JP2002087103A - Limited slip differential for vehicle - Google Patents
Limited slip differential for vehicleInfo
- Publication number
- JP2002087103A JP2002087103A JP2000280478A JP2000280478A JP2002087103A JP 2002087103 A JP2002087103 A JP 2002087103A JP 2000280478 A JP2000280478 A JP 2000280478A JP 2000280478 A JP2000280478 A JP 2000280478A JP 2002087103 A JP2002087103 A JP 2002087103A
- Authority
- JP
- Japan
- Prior art keywords
- torque
- vehicle
- differential
- steering
- angular velocity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、車両の前後輪間や
左右輪間の差動を制限する車両用差動制限装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential limiting device for a vehicle for limiting a differential between front and rear wheels and between left and right wheels of a vehicle.
【0002】[0002]
【関連する背景技術】近年広く実用化されているフルタ
イム4輪駆動車では、車両の旋回時に発生する前後輪間
の回転差をセンタデフにより許容して、所謂タイトコー
ナブレーキング現象を防止している。この種のセンタデ
フには油圧多板クラッチからなる差動制限装置が備えら
れる場合があり、油圧多板クラッチによりセンタデフに
拘束トルクを作用させて差動状態を制限し、これにより
前後輪のトルク配分を調整して走行特性(例えば、回頭
性や走行安定性等)を任意に変更可能としている。2. Related Background Art In a full-time four-wheel drive vehicle that has been widely put into practical use in recent years, a center differential allows a rotation difference between front and rear wheels generated when the vehicle turns to prevent a so-called tight corner braking phenomenon. I have. In some cases, this type of center differential is provided with a differential limiting device comprising a hydraulic multi-plate clutch. The differential state is restricted by applying a restraining torque to the center differential by the hydraulic multi-plate clutch, thereby distributing the torque between the front and rear wheels. The running characteristics (e.g., turning performance and running stability) can be arbitrarily changed by adjusting.
【0003】車両の運転状態に応じた最適な走行特性を
達成させるべく、拘束トルクは種々のパラメータに基づ
いて設定される。例えば、運転者による急操舵が行われ
たときには、車両の回頭性を向上させて迅速に姿勢変更
すべきとの観点の基に、操舵角速度が所定値以上のとき
に拘束トルクを減少補正して、車両の回頭性を確保する
ようにしたものがある。[0003] In order to achieve optimum running characteristics according to the driving state of the vehicle, the restraining torque is set based on various parameters. For example, when sudden steering by the driver is performed, the restraining torque is reduced and corrected when the steering angular velocity is equal to or more than a predetermined value, based on the viewpoint that the turning performance of the vehicle should be improved and the attitude should be changed quickly. In some cases, the turning performance of a vehicle is ensured.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、急操舵
により操舵角速度が増加するのは操舵初期のごく短時間
であり、上記した差動制限装置では、その間だけ補正値
の切換により拘束トルクが減少補正されるに過ぎない。
よって、拘束トルク制御の油圧回路の応答性等によって
は、補正が行われても実際の拘束トルクがほとんど変化
しない場合もあり、結果として拘束トルク制御が車両の
挙動に反映されず、十分な回頭性の確保は到底期待でき
なかった。However, the increase in the steering angular velocity due to sudden steering is only for a very short time at the beginning of steering, and in the differential limiting device described above, the restraint torque is reduced by switching the correction value only during that time. It is just done.
Therefore, depending on the responsiveness of the hydraulic circuit of the restraint torque control, the actual restraint torque may hardly change even if the correction is performed. As a result, the restraint torque control is not reflected in the behavior of the vehicle, resulting in a sufficient turning. I couldn't expect to secure sex.
【0005】本発明の目的は、操舵状態に応じた適切な
期間に亘って拘束トルクを変化させて車両の挙動に確実
に反映させ、もって、常に最適な走行特性を実現するこ
とができる車両用差動制限装置を提供することにある。An object of the present invention is to change the restraining torque over an appropriate period according to the steering state and to surely reflect the restraining torque on the behavior of the vehicle, so that the optimum running characteristics can always be realized. It is to provide a differential limiting device.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明では、エンジンからの駆動力を各駆動輪に差
動を許容して分配する差動手段と、差動手段に拘束トル
クを作用させて差動を制限可能な差動制限手段と、操舵
角速度に基づいて差動制限手段の拘束トルクを制御する
制御手段とを有し、制御手段の応答性を、拘束トルクの
減少側に対して増加側を低く設定した。In order to achieve the above object, according to the present invention, there is provided a differential means for distributing a driving force from an engine to each driving wheel while allowing a differential, and a constraint torque applied to the differential means. Differential limiting means capable of acting to limit the differential, and control means for controlling the restraining torque of the differential limiting means based on the steering angular velocity, and the responsiveness of the control means is reduced on the reducing torque side. On the other hand, the increasing side was set lower.
【0007】従って、急操舵時には車両の回頭性の確保
等を目的として、例えば操舵角速度の増加に伴って差動
制限手段の拘束トルクが減少側に制御される。操舵角速
度が増加するのは操舵初期のごく短時間であるが、拘束
トルクの減少時に比較して増加時には低い応答性が適用
されるため、拘束トルクは速やかに減少した後に緩やか
に増加することになる。その結果、操舵角速度の増加期
間に対して、拘束トルクがより長時間に亘って減少状態
に保持されて、このときの拘束トルクの変化が車両の挙
動に確実に反映される。Therefore, for the purpose of ensuring turning performance of the vehicle at the time of sudden steering, for example, the restraining torque of the differential limiting means is controlled to decrease as the steering angular velocity increases. The steering angular velocity increases only for a very short period of time at the beginning of steering, but since the responsiveness is low when the restraint torque increases compared to when the restraint torque decreases, the restraint torque rapidly decreases and then gradually increases. Become. As a result, the restraint torque is maintained in a reduced state for a longer time during the increase period of the steering angular velocity, and the change in the restraint torque at this time is surely reflected in the behavior of the vehicle.
【0008】[0008]
【発明の実施の形態】以下、本発明をセンタディファレ
ンシャル(以下、センタデフという)の差動を制限する
差動制限装置に具体化した一実施形態を説明する。図1
は本実施形態の車両用作動制限装置を示す全体構成図、
図2はセンタデフ及びフロントデフの詳細を示す部分拡
大図である。これらの図に示すように、差動手段として
のセンタデフ1はフロントディファレンシャル(以下、
フロントデフという)2と共に車両の前輪3Fの車軸上
に配設され、エンジン4の回転が手動式の変速機5を介
してセンタデフ1の外周のリングギア6に入力されるよ
うになっている。センタデフ1はピニオンギア7に一対
のサイドギア8a,8bを噛合させた一般的な構成であ
り、エンジン4によりリングギア6が回転駆動されると
一体でピニオンギア7が回転し、左右のサイドギア8
a,8bに回転差を許容しながら50:50の比率でト
ルクが配分される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is embodied in a differential limiting device for limiting a differential of a center differential (hereinafter, referred to as a center differential) will be described. FIG.
Is an overall configuration diagram showing the vehicle operation restriction device of the present embodiment,
FIG. 2 is a partially enlarged view showing details of a center differential and a front differential. As shown in these figures, a center differential 1 as a differential means is a front differential (hereinafter, referred to as a front differential).
It is disposed on the axle of the front wheel 3F of the vehicle together with a front differential 2 so that the rotation of the engine 4 is input to a ring gear 6 on the outer periphery of the center differential 1 via a manual transmission 5. The center differential 1 has a general configuration in which a pair of side gears 8a and 8b are meshed with a pinion gear 7. When the ring gear 6 is rotationally driven by the engine 4, the pinion gear 7 rotates integrally, and the left and right side gears 8 rotate.
The torque is distributed at a ratio of 50:50 while allowing a rotation difference between a and 8b.
【0009】センタデフ1の一方のサイドギア8aはフ
ロントデフ2のアウタケーシング9に連結され、アウタ
ケーシング9の外周に設けられたリングギア10がピニ
オンギア11及びプロペラシャフト12を介してリアデ
ィファレンシャル(以下、リアデフという)13に接続
されている。一方のサイドギア8aと共にアウタケーシ
ング9が回転すると、その回転はリングギア10、ピニ
オンギア11、プロペラシャフト12を経てリアデフ1
3に伝達され、ドライブシャフト14を介して左右の後
輪3Rが回転駆動されると共に、リアデフ13に内蔵さ
れた図示しない差動機構により左右の回転差が許容され
る。One side gear 8a of the center differential 1 is connected to an outer casing 9 of the front differential 2, and a ring gear 10 provided on the outer periphery of the outer casing 9 is connected via a pinion gear 11 and a propeller shaft 12 to a rear differential. 13 (referred to as a rear differential). When the outer casing 9 rotates together with one of the side gears 8a, the rotation is transmitted via the ring gear 10, the pinion gear 11, and the propeller shaft 12 to the rear differential 1.
3, and the right and left rear wheels 3R are rotationally driven via the drive shaft 14, and a differential mechanism (not shown) incorporated in the rear differential 13 allows a left and right rotational difference.
【0010】センタデフ1の他方のサイドギア8bは、
前記アウタケーシング9に内装されたインナケーシング
15に接続され、このインナケーシング15内に支持さ
れた一対のプラネタリギア16は、左右のドライブシャ
フト17の内端に形成されたサンギア18にそれぞれ噛
合している。他方のサイドギア8bと共にインナケーシ
ング15が回転すると、その回転はプラネタリギア1
6、サンギア18を経てドライブシャフト17に伝達さ
れて左右の前輪3Fが回転駆動されると共に、プラネタ
リギア16の自転に伴って左右の回転差が許容される。The other side gear 8b of the center differential 1 is
A pair of planetary gears 16 connected to an inner casing 15 housed in the outer casing 9 and supported in the inner casing 15 mesh with sun gears 18 formed at inner ends of left and right drive shafts 17, respectively. I have. When the inner casing 15 rotates together with the other side gear 8b, the rotation is
6, transmitted to the drive shaft 17 via the sun gear 18, the left and right front wheels 3F are driven to rotate, and the rotation difference between the left and right is allowed as the planetary gear 16 rotates.
【0011】フロントデフ2のアウタケーシング9とイ
ンナケーシング15との間には,差動制限手段としての
油圧多板クラッチ19が設けられ、この油圧多板クラッ
チ19の係合状態に応じて拘束トルクが発生して、両ケ
ーシング9,15の相対回転が規制される。油圧多板ク
ラッチ19の完全開放時(拘束トルク0)には、両ケー
シング9,15が回転規制されることなくフリー状態に
保持されて、上記のように50:50の比率で前輪3F
側と後輪3R側へのトルク配分が行われ、一方、油圧多
板クラッチ19の完全係合時(拘束トルク最大)には、
両ケーシング9,15が回転規制されてロック状態に保
持され、このときには前後輪3F,3Rの接地荷重に応
じた比率でトルク配分が行われる。そして、このような
拘束トルクの調整に応じて、後述のように車両の走行特
性が変化する。油圧多板クラッチ19は油圧ユニット2
0から作動油の供給を受けて作動し、その作動油の供給
状態がソレノイドバルブ21で制御されることにより油
圧多板クラッチ19の係合状態が調整されて、任意の拘
束トルクが実現される。A hydraulic multi-plate clutch 19 is provided between the outer casing 9 and the inner casing 15 of the front differential 2 as a differential limiting means. Occurs, and the relative rotation of the casings 9 and 15 is regulated. When the hydraulic multi-disc clutch 19 is completely disengaged (restraint torque 0), the casings 9 and 15 are held in a free state without being restricted in rotation, and the front wheels 3F are arranged at a ratio of 50:50 as described above.
When the hydraulic multi-plate clutch 19 is fully engaged (maximum restraining torque), torque is distributed to the rear wheel 3R and the rear wheel 3R.
The rotation of both casings 9, 15 is held in a locked state, and at this time, torque is distributed at a ratio according to the ground load of the front and rear wheels 3F, 3R. Then, according to the adjustment of the restraint torque, the running characteristics of the vehicle change as described later. The hydraulic multi-plate clutch 19 is used for the hydraulic unit 2
When the hydraulic oil is supplied from 0, the hydraulic oil is operated, and the supply state of the hydraulic oil is controlled by the solenoid valve 21, whereby the engagement state of the hydraulic multi-plate clutch 19 is adjusted, and an arbitrary restraining torque is realized. .
【0012】一方、車両の室内には、制御手段としての
4WD用ECU(電子制御ユニット)31が図示しない
エンジン・変速機用ECUやABS用ECU等と共に設
置されており、この4WD用ECU31は他のECUと
同様に、図示しない入出力装置、制御プログラムや制御
マップ等の記憶に供される記憶装置(ROM,RAM
等)、中央処理装置(CPU)、タイマカウンタ等を備
えている。4WD用ECU31の入力側には、車両に作
用する前後方向の加速度Gxを検出する前後加速度セン
サ33、ステアリング操舵角θsを検出する操舵角セン
サ37、及び、運転者が高μ路面(例えば、舗装路)、
中μ路面(例えば、未舗装路)、低μ路面(例えば、凍
結路)の3種の路面状況を選択するためのモード切換ス
イッチ38が接続されている。又、4WD用ECU31
の出力側には、前記ソレノイドバルブ21が接続されて
いる。On the other hand, a 4WD ECU (Electronic Control Unit) 31 as control means is installed together with an engine / transmission ECU, an ABS ECU and the like (not shown) in the cabin of the vehicle. Similarly to the ECU of the first embodiment, an input / output device (not shown) and a storage device (ROM, RAM
Etc.), a central processing unit (CPU), a timer counter and the like. On the input side of the 4WD ECU 31, a longitudinal acceleration sensor 33 for detecting a longitudinal acceleration Gx acting on the vehicle, a steering angle sensor 37 for detecting a steering angle θs, and a driver having a high μ road surface (for example, pavement) Road),
A mode changeover switch 38 for selecting three kinds of road surface conditions, that is, a medium μ road surface (for example, an unpaved road) and a low μ road surface (for example, a frozen road) is connected. 4WD ECU 31
The solenoid valve 21 is connected to the output side of the solenoid valve.
【0013】次に、以上のように構成された車両用差動
制限装置のECU31が実行するセンタデフ1の差動制
限制御、特に差動制限制御に適用する拘束トルクの設定
手順を説明する。図3はECUが実行する拘束トルクの
設定手順を系統的に示したブロック図である。図に示す
ように、この拘束トルク設定手順は、車両の運転状態に
応じて異なるパラメータからそれぞれ拘束トルクを算出
する前後差回転拘束トルク設定部41、前後G比例拘束
トルク設定部42、加速対応拘束トルク設定部43、及
び減速対応拘束トルク設定部44と、それらの各設定部
41〜44で設定された拘束トルクTv,Tx,Ta,Tb
から最終的な拘束トルクTfinalを設定する最終拘束ト
ルク設定部45とから構成されている。Next, a description will be given of a procedure for setting the restrictive torque applied to the differential limiting control of the center differential 1, particularly the differential limiting control, which is executed by the ECU 31 of the vehicle differential limiting device configured as described above. FIG. 3 is a block diagram systematically showing the procedure for setting the restraining torque executed by the ECU. As shown in the figure, the constraint torque setting procedure includes a front / rear difference rotation constraint torque setting unit 41, a front / rear G proportional constraint torque setting unit 42 for calculating a constraint torque from different parameters according to the driving state of the vehicle, The torque setting unit 43 and the deceleration-response constraint torque setting unit 44, and the constraint torques Tv, Tx, Ta, and Tb set by the setting units 41 to 44, respectively.
And a final restraint torque setting section 45 for setting a final restraint torque Tfinal.
【0014】各拘束トルク設定部41〜44による拘束
トルクTv,Tx,Ta,Tbの設定は、それぞれ以下の趣
旨に基づくものである。前後差回転拘束トルク設定部4
1は、旋回時に運転者の意志に沿った車両の挙動を実現
することを目的とし、前後輪の回転差に基づいて前後差
回転拘束トルクTvを算出している。前後G比例拘束ト
ルク設定部42は、低μ路面等において前後輪の回転差
に基づく前後差回転拘束トルクTvに生じるハンチング
の防止を目的とし、前後差回転拘束トルクTvの代替と
して車両の前後加速度Gxに基づいて前後G拘束トルク
Txを算出している。加速対応拘束トルク設定部43
は、停車状態からの急発進時等のように伝達トルクが急
増することが予測される場合に、後輪3Rの初期スリッ
プを防止することを目的とし、車両の加速状態に基づい
て加速対応拘束トルクTaを算出している。減速対応拘
束トルク設定部44は、急減速時において車両姿勢の安
定性を確保することを目的とし、車両の減速状態に基づ
いて減速対応拘束トルクTbを算出している。The setting of the constraint torques Tv, Tx, Ta, Tb by the respective constraint torque setting sections 41 to 44 is based on the following purport. Front / rear difference rotation restraint torque setting unit 4
1 is for realizing the behavior of the vehicle according to the driver's intention at the time of turning, and calculates the front / rear difference rotation restricting torque Tv based on the rotation difference between the front and rear wheels. The front-rear G proportional constraint torque setting unit 42 aims to prevent hunting generated in the front-rear difference rotation constraint torque Tv based on the rotation difference between the front and rear wheels on a low μ road surface or the like. The longitudinal G restraining torque Tx is calculated based on Gx. Acceleration-response restraint torque setting unit 43
The purpose of the present invention is to prevent an initial slip of the rear wheel 3R when the transmission torque is expected to increase suddenly, such as when the vehicle suddenly starts from a stopped state, and to set an acceleration response based on the acceleration state of the vehicle. The torque Ta is calculated. The deceleration-response constraint torque setting unit 44 calculates the deceleration-response constraint torque Tb based on the deceleration state of the vehicle for the purpose of ensuring the stability of the vehicle attitude during sudden deceleration.
【0015】以上の各拘束トルクTv,Tx,Ta,Tbが
最終拘束トルク設定部45に入力され、最終拘束トルク
設定部45の最大値選択部101では、前後差回転拘束
トルクTvと前後G比例拘束トルクTxとの大きい側が選
択される。4輪スリップに伴い前後差回転拘束トルクT
vに制御ハンチングが発生した場合には、前後G比例拘
束トルクTxが適宜選択されることになり、結果として
最大値選択部101の出力値が安定化されてハンチング
の影響が抑制される。The above-described respective constraint torques Tv, Tx, Ta, and Tb are input to the final constraint torque setting unit 45, and the maximum value selection unit 101 of the final constraint torque setting unit 45 determines whether the rotational difference torque Tv is proportional to the longitudinal G proportionality. The side with the larger constraint torque Tx is selected. Front-rear difference rotation restraint torque T due to four-wheel slip
When control hunting occurs in v, the front-rear G proportional constraint torque Tx is appropriately selected, and as a result, the output value of the maximum value selection unit 101 is stabilized, and the effect of hunting is suppressed.
【0016】選択された拘束トルクTv,Txは、加算処
理部102において加速対応拘束トルクTa及び減速対
応拘束トルクTbと加算されて、最終拘束トルクTfinal
とされる。この最終拘束トルクTfinalはリミッタ10
3に入力されて、センタデフ1の油圧多板クラッチ19
で実現可能な最大拘束トルクに制限され、その後に加算
処理部104に入力される。又、加算処理部104には
ハイパスフィルタ105を通過した最終拘束トルクTfi
nalも入力され、双方が加算された後に再びリミッタ1
06により最大拘束トルクに制限され、最終拘束トルク
Tfinalとして出力される。ハイパスフィルタ105で
は、最終拘束トルクTfinalの急変時にサージ的な上乗
せを行うことにより、この最終拘束トルクTfinalに基
づいてソレノイドバルブ21が駆動制御される際の応答
遅れを低減している。The selected constraint torques Tv and Tx are added to an acceleration-response constraint torque Ta and a deceleration-response constraint torque Tb in an addition processing unit 102 to obtain a final constraint torque Tfinal.
It is said. This final restraining torque Tfinal is the limiter 10
3 and the hydraulic multi-plate clutch 19 of the center differential 1
Is limited to the maximum restraint torque that can be realized by Further, the addition processing unit 104 has a final constraint torque Tfi that has passed through the high-pass filter 105.
nal is also input, and after adding both, limiter 1 again
06, it is limited to the maximum constraint torque, and is output as the final constraint torque Tfinal. The high-pass filter 105 performs a surge-like addition when the final constraint torque Tfinal changes suddenly, thereby reducing a response delay when the solenoid valve 21 is driven and controlled based on the final constraint torque Tfinal.
【0017】このようにして設定された最終拘束トルク
Tfinalに基づいて、センタデフ1の実際の拘束トルク
が制御される。即ち、最終拘束トルクTfinalに対応す
るデューティ率が図示しないマップから設定され、その
デューティ率に基づいてソレノイドバルブ21が作動し
て、油圧ユニット20から油圧多板クラッチ19に供給
される作動油を制御し、その結果、油圧多板クラッチ1
9の係合状態が調整されて、拘束トルクが上記最終拘束
トルクTfinalに制御される。The actual constraint torque of the center differential 1 is controlled based on the final constraint torque Tfinal set as described above. That is, the duty ratio corresponding to the final constraint torque Tfinal is set from a map (not shown), and the solenoid valve 21 is operated based on the duty ratio to control the hydraulic oil supplied from the hydraulic unit 20 to the hydraulic multi-plate clutch 19. As a result, the hydraulic multi-plate clutch 1
9 is adjusted, and the restraining torque is controlled to the final restraining torque Tfinal.
【0018】一方、図4は減速対応拘束トルク設定部の
拘束トルクの詳細な設定手順を示すブロック図であり、
以下、この図に従って減速対応拘束トルク設定部44の
設定処理を説明する。減速対応拘束トルク設定部44の
拘束トルク算出部91には、前後加速度センサ33にて
検出された前後加速度Gxとモード切換スイッチ38の
操作状況とが入力され、予め設定された3種のマップか
ら路面状況に対応するマップが選択される。選択された
マップに基づいて前後加速度Gxから減速対応拘束トル
クTbが算出される。On the other hand, FIG. 4 is a block diagram showing a detailed procedure for setting the restraining torque by the restraining torque setting unit for deceleration.
Hereinafter, the setting process of the deceleration-response constraint torque setting unit 44 will be described with reference to FIG. The longitudinal acceleration Gx detected by the longitudinal acceleration sensor 33 and the operation status of the mode changeover switch 38 are input to the restraining torque calculating unit 91 of the deceleration-response restraining torque setting unit 44, and the three kinds of preset maps are used. The map corresponding to the road condition is selected. Based on the selected map, the restraining torque Tb corresponding to deceleration is calculated from the longitudinal acceleration Gx.
【0019】図に示すように、何れのマップにおいて
も、前後加速度Gxの負側(減速側)への増加に伴って
減速対応拘束トルクTbが増加設定され、これにより、
減速時の車両姿勢の安定化が図られる。又、各マップ
は、同一の前後加速度Gxにおいて、高μ路面のマップ
ほど大きな減速対応拘束トルクTbが算出されるように
設定されている。この設定により、ブレーキ時の前輪荷
重が高くて4輪同時ロックし難い高μ路面では、より大
きな拘束トルクが設定されて制動力の向上が図られる。As shown in the drawings, in each of the maps, the deceleration-response restraining torque Tb is set to increase as the longitudinal acceleration Gx increases to the negative side (deceleration side).
The vehicle posture during deceleration is stabilized. In addition, each map is set such that, for the same longitudinal acceleration Gx, a larger deceleration-response constraint torque Tb is calculated for a map on a high μ road surface. With this setting, on a high μ road surface where the front wheel load during braking is high and it is difficult to lock the four wheels simultaneously, a larger restraining torque is set and the braking force is improved.
【0020】又、K2算出部92には、操舵角センサ3
7にて検出された操舵角θs、モード切換スイッチ38
の操作状況、及び推定車体速算出部54にて算出された
推定車体速VBが入力される。推定車体速VBとは所定時
間t後の車体速VBを表し、例えば、2番目に小さい車
輪速を現在の車体速と見なし(最小値は故障中の可能性
があるため除外)、その値を前後加速度Gx(以降の車
体速の変化を意味する)で補正することにより算出され
る。K2算出部92では、予め設定された3種のマップ
から路面状況に対応するマップが選択され、そのマップ
に基づいて、操舵角θs及び推定車体速VBから補正係数
K2が算出される。算出された補正係数K2はC/S補正
部93を経て乗算処理部94に入力され、乗算処理部9
4では、減速対応拘束トルクTbに補正係数K2が乗算さ
れる。図示はしないが、補正係数K2は0〜1.0の範
囲内で設定され、例えば操舵角θsの増加に伴って減少
設定され、これにより減速対応拘束トルクTbが減少補
正されて回頭性の確保が図られる。The K2 calculator 92 includes a steering angle sensor 3
7, the steering angle θs detected at 7, the mode changeover switch 38
And the estimated vehicle speed VB calculated by the estimated vehicle speed calculation unit 54 are input. The estimated vehicle speed VB indicates the vehicle speed VB after a predetermined time t. For example, the second lowest wheel speed is regarded as the current vehicle speed (the minimum value is excluded because there is a possibility of failure, and the value is calculated as It is calculated by correcting with the longitudinal acceleration Gx (meaning the change of the vehicle speed thereafter). In the K2 calculating section 92, a map corresponding to the road surface condition is selected from three kinds of preset maps, and a correction coefficient K2 is calculated from the steering angle θs and the estimated vehicle speed VB based on the selected map. The calculated correction coefficient K2 is input to the multiplication processing unit 94 via the C / S correction unit 93, and is input to the multiplication processing unit 9
At 4, the deceleration-response constraint torque Tb is multiplied by the correction coefficient K2. Although not shown, the correction coefficient K2 is set in the range of 0 to 1.0, and is set to decrease with an increase in the steering angle θs, for example. Is achieved.
【0021】又、C/S補正部93では、現在の操舵状
況がカウンタステアであるか否かが判定される。このカ
ウンタステアの判定は、例えば操舵角θsから推定した
操舵方向と横加速度センサ等で検出した車両の横加速度
とに基づいて行われ、両者が一致している場合に非カウ
ンタステア(CSH=0)と判定され、一致していない
場合にカウンタステア(CSH=1)と判定される。前
記C/S補正部93では、C/S判定部60の判定結果
がカウンタステア(CSH=1)であるときのみ、補正
係数K2を1に置換する。よって、操舵角θsに基づいて
設定される補正係数K2がカウンタステアによって不適
切となったときには、これに基づく補正が禁止される。The C / S corrector 93 determines whether the current steering state is counter steer. The determination of the countersteer is made based on, for example, the steering direction estimated from the steering angle θs and the lateral acceleration of the vehicle detected by the lateral acceleration sensor or the like. ), And if they do not match, it is determined that counter steer (CSH = 1). The C / S corrector 93 replaces the correction coefficient K2 with 1 only when the result of the determination by the C / S determiner 60 is counter steer (CSH = 1). Therefore, when the correction coefficient K2 set based on the steering angle θs becomes inappropriate due to countersteering, correction based on this is prohibited.
【0022】一方、操舵角センサ37からの操舵角θs
は微分処理部95で時間微分されて操舵角速度Dθsに
変換され、この操舵角速度Dθsは前記モード切換スイ
ッチ38の操作状況と共にK3算出部96に入力され
る。K3算出部96では、予め設定された3種のマップ
から路面状況に対応するマップが選択され、そのマップ
に基づいて操舵角速度Dθsから補正係数K3が算出され
る。算出された補正係数K3はフィルタ97及びC/S
補正部98を経て乗算処理部99に入力され、乗算処理
部99では、減速対応拘束トルクTbに補正係数K3が乗
算され、乗算後の減速対応拘束トルクTbが、上記した
最終拘束トルク設定部45に出力されて最終拘束トルク
Tfinalの算出に適用される。On the other hand, the steering angle θs from the steering angle sensor 37
Is differentiated with respect to time by a differentiation processing unit 95 and is converted into a steering angular velocity Dθs. The steering angular velocity Dθs is input to the K3 calculation unit 96 together with the operation state of the mode changeover switch 38. In the K3 calculating section 96, a map corresponding to the road surface condition is selected from three kinds of preset maps, and a correction coefficient K3 is calculated from the steering angular velocity Dθs based on the map. The calculated correction coefficient K3 is determined by the filter 97 and the C / S
After being input to the multiplication processing unit 99 via the correction unit 98, the multiplication processing unit 99 multiplies the deceleration-response constraint torque Tb by the correction coefficient K3, and outputs the deceleration-response constraint torque Tb after the multiplication to the final constraint torque setting unit 45 described above. And applied to the calculation of the final constraint torque Tfinal.
【0023】補正係数K3は0〜1.0の範囲内で設定
されるが、何れのマップにおいても、操舵角速度Dθs
が所定値以上の領域では、操舵角速度Dθsの増加に伴
って補正係数K3が減少設定される。これにより急操舵
に伴って操舵角速度Dθsが増加すると、補正係数K3が
減少側に設定されて減速対応拘束トルクTbを減少補正
し、その結果、回頭性の確保が図られる。又、低μ路面
のマップほど、より高い操舵角速度Dθsまで補正係数
K3が最大値(1.0)に維持されるように設定され、
結果として急操舵による減速対応拘束トルクTbの減少
が抑制されて、走行安定性が確保される。尚、この例で
は操舵の方向(切込み側と切戻し側)に拘わらず同一の
マップを適用したが、操舵方向に応じて異なる特性のマ
ップを適用してもよい。The correction coefficient K3 is set within the range of 0 to 1.0. In any of the maps, the steering angular velocity Dθs
Is greater than or equal to a predetermined value, the correction coefficient K3 is set to decrease as the steering angular velocity Dθs increases. As a result, when the steering angular velocity Dθs increases with rapid steering, the correction coefficient K3 is set to the decreasing side, and the deceleration-response restraining torque Tb is corrected to decrease, and as a result, the turning performance is ensured. Also, the correction coefficient K3 is set to be maintained at the maximum value (1.0) up to a higher steering angular velocity Dθs as the map of the road surface becomes lower.
As a result, a decrease in the deceleration-response restraining torque Tb due to sudden steering is suppressed, and traveling stability is ensured. In this example, the same map is applied irrespective of the steering direction (cut side and return side), but a map having different characteristics may be applied according to the steering direction.
【0024】C/S補正部98では、このように設定さ
れた補正係数K3をカウンタステア(CSH=1)であ
るときのみ1に置換する。よって、操舵角速度Dθsに
基づいて設定される補正係数K3がカウンタステアによ
って不適切となったときには、これに基づく補正が禁止
される。前記フィルタ97の特性は、例えば増加側が
0.5Hzに、減少側が8Hzに設定されて、増加側の
応答性が減少側の応答性に比較して大幅に低められてい
る。このため、急操舵により操舵角速度Dθsが増加し
て、フィルタ97に入力される補正係数K3が減少側に
変化したときには、フィルタ97は高い応答性をもって
迅速に出力を減少させることから、減速対応拘束トルク
Tbも速やかに減少されることになり、一方、その直後
の操舵角速度Dθsの減少時には、入力される補正係数
K3が増加しても、フィルタ97の応答性が低いことか
ら出力は緩慢にしか増加せずに、減速対応拘束トルクT
bの増加も緩やかなものとなる。The C / S corrector 98 replaces the thus set correction coefficient K3 with 1 only when counter steer (CSH = 1). Therefore, when the correction coefficient K3 set based on the steering angular velocity Dθs becomes inappropriate due to counter steering, the correction based on this is prohibited. The characteristics of the filter 97 are set, for example, to 0.5 Hz on the increasing side and 8 Hz on the decreasing side, so that the response on the increasing side is much lower than the response on the decreasing side. For this reason, when the steering angular velocity Dθs increases due to sudden steering and the correction coefficient K3 input to the filter 97 changes to the decreasing side, the filter 97 rapidly reduces the output with high responsiveness. The torque Tb is also rapidly reduced. On the other hand, when the steering angular velocity Dθs immediately thereafter decreases, the output is only slow because the response of the filter 97 is low even if the input correction coefficient K3 increases. Without increasing, restraining torque T corresponding to deceleration
The increase in b will also be modest.
【0025】つまり、急操舵により操舵角速度Dθsが
増加するのは操舵初期のごく短時間であるが、その操舵
角速度Dθsの増加期間に対して、減速対応拘束トルク
Tbはより長時間に亘って減少状態に保持されることに
なる。そして、この減速対応拘束トルクTbの減少期間
に亘ってセンタデフ1の実際の拘束トルクが減少される
ことから、車両の挙動が回頭性を向上させる方向に確実
に変化する。尚、言うまでもないが、拘束トルクの適切
な減少期間は油圧ユニット20の応答性や車両の旋回性
能等の諸条件によって異なることから、前記フィルタ9
7の特性は、これらの諸条件を考慮した上で任意に変更
可能である。That is, the steering angular velocity Dθs increases due to sudden steering for a very short time at the beginning of steering, but the deceleration-response restraining torque Tb decreases over a longer period of time during the increase in the steering angular velocity Dθs. It will be kept in a state. Then, the actual restraining torque of the center differential 1 is reduced during the reduction period of the restraining torque Tb corresponding to deceleration, so that the behavior of the vehicle surely changes in a direction to improve the turning performance. Needless to say, the appropriate reduction period of the restraining torque varies depending on various conditions such as the response of the hydraulic unit 20 and the turning performance of the vehicle.
The characteristics of 7 can be arbitrarily changed in consideration of these various conditions.
【0026】以上のように本実施形態の車両用差動制限
装置によれば、操舵状態に応じた適切な期間に亘って減
速対応拘束トルクTbを減少させるため、このときの減
速対応拘束トルクTbの減少を車両の挙動に確実に反映
させることができ、もって、急操舵時に十分な回頭性を
確保して常に最適な走行特性を実現することができる。As described above, according to the vehicle differential limiting device of the present embodiment, the deceleration-response constraint torque Tb is reduced in order to reduce the deceleration-response constraint torque Tb over an appropriate period according to the steering state. Can be reliably reflected in the behavior of the vehicle, so that sufficient turning performance can be ensured at the time of sudden steering and always optimal driving characteristics can be realized.
【0027】又、上記のように補正係数K3は、K3算出
部96のマップに従って操舵角速度Dθsに応じて無段
階に設定され、その補正係数K3による補正に基づいて
減速対応拘束トルクTbも無段階で変化する。操舵角速
度Dθsに応じて補正係数K3を設定する手法としては、
操舵角速度Dθsが所定値を越えるか否かに応じて補正
係数K3をステップ状に切換えることも考えられるが、
この場合には、減速対応拘束トルクTbもステップ状に
切換えられて車両の挙動を急変させる要因となってしま
う。これに対して減速対応拘束トルクTbを無段階で変
化させた場合には車両の挙動が円滑に変化することか
ら、運転者が挙動変化を把握し易くなって運転操作を容
易化できるという効果も得られる。Further, as described above, the correction coefficient K3 is set steplessly in accordance with the steering angular velocity Dθs according to the map of the K3 calculation section 96, and the deceleration-response restraining torque Tb is also set steplessly based on the correction by the correction coefficient K3. To change. As a method of setting the correction coefficient K3 according to the steering angular velocity Dθs,
It is conceivable to switch the correction coefficient K3 in a step-like manner depending on whether or not the steering angular velocity Dθs exceeds a predetermined value.
In this case, the deceleration-response restraining torque Tb is also switched in a step-like manner, causing a sudden change in the behavior of the vehicle. On the other hand, when the restraining torque Tb corresponding to the deceleration is changed in a stepless manner, the behavior of the vehicle changes smoothly, so that the driver can easily recognize the behavior change and the driving operation can be facilitated. can get.
【0028】以上で実施形態の説明を終えるが、本発明
の態様はこの実施形態に限定されるものではない。例え
ば、上記実施形態では、前輪及び後輪間の差動を許容す
るセンタデフ用の差動制限装置として具体化したが、例
えば左右輪間の差動を許容するフロントデフやリアデフ
用の差動制限装置に具体化してもよい。又、上記実施形
態では、前後差回転拘束トルクTv、前後G比例拘束ト
ルクTx、加速対応拘束トルクTa、減速対応拘束トルク
Tbをそれぞれ算出して最終的な拘束トルクTfinalを設
定したが、何れかの拘束トルクを省略したり、別のパラ
メータから算出された拘束トルクを追加したりしてもよ
い。Although the embodiment has been described above, aspects of the present invention are not limited to this embodiment. For example, in the above-described embodiment, the differential limiting device for the center differential that allows the differential between the front wheel and the rear wheel is embodied. However, for example, the differential limiting device for the front differential and the rear differential that allows the differential between the left and right wheels. It may be embodied in an apparatus. Further, in the above-described embodiment, the final constraint torque Tfinal is set by calculating the longitudinal difference rotational constraint torque Tv, the longitudinal G proportional constraint torque Tx, the acceleration-response constraint torque Ta, and the deceleration-response constraint torque Tb, respectively. May be omitted, or a constraint torque calculated from another parameter may be added.
【0029】更に、上記実施形態では、K3算出部96
の出力側にフィルタ97を設け、補正係数K3の増減状
態をフィルタ97により変更することで、所望の減速対
応拘束トルクTbの減少期間を実現したが、例えば図4に
二点鎖線で示すように、フィルタ97の位置を微分処理
部95の出力側に変更して、操舵角速度Dθsの増減状
態をフィルタ97により変更してもよい。この場合のフ
ィルタ97の特性は、上記した場合とは逆に、増加側の
応答性より減少側の応答性を低めるように設定する。こ
れにより、急操舵で操舵角速度Dθsが増加したとき
に、フィルタ97は高い応答性をもって迅速に出力を増
加させ、その直後の操舵角速度Dθsの減少時には、フ
ィルタ97の応答性が低いことから出力が緩慢にしか減
少せず、結果として操舵角速度Dθsの増加期間に対し
て、減速対応拘束トルクTbの減少期間が延長されて、
上記実施形態と同様に十分な回頭性を確保可能となる。Further, in the above embodiment, the K3 calculator 96
A filter 97 is provided on the output side, and the decrease / decrease state of the correction coefficient K3 is changed by the filter 97, thereby realizing a desired reduction period of the deceleration correspondence constraint torque Tb. For example, as shown by a two-dot chain line in FIG. , The position of the filter 97 may be changed to the output side of the differential processing unit 95, and the increase / decrease state of the steering angular velocity Dθs may be changed by the filter 97. In this case, the characteristic of the filter 97 is set so that the response on the decreasing side is lower than the response on the increasing side, contrary to the above-described case. As a result, when the steering angular velocity Dθs increases due to rapid steering, the filter 97 quickly increases the output with high responsiveness. When the steering angular velocity Dθs immediately decreases, the output of the filter 97 is low because the responsiveness of the filter 97 is low. As a result, the decreasing period of the deceleration corresponding restraining torque Tb is extended for the increasing period of the steering angular velocity Dθs,
As in the above-described embodiment, sufficient turning performance can be ensured.
【0030】一方、上記実施形態では、増加側と減少側
の応答性が異なるフィルタ97を用いたが、例えば最大
値を所定時間保持するピークホールドフィルタや最小値
を所定時間保持するボトムホールドフィルタを用いても
よい。具体的には、上記実施形態のように補正係数K3
の増減状態を変更する場合には、ボトムホールドフィル
タにより補正係数K3の減少期間を延長化し、又、上記
した別例のように操舵角速度Dθsの増減状態を変更す
る場合には、ピークホールドフィルタにより操舵角速度
Dθsの増加期間を延長化すればよい。更に、これらの
フィルタに代えて、例えば入力側の変化率が所定値を越
えたときのみに、それに応じて出力を変化させる特性の
勾配リミッタを用いてもよく、この場合でも上記と同じ
く減速対応拘束トルクTbの減少期間を延長することが
できる。On the other hand, in the above-described embodiment, the filters 97 having different responsivenesses on the increasing side and the decreasing side are used. For example, a peak hold filter for holding the maximum value for a predetermined time and a bottom hold filter for holding the minimum value for a predetermined time are used. May be used. Specifically, as in the above embodiment, the correction coefficient K3
When the increase / decrease state of the steering angular velocity Dθs is changed by changing the increase / decrease state of the steering angular velocity Dθs as in the above-described another example, the peak hold filter is used. What is necessary is to extend the increase period of the steering angular velocity Dθs. Further, instead of these filters, for example, a gradient limiter having a characteristic of changing the output only when the rate of change on the input side exceeds a predetermined value may be used. The reduction period of the restraining torque Tb can be extended.
【0031】[0031]
【発明の効果】以上説明したように本発明の車両用差動
制限装置によれば、操舵状態に応じた適切な期間に亘っ
て拘束トルクを変化させて車両の挙動に確実に反映さ
せ、もって、常に最適な走行特性を実現することができ
る。As described above, according to the differential limiting device for a vehicle of the present invention, the restraining torque is changed over an appropriate period according to the steering state so as to be surely reflected on the behavior of the vehicle. Optimum running characteristics can always be realized.
【図1】実施形態の車両用作動制限装置を示す全体構成
図である。FIG. 1 is an overall configuration diagram showing a vehicle operation restriction device according to an embodiment.
【図2】センタデフ及びフロントデフの詳細を示す部分
拡大図である。FIG. 2 is a partially enlarged view showing details of a center differential and a front differential.
【図3】ECUが実行する拘束トルクの設定手順を系統
的に示したブロック図である。FIG. 3 is a block diagram systematically showing a procedure for setting a constraint torque executed by an ECU.
【図4】減速対応拘束トルク設定部の拘束トルクの詳細
な設定手順を示すブロック図である。FIG. 4 is a block diagram illustrating a detailed setting procedure of a restraining torque of a restraining torque setting unit for deceleration.
1 センタデフ(差動手段) 3F 前輪(駆動輪) 3R 後輪(駆動輪) 4 エンジン 19 油圧多板クラッチ(差動制限手段) 31 ECU(制御手段) Reference Signs List 1 center differential (differential means) 3F front wheel (drive wheel) 3R rear wheel (drive wheel) 4 engine 19 hydraulic multiple disc clutch (differential limiting means) 31 ECU (control means)
Claims (1)
を許容して分配する差動手段と、 上記差動手段に拘束トルクを作用させて差動を制限可能
な差動制限手段と、 操舵角速度に基づいて上記差動制限手段の拘束トルクを
制御する制御手段とを有し、 上記制御手段の応答性を、拘束トルクの減少側に対して
増加側を低く設定したことを特徴とする車両用差動制限
装置。1. Differential means for distributing a driving force from an engine to each driving wheel while allowing a differential, and differential limiting means capable of restricting the differential by applying a restraining torque to the differential means. Control means for controlling the restraining torque of the differential limiting means based on the steering angular velocity, wherein the responsiveness of the control means is set lower on the increasing side than on the decreasing side of the restraining torque. Vehicle differential limiting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000280478A JP3937121B2 (en) | 2000-09-14 | 2000-09-14 | Differential limiting device for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000280478A JP3937121B2 (en) | 2000-09-14 | 2000-09-14 | Differential limiting device for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002087103A true JP2002087103A (en) | 2002-03-26 |
JP3937121B2 JP3937121B2 (en) | 2007-06-27 |
Family
ID=18765309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000280478A Expired - Fee Related JP3937121B2 (en) | 2000-09-14 | 2000-09-14 | Differential limiting device for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3937121B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007055476A (en) * | 2005-08-25 | 2007-03-08 | Nissan Motor Co Ltd | Driving force distribution control device of vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0350029A (en) * | 1989-07-14 | 1991-03-04 | Mitsubishi Motors Corp | Driving torque distribution device for vehicle |
JPH0419229A (en) * | 1990-05-10 | 1992-01-23 | Mitsubishi Motors Corp | Driving force distribution switching type four-wheel drive automobile |
JPH054530A (en) * | 1991-06-27 | 1993-01-14 | Mazda Motor Corp | Differential limit device for vehicle |
JPH05221249A (en) * | 1992-02-17 | 1993-08-31 | Mazda Motor Corp | Differential limiting device for vehicle |
JPH0717282A (en) * | 1993-06-30 | 1995-01-20 | Mazda Motor Corp | Driving force control device for four-wheel drive vehicle |
-
2000
- 2000-09-14 JP JP2000280478A patent/JP3937121B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0350029A (en) * | 1989-07-14 | 1991-03-04 | Mitsubishi Motors Corp | Driving torque distribution device for vehicle |
JPH0419229A (en) * | 1990-05-10 | 1992-01-23 | Mitsubishi Motors Corp | Driving force distribution switching type four-wheel drive automobile |
JPH054530A (en) * | 1991-06-27 | 1993-01-14 | Mazda Motor Corp | Differential limit device for vehicle |
JPH05221249A (en) * | 1992-02-17 | 1993-08-31 | Mazda Motor Corp | Differential limiting device for vehicle |
JPH0717282A (en) * | 1993-06-30 | 1995-01-20 | Mazda Motor Corp | Driving force control device for four-wheel drive vehicle |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007055476A (en) * | 2005-08-25 | 2007-03-08 | Nissan Motor Co Ltd | Driving force distribution control device of vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3937121B2 (en) | 2007-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8019518B2 (en) | Vehicle behavior control device | |
EP1533166B1 (en) | Drive power controller for hybrid vehicle | |
CA2625507C (en) | All-terrain or utility vehicle having selectable drive configurations and method therefore | |
KR100918163B1 (en) | Driving force distribution controller | |
CN108146240B (en) | Torque distribution control device for vehicle | |
JPH0616061A (en) | Four wheel drive control device | |
US6878085B2 (en) | Power distribution control apparatus and control method | |
JPH0386625A (en) | Unequal torque distribution controller for four-wheel drive vehicle | |
JP2004114763A (en) | Slip control device of four-wheel drive vehicle | |
JP4263459B2 (en) | Vehicle differential limiting control device | |
JP3978569B2 (en) | Driving force distribution device for vehicle | |
JP2004210151A (en) | Turn behavior controlling apparatus of four-wheel drive vehicle | |
JP3937121B2 (en) | Differential limiting device for vehicle | |
JP4000438B2 (en) | Differential limiting device for vehicle | |
JP3417091B2 (en) | Vehicle yawing momentum control device | |
JPH0717289A (en) | Vehicle equipped with torque distributor | |
JP2002087102A (en) | Limited slip differential for vehicle | |
JP2853474B2 (en) | Driving force distribution device for four-wheel drive vehicles | |
JP5090669B2 (en) | 4-wheel drive vehicle behavior stabilization control method | |
JP4209075B2 (en) | Differential limiting device for vehicle | |
JP2002087104A (en) | Limited slip differential for vehicle | |
JP2002187447A (en) | Limited slip differential for vehicle | |
JP4433785B2 (en) | Steering device | |
JP2848107B2 (en) | Vehicle differential limiting control device | |
JP2002096651A (en) | Diferential limiting device for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060426 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061004 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061201 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070313 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100406 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110406 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120406 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130406 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140406 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |