characteristic by preventing a negative active material from turning into fine particles and from desorbing when a metal active material is used as a negative active material. SOLUTION: With a lithium ion secondary battery consisting of a positive electrode, a negative electrode and a separator pinched by both electrodes, a laminated body laminated with a collector 21, a negative active material layer 22 and a coating layer 23 made of carbon material in turn is used as a negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池およびその電極に関する。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery and an electrode thereof.

【0002】[0002]

【従来の技術】近年、携帯電話や携帯型パソコンなどと
いった電子機器の小型化と需要の増大に伴い、これら電
子機器の電源である二次電池に対する高性能化が要求さ
れている。かかる二次電池としては、炭素材料のような
リチウムを吸蔵・放出できる物質を負極材料に用いた非
水電解質電池が開発され、携帯電子機器用の電源として
普及している。この非水電解質二次電池は、従来の電池
と異なり、軽量で、かつ4V級の高い起電力を有すると
いう特徴があり、その優れた性能が注目されている。
2. Description of the Related Art In recent years, as electronic devices such as mobile phones and portable personal computers have been reduced in size and demand has increased, higher performance has been required for secondary batteries which are power sources of these electronic devices. As such a secondary battery, a non-aqueous electrolyte battery using a material capable of occluding and releasing lithium, such as a carbon material, as a negative electrode material has been developed and is widely used as a power source for portable electronic devices. This non-aqueous electrolyte secondary battery is different from a conventional battery in that it is lightweight and has a high electromotive force of 4V class, and its excellent performance has attracted attention.

【0003】そこで、前記非水電解質二次電池を、電気
自動車や電動工具、コードレスクリーナなどの電源とし
て適用することが検討されている。このような用途で
は、従来の非水電解質二次電池に比べ、より高エネルギ
ー密度化することが要求される。
[0003] Therefore, application of the non-aqueous electrolyte secondary battery as a power source for electric vehicles, power tools, cordless cleaners, and the like has been studied. In such applications, higher energy density is required as compared with conventional non-aqueous electrolyte secondary batteries.

【0004】リチウム金属、リチウム合金などを電極の
活物質に用いた非水電解質二次電池は、高エネルギー電
池として期待され、盛んに研究開発が進められている。
A non-aqueous electrolyte secondary battery using a lithium metal, a lithium alloy or the like as an active material of an electrode is expected as a high energy battery, and has been actively researched and developed.

【0005】正極活物質としては、LiCoO2、Li
Mn24などが実用化されているが、負極活物質として
はリチウムを吸蔵・放出する炭素材料を用いたリチウム
イオン電池が広く実用化されており、リチウム金属、リ
チウム合金を負極に用いた二次電池は、未だ実用化され
ていない。
As the positive electrode active material, LiCoO 2 , Li
Although Mn 2 O 4 and the like have been put to practical use, lithium ion batteries using carbon materials that occlude and release lithium have been widely put into practical use as negative electrode active materials, and lithium metal and lithium alloys have been used for negative electrodes. Secondary batteries have not yet been put to practical use.

【0006】リチウム金属が実用化されていない理由
は、非水電解液とリチウム合金との反応によるリチウム
の劣化と、充放電の繰り返しによるデンドライト状(樹
枝状)のリチウムの発生による脱離が起きるため内部短
絡やサイクル寿命が短いという問題点を有している。こ
のような問題点を解決するためにリチウムを合金化して
負極活物質に用いる研究がなされた。例えばリチウム−
アルミニウム合金などを負極として使用する技術なども
あるが(例えばJ. O. BesenHard, J. Electroanal. Che
m., 94, 77 (1978).)Alの一部を使うよう、一定電気
量の浅い充放電下では効率を改善できる。しかし深い充
放電を繰り返すと電極の体積変化によって負極活物質が
微粉化し、やはり一部の負極活物質が負極から脱離して
しまう。その結果、負極中の負極活物質量が徐々に減少
するため充放電サイクル特性に問題があった。
[0006] The reason why lithium metal has not been put into practical use is that lithium deteriorates due to the reaction between the nonaqueous electrolyte and the lithium alloy, and desorption occurs due to the generation of dendritic (dendritic) lithium due to repeated charging and discharging. Therefore, there is a problem that the internal short circuit and the cycle life are short. In order to solve such problems, studies have been made to use lithium as an anode active material by alloying lithium. For example, lithium
There are technologies using an aluminum alloy or the like as the negative electrode (for example, JO BesenHard, J. Electroanal. Che
m., 94, 77 (1978).) As part of Al is used, the efficiency can be improved under shallow charge and discharge with a constant amount of electricity. However, when deep charge and discharge are repeated, the negative electrode active material is pulverized due to a change in volume of the electrode, and a part of the negative electrode active material is also detached from the negative electrode. As a result, since the amount of the negative electrode active material in the negative electrode gradually decreases, there is a problem in charge / discharge cycle characteristics.

【0007】また、リチウム合金以外の合金、例えば錫
−ニッケル合金や銅―錫合金なども高エネルギー電池を
達成するための負極活物質として研究されているが、リ
チウム合金と同様な理由問題が生じるために、実用化に
至っていない。
Further, alloys other than lithium alloys, such as tin-nickel alloys and copper-tin alloys, have been studied as negative electrode active materials for achieving high energy batteries, but cause the same problem as the lithium alloys. Therefore, it has not been put to practical use.

【0008】[0008]

【発明が解決しようとする課題】上述したように、従来
の非水電解質二次電池においては、負極活物質として金
属材料を使用するとエネルギー密度を向上させることが
できるものの、サイクル特性が低下するという問題があ
った。
As described above, in a conventional nonaqueous electrolyte secondary battery, when a metal material is used as the negative electrode active material, the energy density can be improved, but the cycle characteristics are deteriorated. There was a problem.

【0009】本発明はこのような問題に鑑みて為された
ものであり、エネルギー密度が高く、充放電サイクル性
能に優れた非水電解質二次電池を提供することを目的と
する。
The present invention has been made in view of such a problem, and has as its object to provide a nonaqueous electrolyte secondary battery having a high energy density and excellent charge / discharge cycle performance.

【0010】[0010]

【課題を解決するための手段】本発明の非水電解質二次
電池は、少なくとも正極活物質を具備する正極と、集電
体とこの集電体表面に形成されアルカリ金属を吸蔵・放
出する合金を有する負極活物質層とこの負極活物質層上
に形成された炭素材料からなる被覆層とを具備する負極
と、前記正極および負極に挟まれた非水電解質とを有す
ることを特徴とする。
According to the present invention, there is provided a non-aqueous electrolyte secondary battery comprising a positive electrode having at least a positive electrode active material, a current collector, and an alloy formed on the surface of the current collector to occlude and release an alkali metal. And a non-aqueous electrolyte sandwiched between the positive electrode and the negative electrode, the negative electrode including a negative electrode active material layer having the following formula: and a coating layer made of a carbon material formed on the negative electrode active material layer.

