Nothing Special   »   [go: up one dir, main page]

JP2002047012A - Method of manufacturing titanium oxide - Google Patents

Method of manufacturing titanium oxide

Info

Publication number
JP2002047012A
JP2002047012A JP2000230779A JP2000230779A JP2002047012A JP 2002047012 A JP2002047012 A JP 2002047012A JP 2000230779 A JP2000230779 A JP 2000230779A JP 2000230779 A JP2000230779 A JP 2000230779A JP 2002047012 A JP2002047012 A JP 2002047012A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
ammonia
titanium compound
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000230779A
Other languages
Japanese (ja)
Other versions
JP2002047012A5 (en
Inventor
Yoshiaki Sakatani
能彰 酒谷
Hironobu Koike
宏信 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000230779A priority Critical patent/JP2002047012A/en
Priority to DE60121261T priority patent/DE60121261T2/en
Priority to CA002342665A priority patent/CA2342665A1/en
Priority to EP01302973A priority patent/EP1178011B1/en
Priority to TW090107457A priority patent/TWI230689B/en
Priority to US09/820,367 priority patent/US6726891B2/en
Priority to KR1020010016536A priority patent/KR100705990B1/en
Priority to EP05020936A priority patent/EP1614659A3/en
Priority to CN011178973A priority patent/CN1217862C/en
Priority to AU31404/01A priority patent/AU781450B2/en
Publication of JP2002047012A publication Critical patent/JP2002047012A/en
Publication of JP2002047012A5 publication Critical patent/JP2002047012A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of easily manufacturing titanium oxide showing high catalytic activity by irradiating visible ray, without using specific device provided with a vacuum vessel. SOLUTION: The method of manufacturing titanium oxide comprises the steps wherein the titanium compound of purity 99% or more such as titanium trichloride, titanium tetrachloride, titanium sulfate, oxytitanium sulfate and oxytitanium chloride, and ammonia with quantity more than required quantity for neutralizing the titanium compound, are mixed and reacted at 60 deg.C, and the obtained product is burned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化チタンの製造方
法に関するものであり、詳細には、NOxや有機溶剤の
分解除去、河川や湖沼の清浄化に用いられる光触媒体と
して利用可能な酸化チタンの製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing titanium oxide, and more particularly, to a method for producing titanium oxide which can be used as a photocatalyst used for decomposing and removing NOx and organic solvents and for cleaning rivers and lakes. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】酸化チタンが示す光触媒作用によって、
大気中の悪臭物質や水中の有機溶剤、界面活性剤を分解
除去することが検討されている。最近では、汎用性、利
便性から光源に可視光線を使った分解除去方法が注目さ
れ、可視光線を照射したときに高い触媒活性を示す酸化
チタンの開発が期待されている。
2. Description of the Related Art The photocatalysis of titanium oxide is
Decomposition and removal of atmospheric odor substances, organic solvents and surfactants in water are being studied. Recently, attention has been paid to a decomposition and removal method using visible light as a light source from the viewpoint of versatility and convenience, and development of titanium oxide exhibiting high catalytic activity when irradiated with visible light is expected.

【0003】このような酸化チタンの製造方法として、
例えば、酸化チタンにV、Crのような金属のイオンを
イオン注入法で導入する方法が知られている。しかし、
イオン注入法では、真空容器を備えた装置が必要であっ
た。また、製造装置の大型化が難しく、量産化が難しい
ため、製造コストが高くなることがあった。
[0003] As a method for producing such titanium oxide,
For example, a method is known in which ions of a metal such as V and Cr are introduced into titanium oxide by an ion implantation method. But,
In the ion implantation method, a device equipped with a vacuum vessel was required. In addition, since it is difficult to increase the size of the manufacturing apparatus and to mass-produce it, the manufacturing cost may be increased.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、可視
光線を照射することによって高い触媒活性を示す酸化チ
タンを、真空容器を備えた特定の装置を用いることなく
簡易に製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily producing titanium oxide having high catalytic activity by irradiating visible light without using a specific apparatus equipped with a vacuum vessel. Is to do.

