Nothing Special   »   [go: up one dir, main page]

JP2002071784A - Method and device for orienting track from sailing body radiant noise - Google Patents

Method and device for orienting track from sailing body radiant noise

Info

Publication number
JP2002071784A
JP2002071784A JP2000260448A JP2000260448A JP2002071784A JP 2002071784 A JP2002071784 A JP 2002071784A JP 2000260448 A JP2000260448 A JP 2000260448A JP 2000260448 A JP2000260448 A JP 2000260448A JP 2002071784 A JP2002071784 A JP 2002071784A
Authority
JP
Japan
Prior art keywords
vehicle
time difference
arrival time
correlation
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000260448A
Other languages
Japanese (ja)
Other versions
JP3511090B2 (en
Inventor
Shigemitsu Kurano
重光 倉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP2000260448A priority Critical patent/JP3511090B2/en
Publication of JP2002071784A publication Critical patent/JP2002071784A/en
Application granted granted Critical
Publication of JP3511090B2 publication Critical patent/JP3511090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To orient the track of a sailing body from the radiant noise of the sailing body on the basis that the reception of the radiant noise of the sailing body of unknown synchronous absolute time by three receivers or more allows the detection of the arrival time difference of the radiant noise to each receiver. SOLUTION: The radiant noise of the sailing body is received by the three receivers S1-SN or more, and each reception signal after FFT processing is processed at a sailing noise frequency band by band pass filter processors 13-1 to 13-N and then subjected to Doppler correction. Cross-correlation processing is performed on the reception signals subjected to Doppler correction by cross-correlation at an assumed arrival time difference detector 17 on each combination of two receivers among the receivers to compute an assumed arrival time difference curve. Then variation in the location of the sailing body and variation in unknown bias are obtained at a computing unit 18 for computing variation in the location of the sailing body and variation in unknown bias. From them, the real arrival time difference of the radiant noise is detected at a detector 19 for detecting the real arrival time difference of the radiant noise. The location of the sailing body is computed at an orienting device 20 for orienting the track of the sailing body to orient the track.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航走体の放射雑音
を用いて、航走体の航跡を標定する航走体放射雑音から
の航跡標定方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for locating a track from radiated noise of a vehicle, which uses the radiation noise of the vehicle to locate the wake of the vehicle.

【0002】[0002]

【従来の技術】従来の音響航跡標定装置は、「海洋音響
(基礎と応用)」海洋音響学会P209〜P213(以
下、公知文献1)と、特許第2723866号公報「発
明の名称:信号検出装置」(以下、公知文献2)に開示
されているものがあり、両装置とも原理はLBL測位方
式(Long Base-Line System)と呼ばれるものである。
その原理等を図8、図9を用いて説明する。また、公知
文献2で開示された従来の技術の構成を図10に示す。
2. Description of the Related Art A conventional acoustic trajectory locating apparatus is described in "Ocean Acoustics (Basic and Applied)", Japan Society of Ocean Acoustics, P209-P213 (hereinafter referred to as "Publication 1"), and Japanese Patent No. 2723866. (Hereinafter, known document 2), and the principle of both devices is called an LBL positioning system (Long Base-Line System).
The principle and the like will be described with reference to FIGS. FIG. 10 shows a configuration of a conventional technique disclosed in the known document 2.

【0003】図8において、水中又は水上を航走する目
標航走体の位置P(x,y,z)と海底に設置した複数の受
波器位置S(x,y,z),S(x,y,
),S (x,y,z),…,S(x,y,z
)及びレンジR,R,R,…,Rの関係は次
式(1)によって表される。
In FIG. 8, an eye navigating underwater or above water is shown.
The position P (x, y, z) of the marked vehicle and the
Wave position S1(x1, y1, z1), S2(x2, y2,
z2), S 3(x3, y3, z3),…, Si(xi, yi, z
i) And range R1, R2, R3, ..., RiThe relationship is
It is represented by equation (1).

【0004】[0004]

【数1】 ここで航走体に取り付けられたピンガー音発信器からの
ピンガー音の計測結果から各受波器までの到達時間差τ
が求められたとすると、水中の音波伝搬速度をWとして
到達時間差τとレンジRの関係は次式(2)が成り立つ。 R−R=τijW …(2) (但し、τijはレンジR,R間の到達時間差) 三次元方程式を解くために図8に示す3台の受波器につ
いて考えると次式(3)が得られる。
(Equation 1) Here, the arrival time difference τ to each receiver from the measurement result of the pinger sound from the pinger sound transmitter attached to the craft
Is obtained, the relationship between the arrival time difference τ and the range R is expressed by the following equation (2), where W is the sound wave propagation velocity in water. R i −R j = τ ij W (2) (where τ ij is the arrival time difference between the ranges R i and R j ) Consider three receivers shown in FIG. 8 to solve a three-dimensional equation. The following equation (3) is obtained.

【0005】[0005]

【数2】 これを、i台の受波器について解くことによりレンジR
が算出される。
(Equation 2) By solving this for i receivers, the range R
Is calculated.

【0006】ピンガー音の各受波器までの到達時間差τ
は、ピンガー音が絶対時間に同期して送波される場合に
は、各受波器の受波信号から直接検出することが出来
る。ピンガー音が非同期方式の場合には、各受波器の受
波信号間の相互相関係数を算出し、その値が最大となる
到達時間差からレンジRを検出することができる。さら
に、航走体深度をダブルピングの間隔として送信するこ
とにより航走深度を求めることもできる。
The arrival time difference τ of the pinger sound to each receiver
Can be directly detected from the received signal of each receiver when the pinger sound is transmitted in synchronization with the absolute time. When the pinger sound is of the asynchronous system, the cross-correlation coefficient between the received signals of the respective receivers is calculated, and the range R can be detected from the arrival time difference at which the value becomes maximum. Further, the cruising depth can be obtained by transmitting the cruising body depth as a double ping interval.

【0007】図9にダブルピンガー送受波信号の概要を
示す。図中の記号を以下に説明する。ts,ts
,tm,tmはピンガー音の送信及び受信時刻
の同期絶対時間、tdはダブルピングの間隔、Lは送
信周期、δtは送波から受波までの時間である。従っ
て、レンジRの計算式は次式(4)による。 R=δt×W …(4) ここで、 δt=tm−ts …(5) 但し、tm−ts<L
FIG. 9 shows an outline of a double pinger transmitted / received signal. The symbols in the figure are described below. ts 1 , ts
2 , tm 1 and tm 2 are the absolute synchronization times of the transmission and reception times of the pingers, td 1 is the interval between double pings, L is the transmission cycle, and δt is the time from transmission to reception. Therefore, the formula for calculating the range R is given by the following formula (4). R = δt × W (4) where δt = tm 1 -ts 1 (5) where tm 1 -ts 1 <L

【0008】公知文献2は、公知文献1で開示された原
理におけるピンガー音の代わりに航走体の放射雑音を含
む広帯域雑音を用いるもので、異なる2カ所に配置され
た受波器で受信した該広帯域雑音に生じる音源の移動に
伴うドップラー効果の影響を補正する信号検出装置に関
するものである。すなわち、2カ所で受信した信号の一
方の入力信号をあらかじめ定めた複数の比率でそれぞれ
時間圧縮又は時間延伸する複数のドップラー補正部と、
複数のドップラー補正部の出力と他方の信号の相互相関
をそれぞれ求める複数の相互相関部と、各相互相関部の
出力から最大値を選択する最大選択部を有しており、そ
の結果、該広帯域雑音に生じる音源の移動に伴うドップ
ラー効果の影響を補正することができるものとしてい
る。
[0008] Known Document 2 uses broadband noise including radiated noise of a vehicle in place of the pinger sound in the principle disclosed in Patent Document 1, and is received by receivers arranged at two different places. The present invention relates to a signal detection device that corrects the influence of the Doppler effect accompanying the movement of a sound source generated in the broadband noise. That is, a plurality of Doppler correction units that time-compress or time-expand one input signal of the signal received at the two locations at a plurality of predetermined ratios,
A plurality of cross-correlation units for respectively obtaining the cross-correlation between the outputs of the plurality of Doppler correction units and the other signal, and a maximum selection unit for selecting a maximum value from the output of each cross-correlation unit; It is assumed that it is possible to correct the effect of the Doppler effect accompanying the movement of the sound source generated in the noise.

【0009】図10において公知文献2で開示された装
置の各構成機器の作動状況を説明する。図中、1は水
中、2は水面、3は海底を示す。水中1又は水面2を航
走体4が航走している場合、航走体4からは航走雑音が
発生しており、受波器S,S ,…,Sで受信され
た信号は受信回路5−1,5−2,…,5−Nで一定レ
ベルまで振幅増幅された後、A/D変換器6−1,6−
2,…,6−Nに入力される。A/D変換器6−1,6
−2,…,6−Nでアナログ信号はそれぞれデジタル信
号に変換され、2台毎の受波器からの信号を対として考
えたときの一方のデジタル信号はドップラー補正部7を
介して相互相関演算部8に入力され、他方のデジタル信
号は直接相互相関演算部8に入力される。ドップラー補
正部7では2台の受波器で受信した一方の受波信号を予
め定めた複数の比率で時間圧縮又は延伸してドップラー
補正を行い相互相関演算部8に出力する。相互相関演算
部8では複数の比率でドップラー補正された一方の受波
信号と直接入力された他方の信号についてそれぞれ相互
相関係数を算出し、その最大値を検出することによって
到達時間差を決定し表示部9に出力する。表示部9は入
力された到達時間差から次式(6)より目標の方位及び位
置を測位し、その結果を表示する。 θ=cos−1(τW/d) …(6) 図11に目標音源の方位を測位する原理図が示され、式
(6)中のθは図11に示すように、複数の受波器A,B
の配列方向と音波の到来方向とのなす方位角であり、d
は隣り合う受波器の配列間隔であり、r=τWである。
また、図12に目標音源の方位及び位置を測位する原理
が示され、受波器A,Bの配列方向と音波の到来方向と
のなす方位角θ、受波器C,Dの配列方向と音波の到
来方向とのなす方位角θとから目標位置(音源の位
置)を求めることができる。
[0009] In FIG.
The operation status of each component of the device will be described. In the figure, 1 is water
2 indicates the water surface and 3 indicates the sea floor. Navigate underwater 1 or surface 2
When the running body 4 is running, the running noise from the running body 4
Has occurred and the receiver S1, S 2, ..., SNReceived by
, 5-N at a fixed level.
A / D converters 6-1 and 6-
2, ..., 6-N. A / D converters 6-1 and 6
-2, ..., 6-N, analog signals are digital signals
Signal from each two receivers as a pair.
The one digital signal obtained by the
Input to the cross-correlation calculator 8 via the
The signal is directly input to the cross-correlation calculator 8. Doppler supplement
In the positive part 7, one of the received signals received by the two receivers is reserved.
Doppler by time compression or stretching at specified ratios
The correction is performed and output to the cross-correlation calculation unit 8. Cross-correlation calculation
In part 8, one of the received waves that has been Doppler corrected by a plurality of ratios
The signal and the other directly input signal
By calculating the correlation coefficient and detecting its maximum value
The arrival time difference is determined and output to the display unit 9. Display 9 is on
From the input arrival time difference,
Position and display the result. θ = cos-1(τW / d) (6) FIG. 11 shows a principle diagram for measuring the direction of the target sound source.
Θ in (6) indicates a plurality of receivers A and B as shown in FIG.
Azimuth angle between the arrangement direction of
Is an arrangement interval between adjacent receivers, and r = τW.
FIG. 12 shows the principle of measuring the azimuth and position of the target sound source.
And the arrangement direction of the receivers A and B, the arrival direction of the sound wave,
Azimuth θ1, The direction of arrangement of the receivers C and D and the arrival of sound waves
Azimuth θ with incoming direction2From the target position (source position
Position) can be obtained.

【0010】[0010]

【発明が解決しようとする課題】しかし、公知文献1で
開示された発明の問題点は、予め目標航走体にピンガー
音発信器を取り付ける必要があるので目標航走体が限定
されることである。
However, the problem of the invention disclosed in the prior art document 1 is that it is necessary to attach a pinger sound transmitter to the target vehicle in advance, so that the target vehicle is limited. is there.

【0011】公知文献2で開示された発明の問題点は、
各受波器により計測される航走体放射雑音信号中には、
該放射雑音が放射された同期絶対時間のデータが無いの
で2台の受波器Sと受波器Sへの該航走体放射雑音
の到達時間差から各受波器間のレンジ差(R−R)は
求められるが、各受波器から音源までの距離であるレン
ジRは求められない。また公知文献2の発明によると目
標航走体の方位を検出するためには各2台の受波器間の
距離を目標航走体までの距離に依存して決定しなくては
ならない。さらに周波数範囲が非常に広く音圧レベルが
複雑に変化する航走体放射雑音からの目標方位検出によ
る航跡標定は極めて精度が低い欠点がある。
The problems of the invention disclosed in the known document 2 are as follows.
In the vehicle radiation noise signal measured by each receiver,
Range difference between the respective receivers from the time difference of arrival該航Hashikarada radiation noise of the radiation noise to the wave receiver S l and receivers S 2 of two because there is no data of the absolute synchronization emitted time ( R 1 −R 2 ) is obtained, but the range R, which is the distance from each receiver to the sound source, is not obtained. Further, according to the invention of the known document 2, in order to detect the azimuth of the target vehicle, the distance between each two receivers has to be determined depending on the distance to the target vehicle. Further, the trajectory locating by detecting the target azimuth from the radiating noise of a vehicle having a very wide frequency range and a complicated change in sound pressure level has a disadvantage that the accuracy is extremely low.

【0012】本発明は、上記の点に鑑み、各受波器によ
り計測される航走体放射雑音信号中に、該放射雑音が放
射された同期絶対時間のデータが無くとも各受波器への
該放射雑音の到達時間差からレンジを求めることを可能
とし、ひいては航走体の装備条件に依存することなく、
目標の航跡を正確に標定することが可能な航走体放射雑
音からの航跡標定方法及び装置を提供することを目的と
する。
[0012] In view of the above, the present invention provides a method for transmitting signals to each receiver even if there is no data on the synchronous absolute time at which the radiation noise is emitted in the vehicle radiation noise signal measured by each receiver. It is possible to determine the range from the arrival time difference of the radiated noise, and thus without depending on the equipment conditions of the vehicle
It is an object of the present invention to provide a trajectory locating method and a trajectory from a radiating noise of a vehicle capable of accurately locating a trajectory of a target.

【0013】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
Other objects and novel features of the present invention will be clarified in embodiments described later.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本願請求項1の発明は、航走体の放射雑音を3台以
上の受波器で受信し、受信された受波信号間の相互相関
をとることにより音源の位置を求める航走体放射雑音か
らの航跡標定方法において、各受波信号を航走体固有振
動特性に起因する航走雑音周波数帯域でバンドパスフィ
ルター処理した後ドップラー補正して、3台以上の受波
器の内の各2台の組み合わせに対し、それぞれドップラ
ー補正された受波信号について相互相関処理を行い周波
数分析間隔dt毎の相関係数を算出し放射雑音計測開始
時間tにおける到達時間差を0とした仮定到達時間差
曲線を算出し、各受波信号のn個のサンプル信号の内の
初期のi個を用いて航走体位置変動量と未知バイアス変
動量を求め、前記航走体位置変動量と未知バイアス変動
量から真の放射雑音到達時間差を検出し、全放射雑音計
測時間にわたって航走体の位置を算出して航跡を標定す
ることを特徴としている。
In order to achieve the above object, according to the first aspect of the present invention, a radiating noise of a vehicle is received by three or more receivers, and an interval between received reception signals is obtained. In the trajectory locating method based on the radiated noise of the vehicle, which determines the position of the sound source by taking the cross-correlation of the signals, after the bandpass filter processing of each received signal in the frequency band of the navigation noise caused by the natural vibration characteristics of the vehicle Doppler correction is performed, and for each combination of two or more of the three or more receivers, cross-correlation processing is performed on the Doppler-corrected received signal to calculate a correlation coefficient for each frequency analysis interval dt and radiate. A hypothetical arrival time difference curve with the arrival time difference at the noise measurement start time t 0 being 0 is calculated, and using the initial i out of n sample signals of each received signal, the vehicle body position fluctuation amount and the unknown bias Find the amount of variation, The method is characterized by detecting the true radiation noise arrival time difference from the vehicle position fluctuation amount and the unknown bias fluctuation amount, calculating the position of the vehicle over the entire radiation noise measurement time, and locating the wake.

【0015】本願請求項2の発明は、請求項1記載の航
走体放射雑音からの航跡標定方法において、(a)前記3
台以上の受波器の内、各2台の組み合わせにおいて、航
走体固有振動特性に起因する航走雑音周波数帯域でバン
ドパスフィルター処理された後ドップラー補正された全
放射雑音計測時間Tの受波信号X(t)とX(t)のF
FT処理信号を読み込んで、前記周波数分析間隔dt毎
にn回(T=n×dt)逆FFT処理したn個のサンプ
ル信号χin(t)とχjn(t)の相互相関係数Cijn
を算出し、該相互相関係数の実数部を当該相互相関係数
の実数部の最大値で割り相対相互相関係数△dijn
表示した時間−相対相関係数信号を算出するステップ
と、(b)前記相対相互相関係数△dijn信号を読み込
んで、放射雑音計測開始時間tでの受波器SとS
の航走体放射雑音到達時間差を0とし、サンプル信号χ
in(t)とχjn(t)について1番目の相対相互相関係
数△dij1と2番目の相対相関係数△dij2の相関
を計算し、そのズレ幅△wij1を求め、同様に、2番
目の相対相関係数△dij2と3番目の相対相関係数△
ij3の相関からズレ幅△wij2、さらに△d
ij2と△dij3の相関からズレ幅△w j3、これ
を順次、△dijiと△diji+1のズレ幅△w
ijiまで算出して、仮定到達時間差曲線τij’=w
ij(t)を求めるステップと、(c)前記3台以上の受波
器により計測された各受波信号のn個のサンプル信号χ
(t),χ(t),χ(t),…,χ(t)の内の初期
のi個について求めた仮定到達時間差τiji’と航走
体が微小時間(t−1)から(t+1)間は直線上を進
行するとした航走体位置P(k)にラプラシアンフィルタ
ーによる非線形最小二乗法を適用し航走体の位置変動量
と未知バイアス変動量を求めるステップと、(d)求めら
れた航走体位置変動量と未知バイアス変動量を基に、航
走体の任意設定初期位置Pについて順次、ラプラシア
ンフィルター残差が最小になる航走体の位置P(0)から
P(i)を決定し、その値から真の到達時間差を検出する
ステップと、(e)航走体放射雑音の各受波器までの真の
到達時間差と各受波器の位置S(x ,y,z)及
び任意に設定した航走体初期位置P(x,y,
)とから未知バイアス変動量△Bijを0として、
目標と受波器の距離であるレンジR ijに関する三次元
方程式を解くことにより、全放射雑音計測時間Tにわた
り航走体の位置P(t)を決定するステップとを具備する
ことを特徴としている。
[0015] The invention of claim 2 of the present application relates to the navigation of claim 1.
In the method of locating a wake from running body radiation noise, (a) the method of (3)
Of the two or more receivers,
The vane noise frequency band caused by the natural vibration characteristics of the vehicle
Doppler corrected after Doppler filtering
Received signal X for radiation noise measurement time Ti(t) and XjF of (t)
The FT processing signal is read and the frequency analysis interval dt
N samples (T = n × dt) subjected to inverse FFT processing
Signalin(t) and χjnCross-correlation coefficient C of (t)ijn
Is calculated, and the real part of the cross-correlation coefficient is
Divided by the maximum value of the real part of 相 対 dijnso
Calculating the displayed time-relative correlation coefficient signal
And (b) the relative cross-correlation coefficient △ dijnRead signal
The radiation noise measurement start time t0Receiver S atiAnd Sj
The time difference of arrival of the vehicle's radiation noise is 0, and the sample signal χ
in(t) and χjnThe first relative mutual relation for (t)
Number △ dij1And the second relative correlation coefficient △ dij2Correlation of
Is calculated and the deviation width △ wij1And likewise,
Eye relative correlation coefficient △ dij2And the third relative correlation coefficient △
dij3The deviation width w from the correlationij2And △ d
ij2And △ dij3The deviation width w from the correlationi j3,this
Sequentially, △ dijiAnd △ diji + 1Deviation width of w
ijiTo the assumed arrival time difference curve τij’= W
ij(t) determining; and (c) receiving the three or more waves.
Sampled signals of each received signal measured by the detector
1(t), χ2(t), χ3(t),…, χnInitial within (t)
Assumed arrival time difference τ obtained for iiji’And sailing
The body moves on a straight line for a short time (t-1) to (t + 1).
Laplacian filter is applied to the position P (k)
-Based nonlinear least-squares method applied to the position fluctuation of a vehicle
And the step of obtaining the unknown bias fluctuation amount;
Navigation on the basis of the
Arbitrary setting initial position P of running body0About Laplacia
From the position P (0) of the hull where the filter residuals are minimized
Determine P (i) and detect true arrival time difference from its value
Steps and (e) the true radiating noise of the vehicle to each receiver
Arrival time difference and position S of each receiverN(X N, yN, zN)
And the initial position P of the vehicle0(X0, y0,
z0) And the unknown bias variation △ BijAs 0
Range R, which is the distance between the target and the receiver ijThree-dimensional
By solving the equation, the total radiation noise measurement time T
Determining the position P (t) of the cruising vehicle
It is characterized by:

【0016】本願請求項3の発明は、航走体の放射雑音
を3台以上の受波器で受信し、受信された受波信号間の
相互相関をとることにより、音源の位置を求める航走体
放射雑音からの航跡標定装置において、航走体の放射雑
音を受信する受波器S,S,…,S(但し、N:
3以上の整数)と、前記受波器からの受波信号をそれぞ
れ一定レベルまで振幅増幅する受信回路(5−1,5−
2,…,5−N)と、前記受信回路からのアナログ受波
信号をそれぞれデジタル受波信号に変換するA/D変換
器(6−1,6−2,…,6−N)と、前記A/D変換
器からのデジタル受波信号をそれぞれFFT処理し時間
−周波数信号に変換するFFT処理器(11−1,11
−2,…,11−N)と、前記FFT処理器でFFT処
理された時間−周波数信号をそれぞれ記憶する記憶装置
(12−1,12−2,…,12−N)と、航走体固有
振動特性に起因する航走雑音周波数帯域を検出する検出
器(14)と、航走体固有振動特性に起因する航走雑音
周波数帯域で前記記憶装置からの信号をバンドパスフィ
ルター処理をするバンドパスフィルター処理器(13−
1,13−2,…,13−N)と、受波信号のドップラ
ー周波数により航走体の速度を検出する航走体速度検出
器(15)と、前記航走体速度検出器で検出された航走
体の速度により受波信号をドップラー補正するドップラ
ー補正演算器(16)と、該ドップラー補正された受波
信号について3台以上の受波器の内の各2台の組み合わ
せに対して、該ドップラー補正された受波信号について
相互相関処理を行い放射雑音計測開始時間tにおける
到達時間差を0とした仮定到達時間差曲線を算出する相
互相関による仮定到達時間差検出器(17)と、前記仮
定到達時間差検出器で算出された仮定到達時間差から各
受波信号のn個のサンプル信号の内の初期のi個を用い
て航走体位置変動量と未知バイアス変動量を求める航走
体位置変動量と未知バイアス変動量演算器(18)と、
前記航走体位置変動量と未知バイアス変動量演算器で演
算された航走体位置変動量と未知バイアス変動量から真
の放射雑音到達時間差を検出する真の到達時間差検出器
(19)と、前記真の到達時間差検出器で検出された真
の到達時間差から全放射雑音計測時間にわたって航走体
の位置を求め航跡を標定する航走体の航跡標定器(2
0)を具備し、航走体が水中又は水上を航走した場合
に、3台以上の受波器で受信した受波信号から、航走体
放射雑音の各受波器までの到達時間差を検出し、航走体
の位置を標定することを特徴としている。
According to a third aspect of the present invention, there is provided a navigation system for determining the position of a sound source by receiving radiation noise of a navigation body by three or more receivers and calculating a cross-correlation between the received reception signals. In a trajectory locating device based on radiated noise from a vehicle, receivers S 1 , S 2 ,..., SN which receive radiated noise from a vehicle are used (where N:
A receiving circuit (5-1, 5-) which amplifies the received signal from the receiver to a certain level.
2,..., 5-N) and A / D converters (6-1, 6-2,..., 6-N) for respectively converting analog received signals from the receiving circuit into digital received signals. An FFT processor (11-1, 11) that performs FFT processing on each of the digital received signals from the A / D converter and converts them into time-frequency signals.
,..., 12-N), storage devices (12-1, 12-2,..., 12-N) for storing the time-frequency signals subjected to the FFT processing by the FFT processor, respectively. A detector (14) for detecting a running noise frequency band caused by the natural vibration characteristic, and a band for performing a band-pass filter process on the signal from the storage device in the running noise frequency band caused by the natural vehicle vibration characteristic. Pass filter processor (13-
, 13-N), a traveling vehicle speed detector (15) for detecting the speed of the traveling vehicle based on the Doppler frequency of the received signal, and the traveling vehicle speed detector. A Doppler correction calculator (16) for Doppler correcting the received signal according to the speed of the traveling vehicle, and a combination of two or more of the three or more receivers for the Doppler corrected received signal. A cross-correlation assumed arrival time difference detector (17) for performing a cross-correlation process on the Doppler-corrected received signal and calculating an assumed arrival time difference curve with the arrival time difference at the radiation noise measurement start time t0 being 0 ; Vessel position to determine the vehicle position variation and unknown bias variation using the initial i of n sampled signals of each received signal from the assumed arrival time difference calculated by the assumed arrival time difference detector Fluctuation and not A knowledge bias variation calculator (18);
A true arrival time difference detector (19) for detecting a true radiation noise arrival time difference from the vehicle position fluctuation amount and the unknown bias fluctuation amount calculated by the navigation body position fluctuation amount and the unknown bias fluctuation amount calculator; A trajectory tracker (2) for a trajectory for a trajectory that finds the position of the trajectory over the total radiation noise measurement time from the true arrival time difference detected by the true time difference detector and locates the wake.
0), and when the sailboat sails underwater or on the water, the time difference between the received signals received by three or more receivers and the arrival time difference of the radiated noise of the sailboat to each receiver is calculated. It is characterized in that it detects and locates the position of the ship.

【0017】本願請求項4の発明は、請求項3記載の航
走体放射雑音からの航跡標定装置において、前記ドップ
ラー補正された受波信号の相互相関処理を行う相互相関
による仮定到達時間差検出器(17)は、(a)N台の受
波器の内、各2台の組み合わせに基づいて、前記航走体
固有振動特性に起因する周波数帯域でバンドパスフィル
ター処理された後ドップラー補正演算器(16)でドッ
プラー補正された全放射雑音計測時間Tの受波信号X
(t)とX(t)のFFT処理信号を読み込んで、該信号
を周波数分析間隔dt毎にn回(T=n×dt)逆FF
T処理して求めたn個のサンプル信号χin(t)とχ
jn(t)の相互相関係数Cijnを算出し、該相互相関
係数の実数部を当該相互相関係数の実数部の最大値で割
り相対相互相関係数△dijnで表示した時間−相対相
関係数信号を算出する手段と、(b)前記相対相互相関係
数△dijn信号を読み込んで、放射雑音計測開始時間
での受波器SとSの航走体放射雑音到達時間差
を0とし、サンプル信号χin(t)とχjn(t)につい
て1番目の相対相互相関係数△dij1と2番目の相対
相関係数△dij2の相関を計算し、そのズレ幅△w
ij1を求め、同様に、2番目の相対相関係数△d
ij2と3番目の相対相関係数△dij3の相関からズ
レ幅△wij2、さらに△dij3と△dij4の相関
からズレ幅△w j3、これを順次、△dijiと△d
iji+1のズレ幅△wijiまで算出して、仮定到達
時間差曲線τij’=wij(t)を求める手段とを具備
し、前記航走体位置変動量と未知バイアス変動量演算器
(18)は、前記3台以上の受波器により計測された各
受波信号X(t)のn個のサンプル信号χ(t),χ
(t),χ(t),…,χ(t)の内の初期のi個につ
いて求めた仮定到達時間差τiji’と航走体が微小時
間(t−1)から(t+1)間は直線上を進行すとした
航走体位置P(k)にラプラシアンフィルターによる非線
形最小二乗法を適用し航走体の位置変動量と未知バイア
ス変動量を求める手段を具備し、前記真の到達時間差検
出器(19)は、求められた該航走体位置変動量と未知
バイアス変動量を基に、航走体の任意設定初期位置P
について順次、ラプラシアンフィルター残差が最小にな
る航走体の位置P(0)からP(i)を決定し、その値から
真の到達時間差を検出する手段を具備し、前記航走体の
航跡標定器(20)は、前記航走体放射雑音の各受波器
までの真の到達時間差と各受波器の位置S(x,y
,z)及び任意に設定した航走体初期位置P(x
,y,z)とから未知バイアス変動量△Bijを0
として、目標と受波器の距離であるレンジRijに関す
る三次元方程式を解くことにより、全放射雑音計測時間
Tにわたり航走体の位置P(t)を決定する手段を具備す
ることを特徴としている。
[0017] The invention according to claim 4 of the present application is the navigation system according to claim 3.
In a trajectory locating device from running body radiation noise,
Cross-Correlation for Cross-Correlation Processing of Error Corrected Received Signal
(A) N receivers
Based on the combination of each of the two wavers,
Bandpass fill in frequency band caused by natural vibration characteristics
Is processed by the Doppler correction calculator (16).
Received signal X of total radiation noise measurement time T corrected for pulleri
(t) and XjRead the FFT processing signal of (t), and
Is n times (T = n × dt) inverse FFs every frequency analysis interval dt
N sample signals obtained by T processingin(t) and χ
jnCross-correlation coefficient C of (t)ijnAnd calculate the cross-correlation
Divide the real part of the coefficient by the maximum value of the real part of the cross-correlation coefficient.
Relative cross-correlation coefficient △ dijnThe time indicated in −-relative phase
Means for calculating a relation number signal, and (b) the relative mutual phase relation
Number △ dijnRead the signal and start the radiation noise measurement
t0Receiver S atiAnd SjTime difference of the vehicle's radiation noise
Is set to 0, and the sample signal χin(t) and χjnAbout (t)
The first relative cross-correlation coefficient △ dij1And the second relative
Correlation coefficient △ dij2Is calculated and the deviation width △ w
ij1, And similarly, the second relative correlation coefficient △ d
ij2And the third relative correlation coefficient △ dij3From the correlation of
レ width △ wij2And △ dij3And △ dij4Correlation of
Deviation width wi j3, Sequentially, △ dijiAnd △ d
iji + 1Deviation width of wijiCalculated to reach the assumption
Time difference curve τij’= Wijmeans for determining (t)
And the aircraft body position fluctuation amount and the unknown bias fluctuation amount calculator
(18) shows each of the three or more receivers measured.
N sample signals of the received signal X (t)1(t), χ
2(t), χ3(t),…, χnFor the initial i of (t)
Time difference τiji’And the airframe is very small
Between (t-1) and (t + 1), a straight line was assumed to advance.
Non-linear with Laplacian filter at Vessel position P (k)
Shape variation and unknown vias by applying the shape least squares method
Means for determining the amount of change in
The output unit (19) calculates the position change amount of the vehicle
Arbitrary setting initial position P of the vehicle based on the amount of bias fluctuation0
Sequentially, the Laplacian filter residuals are minimized.
P (i) is determined from the position P (0) of the vehicle
Means for detecting a true arrival time difference, wherein
The track locator (20) is a receiver for each of the above-mentioned radiating noises of the vehicle.
True arrival time difference and the position S of each receiverN(XN, y
N, zN) And arbitrarily set vehicle initial position P0(X
0, yO, z0) And the unknown bias variation △ BijTo 0
The range R, which is the distance between the target and the receiver,ijAbout
By solving the three-dimensional equation, the total radiation noise measurement time
Equipped with means for determining the position P (t) of the vehicle over T
It is characterized by that.

【0018】以下、本発明に係る航走体放射雑音からの
航跡標定方法及び装置の原理説明を行う。
The principle of a method and an apparatus for locating a track based on the radiation noise of a vehicle according to the present invention will be described below.

【0019】以下の原理説明の中で使用する記号の定義
は次のとおりである。 P(k) :航走体の位置 dP(k):航走体の位置変動量 S:受波器(音響センサー)の位置 R:航走体と受波器の距離 f(t) :航走体放射雑音信号 x(t) :受波器の航走体放射雑音受波信号 W :水中音波伝搬速度 c :水中音波減衰係数〔dB/m]{x(t)=
(R)f(t)} X(t) :ドップラー補正後の受波器の航走体放射雑音
受波信号 X(t)’:航走体放射雑音受波信号のFFT処理信号 χ(t) :受波信号X(t)のサンプル信号 △t :サンプリングレート N :受波器数 M :受波器のペア数 n :受波信号のサンプル数 dt :受波信号の周波数分析間隔 T :全放射雑音計測時間 C :相互相関係数 △d :相対相互相関係数 △w:△dと△dn+1相関ズレ幅 τ :到達時間差(τ=τ’+Bij) τ’ :仮定到達時間差 △τ’ :仮定到達時間差変動量 Bij :未知バイアス △Bij :未知バイアス変動量 b(k) :ラプラシアンフィルター残差 F(k) :到達時間残差
The definitions of the symbols used in the following description of the principle are as follows. P (k): Position of the vehicle dP (k): Positional variation of the vehicle S i : Position of the receiver (acoustic sensor) R i : Distance between the vehicle and the receiver f (t) : Vessel radiation noise signal x (t): Vessel radiation noise reception signal of receiver W: Underwater sound wave propagation velocity c: Underwater sound wave attenuation coefficient [dB / m] {x (t) =
(R i) c f (t )} X (t): Wataru of receivers after the Doppler correction Hashikarada radiation noise received signal X (t) ': FFT processing signals Kou Hashikarada radiation noise received signal χ (t): Sample signal of received signal X (t) Δt: Sampling rate N: Number of receivers M: Number of receiver pairs n: Number of samples of received signal dt: Frequency analysis interval of received signal T: total radiated noise measurement time C: correlation coefficient △ d: relative correlation coefficients △ w n: d n and △ d n + 1 correlation shift width tau: arrival time difference (τ = τ '+ B ij ) τ': Assumed arrival time difference Δτ ′: Assumed arrival time difference variation B ij : Unknown bias ΔB ij : Unknown bias variation b (k): Laplacian filter residual F (k): Arrival residual

【0020】本発明においては、最初に全受波器の受波
信号X(t)のn個のサンプル信号χ(t),χ
(t),…,χ(t)の最初のi個(例:i=30)を用
いて、航走体の初期位置P(k)からP(k)まで
の航跡と未知バイアスBを計算する。
In the present invention, first, n sample signals 1 1 (t), の of the received signals X n (t) of all the receivers are provided.
2 (t), ..., first i (eg: i = 30) of chi n (t) using, from the initial position P 0 of the domestic Hashikarada (k 0) to P i (k i) track And the unknown bias B are calculated.

【0021】次に、求められた予期位置P(k)を含む
航跡から、全放射雑音計測時間における到達時間差τを
用い航走体の位置P(i+1)を求める。その原理を手順
に従って、以下に説明する。
Next, from the track including the calculated expected position P 0 (k), the position P (i + 1) of the vehicle is determined using the arrival time difference τ in the total radiation noise measurement time. The principle will be described below according to the procedure.

【0022】(a)時刻tにおける航走体放射雑音の受波
器Sによる受波信号をx(t)、航走体の任意に設定した
初期位置P(x,y,z)、全受波器の位置S
(x,y ,z)を初期値として設定する。
(A) Receiving the radiating noise of the vehicle at time t
X (t), the signal received by the vessel S was set arbitrarily for the ship
Initial position P0(x0, y0, z0), Position S of all receivers
i(xi, y i, zi) Is set as the initial value.

【0023】時刻tでのレンジR(t)=|P(t)−S|
において、航走体が発した放射雑音f(t)は、時刻{t
+R(t)/W}で、音波の減衰係数をc(dB/m)とす
ると、受波器に届く波形は{R(t)}f(t)となる。こ
こで、t=t,t,…に対しては、
Range R (t) at time t = | P (t) -S |
, The radiation noise f (t) generated by the vehicle is
+ In R (t) / W}, when the damping coefficient of the sound waves and c (dB / m), a waveform that reaches the receiving transducer becomes {R (t)} c f (t). Here, for t = t 1 , t 2 ,.

【0024】[0024]

【数3】 となる。この波形を改めてサンプリングレート△tで分
割しなおして、受波器の受信波としたものが受波信号x
(t),x(t),x(t),…,x(t)である。
(Equation 3) Becomes This waveform is again divided at the sampling rate Δt, and the received wave of the receiver is the received signal x.
(t 1 ), x (t 2 ), x (t 3 ),..., x (t n ).

【0025】(b)N台の受波器の内、各2台の組み合わ
せに対し、受波信号x(t),x(t)を読み込む。
(B) Received signals x i (t) and x j (t) are read for each combination of two of the N receivers.

【0026】(c)受波信号x(t),x(t)について
周波数分析間隔dt毎にFFT処理を行う。
(C) FFT processing is performed on the received signals x i (t) and x j (t) at each frequency analysis interval dt.

【0027】(d)航走体固有振動特性に起因する航走雑
音周波数帯域の最小周波数成分fmi Hzと最大周波
数成分fmaxHzを検出する。この検出には、本発明
者が先に提案している特願平11−069924号に記
載の構成を利用できる。
[0027] and (d) detecting the minimum frequency component f mi n Hz and the maximum frequency component f max Hz of cruising noise frequency band caused by the domestic Hashikarada natural vibration characteristics. For this detection, the configuration described in Japanese Patent Application No. 11-069924 previously proposed by the present inventors can be used.

【0028】(e)航走体固有振動特性に起因する航走雑
音周波数帯域最小周波数成分fminHzと最大周波数
成分fmaxHzの範囲で航走放射雑音受波信号をバン
ドパスフィルター処理をする。
(E) A bandpass filter process is performed on the received signal of the radiated radiated noise in the range of the minimum frequency component f min Hz and the maximum frequency component f max Hz caused by the cruise noise frequency band caused by the natural vibration characteristics of the vehicle. .

【0029】(f)3台以上の受波器の内の各2台の組み
合わせにおいて、各バンドパスフィルター処理された時
間−周波数受波信号をドップラー補正する。このドップ
ラー補正には、公知文献2や本発明者が先に提案してい
る特願平11−069924号に記載の構成を利用でき
る。
(F) Doppler correction is performed on the time-frequency received signal that has been subjected to each band-pass filter processing in a combination of two of the three or more receivers. For this Doppler correction, a configuration described in a known document 2 or Japanese Patent Application No. 11-069924 previously proposed by the present inventors can be used.

【0030】(g)3台以上の受波器の内の各2台の組み
合わせにおいて、各ドップラー補正された2台の受波器
とSの時間−周波数受波信号X(t)’とX
(t)’を逆FFT処理し、X(t)とX(t)の相互
相関係数Cijを算出する。
(G) In each combination of two or more of the three or more receivers, the time-frequency received signal X i (t) of each of the two Doppler corrected receivers S i and S j ) 'And X
j (t) ′ is subjected to inverse FFT processing to calculate a cross-correlation coefficient C ij between X i (t) and X j (t).

【0031】[0031]

【数4】 さらに、Cij’を逆FFT処理して相互相関係数C
ijを算出する。
(Equation 4) Further, C ij ′ is subjected to inverse FFT processing to perform cross-correlation coefficient C
ij is calculated.

【0032】(h)相互相関係数を相対値で表現するため
に、△dijを求める。 △d=real(C)/real(Cmax) …(9) 但し、 real(Cmax)はC(t)の実数部の最大値 real(C)はC(t)の実数部
(H) In order to express the cross-correlation coefficient as a relative value, △ d ij is obtained. Δd = real (C) / real (C max ) (9) where real (C max ) is the maximum value of the real part of C n (t) real (C) is the real part of C n (t)

【0033】(i)本発明である航走体放射雑音からの航
跡標定方法及び装置は、トリガー機能が無いことを前提
としているので受波器の受波信号上の計測開始絶対時間
が未知であることから、航走体の初期位置Pは未
知数となる。従って、航走体の初期位置Pを任意に仮
定した未知の初期値とする。
[0033] (i) track locating method and apparatus from domestic Hashikarada radiation noise is present invention, the measurement starting absolute time t 0 on the received signals of the receivers since it is assumed that the trigger function no Since it is unknown, the initial position P 0 of the hull becomes an unknown number. Accordingly, the unknown initial values arbitrarily assumed initial position P 0 of the domestic Hashikarada.

【0034】(j)最初に仮定到達時間差τ’を算出す
る。その算出方法を次に示す。前記相対相互相関係数△
ijn信号を読み込んで、放射雑音計測開始時間t
での受波器SとSの航走体放射雑音到達時間差を0
とし、サンプル信号χ in(t)とχjn(t)について1
番目の相対相互相関係数△dij1と2番目の相対相関
係数△dij2の相関を計算し、そのズレ幅△wij1
を求め、同様に、2番目の相対相関係数△dij2と3
番目の相対相関係数△dij3の相関からズレ幅△w
ij2、さらに△dij3と△dij4の相関からズレ
幅△wij 、これを順次、△dijiと△d
iji+1のズレ幅△wijiまで算出して、仮定到達
時間差曲線τij’=wij(t)が求められる。
(J) First, the assumed arrival time difference τ 'is calculated
You. The calculation method will be described below. The relative cross-correlation coefficient △
dijnThe signal is read and the radiation noise measurement start time t 0
Receiver S atiAnd SjThe arrival time difference of the vehicle's radiation noise
And the sample signal χ in(t) and χjnAbout (t) 1
Th relative cross-correlation coefficient △ dij1And the second relative correlation
Coefficient △ dij2Is calculated and the deviation width △ wij1
, And similarly, the second relative correlation coefficient △ dij2And 3
Th relative correlation coefficient △ dij3The deviation width w from the correlation
ij2And △ dij3And △ dij4Deviation from correlation
Width wij 3, Sequentially, △ dijiAnd △ d
iji + 1Deviation width of wijiCalculated to reach the assumption
Time difference curve τij’= Wij(t) is required.

【0035】(k)仮定到達時間差τ’からレンジR
求める方法について以下に説明する。仮定到達時間差τ
ij’は、N(N−1)/2組のセンサーペアMijに対
して求まる。ここで、受波信号上の時間tにおける仮定
到達時間差τij’に未知バイアスBijを付加するこ
とによって、次式が成り立つ。
[0035] (k) will be described with the assumption arrival time difference tau 'below how to determine the range R i. Assumption time difference τ
ij ′ is obtained for N (N−1) / 2 sensor pairs M ij . Here, by adding an unknown bias B ij to the assumed arrival time difference τ ij ′ at time t on the received signal, the following equation is established.

【0036】[0036]

【数5】 但し、Bijは、tには依存しない定数とする。これを
t=kdtとおき書き直す。 |P(k)−S|−|P(k)−S|=τij’(k)+Bij …(11)
(Equation 5) Here, B ij is a constant that does not depend on t. This is rewritten as t = kdt. | P i (k) −S i | − | P j (k) −S j | = τ ij ′ (k) + B ij (11)

【0037】本発明の放射雑音計測範囲において、航走
体の進路上の位置P(k)には、微小時間(t−1)から
(t+1)の間にラプラシアンフィルター残差をb(k)と
して次式が成り立つ。 α{P(k−1)−2P(k)+P(k+1)}=b(k) …(12) (11)式と(12)式のk=1,2,…,nについて連立方程
式を立てて解く。ここで、未知数P(k)とBijの数
は、3n+で、式の数は、・n+3(n−
2)となる。N=3のとき、未知数の数は3n+3で、
式の数は3n+3(n−2)である。よって、n≧3なら
ば式の数≧未知数の数となり、(11),(12)式から未知数
が明らかとなる。
In the radiation noise measurement range of the present invention, the position P (k) on the course of the cruising vehicle is set at a short time (t-1)
The following equation is established while the Laplacian filter residual is b (k) during (t + 1). α {P (k−1) −2P (k) + P (k + 1)} = b (k) (12) A simultaneous equation is obtained for k = 1, 2,..., n in equations (11) and (12). Stand up and solve. Here, the number of unknowns P (k) and B ij is the 3n + N C 2, the number of equations, N C 2 · n + 3 (n-
2). When N = 3, the number of unknowns is 3n + 3,
The number of equations is 3n + 3 (n-2). Therefore, if n ≧ 3, the number of equations ≧ the number of unknowns, and the unknowns are apparent from equations (11) and (12).

【0038】また、N=4のときには、未知数の数は、
3n+6で、式の数は、6n+3(n−2)となる。nを
大きく取る場合、(10)式より次式が定義できる。 F(k)=|R(k)|−|R(k)|−τij’(k)−Bij …(13) ここで、F(k)は、到達時間残差である。
When N = 4, the number of unknowns is
With 3n + 6, the number of equations is 6n + 3 (n-2). When n is large, the following equation can be defined from equation (10). F (k) = | R i (k) | − | R j (k) | −τ ij ′ (k) −B ij (13) Here, F (k) is an arrival time residual.

【0039】(l)航走体の位置変動量dP(k)と未知バ
イアス変動量△Bijを計算する。その方法を次に説明
する。(12)式を次式に書き直す。 X(k)=α{x(k−1)−2x(k)+x(k+1)} Y(k)=α{y(k−1)一2y(k)+y(k+1)} …(14) Z(k)=α{z(k−1)−2z(k)+z(k+1)} (14)式を全微分する。 dX(k)=αdx(k−1)−2αdx(k)+αdx(k+1) dY(k)=αdy(k−1)−2αdy(k)+αdy(k+1) …(15) dZ(k)=αdz(k−1)−2αdz(k)+αdz(k+1) (15)式を全微分すると仮定到達時間差τ’は消去されて
次式となる。
(L) Calculate the position variation dP (k) of the marine vehicle and the unknown bias variation △ B ij . The method will be described below. Equation (12) is rewritten into the following equation. X (k) = α {x (k−1) −2x (k) + x (k + 1)} Y (k) = α {y (k−1) −2y (k) + y (k + 1)} (14) Z (k) = α {z (k−1) −2z (k) + z (k + 1)} Equation (14) is totally differentiated. dX (k) = αdx (k−1) −2αdx (k) + αdx (k + 1) dY (k) = αdy (k−1) −2αdy (k) + αdy (k + 1) (15) dZ (k) = αdz (k-1) -2αdz (k) + αdz (k + 1) When the equation (15) is fully differentiated, the assumed arrival time difference τ ′ is eliminated and the following equation is obtained.

【0040】[0040]

【数6】 dF(k)={(x−x)/R−(x−x)/R}dx(k) +{(y−y)/R−(y−y)/R}dy(k) +{(z−z)/R−(z−z)/R}dz(k)−△Bij …(17) ここで(15)式と(17)式を連立させて、最小二乗法により
dx(k),dy(k),dz(k)及び△Bijを決める。
(Equation 6) dF (k) = {(x -x i) / R i - (x-x j) / R j} dx (k) + {(y-y i) / R i - (y-y j) / R j} dy (k) + { (z-z i) / R i - (z-z j) / R j} dz (k) - △ B ij (17) Here, equations (15) and (17) are made simultaneous, and dx (k), dy (k), dz (k) and △ B ij are determined by the least squares method.

【0041】(m)航走体の位置P(i)を決定する。前記
項目(a)から(h)までの処理で求められたdx(k),d
y(k),dz(k)及び△Bijを基に、初期位置P
ついて順次、(18)式のごとく更新し求められる残差が最
小になる航走体の位置P(0)からP(i)を決定する。 x(k)=x(k)+dx(k) y(k)=y(k)+dy(k) …(18) z(k)=z(k)+dz(k)
(M) Determine the position P (i) of the vehicle. Dx (k), d obtained in the processing of the above items (a) to (h)
Based on y (k), dz (k) and △ B ij , the initial position P 0 is sequentially updated from equation (18) from the position P (0) of the hull where the obtained residual is minimized. Determine P (i). x (k n) = x ( k n) + dx (k n) y (k n) = y (k n) + dy (k n) ... (18) z (k n) = z (k n) + dz (k n )

【0042】(n)航走体の位置P(i+1)を決定する。
求められた航走体初期位置P(x,y,z)と真の
到達時間差τから△B ij=0として、時刻tにおける
航走体の位置P(t)を決定する。
(N) Determine the position P (i + 1) of the running body.
Obtained initial position P of the vehicle0(x0, y0, z0) And true
△ B from arrival time difference τ ij= 0 and at time t
The position P (t) of the vehicle is determined.

【0043】以下に処理法を説明する。航走体の位置P
(x,y,z)に収束した初期値P(i+1)=2P(i)−P
(i−1)を与える。
The processing method will be described below. Aircraft position P
Initial value P (i + 1) = 2P (i) -P converged to (x, y, z)
(i-1).

【0044】次に(17),(18)式より次式を得る。 dF(k)=Aijdx+Bijdy+Cijdz …(19) ここで、 Aij=(x−x)/R−(x−x)/Rij=(y−y)/R−(y−y)/Rij=(z−z)/R−(z−z)/R (19)式をマトリックスで表示するとNext, the following equation is obtained from equations (17) and (18). dF (k) = A ij dx + B ij dy + C ij dz (19) where A ij = (x−x i ) / R i − (x−x j ) / R j B ij = (y−y i ) / R i − (y−y j ) / R j C ij = (z−z i ) / R i − (z−z j ) / R j (19) is expressed by a matrix.

【0045】[0045]

【数7】 これをF=M・dPとする。(Equation 7) This is F = M · dP.

【0046】[0046]

【数8】 (23)式からdPを求めるために、両辺に転置行列Mを
かける。 MF=MMdP より dP=(MM)−1(MF) …(24)
(Equation 8) In order to obtain dP from equation (23), a transposed matrix t M is applied to both sides. t MF = t MMdP than dP = (t MM) -1 ( t MF) ... (24)

【0047】(o)二乗平均残差 (ΣdF(k)
ij)1/2 を計算する。
(O) Mean square residual (ΣdF (k) 2 /
S ij ) 計算 is calculated.

【0048】(p)残差が前回の残差と変わらなかったら
終了する。
(P) If the residual is not different from the previous residual, the process ends.

【0049】(q)次式のマトリックスMを計算する。(Q) A matrix M of the following equation is calculated.

【0050】[0050]

【数9】 (Equation 9)

【0051】 (r)dP=(MM)−1(MF) を計算する。(R) Calculate dP = ( t MM) −1 ( t MF)

【0052】 (s)P(k)=P(k)+dP(k)とする。(S) Let P (k n ) = P (k n ) + dP (k n ).

【0053】(t)前記項目(n)へ戻る。(T) Return to item (n).

【0054】 (u)残差が前回の残差と変わらなかったら終了する。(U) If the residual is not different from the previous residual, the process ends.

【0055】[0055]

【発明の実施の形態】以下、本発明に係る航走体放射雑
音からの航跡標定方法及び装置の実施の形態を図面に従
って説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method and apparatus for locating a track from radiation noise of a vehicle according to the present invention will be described below with reference to the drawings.

【0056】図1は本発明に係る航走体放射雑音からの
航跡標定方法及び装置の一実施の形態の構成を示してい
る。
FIG. 1 shows a configuration of an embodiment of a method and an apparatus for locating a track from a radiating noise of a vehicle according to the present invention.

【0057】この図において、1は水中、2は水面、3
は海底、4は航走体、S,S,…,Sは受波器
(音響センサー)、5−1,5−2,…,5−Nは受信
回路、6−1,6−2,…,6−NはA/D変換器、1
1−1,11−2,…,11−NはFFT処理器、12
−1,12−2,…,12−Nは記憶装置、13−1,
13−2,…,13−Nはバンドパスフィルター処理
器、14は航走体固有振動特性に起因する航走雑音周波
数帯域検出器、15はドップラー周波数による航走体速
度検出器、16はドップラー補正演算器、17は相互相
関による仮定到達時間差検出器、18は航走体位置変動
量と未知バイアス変動量演算器、19は真の到達時間差
検出器、20は航走体の航跡標定器である。なお、Nは
3以上の整数である。
In this figure, 1 is underwater, 2 is water surface, 3
Seabed, is 4 Kohashikarada, S 1, S 2, ... , S N is wave receiver (acoustic sensor), 5-1,5-2, ..., 5- N are the receiving circuit, 6-1,6 −2,..., 6-N are A / D converters, 1
.., 11-N are FFT processors, 12
-1, 12-2,..., 12-N are storage devices, 13-1,
13-2,..., 13-N are band-pass filter processors, 14 is a navigation noise frequency band detector caused by the natural vibration characteristics of the vehicle, 15 is a vehicle speed detector based on Doppler frequency, and 16 is Doppler A correction arithmetic unit, 17 is a hypothetical arrival time difference detector based on cross-correlation, 18 is a vehicle position fluctuation amount and unknown bias fluctuation amount calculation unit, 19 is a true arrival time difference detector, and 20 is a cruise vehicle trajectory locator. is there. Note that N is an integer of 3 or more.

【0058】受波器S,S,…,Sは水面又は水
中を航走する航走体4の放射雑音をそれぞれ検出するも
のであり、例えばハイドロホン等の音響センサーであ
る。
The receivers S 1 , S 2 ,..., SN detect the radiation noise of the vehicle 4 traveling on the water surface or underwater, and are acoustic sensors such as hydrophones, for example.

【0059】受信回路5−1,5−2,…,5−Nは受
波器S,S,…,Sから入力された受波信号を一
定レベルまでそれぞれ振幅増幅した後、A/D変換器6
−1,6−2,…,6−Nに信号をそれぞれ出力する。
The receiving circuit 5-1,5-2, ..., 5-N are receiving transducer S 1, S 2, ..., after each amplitude amplifying the received signal input from the S N to a certain level, A / D converter 6
-1, 6-2, ..., 6-N.

【0060】A/D変換器6−1,6−2,…,6−N
は、受信回路5−1,5−2,…,5−Nから転送され
たアナログ受波信号をそれぞれデジタル受波信号に変換
し、該デジタル受波信号をFFT処理器11−1,11
−2,…,11−Nにそれぞれ転送する。
A / D converters 6-1, 6-2,..., 6-N
Converts the analog received signals transferred from the receiving circuits 5-1, 5-2,..., 5-N into digital received signals, and converts the digital received signals into FFT processors 11-1 and 11-1.
−2,..., 11-N.

【0061】図2に受波器Sと受波器Sと受波器S
による受波信号の一例を示す。
[0061] receivers in Figure 2 S 1 and wave receiver S 2 and receivers S
3 shows an example of a received signal by No. 3 .

【0062】FFT処理器11−1,11−2,…,1
1−Nは、デジタル受波信号をdt秒毎にFFT処理
し、時間−周波数信号に変換して記憶装置12−1,1
2−2,…,12−Nにそれぞれ転送する。
The FFT processors 11-1, 11-2,..., 1
1-N performs an FFT process on the digital received signal every dt seconds, converts the digital received signal into a time-frequency signal, and
2-2,..., 12-N.

【0063】航走体固有振動特性(航走体固有振動数)
に起因する航走雑音周波数帯域検出器14は、記憶装置
12−1,12−2,…,12−Nから時間−周波数信
号に変換された受波信号を個々に検出器14内に取り込
んで、航走体固有振動特性に起因する航走雑音周波数帯
域の上限値と下限値を検出しバンドパスフィルター処理
器13−1,13−2,…,13−Nに出力する。
Vessel-specific vibration characteristics (Vessel-specific frequency)
., 12-N from the storage devices 12-1, 12-2,..., 12-N, individually fetch the received signals converted into time-frequency signals into the detector 14. , The upper limit and the lower limit of the running noise frequency band caused by the natural vibration characteristics of the vehicle, and outputs the detected values to the band-pass filter processors 13-1, 13-2,..., 13-N.

【0064】ここでの処理は特願平11−069924
号の構成を用いることができる。つまり、航走体固有振
動特性に起因する航走雑音周波数帯域検出器14は、 第1の受波器(例えばS)による受波信号に基づい
て、前記記憶装置からFFT処理された時間−周波数受
波信号を読み込んで、所定サンプリング時間毎のローフ
ァーグラムを作成する手段と、 前記ローファーグラムにおいて周波数0〜FHz間の
スペクトルラインにおけるパワー値極大値列を抽出する
手段と、 前記及び手段の処理を前記ローファーグラムにお
いて周波数0〜FHzの範囲にある航走雑音のパワー値
の極大値列群の全部について実施する手段とを備え、 第2の受波器(例えばS)による受波信号に基づい
て、上記,及びの手段による処理を行い、前記第
1の受波器の受波信号に基づいて検出された航走雑音周
波数帯域の上限値と下限値が、前記第2の受波器の受波
信号に基づいて検出された航走雑音周波数帯域の上限値
と下限値とに一致した場合に、航走体振動特性に起因す
る航走雑音の周波数帯域と判定する手段とを具備する構
成とする。ここで、3個以上の各受波器について上記
,及びの手段による処理を行って、各受波器毎に
検出された航走雑音周波数帯域の上限値と下限値が互い
に一致するかどうかを判定するようにしてもよい。
The processing in this case is described in Japanese Patent Application No. 11-069924.
No. configuration can be used. That is, the running noise frequency band detector 14 caused by the natural vibration characteristic of the vehicle is configured to calculate the time obtained by performing the FFT processing from the storage device based on the received signal from the first receiver (for example, S 1 ). Means for reading a received frequency signal and creating a loafgram for each predetermined sampling time; means for extracting a maximum value sequence of power values in a spectrum line between 0 and FHz in the loafgram; Means for performing the entirety of the maximum value sequence of the power values of the traveling noise in the range of the frequency 0 to FHz in the loafgram, the signal received by the second receiver (for example, S 2 ) And the upper and lower limits of the navigation noise frequency band detected based on the received signal of the first receiver are determined. When the upper limit value and the lower limit value of the navigation noise frequency band detected based on the reception signal of the second receiver are matched, the frequency band of the navigation noise caused by the navigation body vibration characteristics is And a determination unit. Here, the above-mentioned and the above-mentioned means are performed for each of the three or more receivers to determine whether the upper limit and the lower limit of the navigation noise frequency band detected for each receiver match each other. The determination may be made.

【0065】バンドパスフィルター処理器13−1,1
3−2,…,13−Nは航走体固有振動特性に起因する
航走雑音周波数帯域検出器16から入力された周波数帯
域の上限値と下限値の範囲で、記憶装置12−1,12
−2,…,12−Nに記憶された受波信号についてバン
ドパスフィルター処理を行いドップラー補正演算器16
に転送する。
The band-pass filter processors 13-1, 1
3-2,..., 13-N denote ranges of the upper limit value and the lower limit value of the frequency band inputted from the navigation noise frequency band detector 16 caused by the natural vibration characteristic of the vehicle, and the storage devices 12-1 and 12-12.
,..., 12-N, performs band-pass filter processing on the received signal and performs Doppler correction
Transfer to

【0066】図3に航走体固有振動数に起因する航走雑
音周波数帯域の上限値と下限値の範囲でバンドパスフィ
ルター処理を実施した受波器Sと受波器Sそして受
波器Sによる受波信号を示す。
FIG. 3 shows receivers S 1 and S 2 that have been subjected to band-pass filter processing in the range of the upper limit and the lower limit of the running noise frequency band caused by the natural frequency of the vehicle. shows the received signal by instrumental S 3.

【0067】ドップラー補正演算器16は航跡標定にお
けるドップラー現象の影響を除去するために、受波信号
をドップラー補正し相互相関による仮定到達時間差検出
器17に出力する。このドップラー現象の影響を除去す
る処理は、公知文献2や本発明者提案の特願平11−6
9924号に記載された技術を用いることができる。つ
まり、受波信号からドップラー周波数により航走体の速
度を検出する航走体速度検出器15のドップラー周波数
による航走体速度の検出結果に基づいて、ドップラー補
正演算器16はドップラー現象による時間伸縮率を求め
て、受波信号のドップラー補正を行うようにしている。
なお、本実施の形態では、航走体速度検出器15は、航
走体固有振動特性に起因する航走雑音周波数帯域検出器
14の出力を受けて航走体の速度を検出するようにして
いるが、バンドパスフィルター処理された受波信号から
ドップラー周波数により航走体の速度を検出するように
してもよい。
The Doppler correction computing unit 16 performs Doppler correction on the received signal and outputs the signal to the assumed arrival time difference detector 17 based on cross-correlation in order to eliminate the influence of the Doppler phenomenon in the track location. The processing for removing the influence of the Doppler phenomenon is disclosed in the known document 2 and Japanese Patent Application No. 11-6 proposed by the present inventors.
The technique described in No. 9924 can be used. In other words, based on the detection result of the vehicle speed by the Doppler frequency of the vehicle speed detector 15 that detects the speed of the vehicle by the Doppler frequency from the received signal, the Doppler correction calculator 16 performs time expansion and contraction by the Doppler phenomenon. The Doppler correction of the received signal is performed by obtaining the rate.
In the present embodiment, the navigation body speed detector 15 detects the speed of the navigation body by receiving the output of the navigation noise frequency band detector 14 caused by the navigation body natural vibration characteristic. However, the speed of the vehicle may be detected based on the Doppler frequency from the received signal that has been subjected to the band pass filter processing.

【0068】図4は受波器SとSによる放射雑音の
ドップラー補正受波信号X(t)とX(t)の説明図で
ある。
FIG. 4 is an explanatory diagram of Doppler-corrected reception signals X 1 (t) and X 2 (t) of radiation noise by the receivers S 1 and S 2 .

【0069】ドップラー補正された受波信号の相互相関
処理を行う相互相関による仮定到達時間差検出器17
は、(a)N台の受波器の内、各2台の組み合わせに基づ
いて、前記航走体固有振動特性に起因する周波数範囲で
バンドパスフィルター処理された後ドップラー補正され
た全放射雑音計測時間Tの受波信号X(t)とX(t)
のFFT処理信号を読み込んで、該信号を周波数分析間
隔dt毎にn回(T=n×dt)逆FFT処理して求めた
n個のサンプル信号χin(t)とχjn(t)の相互相関
係数Cijnを算出し、該相関係数の実数部を該相関係
数の実数部の最大値で割り相対相互相関係数△dijn
で表示した時間−相対相関係数信号を算出する手段と、
(b)前記相対相互相関係数△dijn信号を読み込ん
で、放射雑音計測開始時間tでの受波器SとS
航走体放射雑音到達時間差を0とし、サンプル信号χ
in(t)とχjn(t)について1番目の相対相互相関係
数△dij1と2番目の相対相関係数△dij2の相関
を計算し、そのズレ幅△wij1を求め、同様に、2番
目の相対相関係数△dij2と3番目の相対相関係数△
ij3の相関からズレ幅△wij2、さらに△d
ij3と△dij4の相関からズレ幅△wd ij3、こ
れを順次、△dijiと△diji+1のズレ幅△w
ijiまで算出して、仮定到達時間差曲線τij’=w
ij(t)を求める手段とを具備する。例えば、i=1,
j=2であれば、相互相関による仮定到達時間差検出器
17では、ドップラー補正演算器16において補正され
た受波信号X(t)とX(t)について相互相関係数の
最大値を算出し、その時の仮定到達時間差を求める。
Cross-correlation of Doppler-corrected received signal
Assumed arrival time difference detector 17 based on cross-correlation for processing
Is based on (a) a combination of two of the N receivers.
In the frequency range attributable to the characteristic characteristics of the vehicle.
Doppler corrected after band pass filtering
Signal X of total radiation noise measurement time Ti(t) and Xj(t)
Of the FFT processing signal of
Determined by performing inverse FFT processing n times (T = n × dt) for each interval dt
n sample signalsin(t) and χjnCross-correlation of (t)
Coefficient CijnAnd calculate the real part of the correlation coefficient as the phase relationship
Divided by the maximum value of the real part of the number, the relative cross-correlation coefficient △ dijn
Means for calculating a time-relative correlation coefficient signal indicated by:
(b) the relative cross-correlation coefficient △ dijnRead signal
And the radiation noise measurement start time t0Receiver S atiAnd Sjof
Assuming that the difference in arrival time of the radiating noise of the vehicle is 0, the sample signal χ
in(t) and χjnThe first relative mutual relation for (t)
Number △ dij1And the second relative correlation coefficient △ dij2Correlation of
Is calculated and the deviation width △ wij1And likewise,
Eye relative correlation coefficient △ dij2And the third relative correlation coefficient △
dij3The deviation width w from the correlationij2And △ d
ij3And △ dij4Deviation from the correlation of △ wd ij3This
順次 dijiAnd △ diji + 1Deviation width of w
ijiTo the assumed arrival time difference curve τij’= W
ij(t). For example, i = 1,
If j = 2, hypothetical arrival time difference detector based on cross-correlation
At 17, the Doppler correction calculator 16 corrects
Received signal X1(t) and X2(t) of the cross-correlation coefficient
The maximum value is calculated, and the assumed arrival time difference at that time is obtained.

【0070】図5に相互相関による仮定到達時間差検出
器17により受波器Sと受波器S により受信された
受波信号X(t)とX(t)について受波器間の仮定到
達時間差曲線を求めた結果を示す。
FIG. 5 shows the assumption arrival time difference detection based on the cross-correlation.
The receiver S by the receiver 17lAnd receiver S 2Received by
Received signal X1(t) and X2Assumption (t) between receivers
The result of obtaining the time difference curve is shown.

【0071】航走体位置変動量と未知バイアス変動量演
算器18は、仮定到達時間差検出器17で算出された仮
定到達時間差から各受波信号のn個のサンプル信号の内
の初期のi個を用いて航走体位置変動量と未知バイアス
変動量を求める。つまり、航走体位置変動量と未知バイ
アス変動量演算器18は、3台以上の受波器により計測
された各受波信号X(t)のn個のサンプル信号χ
(t),χ(t),χ(t),…,χ(t)の内の初期
のi個について求めた仮定到達時間差τiji’と航走
体が微小時間(t−1)から(t+1)間は直線上を進行す
るとした航走体位置P(k)にラプラシアンフィルターに
よる非線形最小二乗法を適用し航走体の位置変動量と未
知バイアス変動量を求める手段を具備する。
Based on the assumed arrival time difference calculated by the assumed arrival time difference detector 17, the n-th sample signal of each received signal is used to calculate the initial i To determine the position variation of the vehicle and the unknown bias variation. In other words, the vehicle body position fluctuation amount and unknown bias fluctuation amount calculator 18 calculates n sample signals の of each received signal X (t) measured by three or more receivers.
1 (t), χ 2 (t), 3 3 (t),..., N n (t), the assumed arrival time difference τ iji 'obtained for the initial A means is provided for calculating the position fluctuation amount and the unknown bias fluctuation amount of the vehicle by applying the nonlinear least squares method using the Laplacian filter to the vehicle position P (k) which is assumed to travel on a straight line from 1) to (t + 1). I do.

【0072】図6に受波器S、受波器S、受波器S
間の真の放射雑音到達時間差と受波器SとSの仮
定到達時間差及び未知バイアスの関係を示す。
FIG. 6 shows receivers S 1 , S 2 , S
Assuming the difference between the arrival times of the true radiation noise arrival time difference and the wave receiver S l and S 2 between 3 and showing the relationship between the unknown bias.

【0073】真の到達時間差検出器19は、求められた
航走体位置変動量と未知バイアス変動量を基に、航走体
の任意設定初期値Pについて順次、ラプラシアンフィ
ルター残差が最小になる航走体の位置P(0)からP(i)
を決定し、その値から真の到達時間差を検出する手段を
具備する。
The true arrival time difference detector 19 successively minimizes the Laplacian filter residual for an arbitrary initial value P 0 of the vehicle based on the obtained vehicle position variation and unknown bias variation. From the position P (0) to P (i)
And a means for detecting a true arrival time difference from the value.

【0074】航走体航跡標定器20は、前記真の到達時
間差検出器19で検出された航走体放射雑音の各受波器
までの真の到達時間差と各受波器の位置S(x,
,z )及び任意に設定した航走体初期位置P(x
,y,z)とから未知バイアス変動量△Bijを0
として、目標と受波器の距離であるレンジRに関する三
次元方程式を解くことにより、全放射雑音計測時間Tに
わたり航走体の位置P(t)を決定する手段を具備してお
り、これにより全放射雑音計測時間にわたって航走体の
位置を求め航跡を標定する。
The trajectory track finder 20 is adapted to detect the true arrival
Each receiver of the vehicle radiation noise detected by the difference detector 19
True arrival time difference and the position S of each receiveri(xi,
yi, z i) And the arbitrarily set vehicle initial position P0(x
0, y0, z0) And the unknown bias variation △ BijTo 0
As the range R, which is the distance between the target and the receiver.
By solving the dimensional equation, the total radiation noise measurement time T
Means for determining the position P (t) of the
This allows the vehicle to maintain its
Find the position and locate the wake.

【0075】図7に航走体の任意設定初期位置P及び
予測標定航跡と最適予測標定軌跡を示す。
FIG. 7 shows the arbitrarily set initial position P 0, the predicted orientation track and the optimal predicted orientation trajectory of the vehicle.

【0076】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0077】[0077]

【発明の効果】以上説明した如く、本発明によれば、航
走体の放射雑音を3台以上の受波器で受信し、該受波信
号間の相互相関をとることにより、目標航走体の航跡を
求める標定方法及び装置において、本発明により各受波
器により計測される航走体放射雑音信号中に、該放射雑
音が放射された同期絶対時間のデータが無くとも2台の
受波器Sと受波器Sへの該航走体放射雑音の到達時
間差からレンジRを求めることができるので、航走体
の装備条件に依存することなく、目標の航跡を正確に標
定することができる。
As described above, according to the present invention, the radiating noise of the vehicle is received by three or more receivers, and the cross-correlation between the received signals is obtained, so that the target navigation In the positioning method and apparatus for determining the track of a body, two or more receivers are included in the vehicle radiation noise signal measured by each receiver according to the present invention, even if there is no data on the synchronous absolute time at which the radiation noise was emitted. Since the range R i can be obtained from the arrival time difference of the radiating noise of the vehicle to the wave receiver S i and the receiver S j , the target track can be accurately determined without depending on the equipment conditions of the vehicle. Can be oriented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る航走体放射雑音からの航跡標定方
法及び装置の実施の形態を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a method and an apparatus for locating a track from a vehicle radiation noise according to the present invention.

【図2】受波器S、受波器S、受波器Sが検出す
る航走体放射雑音受波信号の一例を示す波形図である。
FIG. 2 is a waveform diagram showing an example of a vehicle radiation noise reception signal detected by a receiver S 1 , a receiver S 2 , and a receiver S 3 .

【図3】航走体固有振動特性に起因する航走雑音周波数
帯域の上限値と下限値の範囲でバンドパスフィルター処
理を実施した受波器Sと受波器S及び受波器S
受波信号の一例を示す波形図である。
[Figure 3] Kou Hashikarada unique due to the vibration characteristics of sailing noise frequency band upper limit value and the wave receiver was carried out bandpass filtering in a range of lower values S 1 and wave receiver S 2 and receivers S FIG. 6 is a waveform diagram illustrating an example of a received signal of No. 3 ;

【図4】受波器SとSによる放射雑音のドップラー
補正受波信号の説明図である。
Is an illustration of a Doppler compensation received signals of radiation noise due to [4] wave receiver S l and S 2.

【図5】相互相関による仮定到達時間差曲線検出結果の
一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a result of detection of an assumed arrival time difference curve based on cross-correlation.

【図6】3台の受波器の内の各2台について放射雑音到
達時間差と受波器SとSの仮定到達時間差及び未知
バイアスを求めた結果の一例を示す説明図である。
6 is an explanatory diagram showing an example of the result of obtaining the radiation noise arrival time difference and the wave receiver S 1 and assume the arrival time difference and the unknown bias of S 2 for each two of the three receivers.

【図7】目標航走体の任意設定初期位置と予測標定航跡
と最適予測標定検出結果の一例を示す説明図である。
FIG. 7 is an explanatory diagram showing an example of an arbitrary set initial position, a predicted orientation track, and an optimal predicted orientation detection result of a target marine vehicle.

【図8】ピンガー音による航走体航跡標定法説明図であ
る。
FIG. 8 is an explanatory diagram of a track body locating method using a pinger sound.

【図9】ピンガー音の送波信号と受波信号関係説明図で
ある。
FIG. 9 is a diagram illustrating a relationship between a transmitted signal and a received signal of a pinger sound.

【図10】公知文献2で開示された従来の技術の構成を
示すブロック図である。
FIG. 10 is a block diagram showing a configuration of a conventional technique disclosed in a known document 2.

【図11】目標音源の方位検出原理説明図である。FIG. 11 is a diagram illustrating the principle of detecting the direction of a target sound source.

【図12】複数受波器による目標音源の位置測位原理説
明図である。
FIG. 12 is a diagram illustrating the principle of position measurement of a target sound source by a plurality of receivers.

【符号の説明】[Explanation of symbols]

1 水中 2 水面 3 海底 4 航走体 5−1,5−2,…,5−N 受信回路 6−1,6−2,…,6−N A/D変換器, 11−1,11−2,…,11−N FFT処理器 12−1,12−2,…,12−N 記憶装置 13−1,13−2,…,13−N バンドパスフィル
ター処理器 14 航走体固有振動特性に起因する航走雑音周波数帯
域検出器 15 ドップラー周波数による航走体速度検出器 16 ドップラー補正演算器 17 相互相関による仮定到達時間差検出器 18 航走体位置変動量と未知バイアス変動量演算器 19 真の到達時間差検出器 20 航走体の航跡標定器 S,S,…,S 受波器
DESCRIPTION OF SYMBOLS 1 Underwater 2 Water surface 3 Sea bottom 4 Aircraft 5-1, 5-2, ..., 5-N Receiver circuit 6-1, 6-2, ..., 6-NA / D converter, 11-1, 11- 2,..., 11-N FFT processor 12-1, 12-2,..., 12-N storage device 13-1, 13-2,. Navigational Frequency Band Detector Due to Aircraft 15 Vessel Velocity Detector Based on Doppler Frequency 16 Doppler Correction Calculator 17 Assumed Arrival Time Difference Detector Based on Cross-Correlation 18 Vessel Vehicle Position Variation and Unknown Bias Variation Calculator 19 True , Arrival time difference detector 20 Track body locator S 1 , S 2 , ..., SN receiver

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 航走体の放射雑音を3台以上の受波器で
受信し、受信された受波信号間の相互相関をとることに
より音源の位置を求める航走体放射雑音からの航跡標定
方法において、 各受波信号を航走体固有振動特性に起因する航走雑音周
波数帯域でバンドパスフィルター処理した後ドップラー
補正して、3台以上の受波器の内の各2台の組み合わせ
に対し、それぞれドップラー補正された受波信号につい
て相互相関処理を行い周波数分析間隔dt毎の相関係数
を算出し放射雑音計測開始時間tにおける到達時間差
を0とした仮定到達時間差曲線を算出し、各受波信号の
n個のサンプル信号の内の初期のi個を用いて航走体位
置変動量と未知バイアス変動量を求め、前記航走体位置
変動量と未知バイアス変動量から真の放射雑音到達時間
差を検出し、全放射雑音計測時間にわたって航走体の位
置を算出して航跡を標定することを特徴とする航走体放
射雑音からの航跡標定方法。
1. A wake from a radiating noise of a vehicle in which the radiation noise of the vehicle is received by three or more receivers and the position of a sound source is obtained by cross-correlating the received signals. In the orientation method, each received signal is band-pass filtered in the navigation noise frequency band caused by the natural vibration characteristics of the vehicle, Doppler corrected, and a combination of two or more of three or more receivers is used. For each of the Doppler-corrected received signals, cross-correlation processing is performed, a correlation coefficient is calculated for each frequency analysis interval dt, and an assumed arrival time difference curve is calculated with the arrival time difference at the radiation noise measurement start time t0 being 0 . Calculating the vehicle position fluctuation amount and the unknown bias fluctuation amount by using the initial i signals among the n sample signals of each received signal, and obtaining a true value from the vehicle position fluctuation amount and the unknown bias fluctuation amount Radiation noise arrival time difference Detect, track locating method from domestic Hashikarada radiation noise, characterized by locating a track by calculating the position of the domestic Hashikarada over the entire radiation noise measurement time.
【請求項2】 請求項1記載の航走体放射雑音からの航
跡標定方法において、(a)前記3台以上の受波器の内、
各2台の組み合わせにおいて、航走体固有振動特性に起
因する航走雑音周波数帯域でバンドパスフィルター処理
された後ドップラー補正された全放射雑音計測時間Tの
受波信号X(t)とX(t)のFFT処理信号を読み込
んで、前記周波数分析間隔dt毎にn回(T=n×d
t)逆FFT処理したn個のサンプル信号χin(t)と
χjn(t)の相互相関係数Cijnを算出し、該相互相
関係数の実数部を当該相互相関係数の実数部の最大値で
割り相対相互相関係数△dijnで表示した時間−相対
相関係数信号を算出するステップと、(b)前記相対相互
相関係数△dijn信号を読み込んで、放射雑音計測開
始時間tでの受波器SとSの航走体放射雑音到達
時間差を0とし、サンプル信号χin(t)とχjn(t)
について1番目の相対相互相関係数△dij1と2番目
の相対相関係数△dij2の相関を計算し、そのズレ幅
△wij1を求め、同様に、2番目の相対相関係数△d
ij2と3番目の相対相関係数△dij3の相関からズ
レ幅△wij2、さらに△dij2と△dij3の相関
からズレ幅△w j3、これを順次、△dijiと△d
iji+1のズレ幅△wijiまで算出して、仮定到達
時間差曲線τij’=wij(t)を求めるステップと、
(c)前記3台以上の受波器により計測された各受波信号
のn個のサンプル信号χ (t),χ(t),χ(t),
…,χ(t)の内の初期のi個について求めた仮定到達
時間差τiji’と航走体が微小時間(t−1)から
(t+1)間は直線上を進行するとした航走体位置P
(k)にラプラシアンフィルターによる非線形最小二乗法
を適用し航走体の位置変動量と未知バイアス変動量を求
めるステップと、(d)求められた航走体位置変動量と未
知バイアス変動量を基に、航走体の任意設定初期位置P
について順次、ラプラシアンフィルター残差が最小に
なる航走体の位置P(0)からP(i)を決定し、その値か
ら真の到達時間差を検出するステップと、(e)航走体放
射雑音の各受波器までの真の到達時間差と各受波器の位
置S(x ,y,z)及び任意に設定した航走体初
期位置P(x,y,z)とから未知バイアス変動
量△Bijを0として、目標と受波器の距離であるレン
ジR ijに関する三次元方程式を解くことにより、全放
射雑音計測時間Tにわたり航走体の位置P(t)を決定す
るステップとを具備することを特徴とする航走体放射雑
音からの航跡標定方法。
2. The navigation from the vehicle radiation noise according to claim 1.
In the mark locating method, (a) among the three or more receivers,
In the combination of each two units, the characteristic
Bandpass filtering in the contributing navigation noise frequency band
Of the total radiation noise measurement time T after Doppler correction
Received signal Xi(t) and XjRead the FFT processing signal of (t)
Therefore, n times (T = n × d
t) n sample signals subjected to inverse FFT processingin(t) and
χjnCross-correlation coefficient C of (t)ijnAnd calculate the mutual phase
The real part of the relation number is the maximum value of the real part of the cross-correlation coefficient.
Divided relative cross-correlation coefficient △ dijnTime-relative
Calculating a correlation coefficient signal; and (b) calculating the relative mutual
Correlation coefficient △ dijnRead the signal and start measuring radiation noise.
Start time t0Receiver S atiAnd SjAircraft's radiation noise arrival
The time difference is set to 0, and the sample signal χin(t) and χjn(t)
For the first relative cross-correlation coefficient △ dij1And the second
Relative correlation coefficient △ dij2Calculate the correlation of
△ wij1, And similarly, the second relative correlation coefficient △ d
ij2And the third relative correlation coefficient △ dij3From the correlation of
レ width △ wij2And △ dij2And △ dij3Correlation of
Deviation width wi j3, Sequentially, △ dijiAnd △ d
iji + 1Deviation width of wijiCalculated to reach the assumption
Time difference curve τij’= Wijdetermining (t);
(c) Each received signal measured by the three or more receivers
N sample signals χ 1(t), χ2(t), χ3(t),
…, ΧnAssumption reached for the initial i of (t)
Time difference τiji’And the vehicle is from the minute time (t-1)
Vessel position P assumed to travel on a straight line during (t + 1)
(k) Non-linear least squares method using Laplacian filter
To calculate the position fluctuation and unknown bias fluctuation of the hull.
And (d) determining the amount of change in the position of the
Arbitrary setting initial position P of the craft based on the amount of knowledge bias fluctuation
0Sequentially, minimize the Laplacian filter residuals
P (i) is determined from the position P (0) of
(E) detecting the true arrival time difference from the
True arrival time difference of radiation noise to each receiver and the position of each receiver
Place SN(X N, yN, zN) And arbitrarily set airframe
Initial position P0(X0, y0, z0) And from unknown bias fluctuation
Quantity △ BijWith 0 as the distance between the target and the receiver
Di R ijBy solving the three-dimensional equation
Determining the position P (t) of the vehicle over the shooting noise measurement time T
Vehicle radiation characteristic characterized by the following steps:
Track location method from sound.
【請求項3】 航走体の放射雑音を3台以上の受波器で
受信し、受信された受波信号間の相互相関をとることに
より、音源の位置を求める航走体放射雑音からの航跡標
定装置において、 航走体の放射雑音を受信する受波器S,S,…,S
(但し、N:3以上の整数)と、 前記受波器からの受波信号をそれぞれ一定レベルまで振
幅増幅する受信回路(5−1,5−2,…,5−N)
と、 前記受信回路からのアナログ受波信号をそれぞれデジタ
ル受波信号に変換するA/D変換器(6−1,6−2,
…,6−N)と、 前記A/D変換器からのデジタル受波信号をそれぞれF
FT処理し時間−周波数信号に変換するFFT処理器
(11−1,11−2,…,11−N)と、 前記FFT処理器でFFT処理された時間−周波数信号
をそれぞれ記憶する記憶装置(12−1,12−2,
…,12−N)と、 航走体固有振動特性に起因する航走雑音周波数帯域を検
出する検出器(14)と、 航走体固有振動特性に起因する航走雑音周波数帯域で前
記記憶装置からの信号をバンドパスフィルター処理をす
るバンドパスフィルター処理器(13−1,13−2,
…,13−N)と、 受波信号のドップラー周波数により航走体の速度を検出
する航走体速度検出器(15)と、 前記航走体速度検出器で検出された航走体の速度により
受波信号をドップラー補正するドップラー補正演算器
(16)と、 該ドップラー補正された受波信号について3台以上の受
波器の内の各2台の組み合わせに対して、該ドップラー
補正された受波信号について相互相関処理を行い放射雑
音計測開始時間tにおける到達時間差を0とした仮定
到達時間差曲線を算出する相互相関による仮定到達時間
差検出器(17)と、 前記仮定到達時間差検出器で算出された仮定到達時間差
から各受波信号のn個のサンプル信号の内の初期のi個
を用いて航走体位置変動量と未知バイアス変動量を求め
る航走体位置変動量と未知バイアス変動量演算器(1
8)と、 前記航走体位置変動量と未知バイアス変動量演算器で演
算された航走体位置変動量と未知バイアス変動量から真
の放射雑音到達時間差を検出する真の到達時間差検出器
(19)と、 前記真の到達時間差検出器で検出された真の到達時間差
から全放射雑音計測時間にわたって航走体の位置を求め
航跡を標定する航走体の航跡標定器(20)とを具備
し、 航走体が水中又は水上を航走した場合に、3台以上の受
波器で受信した受波信号から、航走体放射雑音の各受波
器までの到達時間差を検出し、航走体の位置を標定する
ことを特徴とする航走体放射雑音からの航跡標定装置。
3. A radiating noise from a hull vehicle which determines a position of a sound source by receiving radiation noise of the hull vehicle by three or more receivers and calculating a cross-correlation between the received signals. In the track locating device, receivers S 1 , S 2 ,..., S for receiving radiation noise of a vehicle
N (where N: an integer of 3 or more) and a receiving circuit (5-1, 5-2,..., 5-N) for amplifying the received signal from the receiver to a certain level.
A / D converters (6-1, 6-2, and 6-1) for converting analog received signals from the receiving circuit into digital received signals, respectively.
, 6-N), and the digital received signal from the A / D converter is
An FFT processor (11-1, 11-2,..., 11-N) that performs FT processing and converts the time-frequency signal into a time-frequency signal, and a storage device that stores the time-frequency signal subjected to the FFT processing by the FFT processor ( 12-1, 12-2,
, 12-N), a detector (14) for detecting a navigation noise frequency band caused by the natural vibration characteristic of the vehicle, and the storage device having a navigation noise frequency band caused by the natural vibration characteristic of the vehicle. Band-pass filter processing unit (13-1, 13-2,
..., 13-N), a vehicle speed detector (15) for detecting the speed of the vehicle based on the Doppler frequency of the received signal, and the speed of the vehicle detected by the vehicle speed detector A Doppler correction arithmetic unit (16) for performing Doppler correction on the received signal according to (1). The Doppler corrected received signal is subjected to the Doppler correction for each combination of two or more of the three or more receivers. A cross-correlation hypothesis arrival time difference detector (17) for performing cross-correlation processing on the received signal and calculating a hypothesis arrival time difference curve with the arrival time difference at the radiation noise measurement start time t0 being 0 ; A vehicle position variation and an unknown bias are obtained from the calculated assumed arrival time difference by using an initial i number of n sample signals of each received signal to determine a vehicle position variation and an unknown bias variation. Momentum calculator (1
8); a true arrival time difference detector for detecting a true radiation noise arrival time difference from the navigation body position fluctuation amount and the unknown bias fluctuation amount calculated by the navigation body position fluctuation amount and the unknown bias fluctuation amount calculator ( 19), and a trajectory tracker (20) for a trajectory that finds the position of the trajectory over the total radiation noise measurement time from the true arrival time difference detected by the true arrival time difference detector and locates the wake. When the navigation system is moving underwater or above the water, the difference in the arrival time of each vehicle's radiated noise to each receiver is detected from the received signals received by three or more receivers, A trajectory locating device for radiating noise of a vehicle, characterized by locating a vehicle.
【請求項4】 請求項3記載の航走体放射雑音からの航
跡標定装置において、前記ドップラー補正された受波信
号の相互相関処理を行う相互相関による仮定到達時間差
検出器(17)は、(a)N台の受波器の内、各2台の組
み合わせに基づいて、前記航走体固有振動特性に起因す
る周波数帯域でバンドパスフィルター処理された後ドッ
プラー補正演算器(16)でドップラー補正された全放
射雑音計測時間Tの受波信号X(t)とX(t)のFF
T処理信号を読み込んで、該信号を周波数分析間隔dt
毎にn回(T=n×dt)逆FFT処理して求めたn個
のサンプル信号χin(t)とχ jn(t)の相互相関係数
ijnを算出し、該相互相関係数の実数部を当該相互
相関係数の実数部の最大値で割り相対相互相関係数△d
ijnで表示した時間−相対相関係数信号を算出する手
段と、(b)前記相対相互相関係数△dijn信号を読み
込んで、放射雑音計測開始時間tでの受波器SとS
の航走体放射雑音到達時間差を0とし、サンプル信号
χin(t)とχjn(t)について1番目の相対相互相関
係数△dij1と2番目の相対相関係数△dij2の相
関を計算し、そのズレ幅△wij1を求め、同様に、2
番目の相対相関係数△dij2と3番目の相対相関係数
△dij3の相関からズレ幅△wij2、さらに△d
ij3と△dij4の相関からズレ幅△w j3、これ
を順次、△dijiと△diji+1のズレ幅△w
ijiまで算出して、仮定到達時間差曲線τij’=w
ij(t)を求める手段とを具備し、 前記航走体位置変動量と未知バイアス変動量演算器(1
8)は、前記3台以上の受波器により計測された各受波
信号X(t)のn個のサンプル信号χ(t),χ (t),
χ(t),…,χ(t)の内の初期のi個について求め
た仮定到達時間差τiji’と航走体が微小時間(t−
1)から(t+1)間は直線上を進行するとした航走体
位置P(k)にラプラシアンフィルターによる非線形最小
二乗法を適用し航走体の位置変動量と未知バイアス変動
量を求める手段を具備し、 前記真の到達時間差検出器(19)は、求められた該航
走体位置変動量と未知バイアス変動量を基に、航走体の
任意設定初期位置Pについて順次、ラプラシアンフィ
ルター残差が最小になる航走体の位置P(0)からP(i)
を決定し、その値から真の到達時間差を検出する手段を
具備し、 前記航走体の航跡標定器(20)は、前記航走体放射雑
音の各受波器までの真の到達時間差と各受波器の位置S
(x,y,z)及び任意に設定した航走体初期位
置P(x,y,z)とから未知バイアス変動量△
ijを0として、目標と受波器の距離であるレンジR
ijに関する三次元方程式を解くことにより、全放射雑
音計測時間Tにわたり航走体の位置P(t)を決定する手
段を具備することを特徴とする航走体放射雑音からの航
跡標定装置。
4. Navigating from the vehicle radiation noise according to claim 3.
In the mark locating device, the Doppler-corrected received signal
Assumption Time Difference Due to Cross-Correlation Performing Cross-Correlation Processing of Signals
The detector (17) is (a) a set of two of each of the N receivers.
On the basis of the combination, the
After the band pass filter processing in the
All emission corrected by Doppler correction by the puller correction calculator (16)
Received signal X for radiation noise measurement time Ti(t) and XjFF of (t)
T processing signal is read, and the signal is subjected to frequency analysis interval dt.
N pieces obtained by performing inverse FFT processing n times (T = n × dt) for each time
The sample signal ofin(t) and χ jnCross-correlation coefficient of (t)
CijnAnd calculate the real part of the cross-correlation coefficient
Relative cross-correlation coefficient △ d divided by the maximum value of the real part of the correlation coefficient
ijnFor calculating the time-relative correlation coefficient signal indicated by
And (b) the relative cross-correlation coefficient △ dijnRead the signal
And the radiation noise measurement start time t0Receiver S atiAnd S
jAnd the sample signal
χin(t) and χjnFirst relative cross-correlation for (t)
Coefficient △ dij1And the second relative correlation coefficient △ dij2Phase of
Calculate Seki, and its deviation width △ wij1And similarly, 2
Th relative correlation coefficient △ dij2And the third relative correlation coefficient
△ dij3The deviation width w from the correlationij2And △ d
ij3And △ dij4The deviation width w from the correlationi j3,this
Sequentially, △ dijiAnd △ diji + 1Deviation width of w
ijiTo the assumed arrival time difference curve τij’= W
ijmeans for calculating (t), wherein the vehicle body position fluctuation amount and the unknown bias fluctuation amount calculator (1)
8) shows each of the received waves measured by the three or more receivers.
N sample signals of the signal X (t)1(t), χ 2(t),
χ3(t),…, χnfor the initial i of (t)
Assumed arrival time difference τiji′ And the vehicle for a very short time (t-
Vessel that travels on a straight line from 1) to (t + 1)
Non-linear minimum by Laplacian filter at position P (k)
Positional variation and unknown bias variation of the vehicle using the square method
Means for determining the quantity, wherein the true time difference of arrival detector (19) is
Based on the vehicle position fluctuation amount and the unknown bias fluctuation amount,
Arbitrary setting initial position P0Laplacian filter
From the position P (0) to P (i) of the hull where the Luther residual is minimized
To determine the true arrival time difference from that value.
The trajectory locator (20) of the hull is provided with:
True arrival time difference of sound to each receiver and position S of each receiver
N(XN, yN, zN) And arbitrarily set vehicle initial position
Place P0(X0, yO, z0) And the amount of unknown bias fluctuation △
BijIs set to 0, the range R which is the distance between the target and the receiver
ijBy solving the three-dimensional equation for
Hand that determines the position P (t) of the hull over the sound measurement time T
Navigation from radiating noise of a vehicle characterized by having a step
Mark location device.
JP2000260448A 2000-08-30 2000-08-30 Wake locating method and device from vehicle noise Expired - Lifetime JP3511090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260448A JP3511090B2 (en) 2000-08-30 2000-08-30 Wake locating method and device from vehicle noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260448A JP3511090B2 (en) 2000-08-30 2000-08-30 Wake locating method and device from vehicle noise

Publications (2)

Publication Number Publication Date
JP2002071784A true JP2002071784A (en) 2002-03-12
JP3511090B2 JP3511090B2 (en) 2004-03-29

Family

ID=18748453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260448A Expired - Lifetime JP3511090B2 (en) 2000-08-30 2000-08-30 Wake locating method and device from vehicle noise

Country Status (1)

Country Link
JP (1) JP3511090B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332186C (en) * 2004-11-25 2007-08-15 上海交通大学 Weak signal detection under complex background and characteristic analysis system
JP2008128968A (en) * 2006-11-24 2008-06-05 Tokyo Univ Of Marine Science & Technology System and method for underwater positioning
JP2015169596A (en) * 2014-03-10 2015-09-28 日本電気株式会社 Detection system, monitoring device, and control method
CN110765867A (en) * 2019-09-18 2020-02-07 山东建筑大学 Method for extracting low-frequency characteristics of radiation noise of propeller
US10845460B2 (en) 2015-06-23 2020-11-24 Nec Corporation Sound source position detection device, sound source position detection method, sound source position detection program, and recording medium
CN114205049A (en) * 2021-11-17 2022-03-18 中国船舶重工集团公司第七一九研究所 Communication type noise interference method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284481A (en) * 1987-05-18 1988-11-21 Oki Electric Ind Co Ltd Passive ranging system
JPH03195986A (en) * 1989-12-25 1991-08-27 Oki Electric Ind Co Ltd Method for estimating time lag
JPH06347530A (en) * 1993-06-08 1994-12-22 Nec Corp Estimation system for sound source position in water
JPH0921863A (en) * 1995-07-05 1997-01-21 Haruo Hamada Signal source search method and device
JP2723866B2 (en) * 1995-11-20 1998-03-09 防衛庁技術研究本部長 Signal detection device
JPH1123700A (en) * 1997-07-01 1999-01-29 Tech Res & Dev Inst Of Japan Def Agency Normal mode proper value estimation method
JP2000266833A (en) * 1999-03-16 2000-09-29 Tech Res & Dev Inst Of Japan Def Agency Apparatus and method for acoustic positioning for running noise performing doppler correction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284481A (en) * 1987-05-18 1988-11-21 Oki Electric Ind Co Ltd Passive ranging system
JPH03195986A (en) * 1989-12-25 1991-08-27 Oki Electric Ind Co Ltd Method for estimating time lag
JPH06347530A (en) * 1993-06-08 1994-12-22 Nec Corp Estimation system for sound source position in water
JPH0921863A (en) * 1995-07-05 1997-01-21 Haruo Hamada Signal source search method and device
JP2723866B2 (en) * 1995-11-20 1998-03-09 防衛庁技術研究本部長 Signal detection device
JPH1123700A (en) * 1997-07-01 1999-01-29 Tech Res & Dev Inst Of Japan Def Agency Normal mode proper value estimation method
JP2000266833A (en) * 1999-03-16 2000-09-29 Tech Res & Dev Inst Of Japan Def Agency Apparatus and method for acoustic positioning for running noise performing doppler correction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332186C (en) * 2004-11-25 2007-08-15 上海交通大学 Weak signal detection under complex background and characteristic analysis system
JP2008128968A (en) * 2006-11-24 2008-06-05 Tokyo Univ Of Marine Science & Technology System and method for underwater positioning
JP2015169596A (en) * 2014-03-10 2015-09-28 日本電気株式会社 Detection system, monitoring device, and control method
US10845460B2 (en) 2015-06-23 2020-11-24 Nec Corporation Sound source position detection device, sound source position detection method, sound source position detection program, and recording medium
CN110765867A (en) * 2019-09-18 2020-02-07 山东建筑大学 Method for extracting low-frequency characteristics of radiation noise of propeller
CN114205049A (en) * 2021-11-17 2022-03-18 中国船舶重工集团公司第七一九研究所 Communication type noise interference method and device
CN114205049B (en) * 2021-11-17 2023-09-08 中国船舶重工集团公司第七一九研究所 Communication noise interference method and device

Also Published As

Publication number Publication date
JP3511090B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
US8107320B2 (en) Autonomous sonar system and method
KR101257097B1 (en) Line array sonar and method for detecting target bearing of the same
US7639565B2 (en) Point source localization sonar system and method
EP1085306B1 (en) In place calibration of sonar receive array
CN103076594B (en) Method for positioning underwater sound pulse signal by double array elements on basis of cross-correlation
CN110703203A (en) Underwater pulsed sound positioning system based on multi-acoustic wave glider
US20140376334A1 (en) Acoustic monitoring system and a method of acoustic monitoring
CN113156442A (en) AUV (autonomous underwater vehicle) underwater positioning method based on long-baseline underwater acoustic system auxiliary navigation
JP2002071784A (en) Method and device for orienting track from sailing body radiant noise
Zhang et al. A passive acoustic positioning algorithm based on virtual long baseline matrix window
US7768873B2 (en) Combined spatial-temporal correlation SONAR
US20060083110A1 (en) Ambient bistatic echo ranging system and method
Kim et al. Passive ranging sonar based on multi-beam towed array
Zetterberg et al. Comparison between whitened generalized cross correlation and adaptive filter for time delay estimation with scattered arrays for passive positioning of moving targets in Baltic Sea shallow waters
KR101135456B1 (en) Apparatus for simulating of sensor signal of passive sonar
CN116358544A (en) Method and system for correcting inertial navigation error based on acoustic feature matching positioning
CN113126029B (en) Multi-sensor pulse sound source positioning method suitable for deep sea reliable acoustic path environment
Austin et al. " RATS", a Relative Acoustic Tracking System developed for deep ocean navigation
EP1216422B1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
JP3199240B2 (en) Acoustic positioning device and method for running noise with Doppler correction
JP3506604B2 (en) Distance detecting device and distance detecting method for navigating object
KR101917503B1 (en) Multiple underwater target distance estimation method and system using underwater acoustic signal included orthogonal code
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
Han et al. Performance improvement of underwater target distance estimation using blind deconvolution and time of arrival method
RU2770564C1 (en) Hydroacoustic complex for detecting a moving underwater sound source and measuring its coordinates

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3511090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term