【0011】本発明の非水電解質二次電池は、合金から
なる負極活物質層を使用するが、負極活物質層表面に被
覆層を形成することで合金の微粒子化を抑制し、また、
電池の充放電を繰り返し行った結果負極活物質が微粒子
化しても、被覆層によって電極中に保持されるため、負
極活物質の減少を抑制することが可能となる。
The nonaqueous electrolyte secondary battery of the present invention uses a negative electrode active material layer made of an alloy. By forming a coating layer on the surface of the negative electrode active material layer, it is possible to suppress the alloy from being finely divided.
Even if the negative electrode active material becomes fine particles as a result of repeated charge / discharge of the battery, the negative electrode active material is retained in the electrode by the coating layer, so that a decrease in the negative electrode active material can be suppressed.

【0012】また、被覆層としてリチウムなどのアルカ
リ金属が通過できる炭素材料を使用しているため、負極
活物質がアルカリ金属を吸蔵・放出する際に妨げになら
ない。また、炭素材料自体アルカリ金属の吸蔵・放出能
を持つため、他の材料で被覆する場合に比べ被覆層によ
るエネルギー密度の低下を抑えることができる。
In addition, since a carbon material through which an alkali metal such as lithium can pass is used for the coating layer, it does not hinder the anode active material from absorbing and releasing the alkali metal. In addition, since the carbon material itself has the ability to occlude and release alkali metals, it is possible to suppress a decrease in energy density due to the coating layer as compared with the case where the carbon material is coated with another material.

【0013】また、前記活物質層の膜厚は、0.01μ
m以上50μm以下であることが好ましい。
The thickness of the active material layer is 0.01 μm.
It is preferably at least m and at most 50 μm.

【0014】また、前記被覆層の膜発は、0.1μm以
上200μm以下であることが好ましい。
It is preferable that the thickness of the coating layer is from 0.1 μm to 200 μm.

【0015】また、前記被覆層の膜厚に対する負極活物
質層の膜厚比は、0.01以上0.95以下であること
が好ましい。
The thickness ratio of the negative electrode active material layer to the thickness of the coating layer is preferably 0.01 or more and 0.95 or less.

【0016】負極活物質層の比率を向上し、被覆層の比
率を低減することで、負極活物質のアルカリ金属の吸蔵
・放出能を向上させることができるが、被覆層の膜厚が
小さすぎると負極活物質を保持することができなくなる
恐れがある。また、被覆層の厚さが大きいと、アルカリ
金属の負極活物質への通過性を低くする恐れがある。
By increasing the ratio of the negative electrode active material layer and reducing the ratio of the coating layer, the ability of the negative electrode active material to occlude and release the alkali metal can be improved, but the thickness of the coating layer is too small. And the negative electrode active material may not be able to be held. In addition, when the thickness of the coating layer is large, there is a possibility that the permeability of the alkali metal to the negative electrode active material may be reduced.

【0017】[0017]

【発明の実施の形態】図1は、円筒型非水電解質二次電
池の左半面を平面図で、右半面を縦断面図で示したもの
であり、以下図面を参照して説明する。
FIG. 1 is a plan view of the left half of a cylindrical nonaqueous electrolyte secondary battery and a vertical cross section of a right half thereof, which will be described below with reference to the drawings.

【0018】金属製、例えばステンレスからなる有底円
筒状の容器1は、底部に絶縁体12が配置されている。
この電極群3は、前記容器1内に収納されている。前記
電極群3は、正極4、セパレータ5、負極6および別の
セパレータ5をこの順序で積層した帯状物を前記負極6
が外側に位置するように渦巻き上に捲回した構造になっ
ている。前記セパレータ5は、例えば不織布、ポリプロ
ピレン微多孔フィルム、ポリエチレン微多孔フィルム、
ポリエチレン−ポリプロピレン微多孔積層フィルムから
形成される。また、前記容器1内に電解液が収容するこ
とで、セパレータ5中に電解液が浸透する。
A cylindrical container 1 made of metal, for example, made of stainless steel and having a bottom has an insulator 12 disposed at the bottom.
The electrode group 3 is housed in the container 1. The electrode group 3 is formed by laminating a positive electrode 4, a separator 5, a negative electrode 6, and another separator 5 in this order on the negative electrode 6
Is wound on the spiral so as to be located on the outside. The separator 5 is, for example, a nonwoven fabric, a polypropylene microporous film, a polyethylene microporous film,
It is formed from a polyethylene-polypropylene microporous laminated film. In addition, since the electrolyte is contained in the container 1, the electrolyte penetrates into the separator 5.

【0019】中央部に孔が開口されたPTC素子7、前
記PTC素子7上に配置された安全弁8及び前記安全弁
8に配置された帽子形状の正極端子9は、前記容器1の
上部開口部に絶縁ガスケット10を介してかしめ固定さ
れている。正極用の集電リード11の一端は、前記正極
4に、他端は前記正極端子9にそれぞれ接続されてい
る。前記負極6は、負極用集電リード13を介して負極
端子である前記容器1に接続されている。
A PTC element 7 having an opening in the center, a safety valve 8 disposed on the PTC element 7, and a hat-shaped positive terminal 9 disposed on the safety valve 8 are provided in an upper opening of the container 1. It is caulked and fixed via an insulating gasket 10. One end of a current collecting lead 11 for the positive electrode is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 as a negative electrode terminal via a negative electrode current collecting lead 13.

【0020】なお、本発明に係わる非水電解液二次電池
においては、外装材がラミネートフィルムからなり、前
記外装材内に前記正極および負極、セパレータからなる
積層物が偏平状に捲回された構造を有する電極群と、非
水電解質が収納された構造であってもよい。
In the non-aqueous electrolyte secondary battery according to the present invention, the outer package is made of a laminate film, and the laminate comprising the positive electrode, the negative electrode and the separator is flatly wound inside the outer package. An electrode group having a structure and a structure in which a nonaqueous electrolyte is accommodated may be used.

【0021】次に、前記正極4、前記セパレータ5、前
記負極6及び前記非水電解質について詳しく説明する。
Next, the positive electrode 4, the separator 5, the negative electrode 6, and the non-aqueous electrolyte will be described in detail.

【0022】1)正極4 正極は、正極活物質を少なくとも含有しており、通常シ
ート状の集電体の片面あるいは両面に正極活物質層を形
成して用いる。例えばアルミニウム箔などの集電体表面
に、正極活物質、導電剤および結着剤を適当に溶媒に懸
濁した懸濁物を塗布、乾燥、プレスして正極活物質層を
形成すればよい。
1) Positive electrode 4 The positive electrode contains at least a positive electrode active material, and is usually used by forming a positive electrode active material layer on one or both surfaces of a sheet-shaped current collector. For example, a positive electrode active material, a conductive agent, and a suspension in which a binder is appropriately suspended in a solvent may be applied to the surface of a current collector such as an aluminum foil, dried, and pressed to form a positive electrode active material layer.

【0023】正極活物質は、電池の放電時にアルカリ金
属を吸蔵し、充電時にアルカリ金属を放出できるもので
あれば特に限定されずに使用できる。
The positive electrode active material can be used without any particular limitation as long as it can occlude the alkali metal during discharging of the battery and release the alkali metal during charging.

【0024】例えばアルカリ金属としてリチウムを用い
たリチウムイオン二次電池に使用する正極活物質として
は、種々の酸化物、硫化物が挙げられる。例えば、二酸
化マンガン(MnO2)、リチウムマンガン複合酸化物
(例えばLiMn24またはLiMnO2)、リチウムニ
ッケル複合酸化物(例えばLiNiO2)、リチウムコバ
ルト複合酸化物(LiCoO2)、リチウムニッケルコ
バルト複合酸化物(例えばLiNi1-xCox2)、リ
チウムマンガンコバルト複合酸化物(例えばLiMnx
1-x2)、バナジウム酸化物(例えばV25) などが
挙げられる。また、導電性ポリマー材料、ジスルフィド
系ポリマー材料などの有機材料も挙げられる。より好ま
しい正極活物質は、電池電圧が高いリチウムマンガン複
合酸化物(LiMn24)、リチウムニッケル複合酸化
物(LiNiO2)、リチウムコバルト複合酸化物(Li
CoO2)、リチウムニッケルコバルト複合酸化物(Li
Ni0.8Co0.22)、リチウムマンガンコバルト複合
酸化物(LiMnxCo1-x2)などが挙げられる。
For example, as the positive electrode active material used in a lithium ion secondary battery using lithium as an alkali metal, various oxides and sulfides can be mentioned. For example, manganese dioxide (MnO 2 ), lithium manganese composite oxide (eg, LiMn 2 O 4 or LiMnO 2 ), lithium nickel composite oxide (eg, LiNiO 2 ), lithium cobalt composite oxide (LiCoO 2 ), lithium nickel cobalt composite Oxides (eg, LiNi 1 -x Co x O 2 ), lithium manganese cobalt composite oxides (eg, LiMn x C
o 1-x O 2 ) and vanadium oxide (eg, V 2 O 5 ). Further, organic materials such as a conductive polymer material and a disulfide-based polymer material can also be used. More preferable positive electrode active materials include lithium manganese composite oxide (LiMn 2 O 4 ), lithium nickel composite oxide (LiNiO 2 ), and lithium cobalt composite oxide (Li
CoO 2 ), lithium nickel cobalt composite oxide (Li
Ni 0.8 Co 0.2 O 2), lithium manganese cobalt composite oxides (LiMn x Co 1-x O 2) , and the like.

【0025】集電体としては、導電性材料であれば特に
制限されること無く使用できるが、特に正極用の集電体
としては電池反応時に酸化されにくい材料を使用するこ
とが好ましく、例えばアルミニウム、ステンレス、チタ
ンなどを使用すればよい。
The current collector can be used without any particular limitation as long as it is a conductive material. In particular, as the current collector for the positive electrode, it is preferable to use a material which is hardly oxidized during the battery reaction. , Stainless steel, titanium or the like may be used.

【0026】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。前記結着剤としては、例えばポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVd
F)、フッ素系ゴムなどが挙げられる。前記正極活物
質、導電剤及び結着剤の配合比は、正極活物質80〜9
5重量%、導電剤3〜20重量%、結着剤2〜7重量%
の範囲にすることが好ましい。
Examples of the conductive agent include acetylene black, carbon black, graphite and the like. Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVd).
F), fluorine-based rubber and the like. The compounding ratio of the positive electrode active material, the conductive agent and the binder is 80 to 9 for the positive electrode active material.
5% by weight, conductive agent 3-20% by weight, binder 2-7% by weight
It is preferable to be within the range.

【0027】2)負極6 図2に本発明に係る負極の一例を示す断面図を示す。2) Negative electrode 6 FIG. 2 is a sectional view showing an example of the negative electrode according to the present invention.

【0028】本発明に係る負極6は、集電体21と、集
電体表面に形成され少なくとも負極活物質を含有する負
極活物質層22と、この負極活物質層上に形成された炭
素材料からなる被覆層23とを有している。
The negative electrode 6 according to the present invention comprises a current collector 21, a negative electrode active material layer 22 formed on the current collector surface and containing at least a negative electrode active material, and a carbon material formed on the negative electrode active material layer. And a covering layer 23 made of.

【0029】集電体21は、導電性材料であれば特に制
限無く使用できるが、特に負極用の集電体としては電池
反応時に溶解しにくい材料を使用することが好ましく、
例えばシート状の銅、ニッケルなどを使用すればよい。
The current collector 21 can be used without particular limitation as long as it is a conductive material. In particular, as the current collector for the negative electrode, it is preferable to use a material that is difficult to dissolve during a battery reaction.
For example, sheet-like copper or nickel may be used.

【0030】負極活物質層22は、負極活物質単独ある
いは負極活物質を含有する混合物を層形成したものであ
る。この負極活物質としては、電池の放電時にアルカリ
金属を放出し、充電時にアルカリ金属を吸蔵できる金属
材料であり、例えばアルカリ金属としてリチウムを用い
たリチウムイオン二次電池においては、例えばSn−N
i合金、Sn−Ni−Cu合金、Sn−Sb合金、Cu
−Sn合金、Sn−Sb−Cu−Al合金や、 Mg−
Sn合金、Mg−Sb合金、Mg−Sb−Ni合金や、
Li−Al合金、Li−Pb合金、Li−In合金など
のリチウム合金や、リチウム金属などを挙げることがで
きる。特に、リチウムを含む合金は充放電効率を著しく
向上させることが可能である。好ましい範囲は0.02
wt%以上55wt%以下、特に好ましくは0・05w
t%以上45wt%以下、更に望ましくは0.1wt%
以上30wt%以下のリチウムを含む合金を使用するこ
とが好ましい。
The negative electrode active material layer 22 is formed by forming a single layer of the negative electrode active material or a mixture containing the negative electrode active material. The negative electrode active material is a metal material that can release an alkali metal when discharging the battery and occlude the alkali metal when charging. For example, in a lithium ion secondary battery using lithium as the alkali metal, for example, Sn-N
i-alloy, Sn-Ni-Cu alloy, Sn-Sb alloy, Cu
-Sn alloy, Sn-Sb-Cu-Al alloy, Mg-
Sn alloy, Mg-Sb alloy, Mg-Sb-Ni alloy,
Examples thereof include lithium alloys such as a Li-Al alloy, a Li-Pb alloy, and a Li-In alloy, and lithium metal. In particular, an alloy containing lithium can significantly improve charge / discharge efficiency. The preferred range is 0.02
wt% or more and 55 wt% or less, particularly preferably 0.05 w
t% or more and 45 wt% or less, more preferably 0.1 wt%
It is preferable to use an alloy containing at least 30 wt% of lithium.

【0031】また、このようにして形成される負極活物
質層の結晶構造は、特に限定されずに結晶相、微結晶あ
るいは非晶質相であってもよい。さらに、負極活物質が
合金である場合、その材料系によって単一相を形成した
り、複数の相からなる合金としたり、必要に応じ調整す
ればよい。また、負極活物質中には、ふっ素など種々の
不純物が混入することがあるが、各不純物量が1wt%
以下であれば、通常負極活物質としての機能を十分に発
揮できる。
The crystal structure of the negative electrode active material layer thus formed is not particularly limited, and may be a crystal phase, a microcrystal, or an amorphous phase. Further, when the negative electrode active material is an alloy, a single phase may be formed depending on the material system, an alloy composed of a plurality of phases may be used, or adjustment may be made as necessary. In addition, various impurities such as fluorine may be mixed into the negative electrode active material.
If it is below, the function as a negative electrode active material can usually be sufficiently exhibited.

【0032】負極活物質層22の膜厚は、0.01〜5
0μm、さらには0.05μm〜30μmであることが
好ましく、特に0.1μm〜15μmにすることが好ま
しい。膜厚が上述した範囲よりも小さいと負極のリチウ
ムイオン吸蔵量が小さくなるため、電池容量が小さくな
ってしまう。また、上述した範囲よりも大きいと負極活
物質が微粒子化し、負極活物質層から脱離する恐れがあ
る。
The thickness of the negative electrode active material layer 22 is 0.01 to 5
The thickness is preferably 0 μm, more preferably 0.05 μm to 30 μm, and particularly preferably 0.1 μm to 15 μm. When the film thickness is smaller than the above range, the lithium ion occlusion amount of the negative electrode becomes small, so that the battery capacity becomes small. On the other hand, if it is larger than the above range, the negative electrode active material may be finely divided and may be separated from the negative electrode active material layer.

【0033】負極活物質層22は、既知の方法、例えば
焼結法、超急冷法、めっき法、スパッタ法、圧延法、ゾ
ル・ゲル法、蒸着法などを用いて集電体表面に形成する
ことができる。
The negative electrode active material layer 22 is formed on the current collector surface by a known method, for example, a sintering method, a super-quenching method, a plating method, a sputtering method, a rolling method, a sol-gel method, a vapor deposition method, or the like. be able to.

【0034】例えば、集電体上に配置された所定の組成
比に調整された負極活物質からなる合金を、移動速度5
〜50m/sの範囲で移動させながら、単ロール法ある
いは双ロール法を用いた超急冷装置により急冷すること
で集電体表面に負極活物質からなる層状の急冷体を作成
することができる。また、負極活物質を構成する各元素
の粉末を、集電体と一体に加圧成形し、その後不活性ガ
ス雰囲気下または真空下で熱処理することにより、集電
体表面に負極活物質層を形成することができる。
For example, an alloy composed of a negative electrode active material adjusted to a predetermined composition ratio disposed on a current collector is moved at a moving speed of 5%.
By quenching by a super-quenching device using a single roll method or a twin roll method while moving in a range of 5050 m / s, a layered quenched body made of a negative electrode active material can be formed on the surface of the current collector. In addition, the powder of each element constituting the negative electrode active material is pressure-formed integrally with the current collector, and then heat-treated in an inert gas atmosphere or under vacuum to form a negative electrode active material layer on the current collector surface. Can be formed.

【0035】また、これらの方法によって形成された負
極活物質層22に、必要に応じ、さらに熱処理を施して
も良い。この処理温度は負極活物質層22の組成物によ
って左右されるが、約100℃〜500℃程度の温度範
囲で行うことが好ましい。また最適な熱処理時間は熱処
理温度により変動するものではあるが、目安として0.
1〜500時間、好ましくは0.5〜100時間、より
好ましくは1〜50時間が良い。
Further, the negative electrode active material layer 22 formed by these methods may be further subjected to a heat treatment if necessary. This treatment temperature depends on the composition of the negative electrode active material layer 22, but is preferably performed in a temperature range of about 100C to 500C. Although the optimum heat treatment time varies depending on the heat treatment temperature, the optimum heat treatment time is about 0.1 mm.
1 to 500 hours, preferably 0.5 to 100 hours, more preferably 1 to 50 hours.

【0036】被覆層23は、負極活物質層上に形成さ
れ、負極活物質層の体積変化を抑制し微粒子化を抑制す
ると共に、微粒子化した際にもこの微粒子を集電体上に
保持するためのカバーとして機能する。この被覆層を形
成することにより、負極活物質層の体積膨張を抑制する
ことが可能となり、微紛化を防ぐことができる。
The coating layer 23 is formed on the negative electrode active material layer, suppresses a change in volume of the negative electrode active material layer, suppresses fine particles, and retains the fine particles on the current collector even when the fine particles are formed. Functions as a cover for By forming this coating layer, it is possible to suppress the volume expansion of the negative electrode active material layer, and it is possible to prevent micronization.

【0037】被覆層23としては従来負極活物質として
使用されてきた炭素材料、あるいはこの炭素材料と結着
樹脂などの成分で形成する。炭素材料としてはグラファ
イト、アセチレンブラック、カーボンブラックなどが具
体的には挙げられる。
The coating layer 23 is formed of a carbon material conventionally used as a negative electrode active material, or a component such as the carbon material and a binder resin. Specific examples of the carbon material include graphite, acetylene black, and carbon black.

【0038】この被覆層23は、リチウムイオンの通過
が可能なため、被覆層23によって正極活物質層22へ
のリチウム元素の吸蔵・放出を妨げない。また、前述し
たように、負極活物質としての機能も持つため、他の材
料を使用した場合に比べ、負極のリチウム吸蔵量を高め
ることができる。さらに被覆層23中に導電剤を添加す
ると、被覆膜中での集電効率を向上させることが可能に
なる。
Since the coating layer 23 allows the passage of lithium ions, the coating layer 23 does not hinder the insertion and extraction of the lithium element into and from the positive electrode active material layer 22. In addition, as described above, since it also has a function as a negative electrode active material, the amount of lithium stored in the negative electrode can be increased as compared with the case where another material is used. Further, when a conductive agent is added to the coating layer 23, the current collection efficiency in the coating film can be improved.

【0039】被覆層23の膜厚は、0.1μm以上20
0μm以下とすることが好ましい。0.1μmよりも薄
いと均一な膜を形成することが困難であり、200μm
を超えるとリチウムイオンの通過性が低下する。また、
被覆層23の膜厚に対する負極活物質層22の膜厚比
は、0.01以上0.95以下とすることが好ましい。
0.01よりも小さいと、負極活物質層での脱離を十分
に抑制することが困難となり、0.95を超えると負極
活物質の比率が少なくなり、リチウムの吸蔵量が低下す
る恐れがある。
The thickness of the coating layer 23 is 0.1 μm or more and 20 μm or more.
It is preferable that the thickness be 0 μm or less. If the thickness is less than 0.1 μm, it is difficult to form a uniform film,
If it exceeds 2,000, the permeability of lithium ions decreases. Also,
The ratio of the thickness of the negative electrode active material layer 22 to the thickness of the coating layer 23 is preferably 0.01 or more and 0.95 or less.
If it is smaller than 0.01, it is difficult to sufficiently suppress desorption in the negative electrode active material layer. is there.

【0040】例えば、被覆層23は以下のようにして作
成される。
For example, the coating layer 23 is formed as follows.

【0041】被覆層23は、少なくとも負極活物質を含
有していれば良いが、炭素材料、結着剤、必要に応じ導
電剤とからなり、これらの成分を適当な溶媒に懸濁した
懸濁液を、集電体21上に負極活物質層を介して塗布・
乾燥プレスすることで形成される。
The coating layer 23 only needs to contain at least the negative electrode active material, but is composed of a carbon material, a binder, and if necessary, a conductive agent. The liquid is applied onto the current collector 21 via the negative electrode active material layer.
It is formed by dry pressing.

【0042】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVdF)、フッ素系ゴム、エチレン−ブタジエンゴ
ム(SBR)、カルボキシメチルセルロース(CMC)
などが挙げられる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, ethylene-butadiene rubber (SBR), and carboxymethyl cellulose (CMC).
And the like.

【0043】また、被覆層22を形成する際に使用する
溶媒については、負極活物質層22が水と容易に反応す
る場合、適切な有機溶媒、例えばN−メチルピロリドン
(NMP)溶液を用いることが望ましい。前記負極活物
質、導電剤及び結着剤の配合比は、負極活物質70〜9
5重量%、導電剤0〜25重量%、結着剤2〜10重量
%の範囲にすることが好ましい。
As for the solvent used for forming the coating layer 22, when the anode active material layer 22 easily reacts with water, an appropriate organic solvent, for example, an N-methylpyrrolidone (NMP) solution is used. Is desirable. The compounding ratio of the negative electrode active material, the conductive agent and the binder is 70 to 9
It is preferable that the content is 5 wt%, the conductive agent is 0 to 25 wt%, and the binder is 2 to 10 wt%.

【0044】なお、負極活物質層および被覆層は、シー
ト状の集電体の片面あるいは両面に形成することができ
る。
The negative electrode active material layer and the coating layer can be formed on one side or both sides of a sheet-like current collector.

【0045】3)セパレータ5 前記セパレータ5は本発明に係る非水電解質を保持する
と共に、正極および負極間を絶縁するためのものであ
り、絶縁性の材料からなり、正極及び負極間をつなぐ細
孔を有するものであれば特に限定されずに使用でき、具
体的には合成樹脂製不織布、ポリエチレン多孔質フィル
ム、ポリプロピレン多孔質フィルムなどを挙げることが
できる。
3) Separator 5 The separator 5 is for holding the non-aqueous electrolyte according to the present invention and for insulating between the positive electrode and the negative electrode. The separator 5 is made of an insulating material and has a fine structure for connecting the positive electrode and the negative electrode. Any material having pores can be used without particular limitation, and specific examples thereof include a synthetic resin nonwoven fabric, a polyethylene porous film, and a polypropylene porous film.

【0046】4)非水電解質 セパレータ5に保持される非水電解質は、非水溶媒に電
解質を溶解することにより調製される液体状電解質また
は、高分子材料に前記非水溶媒と前記電解質を含有した
高分子ゲル状電解質、前記電解質だけを含有した高分子
固体電解質、リチウムイオン伝導性を有する無機固体電
解質が挙げられる。
4) Nonaqueous Electrolyte The nonaqueous electrolyte held by the separator 5 is a liquid electrolyte prepared by dissolving an electrolyte in a nonaqueous solvent, or a polymer material containing the nonaqueous solvent and the electrolyte in a polymer material. And a solid polymer electrolyte containing only the electrolyte, and an inorganic solid electrolyte having lithium ion conductivity.

【0047】液体状電解質としては、例えばリチウム電
池の非水溶媒に電解質としてリチウム塩を溶解したもの
で公知の非水溶媒を用いることができ、エチレンカーボ
ネート(EC)やプロピレンカーボネート(PC)など
の環状カーボネートや、環状カーボネートと、環状カー
ボネートより低粘度の非水溶媒(以下第2の溶媒)との
混合溶媒を主体とする非水溶媒を用いることが好まし
い。
As the liquid electrolyte, for example, a known nonaqueous solvent obtained by dissolving a lithium salt as an electrolyte in a nonaqueous solvent of a lithium battery can be used. Examples of such a liquid electrolyte include ethylene carbonate (EC) and propylene carbonate (PC). It is preferable to use a cyclic carbonate or a non-aqueous solvent mainly composed of a mixed solvent of a cyclic carbonate and a non-aqueous solvent having a lower viscosity than the cyclic carbonate (hereinafter, a second solvent).

【0048】第2の溶媒としては、例えばジメチルカー
ボネート、メチルエチルカーボネート、ジエチルカーボ
ネートなどの鎖状カーボネート、γ-ブチロラクトン、
アセトニトリル、プロピオン酸メチル、プロピオン酸エ
チル、環状エーテルとしてテトラヒドロフラン、2-メチ
ルテトラヒドロフランなど、鎖状エーテルとしてジメト
キシエタン、ジエトキシエタンなどが挙げられる。
Examples of the second solvent include chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, γ-butyrolactone,
Acetonitrile, methyl propionate, ethyl propionate, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and chain ethers such as dimethoxyethane and diethoxyethane are exemplified.

【0049】電解質としては、アルカリ塩が挙げられる
が、とくにリチウム塩が挙げられる。リチウム塩とし
て、六フッ化リン酸リチウム(LiPF6)、ホウフッ
化リチウム(LiBF4)、六フッ化ヒ素リチウム(L
iAsF6)、過塩素酸リチウム(LiClO4)、トリ
フルオロメタスルホン酸リチウム(LiCF3SO3)な
どが挙げられる。とくに、六フッ化リン酸リチウム(L
iPF6)、ホウフッ化リチウム(LiBF4)が好まし
い。前記電解質の前記非水溶媒に対する溶解量は、0.
5〜2.0モル/lとすることが好ましい。
Examples of the electrolyte include an alkali salt, and in particular, a lithium salt. As lithium salts, lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (L
iAsF 6 ), lithium perchlorate (LiClO 4 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), and the like. In particular, lithium hexafluorophosphate (L
iPF 6 ) and lithium borofluoride (LiBF 4 ) are preferred. The amount of the electrolyte dissolved in the non-aqueous solvent is 0.1.
It is preferably from 5 to 2.0 mol / l.

【0050】高分子ゲル状電解質として前記溶媒と前記
電解質を高分子材料に溶解しゲル状にしたもので、高分
子材料としてはポリアクリロニトリル、ポリアクリレー
ト、ポリフッ化ビニリデン(PVdF)、ポリエチレン
オキシド(PECO)などの単量体の重合体または他の
単量体との共重合体が挙げられる。
The polymer gel electrolyte is obtained by dissolving the solvent and the electrolyte in a polymer material to form a gel. The polymer material may be polyacrylonitrile, polyacrylate, polyvinylidene fluoride (PVdF), polyethylene oxide (PECO). )) Or copolymers with other monomers.

【0051】固体電解質としては、前記電解質を高分子
材料に溶解し、固体化したものである。高分子材料とし
てはポリアクリロニトリル、ポリフッ化ビニリデン(P
VdF)、ポリエチレンオキシド(PEO)などの単量
体の重合体または他の単量体との共重合体が挙げられ
る。また、無機固体電解質として、リチウムを含有した
セラミック材料が挙げられ,なかでもLi3N、Li3
4−Li2S−SiS2、LiI−Li2S−SiS2
ラスなどが挙げられる。
The solid electrolyte is obtained by dissolving the above-mentioned electrolyte in a polymer material and solidifying it. Polymer materials include polyacrylonitrile, polyvinylidene fluoride (P
VdF), a polymer of a monomer such as polyethylene oxide (PEO), or a copolymer with another monomer. Examples of the inorganic solid electrolyte include ceramic materials containing lithium. Among them, Li 3 N and Li 3 P
O 4 —Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 glass and the like can be mentioned.

【0052】なお、前述した図1において、円筒形非水
電解質二次電池に適用した例を説明したが、角型非水電
解質二次電池にも同様に適用できる。また、前記電池の
容器に収納される電極群は、渦巻形に限らず、正極、セ
パレータ及び負極をこの順序で複数積層した形態にして
もよい。
Although an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery has been described with reference to FIG. 1 described above, the present invention can be similarly applied to a rectangular non-aqueous electrolyte secondary battery. The electrode group housed in the battery container is not limited to a spiral shape, but may be a form in which a plurality of positive electrodes, separators, and negative electrodes are stacked in this order.

【0053】なお、本発明に係わる非水電解質二次電池
は、本発明の範囲にあるものであれば、上述した形態に
限定されるものではない。
The non-aqueous electrolyte secondary battery according to the present invention is not limited to the above-described embodiment as long as it is within the scope of the present invention.

【0054】[0054]

【実施例】図1に示すような非水電解質二次電池を作成
した。
EXAMPLE A non-aqueous electrolyte secondary battery as shown in FIG. 1 was prepared.

【0055】<正極の作製>まず、正極活物質のリチウ
ムコバルト酸化物(LiCoO2)粉末91重量%をアセ
チレンブラック2.5重量%、グラファイト3重量%、
ポリフッ化ビニリデン(PVdF)4重量%と、N−メ
チルピロリドン(NMP)溶液を加えて混合し、厚さ1
5μmのアルミニウム箔の集電体に塗布し、乾燥後、プ
レスすることにより電極密度3.0g/cm3の正極を
作製した。
<Preparation of Positive Electrode> First, 91% by weight of lithium cobalt oxide (LiCoO 2 ) powder as a positive electrode active material was mixed with 2.5% by weight of acetylene black, 3% by weight of graphite,
4% by weight of polyvinylidene fluoride (PVdF) and an N-methylpyrrolidone (NMP) solution were added and mixed.
A positive electrode having an electrode density of 3.0 g / cm 3 was prepared by applying the solution to a 5 μm aluminum foil current collector, drying and pressing.

【0056】<負極の作製>まず、厚さ12μmの銅箔
からなる集電体上に組成0.75Sn−0.25Niか
らなる合金薄膜のめっきを以下のようにして行い、Sn
−Ni合金からなる負極活物質層を形成した。
<Preparation of Negative Electrode> First, an alloy thin film having a composition of 0.75Sn-0.25Ni was plated on a current collector made of a copper foil having a thickness of 12 μm as follows.
A negative electrode active material layer made of a -Ni alloy was formed.

【0057】めっき時の電析条件は、塩化スズ45g/
L、塩化ニッケル10g/L、ピロリン酸カリウム20
0g/L、グリシン20g/L、アンモニア水5ml/
Lのピロリン酸浴を調製し、PHを8、浴温50℃とし
た。上記条件にて電流密度0.5A/dm2にて膜厚1
μmの合金薄膜製の負極活物質層を作製した。
The electrodeposition conditions at the time of plating were 45 g of tin chloride /
L, nickel chloride 10g / L, potassium pyrophosphate 20
0 g / L, glycine 20 g / L, ammonia water 5 ml /
An L pyrophosphate bath was prepared, the pH was 8, and the bath temperature was 50 ° C. Under the above conditions, a current density of 0.5 A / dm 2 and a film thickness of 1
A negative electrode active material layer made of a μm alloy thin film was prepared.

【0058】次に、負極活物質層表面に、被覆層を形成
した。
Next, a coating layer was formed on the surface of the negative electrode active material layer.

【0059】まず、メソフェーズピッチ系炭素繊維(M
CF)85重量%にグラファイト5重量%、アセチレン
ブラック3重量%、PVdF7重量%とNMP溶液とを
加えて混合し、先に得られた負極活物質層表面に50μ
mの厚さにて塗布し、乾燥後、プレスすることにより被
覆層を形成し、負極を作製した。
First, mesophase pitch-based carbon fibers (M
CF) 85% by weight, 5% by weight of graphite, 3% by weight of acetylene black, 7% by weight of PVdF and an NMP solution were added and mixed, and 50 μm was added to the surface of the previously obtained negative electrode active material layer.
After coating, drying and pressing, a coating layer was formed to produce a negative electrode.

【0060】<電極群の作製>ポリエチレン製多孔質フ
ィルムからなるセパレータを準備し、先に得られた正
極、および負極をこのセパレータを介して積層した後、
前記負極が最外周に位置するように渦巻き状に捲回して
電極群を作製した。
<Preparation of Electrode Group> A separator made of a polyethylene porous film was prepared, and the positive electrode and the negative electrode obtained above were laminated through the separator.
An electrode group was prepared by spirally winding the negative electrode so as to be located at the outermost periphery.

【0061】<非水電解液の調整>さらに、六フッ化リ
ン酸リチウム(LiPF6)をエチレンカーボネート
(EC)とメチルエチルカーボネート(MEC)の混合
溶媒に(混合体積比率1:2)に1.0モル/L溶解し
て非水電解液を調整した。
<Preparation of Nonaqueous Electrolyte> Further, lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) at a mixing volume ratio of 1: 2. The solution was dissolved at a concentration of 0.0 mol / L to prepare a non-aqueous electrolyte.

【0062】得られた電極群及び前記電解液をステンレ
ス製の有底円筒状容器内にそれぞれ収納して前述した図
1に示す円筒形非水電解質二次電池を組み立てた。
The obtained electrode group and the electrolytic solution were housed in stainless steel bottomed cylindrical containers, respectively, to assemble the above-mentioned cylindrical non-aqueous electrolyte secondary battery shown in FIG.

【0063】比較例1 比較のために、負極として、負極活物質に合金を用い
ず、2900℃で熱処理したメソフェーズピッチ系炭素
繊維(繊維径が7μm、平均繊維長が25μm、平均面
間隔d(002)が0.35nm、BET法による比表
面積2.5m2/g)の粉末を用いたことを除き、実施
例1と同様にして非水電解質二次電池を組み立てた。
Comparative Example 1 For comparison, for the negative electrode, mesophase pitch-based carbon fibers (fiber diameter 7 μm, average fiber length 25 μm, average face spacing d () were heat-treated at 2900 ° C. without using an alloy as the negative electrode active material. A non-aqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that powder having a specific surface area of 2.5 m 2 / g) measured by the BET method was used.

【0064】比較例2 負極として、被覆層を形成しなかったことを除き、実施
例1と同様にして非水電解質二次電池を作成した。
Comparative Example 2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1 except that no coating layer was formed as a negative electrode.

【0065】実施例2〜10 負極活物質層に用いる合金を表1に示す合金に代えたこ
とを除き、実施例1と同様にして非水電解質二次電池を
作成した。
Examples 2 to 10 Non-aqueous electrolyte secondary batteries were produced in the same manner as in Example 1 except that the alloy used for the negative electrode active material layer was changed to the alloy shown in Table 1.

【0066】<電池評価>実施例1〜10および比較例
1,2において得られた各非水電解質二次電池を以下の
ようにして評価した。
<Evaluation of Battery> Each of the non-aqueous electrolyte secondary batteries obtained in Examples 1 to 10 and Comparative Examples 1 and 2 was evaluated as follows.

【0067】各非水電解質二次電池を、充電電流1Aで
4.2Vまで2.5時間充電した後、2.0Vまで5A
で放電する充放電サイクル試験を行った。その結果か
ら、各非水電解質二次電池について高率放電容量比およ
び容量維持率(1サイクル目の放電容量に対する300
サイクル目の放電容量の比)を測定した。その結果を下
記表1に併記する。なお、高率放電容量比は比較例1の
炭素質材料負極の高率放電容量を1とした際の比率であ
る。
Each non-aqueous electrolyte secondary battery was charged at a charging current of 1 A to 4.2 V for 2.5 hours, and then charged at 5 A to 2.0 V.
, A charge / discharge cycle test was performed. From the results, it was found that the high-rate discharge capacity ratio and the capacity retention ratio (300% with respect to the discharge capacity in the first cycle) were obtained for each nonaqueous electrolyte secondary battery.
(The ratio of the discharge capacity at the cycle). The results are shown in Table 1 below. The high-rate discharge capacity ratio is a ratio when the high-rate discharge capacity of the carbonaceous material negative electrode of Comparative Example 1 is set to 1.

【表1】 表1から明らかなように、本発明の実施例1〜10の非水
電解質二次電池は、比較例2の非水電荷失二次電池に比
べ、高率放電容量および300サイクル時の容量維持率
が飛躍的に向上し、サイクル特性に優れることがわか
る。
[Table 1] As is clear from Table 1, the non-aqueous electrolyte secondary batteries of Examples 1 to 10 of the present invention have a higher rate discharge capacity and a higher capacity retention at 300 cycles than the non-aqueous charge-loss secondary batteries of Comparative Example 2. It can be seen that the rate was dramatically improved and the cycle characteristics were excellent.

【0068】[0068]

【発明の効果】以上詳述したように本発明によれば、高
率放電容量で、サイクル特性の良好な非水電解質二次電
池を提供することができる。
As described in detail above, according to the present invention, a non-aqueous electrolyte secondary battery having a high rate discharge capacity and good cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる非水電解質二次電池を示す部
分断面図。
FIG. 1 is a partial cross-sectional view showing a non-aqueous electrolyte secondary battery according to the present invention.

【図2】 本発明に係わる負極を示す断面図。FIG. 2 is a sectional view showing a negative electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・容器 3・・・電極群 4・・・正極 5・・・セパレータ 6・・・負極 11・・・正極用集電リード 13・・・負極用集電リード 21…集電体 22…負極活物質層 23…被覆層 DESCRIPTION OF SYMBOLS 1 ... Container 3 ... Electrode group 4 ... Positive electrode 5 ... Separator 6 ... Negative electrode 11 ... Positive current collecting lead 13 ... Negative current collecting lead 21 ... Current collector 22 ... Negative electrode active material layer 23 ... Coating layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AL11 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ13 BJ14 DJ12 HJ04 HJ12 5H050 AA07 AA08 BA16 BA17 CA08 CA09 CB09 CB11 CB29 EA02 FA04 HA04 HA12  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ03 AJ05 AK03 AL06 AL11 AL12 AL18 AM03 AM04 AM05 AM07 BJ02 BJ13 BJ14 DJ12 HJ04 HJ12 5H050 AA07 AA08 BA16 BA17 CA08 CA09 CB09 CB11 CB29 EA02 FA04 HA04 HA12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも正極活物質を具備する正極と、 集電体とこの集電体表面に形成されアルカリ金属を吸蔵
・放出する合金を有する負極活物質層とこの負極活物質
層上に形成された炭素材料からなる被覆層とを具備する
負極と、 前記正極および負極に挟まれた非水電解質とを有するこ
とを特徴とする非水電解質二次電池。
1. A positive electrode comprising at least a positive electrode active material; a current collector; a negative electrode active material layer having an alloy formed on the surface of the current collector for absorbing and releasing alkali metal; and formed on the negative electrode active material layer. A non-aqueous electrolyte secondary battery, comprising: a negative electrode including a coated layer made of a carbon material; and a non-aqueous electrolyte sandwiched between the positive electrode and the negative electrode.
【請求項2】前記活物質層の膜厚は、0.01μm以上
50μm以下であることを特徴とする請求項1記載の非
水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the active material layer is 0.01 μm or more and 50 μm or less.
【請求項3】前記被覆層の膜厚は、0.1μm以上20
0μm以下であることを特徴とする請求項1記載の非水
電解質二次電池。
3. The coating layer has a thickness of 0.1 μm or more and 20 μm or more.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness is 0 μm or less.
【請求項4】前記被覆層の膜厚に対する負極活物質層の
膜厚比は、0.01以上0.95以下であることを特徴
とする請求項1記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein a thickness ratio of the negative electrode active material layer to a thickness of the coating layer is 0.01 or more and 0.95 or less.
JP2000199943A 2000-06-30 2000-06-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3535454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199943A JP3535454B2 (en) 2000-06-30 2000-06-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199943A JP3535454B2 (en) 2000-06-30 2000-06-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002015729A true JP2002015729A (en) 2002-01-18
JP3535454B2 JP3535454B2 (en) 2004-06-07

Family

ID=18697887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199943A Expired - Fee Related JP3535454B2 (en) 2000-06-30 2000-06-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3535454B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
WO2003100888A1 (en) * 2002-05-24 2003-12-04 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
JP2003346787A (en) * 2002-05-27 2003-12-05 Sony Corp Non-aqueous electrolyte battery and its manufacturing method
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
JP2004200003A (en) * 2002-12-18 2004-07-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
JP2004349005A (en) * 2003-05-20 2004-12-09 Sony Corp Negative electrode and battery using it
JP2005276444A (en) * 2004-03-22 2005-10-06 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode, manufacturing device of battery electrode, and battery electrode
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2006059704A (en) * 2004-08-20 2006-03-02 Jfe Chemical Corp Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2006324210A (en) * 2005-05-20 2006-11-30 Fukuda Metal Foil & Powder Co Ltd Negative electrode material for lithium secondary battery and method for producing the same
JPWO2005006469A1 (en) * 2003-07-15 2007-09-20 伊藤忠商事株式会社 Current collecting structure and electrode structure
JP2008117574A (en) * 2006-11-01 2008-05-22 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method for manufacturing negative electrode plate for same
EP1962356A1 (en) * 2007-02-26 2008-08-27 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
WO2012172758A1 (en) * 2011-06-16 2012-12-20 パナソニック株式会社 Negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery using negative electrode for lithium ion secondary battery
JP2013179081A (en) * 2013-05-23 2013-09-09 Nec Corp Secondary battery, and negative electrode for secondary battery
JP2019186227A (en) * 2013-09-26 2019-10-24 株式会社半導体エネルギー研究所 Secondary battery
KR20220071785A (en) * 2020-11-24 2022-05-31 경상국립대학교산학협력단 Secondary battery electrode and manufacturing method thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
WO2003012898A1 (en) * 2001-07-31 2003-02-13 Nec Corporation Negative pole for secondary cell, secondary cell using the negative pole, and negative pole manufacturing method
JP2003115293A (en) * 2001-07-31 2003-04-18 Nec Corp Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
US7202000B2 (en) 2001-07-31 2007-04-10 Nec Corporation Anode for secondary battery, secondary battery using same and method for fabricating anode
WO2003058145A1 (en) * 2001-12-28 2003-07-17 Nec Corporation Lithium-ion secondary battery
JP2003203625A (en) * 2001-12-28 2003-07-18 Nec Corp Lithium ion secondary battery
JP4517560B2 (en) * 2001-12-28 2010-08-04 日本電気株式会社 Lithium ion secondary battery and method of using lithium secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
WO2003063270A1 (en) * 2002-01-23 2003-07-31 Nec Corporation Secondary battery-use negative electrode and secondary battery using it
CN100356616C (en) * 2002-01-23 2007-12-19 日本电气株式会社 Secondary battery-use negative electrode and secondary battery using it
US7285359B2 (en) 2002-01-23 2007-10-23 Nec Corporation Secondary battery-use negative electrode and secondary battery using it
WO2003085756A1 (en) * 2002-04-10 2003-10-16 Nec Corporation Nonaqueous electrolyte cell
US7118831B2 (en) 2002-04-10 2006-10-10 Nec Corporation Nonaqueous electrolyte cell
WO2003100888A1 (en) * 2002-05-24 2003-12-04 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
US8034475B2 (en) 2002-05-24 2011-10-11 Nec Corporation Anode for secondary battery and secondary battery using the same
US7763387B2 (en) 2002-05-24 2010-07-27 Nec Corporation Negative electrode for secondary cell and secondary cell using the same
CN100367542C (en) * 2002-05-24 2008-02-06 日本电气株式会社 Negative electrode for secondary cell and secondary cell using the same
JP2003346787A (en) * 2002-05-27 2003-12-05 Sony Corp Non-aqueous electrolyte battery and its manufacturing method
JP2004087251A (en) * 2002-08-26 2004-03-18 Nec Corp Nonaqueous electrolytic solution secondary battery
JP2004103476A (en) * 2002-09-11 2004-04-02 Sony Corp Nonaqueous electrolyte battery
JP2004200003A (en) * 2002-12-18 2004-07-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
WO2004095612A1 (en) * 2003-04-23 2004-11-04 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing same and nonaqueous electrolyte secondary battery
KR101117240B1 (en) * 2003-05-20 2012-03-15 소니 가부시키가이샤 Negative electrode and battery having the same
JP2004349005A (en) * 2003-05-20 2004-12-09 Sony Corp Negative electrode and battery using it
JPWO2005006469A1 (en) * 2003-07-15 2007-09-20 伊藤忠商事株式会社 Current collecting structure and electrode structure
JP2005276444A (en) * 2004-03-22 2005-10-06 Matsushita Electric Ind Co Ltd Manufacturing method of battery electrode, manufacturing device of battery electrode, and battery electrode
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP4723830B2 (en) * 2004-08-20 2011-07-13 Jfeケミカル株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2006059704A (en) * 2004-08-20 2006-03-02 Jfe Chemical Corp Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2006324210A (en) * 2005-05-20 2006-11-30 Fukuda Metal Foil & Powder Co Ltd Negative electrode material for lithium secondary battery and method for producing the same
JP2008117574A (en) * 2006-11-01 2008-05-22 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method for manufacturing negative electrode plate for same
US8257858B2 (en) 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
US7742279B2 (en) 2007-02-26 2010-06-22 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
EP1962356A1 (en) * 2007-02-26 2008-08-27 Shin-Kobe Electric Machinery Co., Ltd. Energy conversion device
WO2012172758A1 (en) * 2011-06-16 2012-12-20 パナソニック株式会社 Negative electrode for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, and lithium ion secondary battery using negative electrode for lithium ion secondary battery
JP2013179081A (en) * 2013-05-23 2013-09-09 Nec Corp Secondary battery, and negative electrode for secondary battery
JP2019186227A (en) * 2013-09-26 2019-10-24 株式会社半導体エネルギー研究所 Secondary battery
JP2021180193A (en) * 2013-09-26 2021-11-18 株式会社半導体エネルギー研究所 Secondary battery
US11489148B2 (en) * 2013-09-26 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
JP7225331B2 (en) 2013-09-26 2023-02-20 株式会社半導体エネルギー研究所 secondary battery
KR20220071785A (en) * 2020-11-24 2022-05-31 경상국립대학교산학협력단 Secondary battery electrode and manufacturing method thereof
KR102542420B1 (en) * 2020-11-24 2023-06-13 경상국립대학교산학협력단 Secondary battery electrode and manufacturing method thereof

Also Published As

Publication number Publication date
JP3535454B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
TWI506838B (en) Nonaqueous electrolyte storage battery and manufacturing method thereof
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP3385516B2 (en) Non-aqueous polymer battery and method for producing polymer film for non-aqueous polymer battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
US9831500B2 (en) Porous electrode active material and secondary battery including the same
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JPWO2015111710A1 (en) Non-aqueous secondary battery
CN101355146A (en) Negative electrode, battery, and method for producing them
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP3972577B2 (en) Lithium secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2002042812A (en) Positive active material for lithium secondary battery and lithium secondary battery using the same
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3968772B2 (en) Non-aqueous electrolyte battery
Inaba et al. Up-to-date development of lithium-ion batteries in Japan
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP4162075B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
CN109983601B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2004342626A (en) Method for improving low temperature discharge characteristics of non-aqueous electrolyte lithium secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees