JP2002053306A - Device for producing hydrogen and fuel cell system using the same - Google Patents
Device for producing hydrogen and fuel cell system using the sameInfo
- Publication number
- JP2002053306A JP2002053306A JP2000241839A JP2000241839A JP2002053306A JP 2002053306 A JP2002053306 A JP 2002053306A JP 2000241839 A JP2000241839 A JP 2000241839A JP 2000241839 A JP2000241839 A JP 2000241839A JP 2002053306 A JP2002053306 A JP 2002053306A
- Authority
- JP
- Japan
- Prior art keywords
- heating furnace
- reformer
- gas
- combustion
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化水素を燃料と
し、改質反応により水素を製造する部分酸化式水素製造
装置と該水素製造装置を用いる燃料電池システムに関す
る。[0001] The present invention relates to a partial oxidation hydrogen production apparatus for producing hydrogen by a reforming reaction using hydrocarbons as fuel, and a fuel cell system using the hydrogen production apparatus.
【0002】[0002]
【従来の技術】水素の工業的な用途は、アンモニア合
成、メタノール合成、水添脱硫などに利用されており、
数千m3/h以上の水素を製造する大型の外熱式改質器
が広く採用されている。また水素の小規模の工業的な用
途としては、半導体、グラスファイバーなどの高純度ガ
ラスの製造への利用があり、さらに、近年燃料電池用の
水素源として、小型水素製造設備が注目されている。2. Description of the Related Art Industrial uses of hydrogen are used for ammonia synthesis, methanol synthesis, hydrodesulfurization, etc.
Large external heat reformers that produce hydrogen of several thousand m 3 / h or more are widely used. In addition, as a small-scale industrial use of hydrogen, there is a use for the production of high-purity glass such as semiconductors and glass fibers, and in recent years, a small hydrogen production facility has attracted attention as a hydrogen source for fuel cells. .
【0003】以下にメタンを燃料とする例により、水素
を製造する反応を簡単に示す。まず、反応管にメタンと
水蒸気を投入することで以下の反応を促進する。 CH4+H2O → CO+3H2 (a−1) CO+H2O → CO2+H2 (a−2) ここで、上記反応は600〜900℃の高い温度を必要
とし、反応(a−1)が吸熱反応であるために、熱を連
続的に供給する必要がある。この熱の供給方法は外熱方
式と内熱方式(部分酸化方式)とに区別されている。外
熱方式は、外部から電気ヒータ又はバーナなどで加熱す
る方法であり、内熱方式は反応管内に酸素(或いは空
気)を投入して以下の酸化反応により発生する熱を上記
の反応に利用する方法である。 CH4+2O2 → CO2+2H2O (a−3)[0003] The reaction for producing hydrogen will be briefly described below by using methane as a fuel. First, the following reaction is promoted by introducing methane and steam into the reaction tube. CH 4 + H 2 O → CO + 3H 2 (a-1) CO + H 2 O → CO 2 + H 2 (a-2) Here, the above reaction requires a high temperature of 600 to 900 ° C., and the reaction (a-1) Heat must be supplied continuously because of the endothermic reaction. This heat supply method is classified into an external heat method and an internal heat method (partial oxidation method). The external heating method is a method of heating from outside with an electric heater or a burner, and the internal heating method uses oxygen (or air) injected into a reaction tube and uses heat generated by the following oxidation reaction in the above reaction. Is the way. CH 4 + 2O 2 → CO 2 + 2H 2 O (a-3)
【0004】次に、上記反応により、多量のCOが発生
するので、これをCOコンバータと呼ばれる装置を用い
て、以下の反応により水素に転換する。 CO+H2O → CO2+H2 (b−1) 一般的に、このCOコンバータの反応温度は250〜3
50℃ であり、上記反応を促進するためにCO変換触
媒である銅−亜鉛系の触媒が使用される。[0004] Next, a large amount of CO is generated by the above reaction, and this is converted into hydrogen by the following reaction using a device called a CO converter. CO + H 2 O → CO 2 + H 2 (b-1) Generally, the reaction temperature of this CO converter is 250 to 3
The temperature is 50 ° C., and a copper-zinc-based catalyst which is a CO conversion catalyst is used to promote the above reaction.
【0005】次に、図3に示す内熱方式の改質器と固体
高分子型燃料電池(PEFC)を組み合わせたシステム
を例として説明する。また、表1に前記図3に示すシス
テムの各部のガス組成を示す。Next, a system in which the reformer of the internal heat type shown in FIG. 3 and a polymer electrolyte fuel cell (PEFC) are combined will be described as an example. Table 1 shows the gas composition of each part of the system shown in FIG.
【0006】[0006]
【表1】 [Table 1]
【0007】図3に示すシステムは、改質器8と第一改
質ガス冷却器10、COコンバータ12、第二改質ガス
冷却器13、CO選択酸化器15、燃料電池18及び加
熱炉24等から構成されている。The system shown in FIG. 3 comprises a reformer 8, a first reformed gas cooler 10, a CO converter 12, a second reformed gas cooler 13, a CO selective oxidizer 15, a fuel cell 18, and a heating furnace 24. And so on.
【0008】改質器8の原料供給管5にはメタン供給管
1よりメタンが供給され、空気供給管4より部分酸化用
の空気が供給され、さらに水蒸気供給管3より水蒸気が
供給される。改質器8の原料供給管5上部は燃焼触媒層
6及び改質触媒層7が充填されている。空気はメタンを
燃焼するために必要な理論空気量の20%〜30%を供
給しており、燃焼触媒層6によりメタンの一部が燃焼
し、式(a−3)の燃焼反応が起こる。この燃焼反応に
より式(a−1)の改質反応に必要な反応熱を供給して
いる。燃焼触媒層6を出たガスは改質触媒層7に入り、
反応温度600〜900℃ の条件で、式(a−1)、
(a−2)の改質反応が起こり、水素を発生することに
なる。水素を含む改質ガスは第一改質ガス冷却器10で
250〜350℃ に冷却された後、COコンバータ1
2に入る。COコンバータ12内には、CO変成触媒1
1が充填されており、式(b−1)の反応によりCOは
水素に転換される。Methane is supplied to the raw material supply pipe 5 of the reformer 8 from the methane supply pipe 1, air for partial oxidation is supplied from the air supply pipe 4, and steam is supplied from the steam supply pipe 3. The upper portion of the raw material supply pipe 5 of the reformer 8 is filled with a combustion catalyst layer 6 and a reforming catalyst layer 7. The air supplies 20% to 30% of the theoretical amount of air necessary for burning methane, and a part of methane is burned by the combustion catalyst layer 6, and the combustion reaction of the formula (a-3) occurs. This combustion reaction supplies reaction heat required for the reforming reaction of the formula (a-1). The gas exiting the combustion catalyst layer 6 enters the reforming catalyst layer 7,
At a reaction temperature of 600 to 900 ° C., the formula (a-1):
The reforming reaction (a-2) occurs to generate hydrogen. The reformed gas containing hydrogen is cooled to 250 to 350 ° C. in the first reformed gas cooler 10 and then the CO converter 1
Enter 2. The CO conversion catalyst 1 is provided in the CO converter 12.
1 and CO is converted to hydrogen by the reaction of the formula (b-1).
【0009】COコンバータ12を出た改質ガスは、第
二改質ガス冷却器13で150℃に冷却された後、CO
選択酸化器15に入る。固体高分子型燃料電池(PEF
C)は、燃料ガス中にCOがあると電極が被毒され、発
電効率が大幅に低下する。これを防ぐために、燃料ガス
中のCO濃度を10ppm以下にする必要がある。CO
選択酸化器15には、CO選択酸化触媒14が充填され
ており、微量の酸素を投入することで以下の反応を選択
的に促進し、COを除去している。 CO+1/2O2 → CO2 (c−1)The reformed gas that has exited the CO converter 12 is cooled to 150 ° C.
It enters the selective oxidizer 15. Solid polymer fuel cell (PEF
In C), if CO is present in the fuel gas, the electrode is poisoned, and the power generation efficiency is greatly reduced. In order to prevent this, the CO concentration in the fuel gas needs to be 10 ppm or less. CO
The selective oxidizer 15 is filled with a CO selective oxidation catalyst 14, and by feeding a small amount of oxygen, the following reaction is selectively promoted to remove CO. CO + 1 / 2O 2 → CO 2 (c-1)
【0010】CO選択酸化器15を出た改質ガスは、水
素供給管16を介して、固体高分子型燃料電池18の燃
料極(図示せず)に入り、空気供給管17より投入され
る空気と反応し、電気を発生する。このとき、燃料電池
18の燃料極の水素の70〜90%が発電に使われ、残
りの30〜10%の水素が未反応水素排出管20より排
出される。The reformed gas exiting the CO selective oxidizer 15 enters a fuel electrode (not shown) of the polymer electrolyte fuel cell 18 through a hydrogen supply pipe 16 and is supplied through an air supply pipe 17. Reacts with air to generate electricity. At this time, 70 to 90% of the hydrogen at the fuel electrode of the fuel cell 18 is used for power generation, and the remaining 30 to 10% of hydrogen is discharged from the unreacted hydrogen discharge pipe 20.
【0011】未反応水素排出管20から排出された未反
応水素は加熱炉24に投入され、バーナ23で加熱炉メ
タン供給管21、加熱炉空気供給管22からそれぞれ供
給されるメタンと空気と共に燃焼される。その燃焼熱
は、改質器8に投入するメタン、空気、水等の加熱源と
して利用される。この時、加熱炉24内のガス温度は、
未反応水素の量にもよるが、およそ600〜900℃
である。加熱炉24では水供給管2内の水が加熱され、
水蒸気供給管3に供給される。加熱炉24の燃焼排ガス
は、加熱炉ガス抜き出し管25から大気中に排出され
る。The unreacted hydrogen discharged from the unreacted hydrogen discharge pipe 20 is introduced into a heating furnace 24 and burned by a burner 23 together with methane and air supplied from a heating furnace methane supply pipe 21 and a heating furnace air supply pipe 22, respectively. Is done. The combustion heat is used as a heating source for methane, air, water, and the like to be charged into the reformer 8. At this time, the gas temperature in the heating furnace 24 is
About 600-900 ° C, depending on the amount of unreacted hydrogen
It is. In the heating furnace 24, the water in the water supply pipe 2 is heated,
It is supplied to the steam supply pipe 3. The combustion exhaust gas from the heating furnace 24 is discharged from the heating furnace gas extraction pipe 25 into the atmosphere.
【0012】[0012]
【発明が解決しようとする課題】高温改質反応により水
素を発生させる場合、改質器8の熱効率が低下すると、
運転費が高くなり、改質器8の経済性を低下させること
になる。また内熱方式の場合、装置からの熱放散は熱効
率を低下することになるが、これを補うために供給する
空気量を増加する必要がある。そのため生成ガス中の窒
素が増加し、水素濃度を低下させる原因となる。燃料電
池18に用いた場合、水素濃度の低下により発電効率の
低下を招くことになる。また燃料電池システムの総合発
電効率は改質器8の熱効率と電池の発電効率との積であ
り、改質器8の熱効率の向上は電池システムの総合発電
効率を高める上で重要な要因である。また改質器8の設
置場所等の問題からコンパクトな構成が要求され、特に
室内設置の場合安全性が重要な課題となる。When hydrogen is generated by a high-temperature reforming reaction, if the thermal efficiency of the reformer 8 decreases,
The operating cost increases, and the economy of the reformer 8 decreases. In the case of the internal heat method, the heat dissipation from the device lowers the thermal efficiency, but it is necessary to increase the amount of air supplied to compensate for this. Therefore, nitrogen in the generated gas increases, which causes a decrease in hydrogen concentration. When the fuel cell 18 is used, the power generation efficiency is reduced due to a decrease in the hydrogen concentration. The total power generation efficiency of the fuel cell system is the product of the thermal efficiency of the reformer 8 and the power generation efficiency of the battery, and the improvement of the heat efficiency of the reformer 8 is an important factor in increasing the total power generation efficiency of the battery system. . In addition, a compact configuration is required due to problems such as the installation location of the reformer 8, and safety is an important issue particularly in the case of indoor installation.
【0013】上記従来技術の改質器8は、熱効率に対す
る考慮が不十分であり、多量の熱を系外に放出してい
た。すなわち、改質器8及び加熱炉24は独立の設備で
あり、それぞれ600℃ 〜900℃と高温を維持する
必要があるため、熱損失を防止するためには保温材を厚
くする必要がある。In the reformer 8 of the prior art, the heat efficiency is not sufficiently considered, and a large amount of heat is released outside the system. That is, since the reformer 8 and the heating furnace 24 are independent facilities, each of which needs to maintain a high temperature of 600 ° C. to 900 ° C., it is necessary to thicken the heat insulating material to prevent heat loss.
【0014】しかし、改質器8が小型設備である場合、
保温材を厚くすると内壁面に比べ外壁面の面積が大幅に
大きくなる。数kw相当の燃料電池に水素を供給する改
質器8を例にして述べると、改質器8本体の内径は10
0mm程度になるが、通常の保温材を改質器8の外周に
設置すると、その径は約200mm程度になり、内壁面
に対する外壁面の面積比は3倍であり、熱損失も約3倍
となり、装置の体積は9倍となる。この傾向は小型設備
になるにしたがって顕著になる。そのため、改質器8全
体及び加熱炉24の熱効率を低下させていた。However, when the reformer 8 is a small facility,
When the heat insulating material is made thicker, the area of the outer wall surface becomes significantly larger than that of the inner wall surface. Taking the reformer 8 that supplies hydrogen to a fuel cell equivalent to several kw as an example, the inner diameter of the reformer 8 body is 10
When the ordinary heat insulating material is installed on the outer periphery of the reformer 8, the diameter becomes about 200 mm, the area ratio of the outer wall surface to the inner wall surface is three times, and the heat loss is about three times. And the volume of the device is 9 times. This tendency becomes remarkable as the equipment becomes smaller. Therefore, the thermal efficiency of the entire reformer 8 and the heating furnace 24 has been reduced.
