Nothing Special   »   [go: up one dir, main page]

JP2002048484A - Refrigerant circulating route of natural circulation type heat pump - Google Patents

Refrigerant circulating route of natural circulation type heat pump

Info

Publication number
JP2002048484A
JP2002048484A JP2000231199A JP2000231199A JP2002048484A JP 2002048484 A JP2002048484 A JP 2002048484A JP 2000231199 A JP2000231199 A JP 2000231199A JP 2000231199 A JP2000231199 A JP 2000231199A JP 2002048484 A JP2002048484 A JP 2002048484A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
heat pump
carbon dioxide
natural circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000231199A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kanao
英敏 金尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYORITSU REINETSU KK
Original Assignee
KYORITSU REINETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYORITSU REINETSU KK filed Critical KYORITSU REINETSU KK
Priority to JP2000231199A priority Critical patent/JP2002048484A/en
Publication of JP2002048484A publication Critical patent/JP2002048484A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the refrigerant circulating route of a natural circulation type heat pump capable of simplifying the structure of an evaporator without lowering heat exchange efficiency as a proper velocity of flow of a refrigerant is maintained by preventing a reverse flow of refrigerant gas, evaporated in the evaporator, to the refrigerant inlet side of the evaporator. SOLUTION: The refrigerant circulating route is provided with the evaporator 3 and a condenser. Refrigerant liquid from the condenser is guided to the evaporator 3 and evaporated refrigerant steam is guided to the condenser. In the so formed refrigerant circulating rout of a natural circulation type heat pump, a trap 4 is provided to prevent a reverse flow of refrigerant steam evaporated in the evaporator 3 to the inlet side of the evaporator 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は自然冷媒を利用した
自然循環式ヒートポンプの冷媒循環経路に関するもので
ある。
The present invention relates to a refrigerant circulation path of a natural circulation heat pump using a natural refrigerant.

【0002】[0002]

【従来の技術】図1は、従来の自然循環式ヒートポンプ
の冷媒循環経路の構成を示す図である。本サイクルシス
テムは、上部に設置したサージタンク1に冷媒液を溜
め、該冷媒流量調整弁2を介して、下部の蒸発器3に給
液する自然循環サイクルシステムである。この自然循環
サイクルシステムにおいて、実質液面差Hが小さく、蒸
発器3内の冷媒流速Vが速く、流速損失が大きく、蒸発
器3内のコイル抵抗が大きく摩擦損失が大きい等の場合
には、蒸発したガスの排出が悪くなり、最悪、蒸発した
ガスが流量調整弁2よりサージタンク1へと逆流するこ
とも起り得る。
2. Description of the Related Art FIG. 1 is a diagram showing a configuration of a refrigerant circulation path of a conventional natural circulation heat pump. This cycle system is a natural circulation cycle system in which a refrigerant liquid is stored in a surge tank 1 installed at an upper portion, and supplied to an evaporator 3 at a lower portion through the refrigerant flow control valve 2. In this natural circulation cycle system, when the substantial liquid level difference H is small, the refrigerant flow velocity V in the evaporator 3 is high, the flow velocity loss is large, the coil resistance in the evaporator 3 is large, and the friction loss is large. The discharge of the evaporated gas becomes worse, and in the worst case, the evaporated gas may flow backward from the flow control valve 2 to the surge tank 1.

【0003】自然循環式ヒートポンプサイクルにおいて
は、蒸発器3内で蒸発した冷媒ガスが蒸発器3内に停滞
することなく効率よく出口側に排出できることが重要で
ある。このため、従来、蒸発器3内の冷媒の流速を抑え
て冷媒の圧力損失を小さくしたり、入口押込み圧力を大
きくしたり、蒸発コイルに勾配をつけて蒸発器3の構造
を複雑にする等の対応を採用している。しかしながら、
このことは蒸発器3の熱交換効率を低下させ、大型化、
ひいては製造コストの増大につながるという問題があ
る。
In the natural circulation heat pump cycle, it is important that the refrigerant gas evaporated in the evaporator 3 can be efficiently discharged to the outlet side without stagnation in the evaporator 3. For this reason, conventionally, the flow velocity of the refrigerant in the evaporator 3 has been suppressed to reduce the pressure loss of the refrigerant, the inlet pushing pressure has been increased, the structure of the evaporator 3 has been complicated by giving a gradient to the evaporating coil, and the like. Is adopted. However,
This lowers the heat exchange efficiency of the evaporator 3 and increases the size,
As a result, there is a problem that the manufacturing cost is increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、蒸発器内で蒸発した冷媒ガスが蒸
発器冷媒入口側へ逆流するのを防止することにより、適
当な冷媒流速を維持しつつ、熱交換効率を低下させるこ
となく、蒸発器の構造を簡易にすることができる自然循
環式ヒートポンプの冷媒循環経路を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is intended to prevent a refrigerant gas evaporated in an evaporator from flowing back to a refrigerant inlet side of an evaporator, thereby providing an appropriate refrigerant. An object of the present invention is to provide a refrigerant circulation path of a natural circulation heat pump that can simplify the structure of an evaporator without lowering the heat exchange efficiency while maintaining the flow rate.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、蒸発器、凝縮器を具備し、凝
縮器からの冷媒液を蒸発器に導き、蒸発した冷媒蒸気を
凝縮器に導くように構成した自然循環式ヒートポンプの
冷媒循環経路において、蒸発器の入口側に該蒸発器で蒸
発した冷媒蒸気の逆流を防ぐトラップを設けたことを特
徴とする。
According to the first aspect of the present invention, an evaporator and a condenser are provided. The refrigerant liquid from the condenser is guided to the evaporator, and the evaporated refrigerant vapor is discharged. In a refrigerant circulation path of a natural circulation heat pump configured to lead to a condenser, a trap is provided at an inlet side of the evaporator to prevent a backflow of the refrigerant vapor evaporated by the evaporator.

【0006】請求項2に記載の発明は、請求項1に記載
の自然循環式ヒートポンプの冷媒循環経路において、冷
媒循環経路はアンモニア冷媒と二酸化炭素冷媒を組み合
わせた自然循環式ヒートポンプ装置の二酸化炭素系の冷
媒循環経路であり、該冷媒循環経路の蒸発器の入口側に
該蒸発器で蒸発した冷媒蒸気の逆流を防ぐトラップを設
けたことを特徴とする。
According to a second aspect of the present invention, in the refrigerant circulation path of the natural circulation heat pump according to the first aspect, the refrigerant circulation path is a carbon dioxide system of a natural circulation heat pump device combining an ammonia refrigerant and a carbon dioxide refrigerant. And a trap for preventing a backflow of the refrigerant vapor evaporated by the evaporator is provided at an inlet side of the evaporator in the refrigerant circulation path.

【0007】請求項3に記載の発明は、請求項2に記載
の自然循環式ヒートポンプの冷媒循環経路において、二
酸化炭素系の冷媒循環経路のカスケードコンデンサとト
ラップの間に該カスケードコンデンサからの液化二酸化
炭素を所定量収容するサージドラムを設け、該サージド
ラムに蒸発器から吐出された炭酸ガスと液化二酸化炭素
の混合体を導くように構成したことを特徴とする。
According to a third aspect of the present invention, in the refrigerant circulation path of the natural circulation heat pump according to the second aspect, the liquefied carbon dioxide from the cascade condenser is interposed between the cascade condenser and the trap in the carbon dioxide based refrigerant circulation path. A surge drum containing a predetermined amount of carbon is provided, and a mixture of carbon dioxide and liquefied carbon dioxide discharged from an evaporator is guided to the surge drum.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図2は本発明に係る自然循環式
ヒートポンプの冷媒循環経路の構成例を示す図である。
図2において、図1と同一符号を付した部分は同一又は
相当部分を示す。本冷媒循環経路では、蒸発器3の入口
にトラップ(図ではU字トラップ)4を設け、サージタ
ンク1に溜めた冷媒液を冷媒流量調整弁2及びトラップ
4を介して、蒸発器3に給液している。また、蒸発器3
から吐出された冷媒(冷媒蒸気と冷媒液の混合体)はサ
ージタンク1に戻り、冷媒蒸気は図示しない凝縮器(コ
ンデンサ)に送られ、冷媒液は再び蒸発器3に流れる。
また、凝縮器で凝縮された冷媒ガスは冷媒液となり、開
閉弁10を通ってサージタンク1に供給される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing a configuration example of a refrigerant circulation path of the natural circulation heat pump according to the present invention.
In FIG. 2, portions denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding portions. In the present refrigerant circulation path, a trap (a U-shaped trap in the figure) 4 is provided at the inlet of the evaporator 3, and the refrigerant liquid stored in the surge tank 1 is supplied to the evaporator 3 via the refrigerant flow control valve 2 and the trap 4. Liquid. In addition, evaporator 3
(Mixture of refrigerant vapor and refrigerant liquid) discharged from the tank returns to the surge tank 1, the refrigerant vapor is sent to a condenser (not shown), and the refrigerant liquid flows to the evaporator 3 again.
The refrigerant gas condensed by the condenser becomes a refrigerant liquid and is supplied to the surge tank 1 through the on-off valve 10.

【0009】上記のように蒸発器3の入口にトラップ4
を設けることにより、蒸発器3内で発生した冷媒ガスの
逆流はトラップ4で防止される。そのため、蒸発器3に
は常に冷媒液のみが供給され、自然循環サイクルが確実
に実行される。また、蒸発器3の蒸発コイル内は、適当
な冷媒流速を維持しつつ、しかも蒸発コイルに勾配を持
たせる等の複雑な構造とする必要がなく、効率の良い熱
交換が可能となる。
As described above, the trap 4 is provided at the entrance of the evaporator 3.
The backflow of the refrigerant gas generated in the evaporator 3 is prevented by the trap 4. Therefore, only the refrigerant liquid is always supplied to the evaporator 3, and the natural circulation cycle is reliably executed. Further, the inside of the evaporator coil of the evaporator 3 does not need to have a complicated structure such as providing a gradient to the evaporator coil while maintaining an appropriate flow rate of the refrigerant, thereby enabling efficient heat exchange.

【0010】図3は本発明に係る冷媒循環経路を採用す
るアンモニア冷媒と炭酸ガス冷媒を組み合わせた自然循
環式ヒートポンプのシステム構成例を示す図である。図
3において、図1及び図2と同一符号を付した部分は同
一又は相当部分を示す。図示するように炭酸ガス冷凍系
はカスケードコンデンサ13、レシーバー5、流量調整
弁2、トラップ4及び蒸発器3を炭酸ガス冷媒経路9で
接続して構成されている。また、アンモニア冷凍系はカ
スケードコンデンサ13、圧縮機11、コンデンサ1
2、膨張弁14及び流量調整弁15がアンモニア冷媒経
路16で接続されて構成されている。
FIG. 3 is a diagram showing an example of a system configuration of a natural circulation type heat pump that combines an ammonia refrigerant and a carbon dioxide gas refrigerant using a refrigerant circulation path according to the present invention. In FIG. 3, portions denoted by the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding portions. As shown, the carbon dioxide refrigeration system is configured by connecting a cascade condenser 13, a receiver 5, a flow control valve 2, a trap 4, and an evaporator 3 via a carbon dioxide gas refrigerant path 9. The ammonia refrigeration system includes a cascade condenser 13, a compressor 11, and a condenser 1
2, the expansion valve 14 and the flow control valve 15 are connected by an ammonia refrigerant path 16.

【0011】蒸発器3で蒸発した炭酸ガスはカスケード
コンデンサ13で冷却され凝縮し液化炭酸ガスとなる。
この凝縮した液化炭酸ガスは、レシーバー5に溜りサー
モサイホン現象により、流量調整弁2を通って蒸発器3
へと循環する。この時も蒸発器3の入口側に設置したト
ラップ4が、蒸発器3よりの炭酸ガスの逆流を防止する
ため、自然循環が確実に行なわれる。また、蒸発器3は
適当な炭酸ガスの流速を維持しつつ、しかも蒸発コイル
に勾配を持たせる等の複雑な構造とすることなく、熱交
換効率を最大限大きくすることができる。
The carbon dioxide gas evaporated in the evaporator 3 is cooled by the cascade condenser 13 and condensed to become liquefied carbon dioxide gas.
The condensed liquefied carbon dioxide gas accumulates in the receiver 5 and passes through the flow control valve 2 due to the thermosiphon phenomenon, and the evaporator 3
Circulates to Also at this time, the trap 4 installed on the inlet side of the evaporator 3 prevents the backflow of the carbon dioxide gas from the evaporator 3, so that natural circulation is reliably performed. Further, the evaporator 3 can maximize the heat exchange efficiency while maintaining an appropriate flow rate of the carbon dioxide gas and without having a complicated structure such as giving a gradient to the evaporating coil.

【0012】なお、アンモニア冷凍系では、カスケード
コンデンサ13で炭酸ガスを冷却して蒸発したアンモニ
アガスは圧縮機11で圧縮され、コンデンサ12で凝縮
されてアンモニア液となり、膨張弁14及び流量調整弁
15を通ってカスケードコンデンサ13に戻る循環サイ
クルを構成する。
In the ammonia refrigeration system, the ammonia gas which has cooled and evaporated the carbon dioxide gas in the cascade condenser 13 is compressed in the compressor 11 and condensed in the condenser 12 to become ammonia liquid. A circulating cycle which returns to the cascade capacitor 13 through the circulating capacitor 13 is constituted.

【0013】図4は本発明に係る冷媒循環経路を採用す
るアンモニア冷媒と炭酸ガス冷媒を組み合わせた自然循
環式ヒートポンプのシステム構成例を示す図である。図
4において、図1、図2及び図3と同一符号を付した部
分は同一又は相当部分を示す。蒸発器3で蒸発した炭酸
ガスはカスケードコンデンサ13で冷却され凝縮し液化
炭酸ガスとなる。この凝縮した液化炭酸ガスは、レシー
バー5に溜り、開閉弁6を通り、更にフロートバルブ8
を介してサージドラム7に規定量溜る。該サージドラム
7に溜った液化炭酸ガスは、サーモサイホン現象により
トラップ4を通って蒸発器3へと流れ、蒸発し、ガス化
して再びサージドラム7に戻る。
FIG. 4 is a diagram showing an example of a system configuration of a natural circulation heat pump in which an ammonia refrigerant and a carbon dioxide gas refrigerant adopting the refrigerant circulation path according to the present invention are combined. In FIG. 4, portions denoted by the same reference numerals as those in FIGS. 1, 2 and 3 indicate the same or corresponding portions. The carbon dioxide gas evaporated by the evaporator 3 is cooled by the cascade condenser 13 and condensed to become liquefied carbon dioxide gas. The condensed liquefied carbon dioxide gas accumulates in the receiver 5, passes through the on-off valve 6, and further passes through the float valve 8.
A predetermined amount is stored in the surge drum 7 via the. The liquefied carbon dioxide gas accumulated in the surge drum 7 flows through the trap 4 to the evaporator 3 due to the thermosiphon phenomenon, evaporates, gasifies, and returns to the surge drum 7 again.

【0014】サージドラム7では、蒸発器3より循環し
てきた液とガスの混合体が分離してガスはカスケードコ
ンデンサ13へと、液は再度蒸発器3へと循環する。こ
の時サージドラム7と蒸発器3の間に設けたトラップ4
が蒸発器3からのガスの逆流を防止するため、自然循環
サイクルが確実に行なわれる。特に本例の場合、蒸発器
3の出口から熱交換効率を高めるため、液とガスの混合
体で戻すことが極めて多い。そのため、蒸発器3内の冷
媒圧損が大きくなり蒸発ガスの逆流が起こり易く、蒸発
器3の入口側にトラップ4を設けることによるガス逆流
防止効果は非常に大きい。
In the surge drum 7, a mixture of liquid and gas circulated from the evaporator 3 is separated, and the gas circulates to the cascade condenser 13 and the liquid circulates to the evaporator 3 again. At this time, the trap 4 provided between the surge drum 7 and the evaporator 3
Prevents a backflow of gas from the evaporator 3, so that a natural circulation cycle is reliably performed. Particularly in the case of the present example, in order to increase the heat exchange efficiency from the outlet of the evaporator 3, it is very often returned with a mixture of liquid and gas. For this reason, the refrigerant pressure loss in the evaporator 3 becomes large, and the backflow of the evaporative gas easily occurs. By providing the trap 4 on the inlet side of the evaporator 3, the gas backflow prevention effect is very large.

【0015】なお、上記例ではトラップ4をU字トラッ
プを例に説明したが、該トラップはU字トラップに限定
するものではなく、例えば図5に示すように、U字部の
中央部に冷媒流量調整弁2を設けたような構成でもよ
い。要は蒸発器3で蒸発した冷媒蒸気の逆流を防ぐこと
ができる構造であればよい。
In the above example, the trap 4 is described as a U-shaped trap. However, the trap is not limited to a U-shaped trap. For example, as shown in FIG. A configuration in which the flow control valve 2 is provided may be employed. In short, any structure that can prevent the backflow of the refrigerant vapor evaporated by the evaporator 3 may be used.

【0016】[0016]

【発明の効果】以上、説明したように各請求項に記載の
発明によれば下記のような優れた効果が得られる。
As described above, according to the invention described in each claim, the following excellent effects can be obtained.

【0017】請求項1に記載の発明によれば、蒸発器の
入口側に該蒸発器で蒸発した冷媒蒸気の逆流を防ぐトラ
ップを設けたので、蒸発器内で発生した冷媒ガスの逆流
はトラップで阻止され、蒸発器には常に冷媒液のみが供
給され、自然循環サイクルが確実に実行される。また、
蒸発器の蒸発コイル内を流れる冷媒は適当な流速を維持
しつつ、しかも蒸発コイルに勾配を持たせる等の複雑な
構造とする必要がなく、効率の良い熱交換が可能とな
る。
According to the first aspect of the present invention, since the trap for preventing the backflow of the refrigerant vapor evaporated by the evaporator is provided at the inlet side of the evaporator, the backflow of the refrigerant gas generated in the evaporator is trapped. And the refrigerant is always supplied only to the evaporator, and the natural circulation cycle is reliably executed. Also,
The refrigerant flowing in the evaporator coil of the evaporator maintains an appropriate flow rate, and does not need to have a complicated structure such as giving a gradient to the evaporator coil, so that efficient heat exchange can be performed.

【0018】請求項2に記載の発明によれば、アンモニ
ア冷媒と二酸化炭素冷媒を組み合わせた自然循環式ヒー
トポンプ装置の二酸化炭素系の冷媒循環経路の蒸発器の
入口側に該蒸発器で蒸発した冷媒蒸気の逆流を防ぐトラ
ップを設けたので、蒸発器の入口側に設置したトラップ
が、蒸発器で発生した炭酸ガスの逆流を防止するため、
自然循環が確実に行なわれる。また、蒸発器の蒸発コイ
ル内を流れる炭酸ガスは適当な流速を維持しつつ、しか
も蒸発コイルに勾配を持たせる等の複雑な構造とするこ
とがないから、熱交換効率を最大限に大きくすることが
できる。
According to the second aspect of the present invention, the refrigerant evaporated by the evaporator is provided at the inlet side of the evaporator in the carbon dioxide-based refrigerant circulation path of the natural circulation heat pump device combining the ammonia refrigerant and the carbon dioxide refrigerant. Since a trap to prevent the backflow of steam is provided, a trap installed at the inlet side of the evaporator prevents the backflow of carbon dioxide gas generated in the evaporator.
Natural circulation is ensured. Also, the carbon dioxide gas flowing in the evaporator coil of the evaporator maintains an appropriate flow rate and does not have a complicated structure such as providing a gradient to the evaporator coil, so that the heat exchange efficiency is maximized. be able to.

【0019】請求項3に記載の発明によれば、カスケー
ドコンデンサとトラップの間に該カスケードコンデンサ
からの液化二酸化炭素を所定量収容するサージドラムを
設け、該サージドラムに蒸発器からの炭酸ガスと液化二
酸化炭素の混合体を導くように構成したので、トラップ
が蒸発器からのガスの逆流を防止するため、自然循環サ
イクルが確実に行なわれる。特にこの場合、蒸発器から
出る冷媒は熱交換効率を高めるため、液とガスの混合体
であることが極めて多く、蒸発器内の冷媒圧損が大きく
なり蒸発ガスの逆流が起こり易く、トラップを設けるこ
とによるこの蒸発炭酸ガスの逆流防止効果は非常に大き
いものとなる。
According to the third aspect of the present invention, a surge drum for containing a predetermined amount of liquefied carbon dioxide from the cascade condenser is provided between the cascade condenser and the trap, and the surge drum is provided with carbon dioxide gas from the evaporator. The arrangement for directing a mixture of liquefied carbon dioxide ensures that a natural circulation cycle takes place, since the trap prevents backflow of gas from the evaporator. Particularly in this case, the refrigerant coming out of the evaporator is very often a mixture of liquid and gas in order to increase the heat exchange efficiency, so that the refrigerant pressure loss in the evaporator becomes large and the backflow of the evaporative gas easily occurs, and a trap is provided Thus, the effect of preventing the backflow of the evaporated carbon dioxide gas is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の自然循環式ヒートポンプの冷媒循環経路
の構成例を示す図である。
FIG. 1 is a diagram showing a configuration example of a refrigerant circulation path of a conventional natural circulation heat pump.

【図2】本発明に係る自然循環式ヒートポンプの冷媒循
環経路の構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of a refrigerant circulation path of a natural circulation heat pump according to the present invention.

【図3】本発明に係る冷媒循環経路を採用するアンモニ
ア冷媒と炭酸ガス冷媒を組み合わせた自然循環式ヒート
ポンプのシステム構成例を示す図である。
FIG. 3 is a diagram showing an example of a system configuration of a natural circulation heat pump that combines an ammonia refrigerant and a carbon dioxide gas refrigerant that employs a refrigerant circulation path according to the present invention.

【図4】本発明に係る冷媒循環経路を採用するアンモニ
ア冷媒と炭酸ガス冷媒を組み合わせた自然循環式ヒート
ポンプのシステム構成例を示す図である。
FIG. 4 is a diagram illustrating an example of a system configuration of a natural circulation heat pump that combines an ammonia refrigerant and a carbon dioxide gas refrigerant that employs a refrigerant circulation path according to the present invention.

【図5】本発明に係る自然循環式ヒートポンプの冷媒循
環経路の構成例を示す図である。
FIG. 5 is a diagram showing a configuration example of a refrigerant circulation path of the natural circulation heat pump according to the present invention.

【符号の説明】[Explanation of symbols]

1 サージタンク 2 冷媒流量調整弁 3 蒸発器 4 トラップ 5 レシーバー 6 開閉弁 7 サージドラム 8 フロートバルブ 9 炭酸ガス冷媒経路 10 開閉弁 11 圧縮機 12 コンデンサ 13 カスケードコンデンサ 14 膨張弁 15 流量調整弁 16 アンモニア冷媒経路 DESCRIPTION OF SYMBOLS 1 Surge tank 2 Refrigerant flow control valve 3 Evaporator 4 Trap 5 Receiver 6 On-off valve 7 Surge drum 8 Float valve 9 Carbon dioxide refrigerant passage 10 On-off valve 11 Compressor 12 Capacitor 13 Cascade condenser 14 Expansion valve 15 Flow control valve 16 Ammonia refrigerant Route

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器、凝縮器を具備し、凝縮器からの
冷媒液を蒸発器に導き、蒸発した冷媒蒸気を凝縮器に導
くように構成した自然循環式ヒートポンプの冷媒循環経
路において、 前記蒸発器の入口側に該蒸発器で蒸発した冷媒蒸気の逆
流を防ぐトラップを設けたことを特徴とする自然循環式
ヒートポンプの冷媒循環経路。
1. A refrigerant circulation path of a natural circulation heat pump comprising an evaporator and a condenser, wherein the refrigerant liquid from the condenser is guided to the evaporator, and the evaporated refrigerant vapor is guided to the condenser. A refrigerant circulation path for a natural circulation heat pump, wherein a trap for preventing backflow of refrigerant vapor evaporated by the evaporator is provided at an inlet side of the evaporator.
【請求項2】 請求項1に記載の自然循環式ヒートポン
プの冷媒循環経路において、 前記冷媒循環経路はアンモニア冷媒と二酸化炭素冷媒を
組み合わせた自然循環式ヒートポンプ装置の二酸化炭素
系の冷媒循環経路であり、該冷媒循環経路の蒸発器の入
口側に該蒸発器で蒸発した冷媒蒸気の逆流を防ぐトラッ
プを設けたことを特徴とする自然循環式ヒートポンプの
冷媒循環経路。
2. The refrigerant circulation path of the natural circulation heat pump according to claim 1, wherein the refrigerant circulation path is a carbon dioxide refrigerant circulation path of a natural circulation heat pump device combining an ammonia refrigerant and a carbon dioxide refrigerant. A refrigerant circulation path for a natural circulation heat pump, wherein a trap for preventing a backflow of the refrigerant vapor evaporated by the evaporator is provided at an inlet side of the evaporator in the refrigerant circulation path.
【請求項3】 請求項2に記載の自然循環式ヒートポン
プの冷媒循環経路において、 前記二酸化炭素系の冷媒循環経路のカスケードコンデン
サと前記トラップの間に該カスケードコンデンサからの
液化二酸化炭素を所定量収容するサージドラムを設け、
該サージドラムに前記蒸発器から吐出された炭酸ガスと
液化二酸化炭素の混合体を導くように構成したことを特
徴とする自然循環式ヒートポンプの冷媒循環経路。
3. The refrigerant circulation path of the natural circulation heat pump according to claim 2, wherein a predetermined amount of liquefied carbon dioxide from the cascade condenser is stored between the cascade condenser and the trap in the carbon dioxide refrigerant circulation path. A surge drum
A refrigerant circulation path of a natural circulation heat pump, wherein a mixture of carbon dioxide and liquefied carbon dioxide discharged from the evaporator is guided to the surge drum.
JP2000231199A 2000-07-31 2000-07-31 Refrigerant circulating route of natural circulation type heat pump Pending JP2002048484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231199A JP2002048484A (en) 2000-07-31 2000-07-31 Refrigerant circulating route of natural circulation type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231199A JP2002048484A (en) 2000-07-31 2000-07-31 Refrigerant circulating route of natural circulation type heat pump

Publications (1)

Publication Number Publication Date
JP2002048484A true JP2002048484A (en) 2002-02-15

Family

ID=18724067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231199A Pending JP2002048484A (en) 2000-07-31 2000-07-31 Refrigerant circulating route of natural circulation type heat pump

Country Status (1)

Country Link
JP (1) JP2002048484A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096085A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Cooling apparatus
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon
JP2008175522A (en) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd Renewal unit for air conditioning equipment, and construction method for air conditioning equipment using it
JP2008542677A (en) * 2005-05-24 2008-11-27 キャリア コーポレイション Parallel flow evaporator with liquid trap for good flow distribution
WO2009157318A1 (en) * 2008-06-27 2009-12-30 ホシザキ電機株式会社 Cooling device
JP2012102946A (en) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd Freezing refrigeration method and freezing refrigeration facility
JP2016142481A (en) * 2015-02-03 2016-08-08 三菱重工冷熱株式会社 Freezer unit and defrosting method for load cooler
JP2020044895A (en) * 2018-09-17 2020-03-26 マツダ株式会社 Air conditioner for vehicle
JP2020044898A (en) * 2018-09-17 2020-03-26 マツダ株式会社 Air conditioner for vehicle
WO2023279757A1 (en) * 2021-07-07 2023-01-12 中兴通讯股份有限公司 Heat dissipation apparatus and electronic device
WO2023245282A1 (en) * 2022-06-21 2023-12-28 Xnrgy Climate Systems Ulc Cooling systems with passive sub-coolers

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542677A (en) * 2005-05-24 2008-11-27 キャリア コーポレイション Parallel flow evaporator with liquid trap for good flow distribution
JP2008096085A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Cooling apparatus
JP2008096084A (en) * 2006-10-16 2008-04-24 Hoshizaki Electric Co Ltd Thermosiphon
JP2008175522A (en) * 2006-12-20 2008-07-31 Mayekawa Mfg Co Ltd Renewal unit for air conditioning equipment, and construction method for air conditioning equipment using it
WO2009157318A1 (en) * 2008-06-27 2009-12-30 ホシザキ電機株式会社 Cooling device
JP2012102946A (en) * 2010-11-11 2012-05-31 Mayekawa Mfg Co Ltd Freezing refrigeration method and freezing refrigeration facility
JP2016142481A (en) * 2015-02-03 2016-08-08 三菱重工冷熱株式会社 Freezer unit and defrosting method for load cooler
JP2020044895A (en) * 2018-09-17 2020-03-26 マツダ株式会社 Air conditioner for vehicle
JP2020044898A (en) * 2018-09-17 2020-03-26 マツダ株式会社 Air conditioner for vehicle
JP7225623B2 (en) 2018-09-17 2023-02-21 マツダ株式会社 vehicle air conditioner
JP7225624B2 (en) 2018-09-17 2023-02-21 マツダ株式会社 vehicle air conditioner
WO2023279757A1 (en) * 2021-07-07 2023-01-12 中兴通讯股份有限公司 Heat dissipation apparatus and electronic device
WO2023245282A1 (en) * 2022-06-21 2023-12-28 Xnrgy Climate Systems Ulc Cooling systems with passive sub-coolers

Similar Documents

Publication Publication Date Title
US20140013786A1 (en) Steam generation system
JP2002048484A (en) Refrigerant circulating route of natural circulation type heat pump
JP2017138090A (en) Refrigeration cycle device
JP4715574B2 (en) Absorption refrigeration system
JP2012127526A (en) Adsorption type refrigerating system
KR102618118B1 (en) Liquid refrigerant mild method for supplying low temperature refrigerant to the suction side of the refrigerant liquid pump that circulates the refrigerant in the refrigeration system under increased pressure
KR200155867Y1 (en) Condenser with integrated receiver drier
JP2003194427A (en) Cooling device
JP2018048778A (en) Absorption refrigerator
JP2004232986A (en) Refrigerator
JP4335428B2 (en) Accumulator and refrigeration cycle apparatus
JP4153203B2 (en) Cooling system
JP3780643B2 (en) Absorption refrigeration system
JP4278609B2 (en) Absorption refrigerator
JPH04313646A (en) Heat pump type air conditioner
JP3453584B2 (en) Absorption refrigerator
JP2006132804A (en) Refrigerating cycle and heat exchanger
JP2828700B2 (en) Absorption refrigerator
JP2006523819A (en) Refrigeration system and its operation method
JP2007263461A (en) Absorption refrigerating machine
JP2875614B2 (en) Air cooling absorption air conditioner
JP2004333019A (en) Absorption type refrigerating machine
JPS61276664A (en) Heat pump device
JP3486382B2 (en) Absorption refrigerator
JPH058348B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413