Nothing Special   »   [go: up one dir, main page]

JP2002012446A - Boric phosphoric acid glass for forming transparent insulation coating - Google Patents

Boric phosphoric acid glass for forming transparent insulation coating

Info

Publication number
JP2002012446A
JP2002012446A JP2000192306A JP2000192306A JP2002012446A JP 2002012446 A JP2002012446 A JP 2002012446A JP 2000192306 A JP2000192306 A JP 2000192306A JP 2000192306 A JP2000192306 A JP 2000192306A JP 2002012446 A JP2002012446 A JP 2002012446A
Authority
JP
Japan
Prior art keywords
glass
thermal expansion
point
component
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000192306A
Other languages
Japanese (ja)
Inventor
Nobuya Kuriyama
延也 栗山
Kazutoshi Nakaya
和敏 中屋
Hiroshi Machishita
汎史 町下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2000192306A priority Critical patent/JP2002012446A/en
Publication of JP2002012446A publication Critical patent/JP2002012446A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/08Frit compositions, i.e. in a powdered or comminuted form containing phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide low permittivity glass suitable for coating an electric conductor pattern on a substrate, etc., with moderate coefficient of thermal expansion, low thermal expansion yielding point, and glass transition point, and less prone to deposit devitrification even in melting-cooling process or reheat treating without liquation of P2O5-B2O3. SOLUTION: The boric phosphoric acid glass for forming transparent insulating coating glass has glass component in the range of 40-50 wt.% P2O5, 15-30 wt.% B2O3, 15-35 wt.% ZnO, 0-15 wt.% BaO, 4-10 wt.% K2O and/or Na2O, and the permittivity of 6.0 or less under room temperature at 1 MHz, has ingradients substantially free from lead and bismuth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマディスプ
レイパネル、蛍光表示管等におけるような基材に配した
導電体、半導体パターンを絶縁被覆するうえで好適な硼
リン酸系で実質的にPbO、Bi2O3を含まない融点(熱膨脹
屈伏点)の低い透明なガラスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boric acid-based substantially PbO, which is suitable for insulatingly coating a conductor and a semiconductor pattern disposed on a substrate such as a plasma display panel and a fluorescent display tube. The present invention relates to a transparent glass having a low melting point (thermal expansion yielding point) containing no Bi 2 O 3 .

【0002】[0002]

【従来の技術】従来低融点のガラス、例えば基材に透明
絶縁性被膜を形成するためのガラスには鉛系のガラスが
多く採用されてきた。鉛成分はガラスを低融点とするう
えで重要な成分ではあるものの、人体や環境に与える弊
害が大きく、近年その採用を避ける趨勢にある。
2. Description of the Related Art Conventionally, lead-based glass has been widely used as a glass having a low melting point, for example, a glass for forming a transparent insulating film on a substrate. Although the lead component is an important component for lowering the melting point of glass, it has a serious adverse effect on the human body and the environment, and has recently been tending to avoid its use.

【0003】別にガラスを低融点とするうえで、ガラス
中にビスマス成分、テルル成分等を導入することは知ら
れるところであるが、それらは鉛と同類の重金属である
ことにおいて、環境に対する影響は否めない。
In order to lower the melting point of glass, it is known to introduce a bismuth component, a tellurium component, etc. into the glass. However, since these are heavy metals similar to lead, their effects on the environment are denied. Absent.

【0004】なお、ガラスを低融点とするうえで、アル
カリ金属類も重用される成分であるが、過量の導入は電
気絶縁性等の電気特性を低下させるため、その導入範囲
は極力抑制すべきである。
In order to lower the melting point of glass, alkali metals are components that are also heavily used. However, the introduction of an excessive amount degrades electrical properties such as electrical insulation. It is.

【0005】鉛分を含まず、アルカリ金属類含有のリン
酸系ガラスの公知技術についてみれば、例えば特開昭64
−87531号公報には、P2O5成分の多いガラス釉薬が開示
されているが、それは釉薬を目的とするものであり、P2
O5分が過量である等本発明の成分組成系とは異にする。
また、特開平3−83836号公報には、B2O3、ZnO成分が少
なくLi2O成分を必須として含む模様付け用インクに供す
るガラスが開示されているが、模様を施すためのガラス
であり、Li2O分を含み絶縁性かつ透明な被膜を形成する
うえでは不適当である。
[0005] Regarding the known art of phosphate-based glass containing no alkali metal and containing no lead, for example, Japanese Patent Application Laid-Open No.
The -87531 discloses, although many glass glaze of P 2 O 5 component is disclosed, it is for the purpose of glaze, P 2
This is different from the component composition system of the present invention, for example, the amount of O 5 minutes is excessive.
JP-A-3-83836 discloses a glass to be used for a patterning ink containing B 2 O 3 and a ZnO component in a small amount and containing a Li 2 O component as an essential component. However, it is not suitable for forming an insulating and transparent film containing Li 2 O.

【0006】別に、特開平5−132339号公報には、B2O3
成分を含まず、Li2O成分を必須とし、SnO2、WO3、MoO3
成分等を選択必須成分として含む低温ガラスが開示され
ているが、本発明とは成分系を異にする。
[0006] Separately, Japanese Patent Application Laid-Open No. 5-132339 discloses that B 2 O 3
Contains no components, requires a Li 2 O component, SnO 2 , WO 3 , MoO 3
A low-temperature glass containing components and the like as essential components is disclosed, but the component system is different from the present invention.

【0007】あるいは、特開平8−183632号公報には、
Al2O3分を必須とし、ガラス転移点が低い低融点ガラス
が開示されているが、本発明とは成分組成範囲を異にす
る。
[0007] Alternatively, JP-A-8-183632 discloses that
Although a low-melting glass having a low glass transition point which requires Al 2 O 3 minutes is disclosed, the component composition range is different from that of the present invention.

【0008】更に、特開平9−235136号、特開平11−20
9146号、特開平11−314936号等の公報には、SnOを必須
とするリン酸亜鉛系低融点ガラス、および封着用組成物
が開示されているが、本発明とは成分系を異にし、また
封着を目的とするものである。
Further, JP-A-9-235136 and JP-A-11-20
No. 9146, JP-A-11-314936 and the like disclose a zinc phosphate-based low-melting glass containing SnO as an essential component, and a sealing composition. It is also intended for sealing.

【0009】また、いずれの従来技術においても、誘電
率に着目し、特定値以下とすることについては開示、示
唆していない。
Further, in any of the prior arts, attention is paid to the dielectric constant, and there is no disclosure or suggestion that the value is set to a specific value or less.

【0010】[0010]

【発明が解決しようとする課題】本発明は、基材に配し
た導電体、半導体パターンを絶縁被覆するうえで好適な
硼リン酸系で実質的にPbO、Bi2O3を含まない融点の低い
透明なガラスであり、該低融点ガラスは優れた絶縁材料
であるとともに、誘電率を低くすることによりプラズマ
ディスプレイパネル等における稼働時の消費電力を極力
低減するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a boric acid system suitable for insulatingly covering a conductor and a semiconductor pattern disposed on a base material and having a melting point substantially free from PbO and Bi 2 O 3. It is a low transparent glass, and the low melting glass is an excellent insulating material, and at the same time, reduces the power consumption during operation of a plasma display panel or the like by lowering the dielectric constant.

【0011】[0011]

【課題を解決するための手段】本発明は、ガラス組成が
重量%で、P2O5 40〜50、B2O3 15〜30、ZnO 15〜35、Ba
O 0〜15、K2Oおよび/またはNa2O 4〜10の範囲であ
り、実質的に鉛成分、ビスマス成分を含まない透明絶縁
性被膜形成用硼リン酸系ガラスである。
According to the present invention, the glass composition is expressed in terms of weight%, P 2 O 5 40-50, B 2 O 3 15-30, ZnO 15-35, Ba
It is a range of O 0-15, K 2 O and / or Na 2 O 4-10, and is a borophosphate-based glass for forming a transparent insulating film substantially free of a lead component and a bismuth component.

【0012】また上記組成範囲とすることにより、室温
下1MHzにおける誘電率が6.0以下とすることができ
る。
By setting the above composition range, the dielectric constant at 1 MHz at room temperature can be set to 6.0 or less.

【0013】前記において、30〜300℃の熱膨張係数が6
5〜90×10-7/℃、熱膨張屈伏点が570℃以下とするのが
好ましい。
In the above, the coefficient of thermal expansion at 30 to 300 ° C. is 6
It is preferable that the thermal expansion deformation yield point is 5 to 90 × 10 −7 / ° C. and 570 ° C. or less.

【0014】更に、示差熱分析による 結晶析出温度−
ガラス転移温度が150℃以上とするのが好ましい。
Further, the crystal deposition temperature by differential thermal analysis
Preferably, the glass transition temperature is 150 ° C. or higher.

【0015】なお、熱膨脹屈伏点は軟化点とも称するこ
とがあるが、リトルトン粘度計により測定して得られる
リトルトン点(106ポイズ相当温度)も軟化点と称する
ケースも多く、また相互には若干の温度差があるので、
前記リトルトン点と区別するうえで、本発明においては
熱膨脹屈伏点という。
[0015] Incidentally, the thermal expansion deformation point is sometimes referred to as softening point, Littleton point obtained by measuring by Littleton viscometer (10 6 poises equivalent temperature) many cases referred to as softening point, also the mutually slightly Because there is a temperature difference of
In the present invention, it is referred to as a thermal expansion yielding point to distinguish it from the Littleton point.

【0016】[0016]

【発明の実施の形態】本発明において、ガラス成分を硼
リン酸−亜鉛系とし、組成範囲を特定することにより、
プラズマディスプレイ等における透明絶縁性被膜を形成
するうえで必要な物性を満足し得、特に誘電率を低く抑
えることにより消費電力を低減でき、実質的にPbO、Bi2
O3を含まないことにより人体や環境に与える影響を皆無
とすることができる。また、アルカリ金属類(K2O、Na2
O)の適度な含有はガラスを安定化すると共に適度な熱
膨張係数を与えるものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the glass component is based on boric acid-zinc, and by specifying the composition range,
Physical properties required for forming a transparent insulating film in a plasma display or the like can be satisfied, and in particular, power consumption can be reduced by keeping the dielectric constant low, and PbO, Bi 2
By not including O 3 , there is no effect on the human body and the environment. Alkali metals (K 2 O, Na 2
An appropriate content of O) stabilizes the glass and gives an appropriate coefficient of thermal expansion.

【0017】本発明の硼リン酸系ガラスにおける成分組
成は以下の範囲とする。P2O5は重要なガラス形成成分で
あり、ガラス中40〜50%(重量%表示、以下においても
同様)の範囲で含有させる。40%未満ではガラス形成を
不安定とし、熱処理により失透が発生する。60%を越え
ると熱膨脹屈伏点が過度に上昇する。
The component composition of the borophosphate glass of the present invention is set in the following range. P 2 O 5 is an important glass-forming component, and is contained in the glass in the range of 40 to 50% (expressed by weight%, the same applies to the following description). If it is less than 40%, glass formation becomes unstable, and heat treatment causes devitrification. If it exceeds 60%, the thermal expansion yield point will rise excessively.

【0018】B2O3はガラス形成成分であり、ガラス溶融
を容易とし、ガラスに適度な熱膨張係数を与えるうえで
必須とするもので、ガラス中に15〜30%の範囲で含有さ
せる。15%未満であると安定したガラス形成を得難く、
30%を越えると前記含有範囲におけるP2O5と不混和を生
ずる傾向がある。
B 2 O 3 is a glass-forming component and is essential for facilitating glass melting and giving the glass an appropriate coefficient of thermal expansion. The B 2 O 3 is contained in the glass in the range of 15 to 30%. If it is less than 15%, it is difficult to obtain stable glass formation,
If it exceeds 30%, it tends to be immiscible with P 2 O 5 in the above content range.

【0019】K2O、Na2O は、ガラスを安定化させ、適度
な熱膨張係数をもたせるうえで必須とするもので、K2O
および/またはNa2Oをガラス中4〜10%の範囲で含有さ
せる。4%未満ではその効果が不充分であり、10%を越
えるとガラスの電気絶縁性等の電気特性を損ない、ま
た、ガラスの熱膨脹屈服点を増大させる等の不具合が生
ずる。同じアルカリ金属類において、Li2Oの存在は電気
絶縁性等の電気特性を損ない易く、またガラス原料コス
トを増大するので用いるべきではない。従って本発明に
おけるアルカリ金属類は K2Oおよび/またはNa2Oとする
もので、より好ましくはその大半においてK2Oを採用
し、またはK2Oのみを採用するのが望ましい。
[0019] K 2 O, Na 2 O is intended that the glass to stabilize, as essential in helping to have an appropriate thermal expansion coefficient, K 2 O
And / or Na 2 O is contained in the glass in the range of 4 to 10%. If the amount is less than 4%, the effect is insufficient. If the amount exceeds 10%, the electrical properties such as the electrical insulation of the glass are impaired, and the thermal expansion of the glass is increased. In the same alkali metals, the presence of Li 2 O should not be used because it tends to impair the electrical properties such as electrical insulation and increases the cost of glass raw materials. Therefore, the alkali metals in the present invention are K 2 O and / or Na 2 O, and it is more preferable to use K 2 O or to use only K 2 O for most of them.

【0020】ZnOはガラスの熱膨脹屈伏点を下げ、適度
に流動性を与え、概して熱膨張係数が大きいリン酸塩ガ
ラス構造においてZnイオンが介在して熱膨張係数を適度
に小さくするうえで、ガラス中15〜35%の範囲で含有さ
せる。15%未満では上記効果を発揮し得ず、特にガラス
の熱膨張係数を過大とする。35%を越えるとガラス形成
を困難とする。
ZnO lowers the thermal expansion yield point of the glass and imparts appropriate fluidity. In general, in a phosphate glass structure having a large thermal expansion coefficient, Zn ions intervene to appropriately reduce the thermal expansion coefficient. It is contained in the range of 15-35%. If it is less than 15%, the above effect cannot be exerted, and particularly, the thermal expansion coefficient of the glass becomes excessive. If it exceeds 35%, glass formation becomes difficult.

【0021】BaOはガラスの熱膨脹屈伏点を下げ、適度
に流動性を与え、熱膨張係数を適宜範囲に調整するうえ
で必要に応じ含有させるもので、ガラス中15%以下にお
いて適宜含有させる。15%を越えると熱膨張係数を過度
に上昇する。
BaO is included as necessary in lowering the thermal expansion yield point of the glass, imparting appropriate fluidity, and adjusting the thermal expansion coefficient to an appropriate range. The content of BaO is 15% or less in the glass. If it exceeds 15%, the coefficient of thermal expansion increases excessively.

【0022】熱膨張係数、熱膨脹屈伏点、ガラス溶融
性、対失透析出性等を総合的に考慮すれば、(Na2O+K2O
の合計)/(P2O5+B2O3の合計)の重量比が0.05〜0.15の
範囲とするのが好ましく、0.05未満ではガラスの熱膨脹
屈伏点を充分下げるのが困難であり、0.15を越えるとガ
ラスの電気特性を損なう恐れがある。
Considering the thermal expansion coefficient, the thermal expansion yield point, the glass melting property, the dialysis-removing property, and the like, (Na 2 O + K 2 O
Total) / (is preferably a weight ratio of P total 2 O 5 + B 2 O 3 ) is in the range of 0.05 to 0.15, is less than 0.05 is difficult to reduce sufficiently the thermal expansion deformation point of the glass, 0.15 Exceeding this may impair the electrical properties of the glass.

【0023】なお、Al2O3はガラスに適度な熱膨張係数
と熱膨脹屈伏点を与えるうえで1%以下の範囲で含有さ
せることができる。MgO、CaO、SrOの二価金属酸化物も
ガラスに適度な熱膨張係数、熱膨脹屈伏点を与え、また
ガラス溶融性を改善するうえで、上記の1種、またはそ
れ以上を3%以下の範囲で含有させることができる。
Al 2 O 3 can be contained in the glass in an amount of 1% or less in order to give the glass an appropriate thermal expansion coefficient and a thermal expansion yield point. The divalent metal oxides of MgO, CaO, and SrO also give the glass an appropriate thermal expansion coefficient and thermal expansion yield point, and in order to improve the glass melting property, one or more of the above-mentioned ones is in a range of 3% or less. Can be contained.

【0024】また、PbO、Bi2O3等は、ガラス原料やカレ
ット中に不純物として混入する程度の量、夫々低融点ガ
ラス中0.3%以下の範囲であれば、先述した弊害、すな
わち人体、環境に対する影響、電気特性等に与える影響
は殆どない。
If the amount of PbO, Bi 2 O 3, etc. mixed into glass raw materials or cullet as impurities is within the range of 0.3% or less in the low-melting glass, respectively, the above-mentioned adverse effects, that is, the human body and the environment And there is almost no effect on electrical characteristics.

【0025】本発明における基材としては透明なガラス
基材、特にソーダ石灰シリカ系ガラス又はそれに類似す
るガラス(高歪点ガラス)が一般的であり、その熱膨張係
数は30℃〜300℃においてほぼ70〜90×10-7/℃であ
り、本発明の低融点ガラスもそれに近似させることによ
り、形成した被膜の剥離、基材の歪み等の弊害を防ぐも
のである。
As the substrate in the present invention, a transparent glass substrate, particularly a soda-lime-silica glass or a glass similar thereto (high strain point glass) is generally used, and its thermal expansion coefficient is 30 ° C. to 300 ° C. It is about 70 to 90 × 10 −7 / ° C., and the low melting point glass of the present invention is made to approximate to this, thereby preventing adverse effects such as peeling of the formed film and distortion of the substrate.

【0026】また前記ガラスからなる基材の熱膨張屈伏
点はほぼ620℃以上であるのに対し、本発明のガラスの
それは570℃以下と充分低くすることにより、焼付け温
度も相応して低くすることができ、焼付けに際する基材
の軟化変形、熱収縮を抑制することができる。
The base material made of the above-mentioned glass has a thermal expansion deformation point of about 620 ° C. or more, whereas that of the glass of the present invention is sufficiently low at 570 ° C. or less, so that the baking temperature is correspondingly lowered. It is possible to suppress softening deformation and heat shrinkage of the substrate during baking.

【0027】本発明のガラスは室温下1MHzにおける誘
電率を6.0以下とすることにより、プラズマディスプレ
イ等において低い印加電圧で放電空間内の希ガスを励起
でき、蛍体の発光を容易とし、従って消費電力を極力低
減できる。なお、常温下の体積抵抗率が1010Ω・cm以上
であれば絶縁体の範疇であるが、本発明のガラスは250
℃においても体積抵抗率が1011Ω・cm以上と高く、導電
体、半導体パターンを絶縁被覆するうえで良好な電気絶
縁性を有する。
The glass of the present invention can excite a rare gas in the discharge space with a low applied voltage in a plasma display or the like by making the dielectric constant at room temperature 1 MHz at 1 MHz or less, facilitating the light emission of the phosphor, and hence the consumption. Electric power can be reduced as much as possible. In addition, if the volume resistivity at room temperature is 10 10 Ωcm or more, it is in the category of an insulator.
Even at ℃, the volume resistivity is as high as 10 11 Ω · cm or more, and it has a good electric insulating property for insulatingly covering conductors and semiconductor patterns.

【0028】更に、示差熱分析による 結晶析出温度−
ガラス転移温度:Tc−Tg(℃)を150℃以上とすること
により、ガラス転移点以上での熱処理に際して失透の析
出、ガラスの不透明化が生じ難いことを示すもので、よ
り好ましくはTc−Tg(℃)を200℃以上とするのが望まし
い。
Further, the crystal deposition temperature by differential thermal analysis
Glass transition temperature: Tc−Tg (° C.) of 150 ° C. or higher indicates that precipitation of devitrification and opacity of glass hardly occur during heat treatment at a temperature higher than the glass transition point, and more preferably Tc− It is desirable that Tg (° C.) be 200 ° C. or higher.

【0029】[0029]

【実施例】〔低融点ガラスの作製〕P2O5源としてリン酸
を、B2O3源としてほう酸を、あるいはこれらの複合原料
としてリン酸ホウ素を、Na2O源として炭酸ナトリウム
を、K2O源として炭酸カリウムを、BaO源として炭酸バリ
ウムを、ZnO源として亜鉛華を使用し、所望の低融点ガ
ラス組成となるべく調合したうえで、粉末原料のみを白
金ルツボに投入し、液体原料であるリン酸を滴下し、反
応を行った。さらに電気加熱炉内で500℃、1時間反応
を進行させ、次いで電気加熱炉内で1000〜1100℃、1〜
2時間で加熱溶融した後、カーボン板に流し出し、徐冷
することにより、表1〜表3の実施例、比較例に示す組
成のガラスを得た。それらのガラス試料は以下の試験に
供した。
[Example] [Preparation of low melting point glass] Phosphoric acid as a P 2 O 5 source, boric acid as a B 2 O 3 source, or boron phosphate as a composite material thereof, sodium carbonate as a Na 2 O source, Using potassium carbonate as a K 2 O source, barium carbonate as a BaO source, and zinc white as a ZnO source, mixing them to obtain a desired low-melting glass composition, then putting only the powder raw material into a platinum crucible, Was dropped, and a reaction was performed. Further, the reaction was allowed to proceed at 500 ° C. for 1 hour in an electric heating furnace, and then at 1000 to 1100 ° C., 1 to 1 in the electric heating furnace.
After heating and melting for 2 hours, the mixture was poured out onto a carbon plate and gradually cooled to obtain glasses having compositions shown in Examples and Comparative Examples in Tables 1 to 3. The glass samples were subjected to the following tests.

【0030】〔試料観察−ガラス化の有無〕ガラス試料
を拡大鏡下で観察し、失透その他結晶物のないものを良
好(○)、それらが認められるものを不良(×)で評価
した。
[Sample Observation-Presence or Absence of Vitrification] The glass sample was observed under a magnifying glass, and those having no devitrification and other crystalline materials were evaluated as good (○), and those observed were evaluated as poor (×).

【0031】〔直流体積抵抗率の測定〕徐冷したガラス
から50mmφ×1〜2mm厚のサイズのガラス試料を切り出
し、表面を微粒砥粒で研磨した。更に充分洗浄し乾燥し
た後、主電極、ガード電極および対電極を金蒸着により
形成し測定試料とした。試料を体積抵抗率測定装置にセ
ットし、高真空に保持したうえで、所定の温度250℃に
昇温後、3端子法により試料の直流体積抵抗率を測定し
た。なお前記温度における直流体積抵抗率が1011Ω・cm
以上であれば申し分ないものである。
[Measurement of DC Volume Resistivity] A glass sample having a size of 50 mmφ × 1 to 2 mm thick was cut out from slowly cooled glass, and the surface was polished with fine abrasive grains. After further washing and drying, a main electrode, a guard electrode and a counter electrode were formed by gold evaporation to obtain a measurement sample. The sample was set in a volume resistivity measuring apparatus, and after maintaining a high vacuum, the temperature was raised to a predetermined temperature of 250 ° C., and then the direct current volume resistivity of the sample was measured by a three-terminal method. The DC volume resistivity at the above temperature is 10 11 Ωcm
Above is satisfactory.

【0032】〔誘電率の測定〕徐冷したガラスから50mm
φ×1〜2mm厚のサイズのガラス試料を切り出し、測定
ブリッジに試料をセットし、室温での試料静電容量を測
定し、電極面積、試料厚みから誘電率を算出した。な
お、測定周波数は1MHzとした。誘電率は6.0以下とする
ことにより電力消費量を格段と低減できる。
[Measurement of dielectric constant] 50 mm from slowly cooled glass
A glass sample having a size of φ × 1 to 2 mm was cut out, the sample was set on a measurement bridge, the sample capacitance at room temperature was measured, and the dielectric constant was calculated from the electrode area and the sample thickness. The measurement frequency was 1 MHz. By setting the dielectric constant to 6.0 or less, power consumption can be significantly reduced.

【0033】〔熱膨張係数の測定〕ガラス試料を所定寸
法に切断したうえで、示差熱膨張計にセットし、5℃/
分の速度で昇温して伸び量を測定、記録し、30〜300℃
の平均熱膨張係数α(×10-7/℃)を算出した。なお、
熱膨張係数は基材の熱膨張係数に近似させるもので、30
〜300℃の熱膨張係数が65〜90×10-7/℃とするもので
ある。
[Measurement of Thermal Expansion Coefficient] A glass sample was cut into a predetermined size, and then set on a differential thermal dilatometer.
Measure the elongation by heating at the rate of minutes, record the temperature, 30 ~ 300 ℃
The average coefficient of thermal expansion α (× 10 −7 / ° C.) was calculated. In addition,
The coefficient of thermal expansion approximates the coefficient of thermal expansion of the substrate,
The thermal expansion coefficient at -300 ° C is 65-90 × 10 -7 / ° C.

【0034】〔ガラス転移点、熱膨張屈伏点の測定〕前
記熱膨張データよりガラス転移点(Tg(℃))、および熱
膨張屈伏点(Tyield(℃))を測定した。熱膨脹屈伏点は
570℃以下とすべきものである。
[Measurement of glass transition point and thermal expansion yield point] The glass transition point (Tg (° C)) and thermal expansion yield point (T yield (° C)) were measured from the above thermal expansion data. The thermal expansion yield point is
It should be 570 ° C or less.

【0035】〔結晶析出温度の測定、結晶析出温度−ガ
ラス転移点の算出〕微粉砕したガラス試料を示差熱分析
計にセットし、10℃/分の速度で1000℃まで昇温して吸
熱、発熱ピークを測定、記録した。うち、結晶析出にも
とづく発熱ピークを結晶析出温度(Tc(℃))とし、結晶
の析出の有無については拡大鏡下で確認した。上記結晶
析出温度(Tc)から前記ガラス転移点(Tg)を減じた値
より、結晶析出温度−ガラス転移点間の温度差:Tc−Tg
(℃)を算出した。なお、ガラス転移点以上の熱処理に
際してTc−Tg(℃) の値が大きい程失透の析出、ガラス
の不透明化が生じ難いことを示すもので、Tc−Tg(℃)
≧150(℃)であることが好ましい。
[Measurement of Crystal Precipitation Temperature, Calculation of Crystal Precipitation Temperature-Glass Transition Point] A finely pulverized glass sample was set in a differential thermal analyzer, and the temperature was raised to 1000 ° C. at a rate of 10 ° C./min. The exothermic peak was measured and recorded. Among these, the exothermic peak based on the crystal precipitation was defined as the crystal deposition temperature (Tc (° C.)), and the presence or absence of the crystals was confirmed under a magnifying glass. From the value obtained by subtracting the glass transition point (Tg) from the crystal precipitation temperature (Tc), a temperature difference between the crystal precipitation temperature and the glass transition point: Tc−Tg
(° C.) was calculated. It should be noted that the larger the value of Tc-Tg (° C.) during the heat treatment at or above the glass transition point, the more difficult it is to show that precipitation of devitrification and opacity of the glass do not occur.
It is preferable that ≧ 150 (° C.).

【0036】〔絶縁被膜の酸エッチング速度の測定〕基
板上に導電体パターンや半導体パターンを形成し、それ
を軟化点(熱膨脹屈伏点)の低いガラスの被膜で絶縁被
覆する場合において、一旦基板表面および導電体・半導
体パターン全体を前記ガラス被膜で被覆後、前記導電体
・半導体パターンの端部を露出させて外部リード線と接
続すべく、当該端部を被覆したガラス被膜を酸エッチン
ッグにより除去するケースがある。この場合、ガラス被
膜は酸エッチングにより除去し易いことが好ましく、具
体的には室温(25℃)下、7重量%硝酸水溶液による被
膜の厚み方向に対する除去速度が3μm/分以上である
ことが望まれる。上記条件でエッチングし、1分当たり
の除去速度を測定した。
[Measurement of Acid Etching Rate of Insulating Film] When a conductor pattern or a semiconductor pattern is formed on a substrate and the insulating film is coated with a glass film having a low softening point (thermal expansion yielding point), the substrate surface is temporarily removed. After covering the entire conductor / semiconductor pattern with the glass coating, the glass coating covering the end is removed by acid etching so as to expose the end of the conductor / semiconductor pattern and connect to an external lead wire. There are cases. In this case, it is preferable that the glass coating is easily removed by acid etching. Specifically, it is desirable that the removal rate in the thickness direction of the coating with a 7% by weight aqueous nitric acid solution at room temperature (25 ° C.) be 3 μm / min or more. It is. Etching was performed under the above conditions, and the removal rate per minute was measured.

【0037】〔結果〕各種試験結果を表1〜表3に示
す。
[Results] The results of various tests are shown in Tables 1 to 3.

【0038】表1〜表3から明らかなように、本発明に
かかる実施例においては、適度なガラス熱膨張係数、低
い熱膨張屈伏点、ガラス転移点を有し、溶融−冷却過程
や再熱処理においても失透が析出し難く、P2O5−B2O3
不混和もなく、基板特にガラス基板上の導電体パターン
等の被覆などにおいて著効を奏する。他方比較例は、上
記熱物性を満足し得ない。
As is clear from Tables 1 to 3, the examples according to the present invention have an appropriate glass thermal expansion coefficient, a low thermal expansion deformation point and a glass transition point, and have a melting-cooling process and a re-heat treatment. In this case, devitrification hardly precipitates, there is no immiscibility of P 2 O 5 —B 2 O 3, and a remarkable effect is exhibited in coating a conductive pattern on a substrate, particularly a glass substrate. On the other hand, the comparative example cannot satisfy the above thermophysical properties.

【0039】[0039]

【表1】 注 表中∞は結晶化ヒ゜ークが生じなかったことを表す。
(以下においても同様)
[Table 1] Note: (1) in the table indicates that no crystallization peak occurred.
(The same applies to the following)

【0040】[0040]

【表2】 注 表中 - はカ゛ラス化しなかったため未測定である。(以
下においても同様)
[Table 2] Note:-in the table is not measured because it was not crowed. (The same applies to the following)

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】本発明によれば、適度なガラス熱膨張係
数、低い熱膨張屈伏点、ガラス転移点を有し、溶融−冷
却過程や再熱処理においても失透が析出し難く、P2O5
B2O3の不混和もなく、基板上の導電体パターン等の被覆
などに好適であり、誘電率を特定値以下としたことによ
り、プラズマディスプレイ等において消費電力を極力低
減できる。
According to the present invention, suitable glass thermal expansion coefficient, low thermal expansion deformation point, has a glass transition temperature, melt - hardly devitrification precipitates in the cooling process and reheating, P 2 O 5
There is no immiscibility of B 2 O 3 , which is suitable for covering a conductive pattern on a substrate or the like. By setting the dielectric constant to a specific value or less, power consumption in a plasma display or the like can be reduced as much as possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町下 汎史 三重県松阪市大口町1510 セントラル硝子 株式会社硝子研究所内 Fターム(参考) 4G062 AA08 AA09 BB09 DA01 DB01 DC04 DD05 DE04 DE05 DF01 EA01 EA10 EB01 EB02 EB03 EC01 EC02 EC03 ED01 EE01 EF01 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM07 NN26 NN32  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor, Panshi Machishita 1510 Oguchicho, Matsusaka-shi, Mie Central Glass F-term in Glass Research Laboratories, Inc. (reference) 4G062 AA08 AA09 BB09 DA01 DB01 DC04 DD05 DE04 DE05 DF01 EA01 EA10 EB01 EB02 EB03 EC01 EC02 EC03 ED01 EE01 EF01 EG01 EG02 EG03 EG04 FA01 FA10 FB01 FC01 FD01 FE01 FF01 FG01 FH01 FJ01 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HHJ KK KKHH KK NN32

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス組成が重量%で、P2O5 40〜50、B2O
3 15〜30、ZnO 15〜35、BaO 0〜15、K2Oおよび/また
はNa2O 4〜10の範囲、かつ室温下1MHzにおける誘電率
が6.0以下であり、実質的に鉛成分、ビスマス成分を含
まないことを特徴とする透明絶縁性被膜形成用硼リン酸
系ガラス。
(1) A glass composition having a weight percentage of P 2 O 5 40-50, B 2 O
3 15-30, ZnO 15-35, BaO 0-15, K 2 O and / or Na 2 O 4-10, and a dielectric constant at 1 MHz at room temperature of 6.0 or less, substantially a lead component, bismuth A boric acid-based glass for forming a transparent insulating film, characterized by containing no component.
【請求項2】30〜300℃の熱膨張係数が65〜90×10-7
℃、熱膨張屈伏点が570℃以下であることを特徴とする
請求項1記載の透明絶縁性被膜形成用硼リン酸系ガラ
ス。
2. The thermal expansion coefficient at 30 to 300 ° C. is 65 to 90 × 10 -7 /
The borophosphate-based glass for forming a transparent insulating film according to claim 1, wherein the glass has a thermal expansion deformation point of 570 ° C or lower.
【請求項3】示差熱分析による 結晶析出温度−ガラス
転移温度が150℃以上であることを特徴とする請求項1
または2記載の透明絶縁性被膜形成用硼リン酸系ガラ
ス。
3. The method according to claim 1, wherein a difference between a crystal deposition temperature and a glass transition temperature by differential thermal analysis is 150 ° C. or more.
Or the borophosphate-based glass for forming a transparent insulating film according to 2.
JP2000192306A 2000-06-27 2000-06-27 Boric phosphoric acid glass for forming transparent insulation coating Pending JP2002012446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192306A JP2002012446A (en) 2000-06-27 2000-06-27 Boric phosphoric acid glass for forming transparent insulation coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192306A JP2002012446A (en) 2000-06-27 2000-06-27 Boric phosphoric acid glass for forming transparent insulation coating

Publications (1)

Publication Number Publication Date
JP2002012446A true JP2002012446A (en) 2002-01-15

Family

ID=18691457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192306A Pending JP2002012446A (en) 2000-06-27 2000-06-27 Boric phosphoric acid glass for forming transparent insulation coating

Country Status (1)

Country Link
JP (1) JP2002012446A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036570A (en) * 2004-07-26 2006-02-09 Asahi Glass Co Ltd Low melting point glass for covering electrode
JP2009227474A (en) * 2008-03-19 2009-10-08 Ohara Inc Lithium ion conductive solid electrolyte and method of manufacturing the same
JPWO2017038687A1 (en) * 2015-08-28 2018-06-14 興亜硝子株式会社 Glass-coated phosphorescent material and method for producing glass-coated phosphorescent material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036570A (en) * 2004-07-26 2006-02-09 Asahi Glass Co Ltd Low melting point glass for covering electrode
JP2009227474A (en) * 2008-03-19 2009-10-08 Ohara Inc Lithium ion conductive solid electrolyte and method of manufacturing the same
JPWO2017038687A1 (en) * 2015-08-28 2018-06-14 興亜硝子株式会社 Glass-coated phosphorescent material and method for producing glass-coated phosphorescent material

Similar Documents

Publication Publication Date Title
US5854153A (en) Glasses for display panels
CA1183555A (en) Glass-ceramic coatings for use on metal substrates
US6475605B2 (en) Low-melting glass for covering substrate
KR100511617B1 (en) Lead-free low-melting glass
JP2995728B2 (en) Low dielectric constant glass composition
JP3831957B2 (en) Glass composition and substrate for plasma display
JP2002053342A (en) Low melting point glass for electrode coating
WO1996009259A1 (en) Substrate glasses for plasma displays
JP3804115B2 (en) Glass substrate
JP4686858B2 (en) Glass substrate for flat panel display
JPH11180726A (en) Substrate for plasma display panel and low melting point glass composition
KR20070088296A (en) Glass for coating electrode
JP3460298B2 (en) Glass composition for substrates
JP3741526B2 (en) Substrate glass for display devices
JP2001261369A (en) Low melting point glass composition
CN101376562B (en) Dielectric layer lead-less glasses material for plasma display screen
JP3770670B2 (en) Substrate glass for display devices
JP2002012446A (en) Boric phosphoric acid glass for forming transparent insulation coating
JPH1045423A (en) Plasma display device
JP4389257B2 (en) Glass substrate for flat panel display
JP4071448B2 (en) Low melting glass
JP4756428B2 (en) Glass substrate for flat panel display
EP0850891A1 (en) Substrate glass and plasma display made by using the same
JPH11236244A (en) Low melting point glass composition for coating electrode and plasma display device
JP3456631B2 (en) Low melting point glass for forming transparent insulating film