【0005】[0005]

【課題を解決するための手段】本発明者等は酸化チタン
の製造方法について検討を行った結果、本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have studied the method for producing titanium oxide, and as a result, have completed the present invention.

【0006】すなわち本発明は、純度99%以上のチタ
ン化合物と、該チタン化合物を中和するための必要量を
超える量のアンモニアを混合し反応させ、得られた生成
物を焼成することを特徴とする酸化チタンの製造方法を
提供するものである。
That is, the present invention is characterized in that a titanium compound having a purity of 99% or more and an amount of ammonia exceeding a necessary amount for neutralizing the titanium compound are mixed and reacted, and the obtained product is calcined. And a method for producing titanium oxide.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明で用いられるチタン化合物としては、アンモニア
との反応により水酸化チタンを生成するチタンの化合物
であればよく、例えば、三塩化チタン〔TiCl3〕、
四塩化チタン〔TiCl4〕、硫酸チタン〔Ti(S
42・mH2O、0≦m≦20〕、オキシ硫酸チタン
〔TiOSO4・nH2O、0≦n≦20〕、オキシ塩化
チタン〔TiOCl2〕が挙げられ、中でも、オキシ硫
酸チタンの適用が推奨される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The titanium compound used in the present invention may be any titanium compound that produces titanium hydroxide by reacting with ammonia, for example, titanium trichloride [TiCl 3 ],
Titanium tetrachloride [TiCl 4 ], titanium sulfate [Ti (S
O 4 ) 2 .mH 2 O, 0 ≦ m ≦ 20], titanium oxysulfate [TiOSO 4 .nH 2 O, 0 ≦ n ≦ 20] and titanium oxychloride [TiOCl 2 ]. Is recommended.

【0008】これらのチタン化合物は、純度が高いもの
が好ましく、純度99重量%以上である。チタン化合物
の純度が99重量%未満であると、高い光触媒活性を示
す酸化チタンを得ることが困難となる。チタン化合物の
純度は、例えば、三塩化チタンではJIS K8401
−1992、四塩化チタンではJIS K8460−1
992、の方法により求めることができ、オキシ硫酸チ
タンではTiO2、SO3の主要成分およびSiO2、P2
5、Nb25のような他の成分を測定し、それぞれの
含有量をA1、A2、A3、A4、A5とし、下式 純度(%)=〔(A1+A2)/(A1+A2+A3+A4
5)〕×100 により算出することができる。
These titanium compounds preferably have high purity, and have a purity of 99% by weight or more. If the purity of the titanium compound is less than 99% by weight, it becomes difficult to obtain titanium oxide having high photocatalytic activity. The purity of the titanium compound is, for example, JIS K8401 for titanium trichloride.
-1992, JIS K8460-1 for titanium tetrachloride
992, and in titanium oxysulfate, the main components of TiO 2 and SO 3 and SiO 2 , P 2
Other components such as O 5 and Nb 2 O 5 were measured, and their contents were defined as A 1 , A 2 , A 3 , A 4 , and A 5 , respectively, and the following purity (%) = [(A 1 + A 2) / (A 1 + A 2 + A 3 + A 4 +
A 5 )] × 100.

【0009】本発明では、上で示したチタン化合物と、
該チタン化合物を中和するための必要量を超える量のア
ンモニアを混合し反応させる。アンモニアの量は、チタ
ン化合物を中和するための必要量に対し、通常1.2倍
以上、好ましくは2倍以上であり、また20倍以下、さ
らには10倍以下が適当である。ここで、チタン化合物
を中和するために必要なアンモニア量とは、水の存在下
でチタン化合物を水酸化チタンに変えるのに必要な化学
量論量のアンモニアを意味し、具体的には、チタン化合
物1モルあたりのアンモニアのモル数で表して、そのチ
タン化合物1分子中に含まれる酸基の数Bとその価数C
を掛けた値(B×C)となる。例えば、三塩化チタンで
は3モル倍、四塩化チタンでは4モル倍、硫酸チタンで
は4モル倍、オキシ硫酸チタンでは2モル倍、オキシ塩
化チタンでは2モル倍のアンモニアが中和のための必要
量となる。チタン化合物を中和するための必要量を超え
る量のアンモニアを反応に用いることによって、可視光
線の照射によって高い触媒活性を示す酸化チタンを得る
ことができる。
[0009] In the present invention, the titanium compound shown above,
An amount of ammonia exceeding a necessary amount for neutralizing the titanium compound is mixed and reacted. The amount of ammonia is usually 1.2 times or more, preferably 2 times or more, and more preferably 20 times or less, and more preferably 10 times or less, with respect to the amount required for neutralizing the titanium compound. Here, the amount of ammonia necessary to neutralize the titanium compound means a stoichiometric amount of ammonia required to convert the titanium compound to titanium hydroxide in the presence of water, and specifically, The number B of acid groups contained in one molecule of the titanium compound and the valence C thereof, expressed as the number of moles of ammonia per mole of the titanium compound
Is multiplied by (B × C). For example, the required amount of ammonia for neutralization is 3 mole times for titanium trichloride, 4 mole times for titanium tetrachloride, 4 mole times for titanium sulfate, 2 mole times for titanium oxysulfate, and 2 mole times for titanium oxychloride. Becomes By using ammonia in the reaction in an amount exceeding the amount required for neutralizing the titanium compound, it is possible to obtain titanium oxide having high catalytic activity by irradiation with visible light.

【0010】チタン化合物とアンモニアとの反応は、通
常60℃以下の温度で行われる。この際の温度は低いほ
ど好ましく、例えば、40℃以下、さらには−5℃以下
が一層好ましい。反応は、例えば、反応容器にチタン化
合物を入れ、攪拌下、アンモニア水のようなアンモニア
を添加し、混合する方法、反応容器にアンモニアを入
れ、攪拌下、チタン化合物を添加し、混合する方法、ま
たは、反応容器にチタン化合物とアンモニアとを同時に
導入し、混合する方法で行うことができる。
[0010] The reaction between the titanium compound and ammonia is usually carried out at a temperature of 60 ° C or lower. The temperature at this time is preferably as low as possible, for example, 40 ° C. or lower, more preferably −5 ° C. or lower. The reaction is, for example, a method of adding a titanium compound to a reaction vessel and adding ammonia such as aqueous ammonia under stirring and mixing, a method of adding ammonia to a reaction vessel and adding the titanium compound under stirring and mixing, Alternatively, the method can be carried out by simultaneously introducing and mixing a titanium compound and ammonia into a reaction vessel.

【0011】チタン化合物とアンモニア水とを混合して
反応させるときには、次工程の焼成の前に、生成物であ
る水酸化チタンを含むスラリーを固液分離することが好
ましい。固液分離することによって、高い光触媒活性を
示す酸化チタンを得ることができる。固液分離は、例え
ば、濾過、デカンテーションで行うことができる。
When the titanium compound and the aqueous ammonia are mixed and reacted, it is preferable to separate the slurry containing the product, titanium hydroxide, into solid and liquid before firing in the next step. By performing solid-liquid separation, titanium oxide exhibiting high photocatalytic activity can be obtained. The solid-liquid separation can be performed by, for example, filtration and decantation.

【0012】次に、反応により得られた生成物を焼成す
る。焼成は、300℃以上、さらには350℃以上で行
うことが好ましく、600℃以下、さらには500℃以
下で行うことが適当である。焼成温度が高くなり過ぎる
と、得られる酸化チタンの触媒活性が低下することがあ
る。
Next, the product obtained by the reaction is calcined. The firing is preferably performed at 300 ° C. or higher, more preferably 350 ° C. or higher, and suitably 600 ° C. or lower, and more preferably 500 ° C. or lower. If the firing temperature is too high, the catalytic activity of the resulting titanium oxide may decrease.

【0013】本発明の酸化チタンの製造方法では、通
常、結晶構造がアナターゼ型である粒子状酸化チタンが
得られる。この酸化チタンは波長が430nm以上であ
る可視光線の照射によって高い触媒活性を示すので、そ
のまま、またはこれを成形加工することにより、大気中
のNOxの分解、悪臭物質・カビの分解除去、または水
中の有機溶剤の分解除去に適用することができる。
In the method for producing titanium oxide of the present invention, a particulate titanium oxide having an anatase crystal structure is usually obtained. This titanium oxide exhibits high catalytic activity when irradiated with visible light having a wavelength of 430 nm or more. Therefore, as it is or by molding it, it can decompose NOx in the air, decompose and remove malodorous substances and mold, or use it in water. Can be applied to the decomposition and removal of organic solvents.

【0014】[0014]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明は本実施例に限定されるものではな
い。 実施例1 1Lフラスコに水40gを入れた後、攪拌下、SiO2
含有量0.011重量%、P25含有量0.034重量
%、Nb25含有量0.03重量%、純度99.93%
のオキシ硫酸チタン水和物(添川理化学製)60gを添
加し溶解した。この溶液を70℃のエバポレーターによ
り水を除去して濃縮してオキシ硫酸チタンを得た。一
方、25%アンモニア水(試薬特級、和光純薬工業製)
270gを水180gで希釈し15%アンモニア水を調
製した。この15%アンモニア水を−30℃の冷却槽で
冷却した後、400rpmで攪拌しながら、そこに、上
で得られたオキシ硫酸チタンを添加、混合し、反応させ
てスラリーを得た。このスラリーを濾過し、得られた水
酸化チタンを洗浄、乾燥した後、400℃の空気中で1
時間焼成して、粒子状酸化チタンを得た。このとき、ア
ンモニアの量は、用いたオキシ硫酸チタンを中和するた
めの必要量の8倍であった。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 After charging 40 g of water into a 1 L flask, SiO 2 was stirred under stirring.
Content 0.011% by weight, P 2 O 5 content 0.034% by weight, Nb 2 O 5 content 0.03% by weight, purity 99.93%
60 g of titanium oxysulfate hydrate (manufactured by Soekawa Rikagaku Co., Ltd.) was added and dissolved. The solution was concentrated by removing water with an evaporator at 70 ° C. to obtain titanium oxysulfate. On the other hand, 25% ammonia water (special grade reagent, manufactured by Wako Pure Chemical Industries)
270 g was diluted with 180 g of water to prepare 15% ammonia water. After cooling this 15% ammonia water in a cooling bath at -30 ° C, the titanium oxysulfate obtained above was added thereto, mixed and reacted while stirring at 400 rpm to obtain a slurry. This slurry was filtered, and the obtained titanium hydroxide was washed and dried.
After firing for a time, particulate titanium oxide was obtained. At this time, the amount of ammonia was eight times the necessary amount for neutralizing the used titanium oxysulfate.

【0015】密閉式のガラス製反応容器(直径8cm、
高さ10cm、容量約0.5L)内に、直径5cmのガ
ラス製シャーレを設置し、そのシャーレ上に、上で得ら
れた粒子状酸化チタン0.3gを置いた。反応容器内を
酸素と窒素との体積比が1:4である混合ガスで満た
し、アセトアルデヒドを13.4μmol封入し、反応
容器の外から可視光線を照射した。可視光線の照射に
は、500Wキセノンランプ(商品名:オプティカルモ
ジュレックスSX−UI500XQ、ランプUXL−5
00SX、ウシオ電機製)に、波長約430nm以下の
紫外線をカットするフィルター(商品名:Y−45、東
芝硝子製)と波長約830nm以上の赤外線をカットす
るフィルター(商品名:スーパーコールドフィルター、
ウシオ電機製、)とを装着したものを光源として用い
た。可視光線の照射によりアセトアルデヒドが分解する
と、二酸化炭素が発生するので二酸化炭素の濃度を光音
響マルチガスモニタ(1312型、INNOVA製)で
経時的に測定し、濃度変化より算出した二酸化炭素の生
成速度により、酸化チタンのアセトアルデヒドに対する
光触媒作用を評価した。この例における二酸化炭素の生
成速度は酸化チタン1gあたり189.9μmol/h
であった。
A closed glass reaction vessel (diameter 8 cm,
A glass petri dish having a diameter of 5 cm was placed within a height of 10 cm and a capacity of about 0.5 L), and 0.3 g of the particulate titanium oxide obtained above was placed on the petri dish. The inside of the reaction vessel was filled with a mixed gas having a volume ratio of oxygen to nitrogen of 1: 4, acetaldehyde was filled in at 13.4 μmol, and visible light was irradiated from outside the reaction vessel. For irradiation of visible light, a 500 W xenon lamp (trade name: Optical Modlex SX-UI500XQ, lamp UXL-5)
00SX, manufactured by Ushio Inc.), a filter that cuts ultraviolet rays having a wavelength of about 430 nm or less (trade name: Y-45, manufactured by Toshiba Glass) and a filter that cuts infrared rays having a wavelength of about 830 nm or more (trade name: Super Cold Filter,
Ushio Inc.) was used as the light source. When acetaldehyde is decomposed by irradiation with visible light, carbon dioxide is generated. The concentration of carbon dioxide is measured over time with a photoacoustic multi-gas monitor (Type 1312, manufactured by INNOVA), and the carbon dioxide generation rate is calculated from the change in concentration. The photocatalytic action of titanium oxide on acetaldehyde was evaluated. In this example, the production rate of carbon dioxide was 189.9 μmol / h per 1 g of titanium oxide.
Met.

【0016】実施例2 1Lフラスコに水100gを入れた後、攪拌下、SiO
2含有量0.011重量%、P25含有量0.034重
量%、Nb25含有量0.03重量%、純度99.93
%のオキシ硫酸チタン水和物(添川理化学製)60gを
添加し溶解した。この溶液を70℃のエバポレーターに
より水を除去して濃縮してオキシ硫酸チタンを得た。2
5%アンモニア水(試薬特級、和光純薬工業製)68g
を−30℃の冷却槽で冷却した後、400rpmで攪拌
しながら、そこに、上で得られたオキシ硫酸チタンを添
加、混合し、反応させてスラリーを得た。このスラリー
を濾過し、得られた水酸化チタンを洗浄、乾燥した後、
400℃の空気中で1時間焼成して、粒子状酸化チタン
を得た。このとき、アンモニアの量は、用いたオキシ硫
酸チタンを中和するための必要量の2倍であった。上で
得られた粒子状酸化チタンにつき、実施例1と同様にし
てアセトアルデヒドに対する光分解作用を評価した。二
酸化炭素の生成速度は酸化チタン1gあたり93.88
μmol/hであった。
Example 2 After 100 g of water was put into a 1 L flask, the mixture was mixed with SiO 2 under stirring.
2 content 0.011% by weight, P 2 O 5 content 0.034% by weight, Nb 2 O 5 content 0.03% by weight, purity 99.93
60 g of titanium oxysulfate hydrate (manufactured by Soegawa Rikagaku) was added and dissolved. The solution was concentrated by removing water with an evaporator at 70 ° C. to obtain titanium oxysulfate. 2
68 g of 5% aqueous ammonia (special grade reagent, manufactured by Wako Pure Chemical Industries)
Was cooled in a cooling bath at −30 ° C., and while stirring at 400 rpm, the titanium oxysulfate obtained above was added thereto, mixed and reacted to obtain a slurry. This slurry was filtered, and the obtained titanium hydroxide was washed and dried.
Calcination was performed in air at 400 ° C. for 1 hour to obtain particulate titanium oxide. At this time, the amount of ammonia was twice the amount required for neutralizing the used titanium oxysulfate. With respect to the particulate titanium oxide obtained above, the photolytic action on acetaldehyde was evaluated in the same manner as in Example 1. The production rate of carbon dioxide was 93.88 per gram of titanium oxide.
μmol / h.

【0017】比較例1 1Lフラスコに水360gを入れた後、攪拌下、SiO
2含有量0.011重量%、P25含有量0.034重
量%、Nb25含有量0.03重量%、純度99.93
%のオキシ硫酸チタン水和物(添川理化学製)90gを
添加し溶解した。この溶液を氷水で冷却した後、400
rpmで攪拌しながら、25%アンモニア水50gを添
加、混合し、反応させてスラリーを得た。このスラリー
を濾過し、得られた水酸化チタンを洗浄、乾燥し、40
0℃の空気中で1時間焼成して、粒子状酸化チタンを得
た。このとき、アンモニアの量は、用いたオキシ硫酸チ
タンを中和するための必要量と同じであった。上で得ら
れた粒子状酸化チタンにつき、実施例1と同様にしてア
セトアルデヒドに対する光分解作用を評価した。二酸化
炭素の生成速度は酸化チタン1gあたり0.66μmo
l/hであった。
COMPARATIVE EXAMPLE 1 After placing 360 g of water in a 1 L flask, the mixture was mixed with SiO 2 under stirring.
2 content 0.011% by weight, P 2 O 5 content 0.034% by weight, Nb 2 O 5 content 0.03% by weight, purity 99.93
90 g of titanium oxysulfate hydrate (manufactured by Soekawa Rikagaku) was added and dissolved. After cooling this solution with ice water, 400
While stirring at rpm, 50 g of 25% aqueous ammonia was added, mixed and reacted to obtain a slurry. This slurry was filtered, and the obtained titanium hydroxide was washed, dried, and dried.
Calcination was performed in air at 0 ° C. for 1 hour to obtain particulate titanium oxide. At this time, the amount of ammonia was the same as the amount required for neutralizing the used titanium oxysulfate. With respect to the particulate titanium oxide obtained above, the photolytic action on acetaldehyde was evaluated in the same manner as in Example 1. The generation rate of carbon dioxide is 0.66 μmo / g of titanium oxide.
1 / h.

【0018】[0018]

【発明の効果】本発明によれば、可視光線を照射するこ
とによって高い触媒活性を示す酸化チタンを簡易に製造
することができる。
According to the present invention, titanium oxide exhibiting high catalytic activity can be easily produced by irradiating visible light.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/30 C02F 1/30 Fターム(参考) 4D037 AA05 AB11 BA16 BB09 CA12 4G047 CA02 CB05 CC03 CD03 4G069 AA02 AA08 AA09 BA04A BA04B BA48A BB01C BB08C BB10C BB20C BC50C BD01C BD02C BD06C BD12C CA05 CA10 CA11 CA13 EA02Y EC22Y FB05 FB08 FB30 FC03 FC07 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C02F 1/30 C02F 1/30 F term (reference) 4D037 AA05 AB11 BA16 BB09 CA12 4G047 CA02 CB05 CC03 CD03 4G069 AA02 AA08 AA09 BA04A BA04B BA48A BB01C BB08C BB10C BB20C BC50C BD01C BD02C BD06C BD12C CA05 CA10 CA11 CA13 EA02Y EC22Y FB05 FB08 FB30 FC03 FC07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 純度99%以上のチタン化合物と、該チ
タン化合物を中和するための必要量を超える量のアンモ
ニアを混合し反応させ、得られた生成物を焼成すること
を特徴とする酸化チタンの製造方法。
1. An oxidation method comprising mixing and reacting a titanium compound having a purity of 99% or more with ammonia in an amount exceeding a necessary amount for neutralizing the titanium compound, and calcining the obtained product. Manufacturing method of titanium.
【請求項2】 反応を60℃以下で行う請求項1記載の
方法。
2. The method according to claim 1, wherein the reaction is carried out at a temperature of 60 ° C. or lower.
JP2000230779A 2000-07-31 2000-07-31 Method of manufacturing titanium oxide Pending JP2002047012A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2000230779A JP2002047012A (en) 2000-07-31 2000-07-31 Method of manufacturing titanium oxide
DE60121261T DE60121261T2 (en) 2000-07-31 2001-03-29 Process for producing titanium oxide
CA002342665A CA2342665A1 (en) 2000-07-31 2001-03-29 Titanium oxide production process
EP01302973A EP1178011B1 (en) 2000-07-31 2001-03-29 Titanium oxide production process
TW090107457A TWI230689B (en) 2000-07-31 2001-03-29 Titanium oxide production process
US09/820,367 US6726891B2 (en) 2000-07-31 2001-03-29 Titanium oxide production process
KR1020010016536A KR100705990B1 (en) 2000-07-31 2001-03-29 Titanium oxide production process
EP05020936A EP1614659A3 (en) 2000-07-31 2001-03-29 Titanium oxide production process
CN011178973A CN1217862C (en) 2000-07-31 2001-03-29 Method for prepn. of titanium oxide
AU31404/01A AU781450B2 (en) 2000-07-31 2001-03-29 Titanium oxide production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230779A JP2002047012A (en) 2000-07-31 2000-07-31 Method of manufacturing titanium oxide

Publications (2)

Publication Number Publication Date
JP2002047012A true JP2002047012A (en) 2002-02-12
JP2002047012A5 JP2002047012A5 (en) 2007-08-16

Family

ID=18723694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230779A Pending JP2002047012A (en) 2000-07-31 2000-07-31 Method of manufacturing titanium oxide

Country Status (1)

Country Link
JP (1) JP2002047012A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
JP2006312572A (en) * 2005-05-09 2006-11-16 Nippon Chem Ind Co Ltd Granular titanium oxide, its manufacturing method and optical glass
JP2008516880A (en) * 2004-10-14 2008-05-22 トクセン ユー.エス.エー.、インコーポレイテッド Method for synthesizing nano-sized titanium dioxide particles
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product
CN113842854A (en) * 2021-08-24 2021-12-28 深圳市银宝山新科技股份有限公司 Reaction device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211528A (en) * 1960-03-17 1965-10-12 Laporte Titanium Ltd Manufacture of titanium dioxide
US3518053A (en) * 1968-04-16 1970-06-30 Nat Lead Co Method for producing an improved titanium dioxide pigment
JPH0524866B2 (en) * 1988-05-28 1993-04-09 Sakai Chemical Industry Co
JPH07232924A (en) * 1994-02-18 1995-09-05 Ishihara Sangyo Kaisha Ltd Fine titanium oxide particles and their production
JPH0881223A (en) * 1994-09-14 1996-03-26 Ishihara Sangyo Kaisha Ltd Production of anatase type titanium oxide
JPH10114870A (en) * 1996-05-24 1998-05-06 Nippon Parkerizing Co Ltd Titanium oxide ceramic coating material excellent in hydrophilicity, photocatalytic properties and transparency, and its production
WO1999041200A1 (en) * 1998-02-17 1999-08-19 Kerr-Mcgee Pigments Gmbh & Co. Kg Pure titanium dioxide hydrate and a process for the production thereof
WO1999043616A1 (en) * 1998-02-24 1999-09-02 Rotem Amfert Negev Ltd. A modified titanium dioxide and a method for its preparation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3211528A (en) * 1960-03-17 1965-10-12 Laporte Titanium Ltd Manufacture of titanium dioxide
US3518053A (en) * 1968-04-16 1970-06-30 Nat Lead Co Method for producing an improved titanium dioxide pigment
JPH0524866B2 (en) * 1988-05-28 1993-04-09 Sakai Chemical Industry Co
JPH07232924A (en) * 1994-02-18 1995-09-05 Ishihara Sangyo Kaisha Ltd Fine titanium oxide particles and their production
JPH0881223A (en) * 1994-09-14 1996-03-26 Ishihara Sangyo Kaisha Ltd Production of anatase type titanium oxide
JPH10114870A (en) * 1996-05-24 1998-05-06 Nippon Parkerizing Co Ltd Titanium oxide ceramic coating material excellent in hydrophilicity, photocatalytic properties and transparency, and its production
WO1999041200A1 (en) * 1998-02-17 1999-08-19 Kerr-Mcgee Pigments Gmbh & Co. Kg Pure titanium dioxide hydrate and a process for the production thereof
WO1999043616A1 (en) * 1998-02-24 1999-09-02 Rotem Amfert Negev Ltd. A modified titanium dioxide and a method for its preparation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338564A2 (en) 2002-02-25 2003-08-27 Sumitomo Chemical Co.,Ltd. Titanium oxide precursor and production method thereof, and production method of titanium oxide using the precursor
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
JP2008516880A (en) * 2004-10-14 2008-05-22 トクセン ユー.エス.エー.、インコーポレイテッド Method for synthesizing nano-sized titanium dioxide particles
JP2006312572A (en) * 2005-05-09 2006-11-16 Nippon Chem Ind Co Ltd Granular titanium oxide, its manufacturing method and optical glass
EP2130587A2 (en) 2008-06-05 2009-12-09 Sumitomo Chemical Company, Limited Photocatalyst dispersion liquid and process for producing the same
EP2281628A2 (en) 2009-08-07 2011-02-09 Sumitomo Chemical Company, Limited Method for producing noble metal-supported photocatalyst particles
DE102010045549A1 (en) 2009-09-16 2011-08-25 Sumitomo Chemical Company, Limited Photocatalyst composite and using this photocatalytically active product
CN113842854A (en) * 2021-08-24 2021-12-28 深圳市银宝山新科技股份有限公司 Reaction device

Similar Documents

Publication Publication Date Title
EP1138634B1 (en) Process for producing titanium oxide
EP1178011B1 (en) Titanium oxide production process
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
EP1492729B1 (en) Method for preparing a photocatalyst containing titanium dioxide
KR20020092067A (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP2002047012A (en) Method of manufacturing titanium oxide
JP4269621B2 (en) Method for producing titanium oxide
JP2001354422A (en) Method for manufacturing titanium oxide
JP4078479B2 (en) Method for producing titanium oxide
JP2001278627A (en) Method of producing titanium oxide
JP4408349B2 (en) Method for producing photocatalyst-supported porous gel
JP2003190811A (en) Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
JP2001278625A (en) Method of producing titanium oxide
JP2001278626A (en) Method of producing titanium oxide
JP2004161592A (en) Anatase type titania-silica composite and its production method
JP3002186B1 (en) Titanium dioxide photocatalyst
JP3136339B2 (en) Titanium oxide photocatalyst and method for producing the same
JP2000095521A (en) Production of titanium dioxide
RU2520100C1 (en) Method of preparing titanium oxide photocatalyst active in visible spectrum
RU2565193C1 (en) Method of producing nanosized titanium dioxide
JP2000095519A (en) Zinc oxide powder and its synthesis
JP2004043282A (en) Method of manufacturing titanium oxide
JP3940393B2 (en) Method for producing photocatalytic titanium oxide
JP2004250325A (en) Method for manufacturing titanium oxide
JP2002326815A (en) Production method of titanium oxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104