【0015】また、上記従来技術では、加熱炉24で発
生させた水蒸気を配管3で改質器8に送ることとなる
が、特に小型装置の場合、配管3が細いので、保温材を
巻いても保温材外壁面の増加による熱損失が大きくな
り、配管3で多量の熱損失が生じるという問題があっ
た。さらに、配管3で熱損失が生じた場合には、配管3
内部ではドレンが発生するなどの問題もある。Further, in the above-mentioned prior art, the steam generated in the heating furnace 24 is sent to the reformer 8 through the pipe 3. Particularly, in the case of a small-sized apparatus, since the pipe 3 is thin, a heat insulating material is wound. Also, there is a problem that heat loss due to an increase in the outer wall surface of the heat insulating material increases, and a large amount of heat loss occurs in the pipe 3. Further, when heat loss occurs in the pipe 3, the pipe 3
There are also problems such as the generation of drain inside.
【0016】さらに、従来構造においては、改質器8と
加熱炉24に燃料、空気などを供給する高温配管が多数
必要となり、同様な問題があった。Further, in the conventional structure, a large number of high-temperature pipes for supplying fuel, air and the like to the reformer 8 and the heating furnace 24 are required, which has the same problem.
【0017】また、改質器8は改質触媒を用いてメタン
等の炭化水素を水蒸気で改質して水素を製造するが、改
質触媒は熱容量が大きいため改質反応に必要な温度(6
00〜900℃ )まで昇温するためには長い起動時間
を要する。特に家庭用小規模燃料電池システムを対象に
した場合、急激な負荷変動により又は夜間停止状態等か
ら急速な立ち上げが要求されることがある。The reformer 8 uses a reforming catalyst to reform hydrocarbons such as methane with steam to produce hydrogen. However, since the reforming catalyst has a large heat capacity, the temperature required for the reforming reaction ( 6
A long start-up time is required to raise the temperature to 00 to 900 ° C.). In particular, when a small fuel cell system for home use is targeted, a rapid start-up may be required due to a sudden load change or a night stop state.
【0018】さらに、加熱炉24では不完全燃焼による
CO等の発生およびその漏れが問題となる。これらのガ
ス漏れ対策として水素、CO等のガス検知器等を用いて
も、改質器8の全表面からのガス漏れを完全に検知する
ことは難しい。また改質器8や加熱炉24はガス漏れを
防止するために、溶接等により完全密閉構造にしなけれ
ばならない。Further, in the heating furnace 24, generation of CO and the like due to incomplete combustion and leakage thereof become a problem. Even if a gas detector such as hydrogen or CO is used as a countermeasure against these gas leaks, it is difficult to completely detect gas leaks from the entire surface of the reformer 8. Further, the reformer 8 and the heating furnace 24 must be completely sealed by welding or the like in order to prevent gas leakage.
【0019】また、改質器8および加熱炉24において
は装置からのガス漏れが安全上大きな問題となる。改質
器8から発生するガスには可燃性ガスである水素、メタ
ン、COが含まれ、この中で特にCOは毒性が強く、外
部への微量の漏れも危険であり、COガスの検知は重要
な問題である。In the reformer 8 and the heating furnace 24, gas leakage from the apparatus poses a serious safety problem. The gas generated from the reformer 8 contains flammable gases such as hydrogen, methane and CO. Among them, CO is particularly toxic, and a small amount of leakage to the outside is also dangerous. This is an important issue.
【0020】本発明の課題は、改質器、加熱炉及び両者
を繋ぐ配管部での熱損失を低減し、コンパクトで、か
つ、起動時間が短く、ガス漏れのない部分酸化式水素製
造装置及び該水素製造装置を備えた燃料電池システムを
提供することにある。An object of the present invention is to provide a partially oxidizing hydrogen production apparatus which is compact, has a short start-up time, and has no gas leakage, reducing heat loss in a reformer, a heating furnace, and a piping section connecting the two. An object of the present invention is to provide a fuel cell system provided with the hydrogen production device.
【0021】[0021]
【課題を解決するための手段】本発明の上記課題は、L
NG、LPG、ナフサ、灯油等の炭化水素系燃料と酸素
に富むガス及び水との改質反応により水素に富むガスを
生成する改質器を有する水素製造装置において、改質器
の外周部に、炭化水素系燃料、酸素に富むガス及び水を
加熱する加熱炉を配置した水素製造装置により解決され
る。The object of the present invention is to provide an L
In a hydrogen production apparatus having a reformer that generates a hydrogen-rich gas by a reforming reaction between a hydrocarbon-based fuel such as NG, LPG, naphtha, and kerosene and a gas rich in oxygen and water, an outer peripheral portion of the reformer The problem is solved by a hydrogen production apparatus provided with a heating furnace for heating hydrocarbon fuel, oxygen-rich gas and water.
【0022】本発明の水素製造装置は、改質器とその外
周部に配置した加熱炉を外箱内に収納して外箱と改質器
と加熱器を一体構造とし、加熱炉と外箱の間の空間部を
設け、該空間部内に存在するガスを改質器及び加熱炉の
燃焼用空気供給部に導入する流路を設けた構造とするこ
とが望ましい。In the hydrogen production apparatus of the present invention, the reformer and the heating furnace disposed on the outer periphery thereof are housed in an outer box, and the outer box, the reformer, and the heater are integrally formed. It is preferable to provide a structure in which a space portion is provided between the first and second portions, and a flow path for introducing gas present in the space portion to the combustion air supply portion of the reformer and the heating furnace is provided.
【0023】また、前記加熱炉は、頂部が開放された隔
壁で仕切られた内周側に燃焼部、空気加熱管及び燃料加
熱管を配置し、隔壁で仕切られた外周側に水蒸発管を配
置し、外周側の加熱炉壁の底部に燃焼ガス出口を設け、
加熱炉天井面と隔壁の間に燃焼部からの燃焼ガスのUタ
ーン路を形成した構成とすることが望ましい。In the heating furnace, a combustion section, an air heating pipe and a fuel heating pipe are arranged on an inner peripheral side partitioned by a partition having an open top, and a water evaporating pipe is provided on an outer peripheral side partitioned by the partition. And a combustion gas outlet at the bottom of the outer wall of the heating furnace,
It is preferable that a U-turn path for the combustion gas from the combustion section is formed between the ceiling surface of the heating furnace and the partition wall.
【0024】さらに、外箱内にガス検知装置を配置し、
加熱炉内に温度計を配置して改質器又は加熱炉からのガ
ス漏れを検知することで警報装置を作動させる構成にす
ることもできる。Further, a gas detector is arranged in the outer box,
A configuration in which a thermometer is arranged in the heating furnace to detect gas leakage from the reformer or the heating furnace and the alarm device is activated.
【0025】また、本発明の上記水素製造装置で得られ
た改質ガスをCO選択酸化器を経由して燃料電池に導入
する流路と燃料電池から出た未反応水素を含むガスを水
素製造装置の加熱炉に循環供給する流路を設けた燃料電
池システムも本発明の範囲内のものである。Further, a flow path for introducing the reformed gas obtained by the hydrogen production apparatus of the present invention via a CO selective oxidizer into a fuel cell and a gas containing unreacted hydrogen discharged from the fuel cell are subjected to hydrogen production. A fuel cell system provided with a flow path for circulating and supplying the heating furnace of the apparatus is also within the scope of the present invention.
【0026】[0026]
【作用】加熱炉の運転温度は改質器の運転温度である6
00〜900℃に近いため、改質器の外周に加熱炉を設
置することで、改質器から外部への熱損失はほとんど防
止することができる。The operating temperature of the heating furnace is the operating temperature of the reformer.
Since the temperature is close to 00 to 900 ° C., heat loss from the reformer to the outside can be almost prevented by installing a heating furnace around the reformer.
【0027】すなわち改質器の反応温度と加熱炉での燃
焼温度がほぼ等しいために改質器の外周に加熱炉を設け
ることで改質器からの熱損失を無くすことができ、これ
に伴い改質器の保温材も不要になる。That is, since the reaction temperature of the reformer and the combustion temperature in the heating furnace are almost equal, the heat loss from the reformer can be eliminated by providing the heating furnace on the outer periphery of the reformer. The heat insulator for the reformer is not required.
【0028】また、改質器と加熱炉を一体化構造にする
ことにより、加熱炉でメタン、空気、水等の改質器用原
料を加熱し、改質器まで導く配管の長さを最小にするこ
とができ、この配管からの熱損失を低減できる。Further, by forming the reformer and the heating furnace into an integrated structure, the heating furnace heats the raw materials for the reformer such as methane, air, and water, and minimizes the length of a pipe leading to the reformer. And the heat loss from this pipe can be reduced.
【0029】また、本発明の加熱炉を隔壁により仕切ら
れた2重構造とし、バーナを内側の部屋に設置し、バー
ナからの燃焼ガスが隔壁内側からその外側へ反転する構
造とし、燃焼ガス流路内には空気加熱管、燃料加熱管、
水蒸発管(水加熱管)を設置することで、燃焼ガスの流
れ方向に従って順次燃焼ガス温度が低下する。そのた
め、加熱炉の隔壁で仕切られた内側、すなわち、改質器
に接する部分の温度は高温であり、隔壁で仕切られた外
側のガス温度は300〜400℃ に低下しており、外
部への熱損失を少なくすることができる。Further, the heating furnace of the present invention has a double structure separated by a partition wall, a burner is installed in an inner room, and a structure in which combustion gas from the burner is reversed from the inside of the partition wall to the outside thereof is provided. Air heating pipe, fuel heating pipe,
By installing the water evaporation pipe (water heating pipe), the temperature of the combustion gas sequentially decreases in accordance with the flow direction of the combustion gas. Therefore, the temperature of the inside partitioned by the partition of the heating furnace, that is, the temperature of the portion in contact with the reformer is high, and the temperature of the gas outside the partition partitioned by the partition is reduced to 300 to 400 ° C. Heat loss can be reduced.
【0030】さらに、加熱炉の外側の外箱との間には改
質器及び加熱炉に投入する空気を予熱する空間部を設け
ることにより、加熱器の外周部から放散した熱も、加熱
器へ投入した空気の熱源として系内に取り込むことがで
き、全体の熱損失を低く抑えることができる。Further, by providing a space for preheating the reformer and the air to be supplied to the heating furnace between the outer box of the heating furnace and the outer box, the heat dissipated from the outer periphery of the heater can be reduced. Can be taken into the system as a heat source of the air introduced into the system, and the overall heat loss can be kept low.
【0031】一般に、改質器の起動は改質触媒の熱容量
が大きいため昇温に時間を要するが、加熱炉は熱容量の
大きい媒体がないため急速に立ち上げることができる。
そのため改質器の外周に加熱炉を設置することにより加
熱炉が急速に立ち上がり高温となる。こうして昇温速度
の遅い改質器を加熱炉が加熱することになるため、改質
器の昇温速度を速くすることができ、起動時間を短縮で
きる。Generally, the starting of the reformer requires a long time to raise the temperature because the heat capacity of the reforming catalyst is large, but the heating furnace can be started up quickly because there is no medium having a large heat capacity.
Therefore, by installing a heating furnace around the outer periphery of the reformer, the heating furnace quickly rises and becomes hot. Since the heating furnace heats the reformer having a low temperature rising rate in this manner, the temperature rising rate of the reformer can be increased, and the startup time can be shortened.
【0032】本発明の水素製造装置では改質器の外周に
加熱炉を配置し、さらに加熱炉を外箱で全体を被う。そ
のため、改質器又は加熱炉から漏れた可燃性ガスや有毒
ガスは、外箱の燃焼用空気に混合、吸引されて改質器及
び加熱炉で利用されるため、外箱から外部へ漏れ出るこ
とはない。In the hydrogen production apparatus of the present invention, a heating furnace is disposed on the outer periphery of the reformer, and the heating furnace is entirely covered with an outer box. Therefore, the flammable gas or toxic gas leaked from the reformer or the heating furnace is mixed with the combustion air in the outer box, sucked and used in the reformer and the heating furnace, and leaks from the outer box to the outside. Never.
【0033】また、改質器又は加熱炉から漏れ出た可燃
性ガスや有毒ガスは、外箱の内部で集められ燃焼用空気
ブロアに吸引される。そこでブロアの入口で可燃性ガス
及び有毒ガスを検知することにより、いかなる場所から
のガス漏れも検知できる。また改質器からガスが漏れ出
た場合には燃焼用空気に可燃性ガスが混入することにな
るため、加熱炉の温度が上昇することになる。そのた
め、加熱炉内の温度を測定することにより、容易にガス
漏れを検知することができ、安全に自動停止ができる。Further, the flammable gas and toxic gas leaked from the reformer or the heating furnace are collected inside the outer box and sucked into the combustion air blower. Therefore, by detecting flammable gas and toxic gas at the inlet of the blower, gas leakage from any location can be detected. Further, when gas leaks out of the reformer, the combustible gas is mixed into the combustion air, so that the temperature of the heating furnace increases. Therefore, by measuring the temperature in the heating furnace, it is possible to easily detect a gas leak, and it is possible to automatically stop safely.
【0034】上記方法により、改質器等から漏れたガス
が外箱から系外に漏れ出さないための対策として、特に
加熱炉は高価な溶接構造を設ける必要はない。そのため
プレス加工等で外箱等を製造することができるので、安
価な金属の薄板を外箱用に用いて経済的な装置を実現す
ることができる。In order to prevent the gas leaked from the reformer or the like from leaking out of the system by the above method, it is not necessary to provide an expensive welding structure especially in the heating furnace. Therefore, since the outer box and the like can be manufactured by press working or the like, an economical apparatus can be realized by using an inexpensive metal thin plate for the outer box.
【0035】[0035]
【発明の実施の形態】本発明の実施の形態の水素製造装
置について図面と共に説明する。図1(a)には改質器
8の外周に加熱炉24を設置した水素製造装置構造(外
箱30のない状態)の斜視図を示し、図1(b)には改
質器8と加熱炉24を覆う外箱30を設置した場合の上
端部の水平断面図を示す。また、図1(c)には水素製
造装置の縦断面図を示す。図2には図1に示す水素製造
装置(改質装置)と燃料電池とを組み合わせたシステム
を示す。ここでは改質器8と加熱炉24の外形構造を角
型で示したが、多角形あるいは丸形で構成することもで
きる。DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrogen production apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a perspective view of a hydrogen production apparatus structure (without the outer box 30) in which a heating furnace 24 is installed on the outer periphery of the reformer 8, and FIG. FIG. 3 is a horizontal cross-sectional view of the upper end when an outer box 30 covering the heating furnace 24 is installed. FIG. 1C shows a longitudinal sectional view of the hydrogen production apparatus. FIG. 2 shows a system in which the hydrogen production apparatus (reformer) shown in FIG. 1 and a fuel cell are combined. Here, the external structures of the reformer 8 and the heating furnace 24 are shown in a square shape, but they may be formed in a polygonal or round shape.
【0036】改質器8の内部には、その底部に設けられ
た改質反応に必要なメタンをメタン供給管1から供給
し、また水を水供給管2からそれぞれ供給される。さら
にメタンの一部を燃焼し、改質反応に必要な反応熱を与
えるために空気または酸素に富むガス(以下、空気を前
記ガスとして用いるものとする)を同時に空気供給管4
(図2)から供給する。空気供給管4から供給される空
気は、改質器8及び加熱炉24を囲った外箱30内と加
熱炉24の間の空間で多少暖められた状態にしてブロア
40により改質器8に供給する。Inside the reformer 8, methane required for the reforming reaction provided at the bottom is supplied from a methane supply pipe 1, and water is supplied from a water supply pipe 2. Further, air or a gas rich in oxygen (hereinafter, air is used as the gas) to burn a part of methane and give reaction heat necessary for the reforming reaction is simultaneously supplied to the air supply pipe 4.
(FIG. 2). The air supplied from the air supply pipe 4 is slightly warmed in the space between the outer furnace 30 surrounding the reformer 8 and the heating furnace 24 and the heating furnace 24 and supplied to the reformer 8 by the blower 40. Supply.
【0037】加熱炉24の底部にバーナ23が取り付け
られており、このバーナ23には燃料電池18の出口の
未反応水素排出管20からの未反応水素と必要に応じて
燃料メタンを供給し、加熱空気供給管33で加熱された
空気により燃焼させる。メタン供給管1から供給された
メタンは加熱炉24内のメタン加熱管34で300〜5
00℃ に加熱され、加熱メタン供給管35を通り、改
質器8内の原料供給器5に導かれる。水供給管2から供
給された水は加熱炉24内の水蒸発管36に送られ、水
蒸発管36内で加熱されて蒸発する。水蒸発管36から
取り出された水蒸気は飽和蒸気供給管37を通り、蒸気
加熱管39に入る。A burner 23 is attached to the bottom of the heating furnace 24. The burner 23 supplies unreacted hydrogen from an unreacted hydrogen discharge pipe 20 at the outlet of the fuel cell 18 and fuel methane as required. The fuel is burned by the air heated in the heated air supply pipe 33. Methane supplied from the methane supply pipe 1 is supplied to the methane heating pipe 34 in the heating furnace 24 for 300 to 5 methane.
It is heated to 00 ° C., passed through a heated methane supply pipe 35, and led to the raw material supply device 5 in the reformer 8. The water supplied from the water supply pipe 2 is sent to a water evaporation pipe 36 in the heating furnace 24, and is heated and evaporated in the water evaporation pipe 36. The water vapor extracted from the water evaporation pipe 36 passes through a saturated steam supply pipe 37 and enters a steam heating pipe 39.
【0038】後述するが、改質器8内の改質触媒層7上
では600〜900℃ の改質ガスが発生しており、こ
のガスが改質触媒層7より上部に配置されたCO変成触
媒層11に送られ、COは式(b−1)の反応に従って
CO2と水素が得られ、その反応温度は200〜350
℃ であるので、この温度まで改質ガス温度を下げる必
要がある。そこで改質触媒層7とCO変成触媒層11の
間に配置された蒸気加熱管39により飽和蒸気を300
〜500℃の加熱蒸気に変えると同時に改質ガスを20
0〜350℃ まで冷却する。蒸気加熱管39から取り
出された水蒸気は加熱蒸気抜き出し管38を通り、加熱
炉24へ導かれ、加熱炉24の底部の水蒸気供給管3よ
り改質器8の底部に設置された原料供給器5に供給され
る。As will be described later, a reformed gas of 600 to 900 ° C. is generated on the reforming catalyst layer 7 in the reformer 8, and this gas is supplied to the CO conversion layer disposed above the reforming catalyst layer 7. The CO is sent to the catalyst layer 11, and CO is obtained as CO 2 and hydrogen according to the reaction of the formula (b-1).
° C, it is necessary to lower the temperature of the reformed gas to this temperature. Therefore, the saturated steam is supplied by the steam heating pipe 39 disposed between the reforming catalyst layer 7 and the CO shift catalyst layer 11 to 300 steam.
~ 500 ° C heated steam and reformed gas at 20
Cool to 0-350 ° C. The steam taken out from the steam heating pipe 39 passes through the heating steam extraction pipe 38 and is guided to the heating furnace 24, and is supplied from the steam supply pipe 3 at the bottom of the heating furnace 24 to the raw material supply device 5 installed at the bottom of the reformer 8. Supplied to
【0039】通常、改質器8と加熱炉24は独立に設置
されているが、この場合加熱炉24で予熱されたメタ
ン、水蒸気、空気または酸素に富むガスは予熱された
後、改質器8に送られるまでの間は、温度が低い大気環
境下に配管されることになるため、これらの供給配管を
保温材で覆う必要があり、しかも保温材で覆っても前記
配管からの熱損失により予熱ガスが冷却される問題があ
る。特に、小型装置の場合には前記配管も細くなるため
熱損失も大きくなるが、本発明のように改質器8と加熱
炉24を一体化することにより、この問題を解決するこ
とができる。Usually, the reformer 8 and the heating furnace 24 are installed independently. In this case, the methane, steam, air or oxygen-rich gas preheated in the heating furnace 24 is preheated, Since the pipes are piped under a low-temperature atmospheric environment until they are sent to the feed pipe 8, it is necessary to cover these supply pipes with a heat insulating material. Therefore, there is a problem that the preheating gas is cooled. In particular, in the case of a small-sized device, the pipe becomes thinner, so that the heat loss increases. However, by integrating the reformer 8 and the heating furnace 24 as in the present invention, this problem can be solved.
【0040】原料供給器5内ではメタン、水蒸気及び空
気が混合され、改質器8内の燃焼触媒層6に入る。上記
原料ガス中のメタン濃度が希薄であるため、このままで
は気相燃焼させることができない。そのため触媒燃焼方
式を採用するが、燃焼触媒層6では式(a−3)に示す
メタンと空気との反応で改質反応に必要な高温ガスを生
成させている。この高温ガスは800〜1000℃であ
り、燃焼触媒層6より上方に配置された改質触媒層7に
入る。改質触媒層7の中では式(a−1)、(a−2)
の改質反応が起こり、水素の富むガスを生成することに
なる。改質反応は吸熱反応であるため改質触媒層7の出
口における改質ガスの温度は600〜900℃ 程度に
なり、このガスにより蒸気過熱管39を加熱することに
なる。逆に改質ガスは冷却されて200〜350℃ に
なり、CO変換触媒層11に入る。ここではCOが水素
に変わる式(b−1)の反応が起こり、水素濃度が高め
られ改質ガスが改質ガス取り出し管9から系外へ取り出
される。In the feeder 5, methane, steam and air are mixed and enter the combustion catalyst layer 6 in the reformer 8. Since the methane concentration in the source gas is low, gas phase combustion cannot be performed as it is. For this reason, a catalytic combustion method is employed, but the combustion catalyst layer 6 generates a high-temperature gas necessary for the reforming reaction by the reaction between methane and air shown in the equation (a-3). This high-temperature gas is at 800 to 1000 ° C. and enters the reforming catalyst layer 7 disposed above the combustion catalyst layer 6. In the reforming catalyst layer 7, the formulas (a-1) and (a-2)
A reforming reaction occurs to generate a hydrogen-rich gas. Since the reforming reaction is an endothermic reaction, the temperature of the reformed gas at the outlet of the reforming catalyst layer 7 is about 600 to 900 ° C., and the steam superheater 39 is heated by this gas. Conversely, the reformed gas is cooled to 200 to 350 ° C. and enters the CO conversion catalyst layer 11. Here, the reaction of the formula (b-1) in which CO is converted to hydrogen occurs, the hydrogen concentration is increased, and the reformed gas is taken out of the system from the reformed gas take-out pipe 9.
【0041】加熱炉24にはその底部から垂直に立てら
れた隔壁41が設けられており、該隔壁41で加熱炉2
4はほぼ二分されている。隔壁41の上端部と加熱炉2
4の天井壁との間にガス流通用空間が設けられる。また
バーナ23はその隔壁41で仕切られた加熱炉24の内
側の空間の底部に配置されて、その上方に空気加熱管3
2とメタン加熱管34が配置され、隔壁41で仕切られ
た加熱炉24の外側の空間には水蒸発管36が配置さ
れ、加熱炉ガス抜き出し管25は隔壁41で仕切られた
外側の加熱炉底部壁面に接続している。The heating furnace 24 is provided with a partition wall 41 which stands vertically from the bottom thereof.
4 is almost bisected. Upper end of partition 41 and heating furnace 2
A space for gas distribution is provided between the ceiling and the ceiling wall of No. 4. The burner 23 is disposed at the bottom of the space inside the heating furnace 24 partitioned by the partition 41, and the air heating pipe 3 is disposed above the burner 23.
2 and a methane heating pipe 34 are arranged, a water evaporating pipe 36 is arranged in a space outside the heating furnace 24 partitioned by the partition 41, and a heating furnace gas extraction pipe 25 is provided by the outer heating furnace partitioned by the partition 41. Connected to bottom wall.
【0042】バーナ23で燃焼した燃焼ガスがバーナ2
3の上方に順次配置された空気加熱管32、メタン加熱
管34および水蒸発管36でそれぞれ冷却され、加熱炉
24内の底部に配置された燃焼炉ガス抜き出し管25か
ら外部に取り出される。そのため改質装置8に隣接する
加熱炉24内の燃焼ガスの上昇部は高温条件下にあり、
隣接する改質装置8の外壁温度とほぼ等しいため、改質
器8からの放散熱は発生しない。また上昇する燃焼ガス
が反転し、下降流になる領域は水蒸発管36が複数設置
されているため燃焼ガス温度が低下し、200〜300
℃ 程度となり、燃焼ガス抜き出し管25から燃焼ガス
が排出されるときの温度は100〜150℃程度まで低
下する。そのため加熱炉24の外壁温度は改質器8等に
比べて低い温度であるので加熱炉24の外壁からの熱放
散は抑えられる。さらに加熱炉24および改質器8で用
いられる燃焼用空気は空気引き込み口31から外箱内に
導入され、加熱炉24と外箱30の間で加熱炉24の放
散熱で加熱される。The combustion gas burned by the burner 23 is burner 2
The air is cooled by an air heating pipe 32, a methane heating pipe 34, and a water evaporating pipe 36, which are sequentially disposed above the heating furnace 3, and is taken out of a combustion furnace gas extraction pipe 25 disposed at the bottom of the heating furnace 24 to the outside. Therefore, the rising portion of the combustion gas in the heating furnace 24 adjacent to the reformer 8 is under a high temperature condition,
Since the temperature of the outer wall of the adjacent reformer 8 is substantially equal to that of the adjacent reformer 8, the heat dissipated from the reformer 8 is not generated. Further, in a region where the rising combustion gas is reversed and becomes a downward flow, a plurality of water evaporation pipes 36 are provided, so that the temperature of the combustion gas decreases, and
° C, and the temperature at which the combustion gas is discharged from the combustion gas extraction pipe 25 drops to about 100 to 150 ° C. Therefore, the temperature of the outer wall of the heating furnace 24 is lower than that of the reformer 8 and the like, so that heat dissipation from the outer wall of the heating furnace 24 can be suppressed. Further, the combustion air used in the heating furnace 24 and the reformer 8 is introduced into the outer box from the air inlet 31, and is heated between the heating furnace 24 and the outer box 30 by the heat radiated from the heating furnace 24.
【0043】従って、外箱30から系外へ放散される熱
量は極めて少なく、熱の放散量を低減できる。特に小型
装置では放散熱量の低減効果が大きい。Therefore, the amount of heat dissipated from the outer box 30 to the outside of the system is extremely small, and the amount of heat dissipated can be reduced. In particular, a small device has a great effect of reducing the amount of heat dissipated.
【0044】また、加熱炉24は熱容量が小さいため昇
温時間が短いにもかかわらず、改質器8は触媒等が充填
されているため長い昇温時間を必要とするが、加熱炉2
4と改質器8を一体化することにより水素製造装置の起
動時に加熱炉24により改質器8を加熱することができ
るため改質器8の起動時間を短縮できる。Although the heating furnace 24 has a small heat capacity and a short heating time, the reformer 8 needs a long heating time because it is filled with a catalyst.
By integrating the reformer 4 and the reformer 8, the reformer 8 can be heated by the heating furnace 24 when the hydrogen production apparatus is started, so that the start-up time of the reformer 8 can be shortened.
【0045】また改質器8からの水素、CO及び加熱炉
24からの不完全燃焼によるCO等の装置外部への漏れ
は危険性が高いため、微量の漏れでも検知して装置を安
全に停止する必要がある。万一これらのガスが漏れて
も、漏れたガスは加熱炉24とこれを取り囲む外箱30
の間に放出されることになるため、これらのガスを検知
する検知器(図示せず)を、ガス吸引用ブロア40の入
口部に設けるか又は加熱炉24内に設けた図示しない温
度計で、炉内温度上昇を検知して、前記ガス漏れの発生
を予測して図示しない警報装置を作動させ、装置を停止
させることで安全性が確保できる。また、万一、前記ガ
スが改質器8又は加熱炉24から漏れても、空気引き込
み口31からの空気と共に、改質器8又は加熱炉24に
送られ燃焼される。Since leakage of hydrogen and CO from the reformer 8 and CO and the like due to incomplete combustion from the heating furnace 24 to the outside of the apparatus is highly dangerous, even a small amount of leakage is detected and the apparatus is stopped safely. There is a need to. Should any of these gases leak, the leaked gas will remain in the heating furnace 24 and the outer box 30 surrounding it.
Therefore, a detector (not shown) for detecting these gases is provided at the inlet of the gas suction blower 40 or by a thermometer (not shown) provided in the heating furnace 24. By detecting an increase in the furnace temperature, predicting the occurrence of the gas leakage and activating an alarm device (not shown) to stop the device, safety can be ensured. Even if the gas leaks from the reformer 8 or the heating furnace 24, the gas is sent to the reformer 8 or the heating furnace 24 and burned together with the air from the air inlet 31.
【0046】図2に図1に示す水素製造装置(改質装
置)と燃料電池とを組み合わせたシステムを示す。この
水素製造装置は改質触媒層7とCO変成触媒層11およ
び加熱炉24が一体になっているため、改質装置を出た
ガスは第二改質ガス冷却器13で100〜150℃ 程
度まで冷却され、CO選択酸化触媒14を充填している
CO選択酸化器15に供給され、COを空気で選択的に
酸化して10ppm程度まで減少させる。その後、水素
供給管16を通り、燃料として燃料電池18に導入され
る。燃料電池18には空気供給管17から空気が供給さ
れるので、水素と空気の反応で電気を発生させる。燃料
電池18から出た未反応水素を含むガスは未反応水素排
出管20を通り、再び加熱炉24のバーナ23に供給さ
れ燃焼される。また、燃料電池18からは未反応空気が
未反応空気管19を経て大気中に排出される。FIG. 2 shows a system in which the hydrogen production apparatus (reformer) shown in FIG. 1 and a fuel cell are combined. In this hydrogen production apparatus, since the reforming catalyst layer 7, the CO shift catalyst layer 11, and the heating furnace 24 are integrated, the gas leaving the reforming apparatus is supplied to the second reformed gas cooler 13 at about 100 to 150 ° C. The CO is supplied to a CO selective oxidizer 15 filled with a CO selective oxidation catalyst 14, and CO is selectively oxidized by air to reduce it to about 10 ppm. Thereafter, the fuel passes through the hydrogen supply pipe 16 and is introduced into the fuel cell 18 as fuel. Since air is supplied to the fuel cell 18 from the air supply pipe 17, electricity is generated by a reaction between hydrogen and air. The gas containing unreacted hydrogen from the fuel cell 18 passes through the unreacted hydrogen discharge pipe 20 and is again supplied to the burner 23 of the heating furnace 24 and burned. Unreacted air is discharged from the fuel cell 18 to the atmosphere via an unreacted air pipe 19.
【0047】[0047]
【発明の効果】本発明によれば、熱効率の向上、保温材
が不要になるか厚さが大幅に低減できるため経済性が高
くしかも装置がコンパクトに出きる効果がある。また迅
速な起動が達成できるため、急激な負荷変化に対応で
き、さらにガス漏れに対し容易に検知できるため高い安
全性が確保できる。According to the present invention, the thermal efficiency is improved, the heat insulating material is not required, or the thickness can be greatly reduced. In addition, since rapid startup can be achieved, it is possible to cope with a sudden load change, and it is possible to easily detect a gas leak, thereby ensuring high safety.
【図1】 本発明の実施の形態の改質装置の構造図であ
る。FIG. 1 is a structural diagram of a reformer according to an embodiment of the present invention.
【図2】 本発明の改質装置と燃料電池を組み合わせた
システム図である。FIG. 2 is a system diagram in which the reformer of the present invention and a fuel cell are combined.
【図3】 従来の改質装置と燃料電池を組み合わせたシ
ステム図である。FIG. 3 is a system diagram combining a conventional reformer and a fuel cell.
1 メタン供給管 2 水供給管 3 水蒸気供給管 4 空気供給管 5 原料供給管 6 燃焼触媒層 7 改質触媒層 8 改質器 9 改質ガス取り出し管 10 第一改質ガス
冷却器 11 CO変成触媒層 12 COコンバー
タ 13 第二改質ガス冷却器 14 CO選択酸化
触媒 15 CO選択酸化器 16 水素供給管 17 空気供給管 18 燃料電池 19 未反応空気排出管 20 未反応水素排
出管 21 加熱炉メタン供給管 22 加熱炉空気供
給管 23 バーナ 24 加熱炉 25 燃焼炉ガス抜き出し管 30 外箱 31 空気引き込み口 32 空気加熱管 33 加熱空気供給管 34 メタン加熱管 35 加熱メタン供給管 36 水蒸発管 37 飽和蒸気供給管 38 加熱蒸気抜き
出し管 39 蒸気加熱管 40 ブロア 41 隔壁DESCRIPTION OF SYMBOLS 1 Methane supply pipe 2 Water supply pipe 3 Steam supply pipe 4 Air supply pipe 5 Raw material supply pipe 6 Combustion catalyst layer 7 Reforming catalyst layer 8 Reformer 9 Reformed gas take-out pipe 10 First reformed gas cooler 11 CO conversion Catalyst layer 12 CO converter 13 Second reformed gas cooler 14 CO selective oxidation catalyst 15 CO selective oxidizer 16 Hydrogen supply pipe 17 Air supply pipe 18 Fuel cell 19 Unreacted air discharge pipe 20 Unreacted hydrogen discharge pipe 21 Heating furnace methane Supply pipe 22 Heating furnace air supply pipe 23 Burner 24 Heating furnace 25 Combustion furnace gas extraction pipe 30 Outer box 31 Air inlet 32 Air heating pipe 33 Heated air supply pipe 34 Methane heating pipe 35 Heated methane supply pipe 36 Water evaporation pipe 37 Saturation Steam supply pipe 38 Heated steam extraction pipe 39 Steam heating pipe 40 Blower 41 Partition wall
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 義則 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 Fターム(参考) 4G040 EA03 EA06 EA07 EB03 EB12 EB32 EB44 EB46 5H027 AA02 BA09 KK31 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshinori Otani 3-36 Takara-cho, Kure-shi, Hiroshima F-term in Babcock Hitachi, Ltd. Kure Research Laboratories 4G040 EA03 EA06 EA07 EB03 EB12 EB32 EB44 EB46 5H027 AA02 BA09 KK31
Claims (5)
との改質反応により水素に富むガスを生成する改質器を
有する水素製造装置において、 改質器の外周部に、炭化水素系燃料、酸素に富むガス及
び水を加熱する加熱炉を配置したことを特徴とする水素
製造装置。1. A hydrogen production apparatus having a reformer for producing a hydrogen-rich gas by a reforming reaction with a hydrocarbon-based fuel, an oxygen-rich gas and water, wherein a hydrocarbon-based gas is provided on an outer peripheral portion of the reformer. A hydrogen production apparatus comprising a heating furnace for heating fuel, oxygen-rich gas and water.
外箱内に収納して外箱と改質器と加熱器を一体構造と
し、加熱炉と外箱の間に空間部を設け、該空間部内に存
在するガスを改質器及び加熱炉の燃焼用空気供給部に導
入する流路を設けたことを特徴とする請求項1記載の水
素製造装置。2. A reformer and a heating furnace disposed on an outer periphery thereof are housed in an outer box, and the outer box, the reformer, and the heater are integrally formed, and a space is provided between the heating furnace and the outer box. 2. The hydrogen production apparatus according to claim 1, wherein a flow path is provided for introducing a gas present in the space into a combustion air supply section of the reformer and the heating furnace.
られた内周側に燃焼部、空気加熱管及び燃料加熱管を配
置し、隔壁で仕切られた外周側に水蒸発管を配置し、外
周側の加熱炉壁の底部に燃焼ガス出口を設け、加熱炉天
井面と隔壁の間に燃焼部からの燃焼ガスのUターン路を
形成したことを特徴とする請求項1記載の水素製造装
置。3. The heating furnace has a combustion section, an air heating pipe, and a fuel heating pipe arranged on an inner peripheral side partitioned by a partition having an open top, and a water evaporating pipe arranged on an outer peripheral side partitioned by a partition. 2. The hydrogen according to claim 1, wherein a combustion gas outlet is provided at a bottom portion of the heating furnace wall on the outer peripheral side, and a U-turn path for the combustion gas from the combustion portion is formed between the heating furnace ceiling surface and the partition wall. manufacturing device.
内に温度計を配置して改質器又は加熱炉からのガス漏れ
を検知することで警報装置を作動させることを特徴とす
る請求項1記載の水素製造装置。4. A gas detector is disposed in an outer box, and a thermometer is disposed in a heating furnace to detect a gas leak from the reformer or the heating furnace to activate an alarm device. The hydrogen production apparatus according to claim 1.
改質ガスをCO選択酸化器を経由して燃料電池に導入す
る流路と燃料電池から出た未反応水素を含むガスを水素
製造装置の加熱炉に循環供給する流路を設けたことを特
徴とする燃料電池システム。5. A flow path for introducing the reformed gas obtained by the hydrogen production apparatus according to claim 1 into a fuel cell via a CO selective oxidizer, and a gas containing unreacted hydrogen discharged from the fuel cell as hydrogen. A fuel cell system provided with a flow path for circulating supply to a heating furnace of a manufacturing apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000241839A JP2002053306A (en) | 2000-08-09 | 2000-08-09 | Device for producing hydrogen and fuel cell system using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000241839A JP2002053306A (en) | 2000-08-09 | 2000-08-09 | Device for producing hydrogen and fuel cell system using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002053306A true JP2002053306A (en) | 2002-02-19 |
Family
ID=18732965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000241839A Pending JP2002053306A (en) | 2000-08-09 | 2000-08-09 | Device for producing hydrogen and fuel cell system using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002053306A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004035469A1 (en) * | 2002-10-17 | 2004-04-29 | Toyo Radiator Co., Ltd. | Autooxidation internal heating type steam reforming system |
JP2005060129A (en) * | 2003-08-19 | 2005-03-10 | Fuji Electric Holdings Co Ltd | Fuel reforming apparatus |
WO2006100908A1 (en) * | 2005-03-18 | 2006-09-28 | Honda Motor Co., Ltd. | Fuel modification apparatus |
JP2006523372A (en) * | 2003-04-04 | 2006-10-12 | テキサコ ディベラップメント コーポレイション | Portable fuel processing apparatus, hermetic container, and installation method thereof |
JP2009084079A (en) * | 2007-09-27 | 2009-04-23 | Sanyo Electric Co Ltd | Reforming apparatus for fuel cell |
JP2009084078A (en) * | 2007-09-27 | 2009-04-23 | Sanyo Electric Co Ltd | Reforming apparatus for fuel cell |
JP2010235346A (en) * | 2009-03-30 | 2010-10-21 | Japan Energy Corp | Self-heated oxidation reforming apparatus and fuel cell system |
JP2010235348A (en) * | 2009-03-30 | 2010-10-21 | Japan Energy Corp | Self-heated oxidation reforming apparatus and fuel cell system |
US7851098B2 (en) * | 2005-03-16 | 2010-12-14 | Truma Geratetechnik Gmbh & Co. Kg | Reformer fuel cell system with external burner |
US8038959B2 (en) | 2005-09-08 | 2011-10-18 | Casio Computer Co., Ltd. | Reacting device |
-
2000
- 2000-08-09 JP JP2000241839A patent/JP2002053306A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100354197C (en) * | 2002-10-17 | 2007-12-12 | 株式会社T.Rad | Autooxidation internal heating type steam reforming system |
US7503946B2 (en) | 2002-10-17 | 2009-03-17 | Nippon Chemical Plant Consultant Co., Ltd. | Autooxidation internal heating type steam reforming system |
WO2004035469A1 (en) * | 2002-10-17 | 2004-04-29 | Toyo Radiator Co., Ltd. | Autooxidation internal heating type steam reforming system |
JP2006523372A (en) * | 2003-04-04 | 2006-10-12 | テキサコ ディベラップメント コーポレイション | Portable fuel processing apparatus, hermetic container, and installation method thereof |
JP2005060129A (en) * | 2003-08-19 | 2005-03-10 | Fuji Electric Holdings Co Ltd | Fuel reforming apparatus |
US7851098B2 (en) * | 2005-03-16 | 2010-12-14 | Truma Geratetechnik Gmbh & Co. Kg | Reformer fuel cell system with external burner |
WO2006100908A1 (en) * | 2005-03-18 | 2006-09-28 | Honda Motor Co., Ltd. | Fuel modification apparatus |
KR100933017B1 (en) * | 2005-03-18 | 2009-12-21 | 혼다 기켄 고교 가부시키가이샤 | Fuel reformer |
US8038959B2 (en) | 2005-09-08 | 2011-10-18 | Casio Computer Co., Ltd. | Reacting device |
JP2009084079A (en) * | 2007-09-27 | 2009-04-23 | Sanyo Electric Co Ltd | Reforming apparatus for fuel cell |
JP2009084078A (en) * | 2007-09-27 | 2009-04-23 | Sanyo Electric Co Ltd | Reforming apparatus for fuel cell |
JP2010235348A (en) * | 2009-03-30 | 2010-10-21 | Japan Energy Corp | Self-heated oxidation reforming apparatus and fuel cell system |
JP2010235346A (en) * | 2009-03-30 | 2010-10-21 | Japan Energy Corp | Self-heated oxidation reforming apparatus and fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6835482B2 (en) | Fuel reforming apparatus for polymer electrolyte membrane fuel cell | |
US6481207B2 (en) | Single-pipe cylinder type reformer and method of operating the same | |
EP1754270B1 (en) | High temperature fuel cell system and method of operating same | |
JP4161612B2 (en) | Starting method of fuel reformer | |
US8114173B2 (en) | Hydrogen generator and method of operating the same | |
JP4461439B2 (en) | Fuel cell system reformer | |
JP5807173B2 (en) | Hydrogen generator and fuel cell system provided with the same | |
JP2002124289A (en) | Solid electrolyte fuel cell system | |
JP4492882B2 (en) | Hydrogen generating apparatus with double burner and driving method | |
JP2008266125A (en) | Fuel reforming apparatus, method of driving the apparatus and fuel cell system | |
JP2002053306A (en) | Device for producing hydrogen and fuel cell system using the same | |
JP4136624B2 (en) | Liquid fuel reforming method and apparatus | |
JP5940470B2 (en) | FUEL CELL MODULE AND FUEL CELL SYSTEM INCLUDING THE SAME | |
CA2521702C (en) | Fuel reforming apparatus and method for starting said fuel reforming apparatus | |
TWI820336B (en) | Fuel cell system | |
JP2002208427A (en) | Reforming device for fuel cell | |
KR101205538B1 (en) | A solid oxide fuel cell system | |
KR20220097556A (en) | High Efficiency Fuel Treating Equipment | |
KR20120074401A (en) | Fuel processor of fuel cell | |
KR100846715B1 (en) | Apparatus for reforming fuel | |
JP4479237B2 (en) | Insulated container structure | |
KR20120122319A (en) | Integrated Reformer System for a Fuel Cell | |
JP3763092B2 (en) | Hydrogen production equipment for fuel cells | |
JP2002293509A (en) | Co remover | |
JP2024042813A (en) | fuel cell module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040406 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080305 |